Borrow, Copy or Steal? Loans and Larceny in the Orthodox
Canonical Form

Anthony J. H. Simons
Department of Computer Science
University of Sheffield
Regent Court, 211 Portobello Street
Sheffield, S1 4DP UK
+44 114 222 1838
A Simons@dcs.shef.ac.uk

Abstract

Dynamic memory management in C++ is complex,
especially across the boundaries of library abstract data
types. C++ libraries designed in the orthodox canonical
form (OCF) alleviate some of the problems by ensuring
that classes which manage any kind of heap structures
faithfully copy and delete these. However, in certain
common circumstances, OCF heap structures are
wastefully copied multiple times. General reference
counting is not an option in OCF, since a shared body
violates the intended value semantics; although a copy-on-
write policy can be made to work with borrowed heap
structures. A simpler ownership policy, based on larceny,
allows low-level memory manager objects to steal heap
structures from temporary variables, in properly isolated
circumstances. Various strategies for regulating theft are
presented, ranging from pilfer-constructors to locks on
heap data. Larceny has similarities with other transfer of
ownership patterns, but is more a core implementation
technique designed to improve the efficiency and
effectiveness of OCF-conformant libraries.

Keywords

C++, implementation strategics, memory management,
copy-on-write, transfer of ownership, borrowing, stealing,
larceny.

1 Introduction

This paper compares three policies for regulating the
transfer of heap resources in C++, named according to
whether the recipient has to horrow, copy or steal from the

Permission to copy without fee all or part of this material is granted
provided that copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the
Association of Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

OOPSLA 98 - 10/98 Vancouver, British Columbia, Canada.
© 1998 ACM

65

provider. The area of dynamic resource ownership has
received new attention recently, being a concern in
concurrent and distributed programming [SBGLI1].
Particular issues here include the containment of resources
with a view to cheap synchronisation [Lea96] and the
transfer of resources at low cost [SaCa96]. The need to
assure exclusive ownership is related to other general work
on aliasing-protection, such as the "Geneva Convention"
[HLHW92], alias-free pointers [Mins96], islands [Hogg91]
and balloon types [Alme97]. Much of this work focuses on
who has control over resources and whether further aliases
may be granted.

In this paper, a different slant is taken. Many C++
programmers prefer the so-called orthodox canonical form
(OCF) [Cope92, Lea93], with its emphasis on the uniform
value semantics of copying and simple memory
management, over more complex forms of resource
control, such as reference-counting using handle/
representation pairs [Stro91, Hors95]. Section 2 reviews
the pragmatic and semantic reasons for adopting OCF,
explaining its renewed importance in the context of the
Standard Template Library (STL). Section 3 outlines the
common problems with excess copying of heap structures
in OCF, sctting out ideal targets for maximum efficiency.
Section 4 describes two copy-on-write (borrowing)
strategies in the context of OCF. Section 5 describes two
transfer-of-ownership (stealing) patterns: the aggressive
larceny model is contrasted with an alternative
opportunistic larceny model. These are shown to be less
complex and with fewer overheads than borrowing
strategies, while achieving the same optimum efficiency
targets outlined in section 3. Larceny is most closely
related to Cargill's sequence of owners pattern [Carg96],
being one form of localised ownership; and is also
similarly related to Lea's transfer of ownership pattern
[Lea96]. However, whereas these are applied at a high
level to abstract and distributed designs, larceny drives
these principles down into a core implementation
technique for OCF-conformant C++ libraries.

———
—_— d
-

ad ~
,”7 default (shallow) copy
/

/ stk1 \

~
~

stk2

_size
_capacity
_block

OCF-conformant
(deep) copy

Figure 1: Stack objects sharing and copying
heap storage

2 Orthodox Canonical Form

According to a well-known design tenet in C++, classes
which manage any kind of heap memory structures should
always provide: a default constructor, a copy constructor,
an assignment operator and a destructor, chiefly to ensure
that heap memory structures are copied and deleted
correctly. Classes which provide these explicitly are said
to conform to the orthodox canonical form (OCF)
[Cope92]. If these operations are not provided explicitly,
the compiler will automatically generate default versions,
which, unfortunately, usually behave in the wrong way,
because they assume that an object is a shallow structure.

2.1 Safety Issues in OCF

For those unfamiliar with C++, Figure 1 illustrates how
this default behaviour leads to the accidental sharing of
substructure, usually a bad idea. A simple Stack variable
stkl is copied to another variable stk2 (possibly by
assignment, or by passing stkl by value into a formal
argument stk2).

By default, the Stack data members are shallow-copied,
with the consequence that although stkl and stk2
maintain separate information about the capacity and
active _size of the stack, they both share the same heap
storage block, whose address only was copied. If stkl
and stk2 arc intended to be separate objects, a sequence
of pop () and push () operations performed on stk2
will adversely affect stkl, by modifying the clements

66

stored. Apart from this undesired aliasing of Stack
states, another practical reason to be concerned over
accidental sharing is that the memory reclamation
mechanism provided in C++ assumes heap structures are
locally owned. If stk2 goes out of scope, the destructor
~Stack () will delete the shared block, leaving a
dangling pointer from stk1l. Subsequent operations upon
stkl are likely to lead to a memory segmentation fault
and program failure.

Instead, we would rather that copying stkl produced
stk3, which has a deep copy of the storage block. To
achicve this, an OCF-conformant Stack must provide
both a copy constructor Stack (const Stacké&) and
an assignment operator Stack& operator= (const
Stacké&) which take deep copies of the heap block, in
order to prevent accidental memory sharing. A default
constructor Stack () ensures that dynamic memory is
properly initialized and a destructor ~Stack () may now
safely assume that each Stack variable controls its own
heap structure, when it deletes this.

2.2 Semantic Issues in OCF

More compelling reasons for adhering to OCF come from
the underlying semantic considerations [Cope92, Lea93].
C++ was designed on top of a language, C, which has
value semantics for assignment and argument passing.
For consistency's sake, the same operations applied to
user-defined objects (of whatever complexity) should
therefore have the same value-semantics. This argument
is further reinforced by the provision of an alternative
pass-by-reference mechanism in C++, which programmers
may use explicitly where aliasing is intended:

"C++ already contains simple ways for people to obtain
copy versus reference semantics. Programmers
themselves are in a much better position to know when
to make copies and when to use references. Hiding
these matters often leads to less efficient and [less]
predictable behaviour" [Lea93].

Since object identity is a salient concern, objects arc
typically passed by reference. The relatively few times that
a truc copy is required is usually worth the cost of
obtaining it. So, whereas carly versions of 1ibg++, the
GNU C++ library, had originally adopted reference
counting and shared body objects to reduce copying
overheads, the above argument led to a change in policy:

"Except in a few cases where copy-prevention
strategies are transparent and algorithmically superior,
libg++ classes maintain the convention that a copy
constructor actually makes a copy. Similar remarks
hold for assignment and other operations" [Lea93].

In this light, it is possible to define an OCF-conformant
class as one which, when it is copied, makes a true copy of

any data that it manages; and deletes the data when it is
itself destroyed.

Commercial C++ libraries [GOP90, Rati93, Lea93,
Rogu95, BrLo97] make extensive use of heap structures,
particularly in their collection or container classes. Most
are at least partially OCF-conformant, in the above sense.
Rational's Booch Components library |Rati93, Booc94] is
an interesting case, since it draws an explicit contrast
between monolithic collections, whose ¢lements are
retained as a single block, and polylithic collections,
whose elements are distributed throughout highly-
connected list, tree or graph structures. Monolithic
collections are OCF-conformant; however polylithic
collections are not, because they permit structural sharing:

"... In polylithic structures, copying, assignment and
equality are all shallow (meaning that aliases may
share a reference to a part of a larger structure).
For example, we may have objects that denote a sublist
of a longer list, a branch of a larger tree, or individual
vertices and arcs of a graph" [Rati93].

In section 4, we describe a borrowing policy, intended to
preserve the OCF-conformant value semantics of copying
for those polylithic data types where underlying structural
sharing is an issue. This may be used appropriately with
all the singly-linked List, Tree and Graph types.

