

ReMoDeL

Standard Library
White Paper

Version: 0.5

Date: 12 April 2010

Anthony J H Simons
Department of Computer Science
University of Sheffield

ReMoDeL Standard Library
The following outlines the growing standard library for ReMoDeL. These standard classes
and methods are assumed to exist in all implementations and may be provided in whatever
way the target language finds easiest to support. That is, the ReMoDeL library classes could
be defined from scratch, or they could be derived from similar classes in the native libraries
of each target language.

The natural organisation of the classes here reflects the derivation of the ReMoDeL standard
library for C++, which was developed first, due to the perceived difficulty of developing this
from scratch, but it may turn out that this structure cannot be exactly replicated in other target
languages, in which case it will probably change to accommodate what is most possible
across all target languages. It is hoped that the declared compatibilities between standard
classes and their superclasses, or between standard classes and standard interfaces, may
nonetheless be preserved.

In the documentation provided below, classes and interfaces are described in a pseudo-code
syntax that is close to Java, merely for the sake of convenience. This is not meant to
discriminate against other target languages. The keywords inherit and satisfy are used in the
ReMoDeL sense, in the derivation of subclasses and interfaces.

1. Package Organisation

It is assumed that the standard library classes are organised in a number of standard
ReMoDeL packages, which are either packages (in Java), or namespaces (in C++), or clusters
(in Eiffel), etc. and other languages are expected to follow one of these patterns. These are
given standard package names (used as the namespace-names in languages like C++) or
standard locations (pathnames used as directory structures in C++, or package names in Java,
etc).

The following packages are assumed to exist (so far):

• package Core, location lib.core: contains the kernel ReMoDeL classes;

• package Util, location lib.util: contains utility classes such as the collections;

• package InOut, location lib.io: contains the input/output stream library.

Others may be added to this list. From this, it can be seen that the root directory structure
starts with lib and then branches out under this. It is assumed that target languages will be
able to load the object-code or bytecode for standard library classes from isomorphic
directory structures.

2. The Core Package

The Core package contains the kernel classes. These include the official root class Object,
the official root interface Interface and facilities to handle the boxing and unboxing of value
types, in languages that need this explicitly. Frequently-used base classes such as String are
expected to be found here. Also, the (small) hierarchy of Exception classes is defined here.

In certain target languages, there will be non-publicised implementation classes above Object
in the class hierarchy. For example, in C++, the reference-counting behaviour is provided by
classes called Ref, Handle and Body, where Body is the ultimate ancestor of all classes and
interfaces. By contrast, it might make more sense in Java for lib.core.Object to be a child of
the system root class java.lang.Object, and provide its facilities this way.

2.1 Root Interface and Object

The root interface Interface declares three methods that all classes are eventually supposed to
implement:

public interface Interface {
 public Boolean equals(Object other);
 public Natural hashCode();
 public String toString();
}

where the types Boolean and Natural are ReMoDeL types that may be translated into built-in
basic types in target languages (e.g. in C++ these respectively become bool and unsigned).
All ReMoDeL interfaces are extensions of Interface. While many target languages do not
need to declare a root Interface, it is provided to relate both concrete Object classes and
abstract Interfaces to a secret reference-counted ancestor class in certain target
implementations (see above).

The root class Object implements the basic Interface and has the structure:

public class Object satisfy Interface {
 public Object();
 public Boolean equals(Object other);
 public Natural hashCode();
 public String toString();
 protected Void assertInvariant();
 protected Void brokenContract(String message);
 protected Void systemError(String message);
}

The default implementation of hashCode() returns the memory address of the current object,
cast to an unsigned natural number. The semantics of equals(Object) is meant to indicate
deep equality, but may default to identity where objects have no state, as here. The method
toString() is intended to return a printable representation of an object, by default “anObject”.

The secret method assertInvariant() is a placeholder for methods that assert the data type
invariant. Each redefined version always invokes the supermethod (to combine invariants),
hence this default nullop. The method brokenContract(String) is provided for convenience,
so that classes may raise exceptions more succinctly. By default, this method creates and
raises a BrokenContract exception, with the message as the construction argument.
Similarly, systemError(String) creates and raises a SystemError exception, with the message
as argument.

