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Abstract—GPUs have been demonstrated to be highly ef-
fective at improving the performance of Multi-Agent Systems
(MAS). One of the major limitations of further performance
improvements is in the memory bandwidth required to move
agent data through the GPU’s memory hierarchy. This paper
presents a formal model for data aware simulation and an
empirical study into the impact of minimising data movement
on performance. This study proposes a method that can be
applied to the simulation of complex systems on GPUs to extract
required data from agent behaviour during simulation time and
how this information can be used to reduce data movement.
The FLAME GPU software has been extended to demonstrate
this technique. Three benchmark experiments have been applied
to evaluate the overall reduction in simulation execution time
under specific criteria. The results of the comparison between
the current and new system show that reducing data movement
within a simulation improves overall performance with up to 4.8x
speedup reported.

Index Terms—Memory access reduction, FLAME GPU, Agent
Based Modelling, Simulation

I. INTRODUCTION

Agent-Based Modelling (ABM) is a technique that is
used to simulate the actions and reactions of individuals (as
agents). Agents can communicate with each other and the
environment based on simple rules, and this makes ABM
a suitable approach for simulating complex systems. By
using multi-core central processing units (CPUs), distributed
systems and accelerators such as graphic processing units
(GPUs), high performance computing (HPC) creates a
suitable environment for handling complex operations.
These operations may include, but are not limited to, big
data, simulating complex systems, performing large-scale
simulations, and dealing with similar extensive processes.
Operating large-scale simulations by using agent-based
systems has gained attention in many research areas such as
biology systems [1], [2], manufacturing systems [3] and in
supply chains [4].

The application of HPC to ABM and simulation has created
a rich environment for running large-scale and complex simu-

lations. However, the complexity and heterogeneous memory
of HPC systems poses challenges to the minimization of the
gap between processor speed and main memory cycle time.
This gap doubles every 1 to 2 years, which makes it one of the
most critical challenges in the computing industry according to
Machanick [5]. Managing data movement between processors
and memory (known as the memory wall problem) is the most
obvious challenge, especially in systems that deal with large
amounts of heterogeneous data, for example when simulating
large models. Most simulators for ABM are therefore memory
bound: the agent uses memory to hold its variables (or internal
state) and communication between agents. The memory wall
problem has become more evident particularly in simulators
using a streaming-based (data in, calculate, data out) approach
to iteratively transform the memory of agents. This situation
seriously impacts overall performance for large populations
and scalable models since increasing amounts of data need to
be moved.

To address this issue, this research proposes a method that
can be applied to the simulation of complex Multi-Agent
Systems (MAS) on GPUs. We demonstrate a data-aware
approach to simulation experimentally using Flexible Large
Scale Agent Modelling Environment for the GPU (FLAME
GPU)1(explained in section 2.3). However, the underlying
model abstraction is appropriate for any streaming based
MAS platform or model.

We investigate the impact of minimising data movement on
performance using FLAME GPU in this paper. To minimise
memory access during simulation time, this study will focus
on how the required data are extracted from agent behavior
during simulation and how this information can be used to
reduce data movement. We extend the FLAME GPU software
to demonstrate this technique using a benchmark model.

1http://www.flamegpu.com/



II. BACKGROUND AND CONTEXT

A. Improving performance in ABM

In the field of ABM, simulation by modeling individuals
helps to create a natural and flexible environment for studying
systems behavior, but this requires considerable computational
power. Traditionally, ABM platforms use serialised algorithms
in their structures to run simulations and manipulate mobile
discrete agents. However, this technique limits simulation
speed and model scalability [6]. This implies the need for
an HPC environment or specialized workstation of parallel,
or distributed, platforms [7]. Much research has focused on
enhancing the performance of ABM platforms using different
strategies. Distributing simulations to minimise simulation
time is one such strategy, and distributed simulations of
multi-agent systems can be implemented using a dedicated
computing cluster [8] [9] [10] [11] or a grid [12] [13].
However, the increase in performance that is achieved by
applying CPU parallelism (using distribution techniques) may
be affected by a number of issues including management
of communication between dynamic resource allocations and
nodes, and monitoring of the state of the distributed simula-
tion. Exploiting the shared memory parallel architecture of a
GPU to run simulations has the potential to overcome many of
these problems [14] [1]. To address the limitations of previous
ABM platforms, FLAME GPU is designed with parallelism
in mind to overcome these issues [1]. Additionally, real-time
visualisation is efficient and can be directly accessed since
it is also held within the GPU’s memory. The result of this
approach is that GPU memory bandwidth becomes the limiting
factor rather than network bandwidth.

B. Reduction of memory movement

In large parallel architecture systems, interconnections
become more hierarchical; this increases the memory access
gap, affecting both system latency and bandwidth [15].
Reducing data movement (data transfer between processors
and system memory) in such systems, will improve overall
performance. A number of techniques (and associated studies)
have focused on this goal; these include: load balancing
[16], [17] [18], graph partitioning [19] [20] and spatial
partitioning (or spatial messaging) [1] [21]. Generally, the
graph partitioning algorithm evenly divides work among
computation nodes to minimize data movement. To improve
performance and reduce data transfer across the system,
Barrera et al. [19] used the graph partitioning technique.
They automatically applied task dependency graphs during
system runtime to collect information, and then used advanced
graph partitioning to break the graphs into smaller parts. These
partitions were used to minimize data movement across the
shared memory system. To minimize data movement between
processors and reduce workflow execution time, Tanaka and
Tatebe [20] applied the multi-constraint graph partitioning
method to the workflow directed acyclic graph (DAG) which
represents task dependency. The graph partitioning method
in this study helped to decrease workflow execution time by

31% and reduce the remote file access from 88% to 14% of
total file access.