2.3 The Standard Template Library and OCF

Collections are typically characterised as managed or
unmanaged [Stro91]. The former are primary object
repositories, responsible for copying (in OCF) and deleting
their clements when they are themselves copied and
destroyed; whereas the latter mercly manipulate object
references and forget these when they are destroyed. The
introduction of templates in C++, especially the Standard
Template Library (STL) [StLe¢94], simplifies these
management issues. Since a template argument may be
instantiated with either a value, or a pointer, then it is
reasonable to define a policy according to which all
managed collections are value-based (copics having value
semantics), and all unmanaged collections are pointer-
based (copies having reference semantics). This policy is
perhaps most consistent with the underlying semantics of
C values and pointers. As a result, template code may be
kept simple, without special-purpose deallocation loops to
delete heap objects, and works equally well for the
managed or unmanaged collections. OCF is firmly
established in template libraries which adopt this
management policy, since value-based instantiations
necessarily copy the entire structure of each element when
the collection is itself copied. This is reinforced in the
STL, which expects classes instantiating the element type
to provide a copy constructor and an assignment operator.

Element& operator[] (int);
const Element& operator[] (int) const;

// Expand to double existing size (equiv.
void Array::expand ()

delete block;
_block = newblock;
_size = newsize;

typedef ... Element; // for some Element type
class Array
{ public:

int size() const;

// array size (equiv. capacity)
// element update
// element access

Array () ; // allocate no heap, size is zero
~Array () ; // delete heap memory
Array (int); // construct with suggested capacity
Array(const Arrayé&); // copy construct from other array
Array& operator=(const Arrayé&); // copy assign from other array
private:

enum { INITIAL = 10 }; // default capacity
void expand () ; // resizing procedure
int size; // array size (equiv. capacity)
Element* block; // heap memory pointer

}i

// ... other operations omitted for brevity

capacity), or INITIAL capacity

INITIAL);

{ int newsize = (_size ? 2* size :
Element* newblock = new Element [newsize];
for (int 1 = 0; 1 < _size; 1i++)
newblock([i] = block[i];

Figure 2: Optimal expansion of Array objects

class Set

{ public:
int size() const;
void insert (const Elementé&);
void remove (const Elementé&);
bool contains(const Elementé&)

//
//
//
//

cardinality of set
insert element
remove element

const; element membership

Set();
Set (int) ;
friend class SetIterator; //
private:
void expand() ;
int capacity()
Array _table;
int size;

//
//
//
//

const;

}i
//

. most operations omitted for brevity

void Set::expand()
{ Set temp (2 * capacity()):
SetIterator it (*this):;

// construct hash table using Array(int)
// construct hash table using Array(int)
// other operations and OCF constructors
dedicated iterator

resizing procedure
current hash table size
hash table storage area
dynamic element count

// Expand to double existing capacity, which is guaranteed nonzero;
// uses a SetlIterator to traverse the elements of this Set.

for (it.start(); ! it.atEnd(); it.forth())
temp.insert (it.element());
_table = temp. table;

// transfer by assignment

Figure 3: Sub-optimal expansion of Set objects

The anticipated global adoption of the STL means that
OCF-related issues now have a renewed importance.

3 Copying and Loss of Efficiency

For reasons of safety, economy and semantic consistency,
OCF is to be recommended as a basic principle of C++
class design and implementation. The importance and
desirability of taking copies cannot be underestimated,
even in programs which mostly pass objects by reference.
Difficulties arise in a value-based language like C++ when
programmers resort to a defensive style, in which aliases
are passed everywhere to unique copies of objects, since
this typically leads to scoping errors. The self-conscious
avoidance of copying also prevents use of the most natural
programming idioms, such as the usual constructive
mathematical Set operations, which are replaced by one-
sided mutating operations. Finally, assignment, expansion
and copy construction all require copying. However, there
are certain common circumstances in which the
mechanisms of C++ incvitably force extra copies of
variables to be taken; and this impacts badly on OCF-
conformant classes.

3.1 Expansion and Copying

A common requirement in many libraries is to have
constant-time accessible structures that occasionally resize
themselves. The cost of resizing is amortised over all the
O(1) access enjoyed during the lifetime of the structure;

68

and may be avoided altogether if a suitable initial size is
selected. However, the resizing action itself may be more
costly than it strictly needs to be. The ideal minimum cost
is for one copy only to be taken; this is incurred if an
object creates a larger heap structure, copies all elements
from the old to the new heap structure, then replaces the
old with the new, deleting the old.

Unfortunately, this only works for the simplest cases, such
as the simple dynamic Array class listed in Figure 2.
Here, the expand() procedure makes detailed
assumptions about the stored representation and order of
clements in the Array;, and is able to manipulate the
representation directly. A more realistic example might be
the Set class listed in Figure 3. This class uses a server
class Array as a hash table, reflecting a similar division
of concerns as that found in the Booch Components
[Rati93, Booc94] and the reference STL [StLe94] (for
clarity's sake, we have replaced the template syntax with a
typedef in Figure 2 and assume the Element type is
similarly-defined in all following figures).

The Array handles the underlying storage, maintaining a
dynamic block on the heap, whereas the Set is the
abstract data type, offering appropriate public functions.
During expansion, it is impossible simply to replace one
Array block with a larger Array block and copy
elements across in the linear style of Figure 2, since the
locations of clements in the larger Array will be quite

different, determined by a hashing function in Set's
insert () operation. The most economical way to
transfer clements into another Set is to use Set's
insert () directly, since it would be wasteful to
duplicate, inside expand(), all of the hashing and
collision-handling code present in insert (). Therefore,
expand () uses a temporary local Set variable, standing
for the replacement, into which elements are transferred to
their correct locations in the larger Array. At the end of
the method, the current Set object must take over the
contents of the local Set. This is usually performed cither
by assigning the local Set's Array (as illustrated), or
even assigning the whole local Set to *this.

Here is where the excess copying takes place: the Array's
operator= is invoked to perform the transfer. Because
this is an OCF-conformant operation, it assumes that it
must duplicate its argument. Accordingly, a true copy of
the local Set's Array block is taken, this is assigned to
the current Set's Array block member, causing
deallocation of the old Array block. Finally, the local
Set and its Array block arc deallocated when
expand () terminates. This is strictly one more round of
deep copying and deallocation than is logically necessary.
Ideally, we wish to transfer the local Array block
contents directly. But we cannot alter the semantics of
Array's operator=, even on the grounds that it is a
special implementation support class, since there are other
circumstances in which it is entirely appropriate for

operator= to take a deep copy, for example, when a
Set is itself copied. Furthermore, if the direct transfer did
take place, then when expand () terminated, destructors
would be called for the local Set and its Arravy,
deallocating the resized block. The current Set's Array
block would become a dangling pointer.

3.2 Constructive Operations and Copying

C++ class library designers are seriously inhibited from
providing constructive operations in OCF-conformant,
heap structure-owning classes because of excess copying
problems (and also because of type-clashes under
inheritance, as discussed in [Lea93]). Constructive
operations arc those provided in value-oriented classes
whose operations typically return new instances [Lea93].
Many simple lightweight classes, such as numeric, date
and string classes, fall into this category. Overloaded
arithmetic operations +, -, *, / are always
constructive, to conform to the usual semantics. Many
libraries (c.g. libg++) also provide valuc-oriented
Strings with an overloaded operator+ which
constructs the result of concatenating the two argument
Strings.