2.2 Standard Exceptions

There are very few types of exception in the ReMoDeL library. This is because standard
assumptions are made in generated code about the kinds of faults that can arise. Basically,
these are either system-related faults that cannot easily be repaired, or failures resulting from

broken contracts. In principle, the root Exception class is derived from lib.core.Object;
although it may be useful to derive it instead from the target language’s undeclared exception
class (e.g. java.lang.RuntimeException) to avoid having to generate declarations about raised
exceptions. The root Exception class has the structural interface:

public class Exception inherit Object {
 protected String message;
 public Exception();
 public Exception(String message);
 public String toString();
}

The default constructor creates an Exception with an empty message, whereas the standard
constructor initialises the message. The toString() method should return an error string
containing the message. Depending on how exceptions are naturally reported by the target
language, the error string may also be prefixed by the header: “Exception: ” to indicate the
class of exception, if the language does not already do this automatically.

The two subclasses of Exception are provided merely to distinguish the two main types of
exception and otherwise behave in the same way as Exception:

public class SystemError inherit Exception {
 public SystemError();
 public SystemError(String message);
 public String toString(); // changed prefix?
}

public class BrokenContract inherit Exception {
 public BrokenContract();
 public BrokenContract(String message);
 public String toString(); // changed prefix?
}

The implementations of these classes follow Exception and are based on it. The method
toString() may be overridden if it is desired to add a different class prefix to the error
message. Note that the convention for reporting BrokenContract exceptions is always to
name the current method and the positively-asserted property that was broken, in the style:

BrokenContract: first: non-empty sequence
BrokenContract: get: valid index

2.3 Standard String

The standard ReMoDeL String class belongs to the Core package, because of its importance
in the kernel, even though it bears a resemblance to the kinds of collection found in the Util
package. A String is immutable and implements the immutable Sequence interface, described
below. The structural interface of String is given, according to one possible derivation, by
the declaration:

public class String inherit Object satisfy Sequence<Character> {
 // construction interface
 public String();
 public String(String other);
 public String(Collection<Character>);
 // override methods from Object
 public Boolean equals(Object);

 public Natural hashCode();
 public String toString();
 // implement Collection interface
 public Natural size();
 public Boolean isEmpty();
 public Boolean contains(Character item);
 public Iterator<Character> iterator();
 // implement Sequence interface
 public Sequence<Character> append(Sequence<Character> seq);
 public Sequence<Character> sublist(Integer start, Integer stop);
 public Character first();
 public Character last();
 public Integer firstIndex(Character item, Integer from);
 public Integer lastIndex(Character item, Integer from);
 public Character get(Integer index);
 // specific String operations
 public Integer firstOffset(String text, Integer from);
 public Integer lastOffset(String text, Integer from);
}

Alternatively, lib.core.String might be derived from java.lang.String in Java; or from a
default implementation of the Sequence interface, such as AbstractSequence, which provides
a common strategy for some sequence methods. It is likely that String will override a number
of these, for the sake of efficient implementation.

The constructors must be able to build a legal empty String “”, a copy of another String and a
compact String copied from a Collection<Character> (where Character is translated as the
base type char in some languages). If the target language does not treat primitive strings (viz.
char* in C++) in the same way as the String type, a copy constructor for primitive strings
must also be provided; and possibly a method supporting assignment of a literal string to a
String reference. Similarly, the target language must be able to convert a String reference
into a printable character sequence automatically. (C++ may provide an operator char*() for
example).

The Object methods: equals, hashCode and toString behave as follows. The equals method
compares this String with the argument, and returns true only if the argument is convertible to
a String, or to a Sequence, whose Characters appear in the same order as in this String
(implementations may attempt to cast the argument). The hashCode should be computed
according to the famous P J Weinberger algorithm in Aho, Sethi and Ullman, p436. The
toString conversion should return this String object unchanged.

The Collection methods: size, isEmpty, contains and iterator behave as follows. The size
method returns the length of this String. The isEmpty method returns true only if this String
is “”. The contains method returns true if this String contains the specified Character. The
iterator method returns a StringIterator, which satisfies the interface Iterator<Character>.
This iterator may be defined separately, or as an inner class in some target languages (see the
collections library).