Figure 4 gives the most efficient implementation for this
constructive operation, in a simple String class. This
example, rather like that in Figure 2, benefits from an
atypical ability to manipulate the underlying char*
representation directly,. The concatenated String is
constructed only once, in the return expression, using a

#include <string.h>

class String

{ public:
int size() const;
String operator+ (const Stringsg)

private:
String(char*,
int size;
char* block;

int);

}i
//

. most operations omitted for brevity

inline String::String(char* str, int siz)

_size(siz), _block(str) ({}

// Constructive concatenation

{ int newsize = size + str. size;
char* newblock = new char
strcpy (newblock, block);
strcat (newblock, str. block);
return String(newblock, newsize);

String String::operator+ (const String& str)

// string length
const;
// other operations and OCF constructors

// constructive concatenation

// secret constructor
// string length
// memory storage area

// Secret constructor initializes String with the data supplied

const

[newsize + 1];

// +1 for terminating nullchar

// construct new String

Figure 4: Optimal constructive concatenation of String objects

69

class Set
{ public:
.. // other Set operations as per Figure3
Set operator+(const Seté&) const; // constructive union
Set operator-(const Set&) const; // constructive difference
e // other operations and OCF constructors
private:
// implementation as per Figure3
)7
// other operations omitted for brevity
// Constructive union - copy other Set into result, then iterate
// over this Set adding elements to result
Set Set::operator + (const Set& other) const
{ Set result (other); // local result copies the argument
SetIterator it (*this); // ilterate over current set
for (it.start(); ! it.atEnd(); it.forth()) // add current elements to result
result.insert(it.element());
return result; // copy local result Set on termination
}

Figure 5: Sub-optimal constructive union of Set objects

special-purpose private constructor, which builds a

String from its completely supplied representation.

The notion of constructively combining two collections is
quite general: Set has set union, Map has union with
override; SortedCollection has merge. However,
these cannot reasonably be provided in the same manner as
Figure 4. Figure 5 gives a more realistic example of set
union (here, by overloading operator+), in which a
temporary local Set is used to construct the result.
Initially, the local Set copies the argument;, then, we
iterate over the current Set and insert () each element
individually into the local Set. The significance of
having a local Set, rather than simply the underlying
representation, is to allow reuse of the hashing and
equality-testing code in insert (), which must ensure
that elements common to the current and argument Sets
are only inserted once in the result. Upon termination, the
function returns the (enlarged) local Set.

Here is where the excess copying of heap structures takes
place: since the local Set goes out of scope when the
function returns, the function result must be copied to the
call-site. The Set copy constructor is invoked, which
duplicates the heap structure maintained by the local Set,
viz, the server Array's block. The local block is
deallocated (by destructors) when the function terminates.
Logically, we wish to transfer the contents of the local Set
directly and then forget about it. However, the default
semantics for return expressions is a value-copy; and an
OCF-conformant copy constructor must always duplicate
its heap structure. There are no easy ways around this.
You cannot, for example, declare a local Sets reference
to the external return buffer; or declare an external

70

reference to a local variable, both of which are
syntactically illegal. The alternative approach, of
dynamically allocating a Set* within the function and
returning a pointer to this result, is less desirable because
it introduces storage management problems: clients
become responsible for reclaiming storage they did not
allocate.

3.3 Cumulative Copying Effects

Individual duplications may be tolerated; however, they
have a tendency to mount up. Consider that af least three
copies of heap structures may be taken in expressions like:

Set s, t,
s t + u;

u;

// assignment to s

Here, the contents of u will be copied once, when the local
Set is constructed inside operator+. Depending on the
relative sizes of the Sets t and u, the local Set may
resize itself multiple times, as elements of t are added,
resulting in as many extra copies (especially if u is much
smaller than t, given Figure 5’s implementation of
operator+). Otherwise, a seccond copy will be taken
when operator+ returns; and a third, when
operator= duplicates its argument. Note especially how
the compiler creates a temporary Set to hold the result of
operator+, which is cloned again by operator= and
deleted later. The temporary is necessary, because storage
for the unioned result must be held somewhere: the
argument of operator= is passed by reference to this
storage. If copy initialization of s is preferred over
assignment, most compilers can eliminate one duplication:

Set t,
Set s

u;
t + u;

// copy construct s

where the result of operator+ is copied directly into s
instead of a temporary return buffer. Again, there are very
good reasons why all this copying behaviour should be
provided - it preserves value semantics and prevents access
to static data which is out of scope, or to dynamic data
which has become deleted. Nonetheless, we should like to
do better, where we know that excess copying can be safely
avoided.

4 Borrowing: Copy on Write

The alternatives to copying heap structures have
traditionally focused on copy prevention. Either, classes
arc designed to make it hard, or impossible, to obtain
copies; or some reference-counting mechanism is adopted.
The first strategy, a memory management policy which we
shall call prohibition, is straightforward: a class forbids
automatic copying by disabling its copy constructor,
perhaps by making this a private function. For the sake of
the current discussion, we assume that we are dealing with
cases in which copies are typically desired. With the
second strategy, the reference semantics of a shared body
sits rather awkwardly with the intended value-semantics of
OCF; nonetheless the illusion of value semantics may be
preserved through a copy-on-write policy, explained
below, which we shall call horrowing. This approach is
more flexible than smart pointers and easier to maintain
than handle/representation hierarchies; and it incurs
relatively small costs. Since borrowing deals with shared
memory resources, this suggests that polylithic data types,
which already share substructure, may be able to exploit it
to particular advantage. Ultimately, we find that a slightly
different borrowing idiom is more useful here.

4.1 Smart Pointers, Handles and Representations

Reference counting has been advocated many times as a
way to avoid excess copying, sometimes cast in elaborate
frameworks [Wild96], although the concept is essentially
simple [Stro91, Hors95]. Logical objects are factored into
handles and representations: the handles are small and
may always be passed by value, at little cost; the
representations are accessed via an indirection in the
handles and so arc passed by reference. Every time a
handle is acquired or lost, a reference count is updated and
the representation is deleted automatically when the final
handle goes out of scope. Stroustrup [Stro91, p463-472]
describes both intrusive and non-intrusive designs. In the
former, a reference count data member intrudes into the
representation, whereas in the latter, the handle manages a
separate shared counter. A drawback of this approach is
that the handle and representation classes must be
developed in pairs - the handle class delegates all requests
to the representation and so must have the same interface.

When cast in a template framework, handles behave like
smart pointers [Hors95, p302-5]. Unfortunately, this

71

mitigates against polymorphic binding - a Pointer
is not type compatible with a Pointer<a>, even if the
instantiating classes A and B arc type compatible (viz. B is
derived from A). General-purpose smart pointers, such as
the proposals for an auto ptr class in the standard C++
library, are intended more to ensure deletion of heap data
after exceptional failures [Colv98], concentrating on the
issue of transfer of ownership, which we discuss in section
5; though the latest revisions do intend to allow some
form of type-casting, using two type templates.

Reference counting is in any case not an ¢asy option in
OCF. In general, maintaining shared representations
violates the intended uniform value semantics of argument
passing and assignment: a smart pointer converts value
semantics into reference semantics, but for class types
only. However a copy-on-write policy may be made to
work within the bounds of OCF conformity.

4.2 Loaning out Expensive Heap Resources

We call this the borrowing policy - an object will loan out
its heap structure to its copies, until it or one of its copies
wishes to perform some mutating operation, at which point
a true copy of the heap structure is taken. This is
sometimes described as deepening a shallow copy
[GOP90]. Horstmann describes a typical copy-on-write
design for handle/representation pairs [Hors95, p282];
although a borrowing policy (in our view) merely has to
share expensive heap resources, not the whole
representation. The listing in Figure 6 illustrates how a
non-intrusive handle class can be adapted to serve as a
Borrower base class for all of its borrowing descendants.
A single class hierarchy may be developed, which is less
complicated to manage than parallel handle and
representation hierarchies.

Borrowing works exactly as desired, solving the excess
copying problems described above. To see how, let us now
assume that the Array class is derived from the
Borrower base class and so maintains a shared reference
count. Array must provide a definition for the virtual
copy () to make a duplicate of its shared block. Any
mutating operation on Array must first invoke the
deepen () method, which duplicates the memory block if
the reference count is greater than one.

Revisiting the case described in Figure 3, the local Set is
still created inside expand () with a brand-new Array
block. When it transfers its Array by assignment to the
current Set, the block is shared and Array's reference
count is incremented to 2. When expand () terminates,
destructors are called for the local Set, which eventually
decrement the reference count back to 1. No excess
copying is incurred, only the desired minimum cost (as
illustrated in Figure 2) of reallocating a larger
replacement.

class Borrower

{ public:
Borrower () ; // default constructor
~Borrower () ; // destructor
Borrower (const Borrowerég); // copy constructor
Borrower& operator = (const Borroweré&);// assignment operator
private:
int* refcount; // shared reference count
protected:
void deepen(); // deepen shallow copy
void assign(const Borroweré&); // assignment book keeping
virtual void copy() = 0; // copy heap structure
virtual void free() = 0; // free heap structure
}i
// Default constructor - initialize shared refcount
Borrower: :Borrower ()
{ *(_refcount = new int) = 1;
}
// Destructor - if refcount reaches 0, then call free() in the

// derived class to delete whatever heap memory was allocated
Borrower: :~Borrower ()

{ if (--(*_refcount) == 0)
{ free(); // (dynamic) delete heap structure
delete refcount; // (static) delete shared refcount
}
}
// Copy constructor - share and increment refcount

Borrwer: :Borrower (const Borroweré& bor)
_refcount (bor. refcount)
{ ++ (* _refcount);

}

// Assignment - must be redefined and retyped in each descendant;
// so factor common book-keeping activity into assign()

Borroweré& Borrower::operator = (const Borroweré& bor)
{ if (this != &bor)
assign(bor); // factor out book-keeping

return *this;

}

// Deepen - called inside every mutator operation; if refcount > 1,
// invoke copy() in the derived class to duplicate heap structure
void Borrower::deepen ()
{ if (* _refcount > 1)
{ copy () s // (dynamic) copy heap structure
-—(* _refcount);
*(_refcount = new int) = 1;
}
}
// Assign - called inside every retyped operator=; encapsulates

// common book-keeping activity
void Borrower::assign(const Borroweré& bor)
{ if (--(*_refcount) == 0)

{ free();

delete refcount;

}

_refcount = bor. refcount;

++ (* _refcount);

Figure 6: Borrower base class for a copy-on-write hierarchy

72

Revisiting the case described in Figure 5, the local Set is
created inside operator+ as a smart copy of the
argument Set, increasing the Array's reference count to
2. As soon as the first element from the current Set is
inserted, this mutating operation invokes deepen (),
which duplicates the Array block on a reference count of
2. This is the only heap copy which is taken, the single
copy which was desired, and the minimum cost solution
(as illustrated in Figure 4). Copying decrements the
previously shared reference count and allocates a new
counter, initialized to 1, in the copy. Further insert ()
operations do not duplicate the Array block, which now
has a reference count of exactly 1. When operator+
terminates and copies the local Set into the return buffer,
the reference count is incremented to 2 and the block is
shared. When the local Set goes out of scope, destructors
decrement the reference count again. In the worst-case
scenario where this result is assigned to another Set
variable, the block is shared inside operator= and later
forgotten by the temporary return buffer, with a similar
increment and decrement to the reference count.

The advantage of a borrowing policy over smart pointers
lies in the ability to use Borroweré& references and
Borrower* pointers (and their derived types) in the
same polymorphic ways as standard references and
pointers. In comparison with the dual handle and
representation approach, only one hierarchy need be
maintained. The cost of adopting a borrowing policy
comes from the increase in design complexity and the
small overhead incurred for some simple operations. The
programmer must (remember to) invoke deepen () as the
first action inside every mutator function. This adds a
dereference and inequality-check to every such operation,
even when no duplication is eventually performed. All
heap managing classes must be derived from the
Borrower base and must provide suitable copy () and
free () implementations, which may be extended to
manage more than one heap structure. All operations
must be carefully partitioned into accessors and mutators.
The mutator versions trigger the copying of heap
structures on a reference count of 2 or more. This is
relatively straightforward - Array may provide two
overloads for operator[], one of which protects the
current object with const, and only the non-const
version need invoke deepen (). Provided that these
design trade-offs are considered acceptable, borrowing
may be used universally, or in parts of a well-designed
library of abstract data types.

4.3 Sharing polylithic substructures

Since the polylithic data types already share substructure,
this suggests that they might be able to exploit a variant of
borrowing to their particular advantage. Whereas the
deepening of monolithic objects (for reference counts > 1)

73

duplicates the heap block in its entirety, the deepening of
polylithic objects should really only seek to duplicate those
parts of the connected structure that are impacted by
change, unlike the total memory-copy performed in
Horstmann’s example [Hors95, p282]. The result of
inserting an clement into a List should ideally clone
some list cells and share others, a practice favoured in
functional languages like Lisp [Stee86]. This can only be
achieved if structures arc singly-linked; since otherwise
all parts of the connected structure are reachable from any
node, therefore no shared substructure can be considered
semantically distinct from the entire original structure.

In C++, a List is typically a wrapper around a chain of
Cells (similarly, for Trees and directed Graphs).
Mutator operations may be delegated to the first Cell,
then work recursively through the chain, testing for
insertion, removal and mutation points, constructing new
Cells as the stack unwinds, returning a pointer which is
stored as the new head of the List. Figure 7 sketches
a recursive, partially-copying, singly-linked Cell class
which could be used as the representation for such a
polylithic List. We assume that any wrapper List class
will have reference-counting constructors and a destructor,
rather like those of Cell, to determine when the first
Cell in the chain is reclaimed. The List wrapper will
delegate all accessor and mutator methods to the head;
and will always reassign its head to the result of a
mutator method.

Notice how the Cell takes responsibility for deciding
whether, and how much, copying should take place. The
List wrapper cannot determine directly (unlike
Borrower above) whether parts of its substructure are
shared, since it only sees the refcount of the head.
Cell mutator methods pass a flag recursively to report
whether any of the Cells already visited were shared; if
so, then all Cells from the first shared Cell up to the
mutation-point must be copied. Otherwise, an in-place
destructive mutation is allowed. This is safe, even if
Cells downstream from the mutation point are shared. If
one Cell in the chain is replaced, then possibly many
preceding Cells must be. This is handled as the
recursive stack unwinds, by testing whether the current
Cell is shared. If not, the recursive tail is spliced (taking
care to adjust reference counts) and no copying is required,
otherwise a new Cell is created, copying the current
element and pointing to the recursive tail.

A similar borrowing policy may be provided for Tree and
Graph Nodes. This approach is elegant and requires 2 or
at most 3 checks per Cell, over and above the usual tests
for the insertion point and the end of the list, during a
traversal. These are: a reference count comparison, a
boolean shared check and a tail identity check during
splicing. To make the example in Figure 7 more efficient,

class Cell

{ public:
Cell (const Elementé&, Cell*); // construct - only using this constructor
~Cell () ; // destroy
const Element& item() const; // accessor - inspect element
const Element& itemAt (int) const; // accessor - inspect at index
... // other accessors omitted for brevity
Cell* replaceAt(int, const Elements&, bool=false); // mutator - replace at index
Cell* insertAt(int, const Elements&, bool=false); // mutator - insert at index
Cell* removeAt (int, bool=false); // mutator - remove at index
private:
friend class List; // List granted access to adjust head’s refcount
void attach(Cell™*); // secret refcount-adjusting next attachment
Cell (const Cells); // disable standard copying
Cells operator = (const Cell&); // disable standard assignment
int refcount; // reference count
Element _item; // stored element
Cell* next; // tail of the list

}i

// Construct with element and next Cell, updating next Cell’s refcount.
// Current Cell’s refcount, initially zero, is updated when it is linked.
Cell::Cell(const Element& elt, Cell* 1nk)

_refcount(0), _item(elt), next(lnk)
{ if (_next) ++(next-> refcount);

}

// Recursively delete if next Cell is only pointed to by this one
Cell::~Cell ()
{ if (next && --(_next-> refcount) == 0) delete next;

}

// Auxiliary function - attach 1lnk as next Cell, updating both refcounts.
// NOTE: Use only with non-null next and lnk (and best with distinct pointers).
void Cell::attach(Cell* 1nk)