The Sequence methods: append, sublist, first, last, firstIndex, lastIndex and get behave as
follows. The append method creates a new string appending the elements of this String and
the argument seq. The sublist method creates a new string containing the elements of this
String from the start index, up to but not including the stop index. These methods both return
Strings, although the public result type is Sequence<Character>, to be compatible with the
Sequence interface. Neither method modifies this String; in some target languages the result

may have to be constructed using private constructors). The first and last methods
respectively return the first and last Character items of this String. The get method returns a
Character at an index. The firstIndex method searches forward, starting from an index, and
returns the index of the next occurrence of the sought Character item, or –1 if the item is not
found. The lastIndex method searches symmetrically backwards.

The String methods: firstOffset and lastOffset perform similar kinds of searching for
substrings embedded in this String. Note that these methods are differently named (in Java
they are overloaded) and all searching methods require a starting index (again, Java provides
overloaded versions with and without the index).

All indices to methods are checked, where possible using one-sided bounds checks afforded
by unsigned conversion, viz. ((unsigned) index) < size, which checks for underflow
(negative index) and overflow. Methods raise BrokenContract exceptions if indices are out
of range. Asserted preconditions are: valid index (or indices) and non-empty sequence.

3. The Util Package

The Util package contains utility classes, most importantly the collections and the iterators.
The collections are organised as a set of abstract interfaces that are satisfied by classes
representing alternative implementations. Likewise, the abstract Iterator interface is
implemented by concrete iterators (possibly inner classes) specific to each collection class.
Collections are externally accessible via indices, but are internally traversed via iterators.
Likewise, the foreach-style of loop is converted to explicit iteration (either by the target
language, or by the translator).

3.1 Standard Collection Interfaces

The Collection interface is generically-typed over its element-type T and has the following
signature, extending the root Interface:

public interface Collection<T> satisfy Interface {
 public Natural size();
 public Boolean isEmpty();
 public Boolean contains(T item);
 public Iterator<T> iterator();
}

The outline behaviour of these methods has already been described above. It is possible to
compare collections for equality, compute a hash code based on the elements and give a
printed representation. All collections may be queried about their size and contents. The
only mechanism for traversing a basic Collection is by using an Iterator, which has the same
element-type T.

The Sequence interface represents immutable sequences, which are indexed and searchable,
but cannot be modified. Sequences support constructive versions of the append and sublist
operations. Sequence is derived from Collection and is also generically typed:

public interface Sequence<T> satisfy Collection<T> {
 public Sequence<T> append(Sequence<T> seq);
 public Sequence<T> sublist(Integer start, Integer end);
 public T first();
 public T last();

 public Integer firstIndex(T item, Integer from);
 public Integer lastIndex(T item, Integer from);
 public T get(Integer index);
}

The outline behaviour of these methods has been described above. The methods append and
sublist construct and return new sequences of the same element type. The methods first and
last select the elements at the front and back end of this Sequence. The methods firstIndex
and lastIndex respectively search forwards, or backwards from an index for an element,
returning the index, or –1 if not found. (Note that for some sequence implementations,
lastIndex must logically search backwards, but physically search forwards for the last
occurrence of the element before the starting index). All Sequence types support index-based
searching (which should therefore be efficient).

The List interface extends the Sequence interface with mutating operations. These include
adding and removing single elements at both ends, inserting, excising and replacing single
elements at an index; and cognate methods (ending with the suffix All, e.g. addAll) to add,
remove, insert and excise whole collections.

public interface List<T> satisfy Sequence<T> {
 public Void put(Integer index, T item);
 public Void addFirst(T item);
 public Void addLast(T item);
 public Void removeFirst();
 public Void removeLast();
 public Void remove(T item);
 public Void insert(Integer index, T item);
 public Void excise(Integer index);
 public Void addAll(Collection<T> other);
 public Void removeAll(Collection<T> other);
 public Void insertAll(Integer index, Collection<T> other);
 public Void exciseAll(Integer start, Integer stop);
}

The meanings of most of these are self-evident. The remove(item) method searches for the
first occurrence of the item and excises it if found, otherwise does nothing. The
addAll(other) method iterates over the elements of other and performs addLast(item) with
each one. The removeAll(other) method iterates over the elements of other and performs
remove(item) with each one.