{ ++ (1lnk-> refcount); // still safe if next == 1lnk
if (--(_next-> refcount) == 0) delete next;
_next = 1lnk;
}
// Replace element at index position. If list is shared, clone leading Cells and
// share trailing Cells; otherwise mutate this Cell’s element and return the list.
Cell* replaceAt(int index, const Element& elt, bool shared)
{ shared |= (_refcount > 1); // update shared flag
if (index == 0)
{ if (shared)
return new Cell (elt, next); // replace current Cell, share tail
else
{ _item = elt; // mutate current Cell
return this; // return existing list
}
}
else
{ assert(_next != 0); // null pointer check
Link* tail = next->replaceAt(index-1, elt, shared);
if (shared)
return new Cell(item, tail); // clone leading Cells
else
{ if (tail != next) attach(tail); // splice leading Cells

return this;

}
}

// Other mutating operations insertAt (), removeAt() defined in a similar fashion

Figure 7: Recursive partially-copying Cell for shared list tails

74

a single bounds check of the mutation-point index in the structures directly from each other, in properly prescribed

List wrapper would obviate the need for a null-check circumstances. Eventually, /arceny may be integrated with
before the recursive call in each Cell. This approach constructive operations, opening up a more natural
would also benefit from special-purpose Allocator programming style in OCF.

classes to reserve Cells in blocks and recycle them to a

free list when they are deleted. 5.1 Pilfer Functions and Constructors

By re-examining the specific copying cases that we wish to
5 Stealing: Transfer of Ownership avoid, it is ppssible to come up With. a di.fferent. solution for
heap managing classes. The basic idea is motivated by the
example in Figure 3. Although we cannot alter the
semantics of assignment for Array, we can provide it
(and all other heap structure managers) with a pilfer ()
function to stcal heap storage from its argument, as
illustrated in the listing in Figure 8. This function has the
dual task of obtaining the storage for the thief (the
invoking object) and then forcing the victim (the
argument) to "forget" about it, so that dangling reference
problems do not arise later. When the victim goes out of
scope and its destructor is invoked, delete is called on a
null pointer, an empty but safec operation. Note how

The designers of GNU’s 1ibg++ eventually abandoned
smart reference-counting as a general management policy
[Lea93]. They found the attempt to minimize copying,
while still conforming to value semantics, not especially
worthwhile: "tricks like copy-on-write add more overhead
than they save" [Lea93], probably because the
conventional handle/representation model was too
complicated. We think that the Borrower and smart
Cell patterns introduced in section 4 may nongctheless
prove useful to some programmers, since they encapsulate
most of the complexity, at a tolerable cost.

The GNU team considered that programmers should pj_lfer 0) 's argument must be passed as a non-const
simply live with excess copying, in those few reference, because it is modified. It is best to consider that
circumstances that demanded it, and elsewhere reduced the pilfer () destroys its victim, making that variable
number of constructive operations available. This need not unusable: it is intended for use on temporary, local
be so. After copying and borrowing, a third, cheaper variables only. Nonetheless, for safety's sake we impose a
policy, which we call /arceny, accepts the standard OCF condition on pilfer () that it must reset its victim to a
copy-construction as the ideal, but provides low-level stable state, so that no subsequent attempt can be made to
memory manager classes with the opportunity to steal heap access the stolen heap structure through the victim. This

class Array

{ public:
... // other Array operations as per Figure2
pilfer (Arrays&); // pilfer function - steal from argument

private:

// other Array implementation as per Figure2

}i

// Pilfer function - steal the heap from other Array
void Array::pilfer (Array& arr)

{ if (this != &arr)
{ delete block;
_size = arr. size; arr. size = 0; // also resets the argument’s
_block = arr. block; arr. block = NULL; // book-keeping variables
}
}
// ... class Set otherwise defined as per Figure3
// Expand Set to double existing capacity - optimal version uses Array::pilfer()

// to steal resized hash table from temporary local Set
void Set::expand()
{ Set temp (2 * capacity()):
SetIterator it (*this);
for (it.start(); ! it.atEnd(); it.forth())
temp.insert (it.element ());
_table.pilfer(temp. table); // transfer by larceny

Figure 8: Array pilfer function enables optimal Set expansion

75

class Set

{ public:
.. // other Set operations as per Figure5
private:
enum Pilfer { STEAL }; // Pilfer type and flag value
Set (Set&, Pilfer); // pilfer constructor
// other implementation as per Figure3
}i
// other operations omitted for brevity

// Pilfer constructor - this Set's implementation steals the heap
// from the other Set's implementation
Set::Set (Set& other, Pilfer p) //
_size(other. size), table() //
{ _table.pilfer(other. table); //
other. size = 0; //

flag p is ignored

no heap allocated in initializers
larceny - steal other Set’s Array heap
book-keeping - make other safe

}

// Constructive union - optimal version uses pilfer constructor
// to steal heap from local Set in the constructed result

Set Set::operator + (const Seté& other)

const
// make just one copy,
// iterate over current Set

// pilfer-construct result,

of other Set

{ Set result (other);
SetIterator it (*this);
for (it.start(); ! it.atEnd(); it.forth())
result.insert(it.element());
return Set (result, STEAL);

steal local heap

Figure 9: Set pilfer constructor enables optimal constructive functions

is done by resetting the victim's book-keeping variables
(here, the Array's size is reset to zero). The object
resizing scenario, revised from Figure 3, is also illustrated
in Figure 8. Here, it is clear that the minimum-cost
solution is achieved where pilfer () transfers the local
Array block directly to the current Set's Array.

The further development of this idea is motivated by the
example in Figure 5. Although we cannot alter the
semantics of copy-construction when a function returns its
result, C++ does give us the opportunity to call a different
constructor explicitly in the return expression (this is one
of the few contexts in which a programmer may explicitly
call constructors). We provide Set (and all other value-
oriented types having constructive functions) with a
variant of a copy constructor, which we call a pilfer-
constructor, whose task is to construct a new Set by
stealing from its argument, which is assumed to be a
temporary, local variable. Figure 9 illustrates how the
pilfer-constructor and pilfer-function work together to
ensure that the constructed object properly steals the heap
structure of its victim: it is a clean theft, with no messy
after-effects.

Originally, we considered distinguishing between copy-
and pilfer-constructors purely on the basis of the const-
ness (or otherwise) of the argument; however, this cannot
be made to work with the usual C++ overloading rules.
Given two very similar functions, C++ considers the

76

const version to be the marked variant, so will call the
unmarked (non-const) version unless it can determine
that the object passed to its const argument is already
There were sufficiently many cases where we
would have had to cast a non-const object to const, in
order to force invocation of the copy constructor, to rule
out this approach. Instead, we distinguish the pilfer-
constructor using an additional flag argument, STEAL, of
the special type Pilfer. The flag could be a boolean,
although we prefer to define a special enumerated type to
rule out any possible type conflicts with programmer-
defined constructors.

const.

The pilfer-constructor of Figure 9 allows us to define cost-
effective constructive Set operations, like the revised
operator+ shown. Pilfer-construction ecliminates the
deep copying of heap structures into the return buffer.
Again, the only deep copy taken is when the local Set is
constructed inside operator+. This fulfils the minimum
overhead requirements expressed in Figure 4. All the
usual Set operations, such as union, intersection and
difference, may be provided in this way.

5.2 Aggressive versus Opportunistic Larceny

The model for larceny proposed above is what we might
call the aggressive pattern, where it is the thief who
initiates heap stealing. The thief (the invoking object) is
the raider and the victim (the argument) cannot help but

submit. An alternative is the opportunistic pattern, where
the victim is careless about locking up heap resources and
the thief helps himself when he can.

To implement this requires a slightly more intrusive
design. All heap-managers such as Array have an extra
boolean 1lock member, which is normally initialized to
true. Array provides inline lock () and unlock() to
reset this member. The value-oriented classes such as Set
now provide one or more careless-constructors. These are
discriminated on a flag-type, Neglect (similar to the
Pilfer type used above). A careless-constructor is only
ever used to construct and initialize temporary local
variables. In addition to performing all the usual
initialization, Set's careless-constructor tells its server
class Array to unlock () itself. Finally, all copy
constructors and assignment operators must accept non-
const reference arguments. This is so that, on occasions

when the memory-managing object has carelessly left its
heap storage unlocked, these operators may steal, rather
than copy. Figure 10 illustrates the changes to Array's
copy constructor and assignment operator and Figure 11
illustrates the resizing and constructive function scenarios
for Set once more.

During expand (), a temporary local Set variable of
twice the original capacity is constructed carelessly using
Set (int, Neglect). This constructs a server Array
_table in its initializers in the usual way, but in its body
tells this_table to unlock () itself. When expand ()
terminates, the current table is replaced by the
temporary Set’s table using Array’s operator=.
This notices that its argument is unlocked, so transfers
ownership of the heap block from the argument Array
to the invoking Array, resetting the temporary
argument’s book-keeping variables in the process. In

class Array

private:

{ public:
... // other Array operations as per Figure2
void lock(); // set _lock = true
void unlock () ; // set _lock = false
R // other constructors set lock = true
Array (Arrayé&) ; // copy, or steal argument
Array& operator = (Arrayé); // copy-assign, or steal

bool lock; // intrusive lock variable

// other Array implementation as per Figure2

}i

// New copy constructor for Array; steals when argument is unlocked
Array::Array (Array& arr) _size(arr. size), _block(arr. block)

{ if (! arr. lock)
{ arr. size = 0; arr. block = NULL;
}
else
{ _block = new Element [size];

for (int 1 = 0; 1 < _size; 1i++)

_block[i] = arr. block[i];
}

// New assignment operator for Array;
Array& Array::operator = (Array& arr)

steals when argument is unlocked

{ if (this != &arr)
{ delete block;
_size = arr. size; _block = arr. block;
if (! arr. lock)
{ arr. size = 0; arr. block = NULL;
}
else
{ _block = new Element [size];
for (int 1 = 0; 1 < _size; 1i++)
_block[i] = arr. block[i];

}
}

return *this;

Figure 10: Array with opportunistic copying and assignment

77

class Set
{ public:

private:

}i

Set::Set(int s, Neglect n)
{ _table.unlock();
}

void Set::expand()

Set Set::operator + (const Seté& other)
{ Set result (other, CARELESS);
SetIterator it (*this);
for (it.start(); ! it.atEnd();
result.insert(it.element());
return result;
// NOT: return Set (result,
}

CARELESS); -

Set (int, Neglect);
Set (const Seté&, Neglect);
Set (Sets&) ; // copy constructor,

// Careless constructor #1 allocates a new Array of size s,
_size(0), _table(s)

const

// other Set operations as per Figure5

enum Neglect { CARELESS };// Neglect type and flag

// careless constructor #1

// careless constructor #2
coded as before,

// other implementation as per Figure3

but may actually steal

but unlocks it.

// Careless constructor #2 copies its Array but leaves the copy unlocked.

Set::Set (const Set& other, Neglect n) _size(other. size), _table(other. table)
{ _table.unlock();

}

// Expand to double existing capacity - opportunistic version uses dual-purpose

// operator= to steal the resized Array hash table from the careless local Set.

{ Set temp (2 * capacity(), CARELESS); // careless constructor #1
SetIterator it (*this);
for (it.start(); ! it.atEnd(); it.forth())
temp.insert(it.element ());
_table = temp. table; // opportunistic larceny here
}
// Constructive union - opportunistic version uses dual-purpose copy constructor
// to steal the Array’s heap from the careless local Set.

// careless constructor #2

it.forth())

// opportunistic larceny here

see sectionS.2 for reasons

Figure 11: Optimal Set expansion and construction using careless constructors

total, only one copy of the original heap data is made, as
per the ideal minimum in Figure 2. Likewise, in the
constructive Set union scenario, operator+ carelessly
constructs its temporary local variable using Set (const
Set&, Neglect), which wunlocks its Array
representation. When the local Set is returned, the
standard Set copy constructor is used; this now accepts a
non-const argument. Internally, this uses Array’s
copy-or-steal constructor, which again notices that the
argument is unlocked and so steals the heap block.
Notice how the responsibility for larceny now lies with the
victim, at the point where the local variable is declared,
rather than at the moment of the theft itself.

The alternative opportunistic model is both better and
worse than the original aggressive model. On the benefit-
side, programmers may find it more intuitive to define
careless local variables, since the focus is already on

78

something temporary. There is now only one kind of copy
constructor and on¢ kind of assignment operator for cach
class: the pilfer () function is not required, since
assignment may be relied upon to steal, on occasion. The
assignment operator and copy constructor are provided as
usual (apart from the non-const reference argument) for
the abstract data types like Set, taking memberwise
copies of their elements. For the storage managers like
Array, they must either copy or steal, depending on the
state of the lock.

On the down-side, the locking mechanism is a little
intrusive, but still habitable. A class may have to provide
several careless constructors, one for each way in which
local variables are typically initialized. In Figure 11, Set
requires two different careless constructors. There may be
objections to allowing non-const arguments to be passed
to assignment or copy construction. This can be worked

around by explicitly casting the argument to a non-const
reference inside operator= and the copy constructor,
just prior to the theft taking place (see section 6.3 for
further discussions). A final consideration is that
constructive functions must return normally (see bottom of
Figure 11), rather than carelessly-construct the return
value, since we can make no assumptions about whether
the return buffer is a normal or temporary variable. In this
case, we should prefer copy-initialization over assignment
(sce section 3.3) to the receiving variable at the call-site.

5.3 Encapsulation and Extensibility of Larceny
Perhaps the only possible objection to larceny is the fact
that it is the one memory-management strategy out of the
four discussed here (copying, prohibition, borrowing and
larceny) in which the client (the thief) takes on
responsibility for memory management issues in the server
(the victim). Objects should typically supervise their own
memory resources, Trivially, we can answer such an
objection by re-casting larceny as a kind of transfer-of-
ownership pattern [Carg96, Lea%96]. For the aggressive
larceny pattern, instead of pilfer (), we could easily
have had something like:

thief.take(victim.give());

in which the victim is clearly responsible for yielding up
its heap resources. In practice, provision of an explicit
give () function makes the victim no more or less
vulnerable to takeover than with pilfer (): it is as casy
and as likely that a client of the victim with suitable access
rights could invoke give (), to make it yield its resources,
as it is that a thief might invoke pilfer (). With
opportunistic larceny, it is in any case the victim which
dictates how its resources are to be transferred or copied.

Nonetheless, it is clear that larceny should be regulated.
In our own C++ libraries, we have adopted a more subtle
three-level architecture based on the Bridge pattern
[GHJV95] than the two-level architecture used here for
expository purposes. At the lowest level are the memory-
block classes, which offer the ability to reserve (),
free () and pilfer () memory. These functions are all
public. At the next (middle) level are container-classes,
which are parameterised by the element and memory-block
types. These classes may invoke pilfer-functions on their
memory blocks. They also provide private or protected
pilfer-constructors which they use internally in their
constructive operations, such as concatenate().
Already at this level, it is impossible for clients of the
containers to dictate memory management policy, since
they do not see the memory-block types directly. At the
third (top) level are abstract data types, such as Set and
Vector, which are parameterised by the element and the
container types. So it is clear that pilfer () is properly-
encapsulated and only available to containers in the middle
layer. We envisage that larceny should be used carefully,

79

by high-performance library designers rather than by
applications programmers. While the intended correct
usage of pilfer functions and constructors is clear, and the
suitable identification of temporary local variables (for
pilfering, or for careless construction) is equally clear,
many managers would nonetheless wish to hide this level
of detail from their front-line programmers.

As with borrowing, we are keen to make /arceny behave
well under inheritance. In the aggressive model, the
pilfer () function is fully extensible in subclasses. Like
assignment, it is always called statically, and it is
redefined whenever it must acquire new data members. It
may be redefined to steal more than one heap structure in
classes introducing further dynamic memory blocks. The
redefined versions should always invoke the base versions
first to keep the thief and victim up to date. The pilfer-
constructor must be redefined in every new subclass with
constructive functions, even if no new data members are
introduced. This is so that the constructive functions can
terminate with a call to a constructor of the correct type
(sce section 6.1 and Figure 12 for an example). Where a
redefined pilfer-constructor is only used to retype the
result, it may call the base-class pilfer-constructor inline,
so no extra overhead is incurred. Naturally, a pilfer-
constructor is still responsible for shallow-copying the
book-keeping variables, and any new data members.