The Set interface extends the Collection interface and declares the operations:

public interface Set<T> satisfy Collection<T> {
 public Void add(T item);
 public Void remove(T item);
 public Void include(Collection<T>);
 public Void exclude(Collection<T>);
 public Void retain(Collection<T>);
}

This is not yet the final form of Set; and further operations will be added. Also, there may
well be some commonality among unordered collections (such as Set and Bag), which we
might wish to capture. This is a work in progress.

3.2 Standard Iterators

All ReMoDeL collections may be traversed by iterators. An iterator is guaranteed to traverse
a collection in one pass, visiting each element once. Modifying the collection during a
traversal is not advised, and has undefined effects. The interface for Iterator distinguishes
operations that move the cursor from operations that access the element under the cursor
(unlike Java, which conflates both).

public interface Iterator<T> satisfy Interface {
 Boolean valid();
 T item();
 Void next();
}

The valid method returns true if the Iterator is still traversing elements, and false if the
Iterator has passed the final element of the collection. The item method returns the current
item under the cursor. The next method advances the cursor by one place.

Different collection classes provide their own versions of Iterator. For example, the Vector
class returns a BlockIterator; the LinkedList returns a LinkIterator; the String returns a
StringIterator; and so on. Each kind of iterator satisfies the Iterator interface, and some
instantiate the element-type:

class BlockIterator<T> inherit Object satisfy Iterator<T> { … }

class LinkIterator<T> inherit Object satisfy Iterator<T> { … }

class StringIterator inherit Object satisfy Iterator<Character> { … }

These have constructors appropriate to the implementation strategy of the collection over
which they iterate. For example, the BlockIterator may store raw pointers to a Vector’s
memory block, whereas a LinkIterator may store a raw pointer to the current list link.
Iterators are not used to insert or remove elements from a collection, but merely to traverse
them, visiting each element exactly once. Translators may assume that the foreach style of
loop:

foreach (X item : collX) { … }

translates into the following code:

for (Iterator<X> it = collX.iterator(); it.valid(); it.next()) {
 X item = it.item();
 …
}

Iterators are typically implemented in the same source files as the collections over which they
iterate.

3.3 Default Collection Implementations

Where the target language permits this as the most obvious way of deriving concrete
collections, the following default collection implementations may be provided. Two of
Collection’s methods have default implementations:

public class AbstractCollection<T> inherit Object
 satisfy Collection<T> {
 public Boolean isEmpty();
 public Boolean contains(T item);
}

The isEmpty method is implemented in terms of abstract size. The contains method is
implemented by iterating until the iterator item matches the sought item, or the whole
collection has been traversed. Both are efficient. Several of Sequence’s methods have
default implementations:

public class AbstractSequence<T> inherit AbstractCollection<T>
 satisfy Sequence<T> {
 public Boolean equals(Object other);
 public Natural hashCode();
 public T first();
 public T last();
 public Integer firstIndex(T item, Integer from);
 public Integer lastIndex(T item, Integer from);
}

It makes sense to introduce the first default implementations of equals and hashCode
separately for the Sequence and Set collection types, since the former must take the order of
elements into account. The equals method tries to convert its argument at least to a
Sequence, then compares elements. If the argument is not a Sequence, false is returned. The
hashCode method computes an incremental in-place product of the existing hashCode, a
prime multiplier (31) and the hash code of the next element. The first and last methods are
implemented in terms of get with suitable indices; and the firstIndex and lastIndex searching
methods are both implemented in terms of the iterator searching from the front.

Note that since String is a kind of Sequence, it may inherit from AbstractSequence in some
implementations. This affects any default implementation of toString() in the collection
types, since the version for generic elements in AbstractSequence must be replaced by an
identity operation in String.

	ReMoDeL Standard Library
	1. Package Organisation
	2. The Core Package
	2.1 Root Interface and Object
	2.2 Standard Exceptions
	2.3 Standard String

	3. The Util Package
	3.1 Standard Collection Interfaces
	3.2 Standard Iterators
	3.3 Default Collection Implementations