In the opportunistic model, the copy-or-steal constructor
and assignment operator are both always called statically.
They are always redefined in derived classes, for typing
reasons. Derived constructors may call base constructors.
It is beneficial to factor out the core copy-or-steal body
from assignment into an auxiliary function which can be
called once by all the retyped versions (c¢f the Borrower
assign() pattern, Figure 6). This function can be
redefined and extended if further dynamic memory blocks
are introduced. The one lock variable may be used to
determine copying, or transfer of all dynamic resources.
The careless constructors of a derived class should each
call on¢ careless constructor in the base class, to ensure
that unlocking requests are sent to the base representation
objects. Again, where careless constructors are simply
repeated for typing reasons, they may call the
corresponding base versions inline.

6 Evaluation and Comparisons

Larceny has clear cost advantages over borrowing, in most
cases. This is because object-oriented programs typically
work with unique objects most of the time and copy them
occasionally. Larceny ensures that OCF-conformant
copying is at minimal cost and immediately gives a new
object for whch mutating operations incur no further
overhead. On the other hand, borrowing assumes that an
object will be more frequently passed around (viz. secretly
be shared), but may need to grant unique ownership

occasionally (viz. be copied). The cost of detecting this is
charged against mutating operations. For borrowing with
the monolithic and doubly-linked polylithic structures, any
mutating operation will in any case trigger a complete
copy. It would be more cost-effective to copy the structure
first and not have the mutator overhead. Borrowing is

perhaps most useful where it is anticipated that large
structures will be shared, mostly for access. For the
singly-linked polylithic structures, borrowing may
sometimes prove more cost-effective than larceny,
especially if only small parts of large structures are
impacted by mutating changes.

#include <string.h>

class String
{ public:

String operator+(const Stringé&) const;

protected:
String& operator+=(const Stringé&);

}i
//

most operations omitted for brevity

// Optimal string concatenation,

String& String::operator +=

{ _size += str. size;
char* newblock new char [size + 1];
strcpy (newblock, block);

strcat (newblock, str. block);
delete block;
_block = newblock;

}

// Public constructive concatenation,
String String::operator + (const Strings

{ String result (*this); //
result += str; //
return String(result, STEAL); //

}

class RString public String
{ public:
RString& reverse();

RString operator+ (const RStringé&)

inline RString::RString(RString& str,

// Redefine constructive version.

// any excess copying.

RString RString::operator +

{ RString result (*this);
result += str;

return RString(result, STEAL);

// constructive concatenation

// in-place reverse
const;
// other public functions omitted

Pilfer p)

All String code is reused here,
Use same strategy as before:

(const RStrings& str)
// local copy of the current RString
// mutate result,
// larceny - transfer RString result

// other operations as per Figure4

// secret mutator concatenation

enum Pilfer { STEAL }; // pilfer type and flag

String(Strings&, Pilfer); // pilfer constructor
private:

int size; // string length

char* Dblock; // memory storage area

secret mutator version
(const Stringé& str)

uses secret mutator and larceny
str)
local copy of the current String
destructively append argument String
larceny - transfer String result

const

// Derived class now takes full advantage of inherited operations

(a token extra operation)
// constructive concatenation OK!

protected:
RString (RStrings&, Pilfer); // pilfer constructor
}i
// Redefined pilfer function - inline base version

String(str, {1}

p)
without

const

using String method

Figure 12: Constructive functions used with inheritance

80

These are the theoretical differences, which tend to favour
larceny. Naturally, other measures may help to give a
more complete appreciation. Below we consider both the
benefits of the more natural programming styles enabled
by larceny; and also some performance data from a
working program that makes heavy use of library
collection classes.

6.1 Constructive Functions under Inheritance

To illustrate the new expressiveness afforded by larceny to
C++, we developed a new solution to the problem of
combining constructive functions with inheritance in
value-oriented classes. Constructive operations and
inheritance tend to be mutually exclusive in C++' [Lea93].
Lea cites an example of a valuc-oriented String, with a
constructive operator+ mecthod to concatenate
Strings. A subclass, RString, is defined with an extra
in-place reverse () operation. The following:

RString t, u;

RString s = t + u;// type clash
typically leads to a type error, since t+u returns a
String, nota RString. Various work-arounds, such as
overloading a specific version of operator+ for
RString, or providing a constructor RString (const
Stringé&) to convert the result, are not usually
satisfactory, since they cither duplicate the behaviour of
String's concatenating function, or they copy Strings
unecessarily.

Our new solution, illustrated in Figure 12, combines secret
usc of a mutator operator+= and pilfer-construction to
deliver cheap, redefinable constructive operations. The
base String class implements operator+=, an optimal
version of concatenation (¢f Figure 4), which modifies the
invoking String. This function is declared protected, so
that it can be used internally by String and any of its
descendants, such as RString. Both these classes then
provide a public constructive concatenator, operator+,
which is retyped in the derived class. However, the
derived version uses the same secret mutating concatenator
as the base version, to modify a local copy of the invoking
object. In the return expression, pilfer-construction is used
to transfer the contents of the temporary local object to a
variable of the appropriate base or derived type, at the call-
site. Note in particular how the pilfer-constructor for
RString simply retypes the base String pilfer-
constructor, and may be inlined, as shown. This makes it
much easier to define subclasses of value-oriented types
which only add new operations to the base class, as here.

! Note that this is not a problem in some other languages,
like Eiffel, which provides the like Current adaptive
typing mechanism, nor in Smalltalk, which provides the
self class new dynamic creation mechanism.

81

Where derived classes also add new data members, it is
relatively easy to extend the secret mutator-function to
handle the extra data. The redefined constructive function
will simply call the new mutator and the pilfer-
constructors will work as before. The leverage provided by
larceny, therefore, is to allow redefinition of constructive
methods without incurring the penalty of excess copying.

6.2 Performance Evaluation of Larceny

Just how much performance improvement can one expect
from larceny? This depends very much on how astute the
C++ programmer already is in recognising situations that
lead to excess copying. Many seasoned programmers have
become habituated to the defensive style of passing by
reference and using mutator forms: x+=y, p*=q;
rather than the constructive forms: =x=x+y, p=p*q.
Larceny allows the client programmer to be much less self-
consciously aware of the copying behaviour of programs,
since it eliminates needless extra copying.

We tested this theory on a 1IKLOC piece of in-house code
that is used for test-set generation, based on finite state
machine models and state transition functions. The
program generates a set of test cases T, whose magnitude
is calculated according to the formula:

T=C*x{1} U ® U D .. L O")*W,

where C is the state cover, a sct containing sequences of
transitions, such that we can find a sequence from C to
reach any desired state from the starting state; @ is the
total set of state transition functions; and W is the
characterisation set, roughly a set of values used to verify
that the state reached is in fact the one we think it is. The
exponent # relates to all paths of length » traversed from
som¢ starting state. The program gencrates transition
sequences which are subsequently replaced by expected
input/output pairs, which are then saved, suppressing
sequences of pairs which are prefixes of other sequences.
Typical runs generate T-sizes from just over 10K to just
under S00K test values.

The main abstract data types used in this program are Set
and Sequence. Some 22 public operations involve these
collections. In the latest version of the code, the
programmer had been very careful to revise an carlier
version, inserting many work-arounds to avoid copying
collections and replacing constructive operations by
mutators. In the earlier version, 7 of the 22 operations had
been constructive set unions, natural expressions of the
formula. The time-penalty for this had been about 40-fold:
12 sec. versus 0.3 sec. in the hand-optimised version, on a
small test run. This large difference was due in part to the
critical code occurring in an inner loop. The use of pilfer-
constructors here would eliminate 2 deep copies in every 3.
Constructive set union would also be better able to estimate
the capacity of the resulting Set and so, if larceny were

also employed, would be no more costly than mutative
union, which typically resized the invoking Set.

Another characteristic of this program is the fact that an
unpredetermined number of collections are created, which
may vary in size in unpredictable ways. In the hand-
optimised version, all initial Set sizes had had to be fixed
at very large values, an inflexible use of memory which
prevented the generation of test sets for some pathological
systems which required mostly small Sets and some
enormous ones, which could not then be allocated. In the
pre-optimised, more flexible version, some containers had
resized themselves 6 to 10 times (by doubling in capacity).
The use of pilfer-functions here would eliminate one deep
copy in every two, halving the cost of dynamic resizing.

6.3 Conclusions

Faced with the choice between: borrow, copy or steal
policies for heap memory management in C++, this paper
recommends /arceny as the best policy for all monolithic
and (at least) for the doubly-linked polylithic data types;
and suggests considering the smart-cell variant of
borrowing as a policy for the singly-linked polylithic
datatypes. Without adopting one of these, section 3
showed how block copying is otherwise unavoidable and
then sometimes very costly for the monolithic managers.
Sections 4 and 5 showed how, although borrowing and
larceny both achieve the desired minimum copying goals
set in section 3, the overhead of horrowing is greater in
comparison with [larceny. Nonetheless, smart-cell
borrowing should be considered for the singly-linked
polylithic memory managers, because this is the policy
which explicitly allows the (intended) sharing of
substructure while preserving value semantics. Section 2
described the importance of maintaining a consistent
semantics across the data structures in a library; and how
the ascendance of the STL has renewed the importance of
OCF and value-semantics. In this case, it is important that
both mono- and polylithic data structures have copy and
assignment operations with value semantics.

In section 4, we showed horrowing to be a particular
adaptation of copy-on-write which only shares expensive
heap resources, rather than whole data structures; and
implemented this using a single abstract base class, rather
than a dual hicrarchy of handle/representation pairs. A
different smart-cell borrowing idiom is able to duplicate
only those parts of a shared polylithic structure that are
impacted by change. In particular, where parts of the
connected structure have a single owner, this may be
mutated, unlike the total copying, or leading-cell copying
behaviour found in other approaches.

We presented two models for larceny in section 5.
Aggressive larceny is perhaps the cleanest and most direct
form of theft, which adds pilfer-functions and constructors
to the canon of OCF-required operations. Opportunistic

82

larceny is a more subtle alternative, which is also slightly
more intrusive. Lately, we found out that opportunistic
assignment is close to the CD-2 proposal for the standard
C++ auto_ptr [Colv98]: the difference is that CD-2
does not destroy the argument to assignment, but rather
secretly marks the pointer as ‘unavailable’ to further
clients, in deference to those who did not like mutating a
const-argument. According to Greg Colvin (personal
communication), the committec has now reverted to the
earlier CD-1 proposal, in which non-const arguments
are passed to assignment, and these do yield up their data.
Elsewere, larceny is different from the auto ptr
proposals, in that it employs a combined pattern of pilfer-
functions and constructors, used in different abstraction
layers in a library of OCF-coformant data types. As a
demonstration of its usefulness, we showed how larceny
could be used to provide constructive operations under
inheritance, something previously considered difficult, if
not impossible, in C++ [Lea93].

We emphasise, finally, that the memory management
techniques described here are really intended for use by
designers of high-performance libraries, rather than by
client programmers. In the borrowing framework, the
designer must supply copy () and free () in borrowing
descendants and must remember to invoke deepen () in
every mutator. In the larceny framework, the designer
must be aware of which local variables are temporary and
therefore suitable victims for theft. We described in some
detail how both these policies were amenable to extension
via inheritance. All of the techniques described may be
encapsulated at the representation-level, that is, in the
containers which are used to implement abstract data types
at the next higher level [Booc94, StLe94], following the
Bridge pattern [GHIV95].

Acknowledgements

Thanks are duc to Oscar Nierstrasz, Doug Lea, Jim
Coplien, Tom Cargill and Greg Colvin for some initial
pointers; to Kirill Bogdanov for performance data on the
test-set genecration program; and to the OOPSLA
reviewers for insightful comments on the first draft.

References

[Alme97] P S Almeida, "Balloon types: controlling
sharing of state in data types", Proc. 1ith
European Conf. Object-Oriented Prog.
(1997), Springer Verlag, 32-59.

G Booch, "Frameworks", chapter 9 in: Object-
Oriented Analysis and Design with
Applications, 2nd edn. (1994), Benjamin-
Cummings.

[Booc94]

[BrLo97]

[CABDY4]

[Carg96]

[Colvos]

[Cope92]

[GHIV95]

[GOPYO]

M Brain and L Lovette, Developing
Professional Applications for Windows '95
and NT using MFC (1997), Prentice Hall.

D Coleman, P Arnold, S Bodoff, C Dollin, H
Gilchrist, F Heyes and P Jeremaes, Object-
Oriented Development: The Fusion Method
(1994), Prentice Hall.

T Cargill, "Localised ownership: managing
dynamic objects", in [VCK96] (1996), part 1,
chapter 1.

G Colvin, “Why is auto_ptr defined the way it
is?”, The comp.std.c++ FAQ, question C2,
http://reality.sgi.com/austern_mti/std-c++
/fag.html, 13 May (1998).

J Coplien, Advanced C++ Programming
Styles and Idioms (1992), Addison-Wesley.

E Gamma, R Helm, R Johnson and J
Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software (1995),
Addison Wesley.

K Gorlen, S Orlow and P Plexico, Data
Abstraction and Object-Oriented
Programming in C++ (1990), John Wiley.

[HLHWO92] J Hogg, D Lea, R Holt, A Wills and D de

[Hogg91]

[Hors95]

[Lea 93]

Champeaux, "The Geneva Convention on the
treatment of object aliasing", OOPS
Messenger, April (1992).

J Hogg, "Islands: aliasing protection in
object-oriented languages", Proc. 6th ACM
Conf. Object-Oriented Prog., Sys., Lang. and
Appl., SigPlan Notices 26(10) (1991).

C S Horstmann, Mastering Object-Oriented
Design in C++ (1995), Wiley.

D Lea, "The GNU C++ Library", C++ Report,
June (1993); reprinted in [Lipp96]; revised
as: http://gee.cs.oswego.edu/dl/libg++paper/
libg++/libg++.html, (1995).

83

[Lea96]

[Lipp96]

[Meye92]

[Mins96]

[Rati93]

[Rogu9s]

[SaCa9v6]

[SBGL91]

[Stee86]

[StLe94]

[Stro91]

[VCK96]

[Wild96]

D Lea, Concurrent Programming in Java -
Design Principles and Patterns (1996),
Addison Wesley.

S Lippman (ed), C++ Gems (1996), SIGS
Books.

S Meyers, Effective C++: 50 Specific Ways to
Improve Your Programs and Designs (1992),
Addison-Wesley.

N Minsky, "Towards alias-free pointers",
Proc. 10th European Conf. Object-Oriented
Prog. (1996), Springer Verlag, 189-209

Rational, C++ Booch Components Class
Catalog, version 2.3 (1993), Rational.

Rogue Wave, Tools.h++ Foundation Class
Library for C++ Programming, version 6
(1995), Rogue Wave Software, Inc.

A Sanc and R Campbell, "Resource
exchanger: a behavioural pattern for low-
overhead concurrent resource management”,
in [VCKY6] (1996), part 7, chapter 8.

R Strom, D Bacon, A Goldberg, A Lowry, D
Yellin and S Yemini, Hermes: a Language
Jor Distributed Computing (1991), Prentice
Hall.

G L Steele, The Common Lisp Reference
Manual (1986), Digital Press.

A Stepanov and M Lee, "The standard
template library", Technical Report, Hewlett-
Packard Laboratories, May (1994).

B Stroustrup, 7The C++ Programming
Language, 2nd edn, Addison-Wesley.

J Vlissides, J Coplien and N Kerth (eds.),
Pattern Languages of Program Design, 2
(1996), Addison-Wesley.

F Wild, "Instantiating code patterns", Dr
Dobb's Journal, June (1996), 72.