To reduce memory transfer in large-scale MAS, a number
of data structure accelerating algorithms have been used, one
of which is spatial partitioning [22]. The main aim of the
spatial partitioning technique is to reduce the communication
overhead in the simulation, where only subset of agents
interact, reducing memory movement. This technique has
notably been used in interacting systems such as swarm-based
systems on GPUs [21], [23], on computing clusters [24]
and on the PS3 [25]. The spatial partitioning algorithm was
used to minimise the number of messages that were read by
each agent based on the interaction radius of the message or
particle [1].

Load balancing is another type of strategy that can be used
to reduce data movement or balance compute load, especially
in distributed applications. ”It minimizes the total waiting
time of the resources as well as avoiding too much overload
on the resources” according to Mishra [26]. There are a
number of studies that focused on discussing the concept of
load balancing and how to improve system performance and
efficiency, such as [16], [17] and [18]. In [16], an enhanced
dynamic load balancing algorithm is proposed to improve
performance in grid computing, whereas [17] and [18]
reviewed the implementation of a number of load balancing
algorithms in cloud computing and discussed effects on cloud
computing applications.

C. An overview of FLAME GPU

Within FLAME GPU, every GPU thread represents a single
agent and a (GPU) device wrapper function is used for each
agent function to hide GPU memory access [27]. However,
even with special techniques for hiding the cost of memory
access, GPU memory bandwidth is a limited resource in large
and complex models. The formal representation of an agent
within the current FLAME GPU is based on the concept
of a communicating X-machine (an extension to the finite
state machine that includes memory). The formal definition
of an X-machine describes the X-machine agents as state
machines that are able to communicate with each other via
messages stored in globally accessible message lists [6].
Three major components are needed to execute a model
using FLAME GPU: agents, messages and layers. Agents
present the agent description, messages show how the agents
communicate with each other, and layers show the order
of agent behaviour during the simulation. Both agents and
messages have their own memory to hold agent properties and
the information that needs to be passed between agents. As
this paper focuses on reducing data movement, this section
will show how FLAME GPU handles data movement during
the simulation and how an agent’s internal memory is updated.

Within FLAME GPU, each agent function (the main repre-
sentation of agent behaviour) is represented by a unique GPU



kernel. Using this process, global synchronization of the entire
agent population is ensured after each transitional stage. Agent
data in parallel threads will be stored temporarily in both the
fast multiprocessor register, and shared memory. When moving
data from global device memory an array of structures (AoS) is
used to allow more efficient memory access for both reading
and writing data. GPU memory coalescing allows for more
efficient use of memory; data is consecutively accessed and
fewer wide memory requests are issued [27].
An abstraction of messaging is used for internal communi-
cation between agents in FLAME GPU. Message process-
ing within FLAME GPU supports three different techniques
for reducing the transmission of data: brute force, spatially-
distributed, and discrete. Each agent reads every available
message in brute force messaging; to accelerate this process,
shared memory is used to load messages that are accessed
by agents within a group of threads. Shared memory is much
faster than global memory because it is located per thread
block allowing a group of threads to access the same shared
memory [6]. In spatially-distributed messaging, agents can
read messages within a fixed radius in a 2D or 3D continuous
space. For this messaging type, FLAME GPU uses a parallel
sort algorithm to reorder agents and build a matrix containing
the start and end index positions of any agents within a
fixed (message) radius that is sized to represent the agent’s
environment. After iterating through message lists within
neighbouring partitions, only agents within the defined radius
will be returned. Using texture memory2to load messages will
accelerate the message reading as shared memory cannot be
used in this technique because agents are in different locations
and access different messages stored in different positions.
This is equivalent to previous work on data structures for
reducing memory transfer. Within the last type, the discrete
messaging technique, shared memory or the texture cache can
be used to load a 2D discrete grid of messages [1], [6].

III. METHODOLOGY: DATA AWARE MODEL FOR
AGENT REPRESENTATION

The formal representation of an agent in FLAME GPU,
is based around the concept of a communicating X-Machine
(a form of state machine that includes memory). The formal
definition X-Machine [28] is an 8-tuple = (Σ; Γ; Q; M; Φ; F;
q0; m0 )Where:

• Σ and Γ are the input and output alphabets.
• Q is the limited set of states.
• M is an infinite set called memory.
• Φ is a set of partial functions ϕ; each function of this

type maps an input and a memory value to an output and
a possibly different memory value, ϕ: Σ × M → Γ ×
M’.

• F is the next state partial function, F : Q × Φ → Q. F is
often described as a state transition diagram.

2More detail about texture memory is available through this link:
http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-
what-is-texture.html

• q0 is the initial state and m0 is the initial memory.
Adding the ability to X-machines to communicate with each
other can be achieved by using communicating X-machines
(CXM). The general definition of communicating X-machine
model that is able to exchange messages is as the tuple [29]:

((Cx
i )i = 1..n,R)

Where:

• Cx
i is the i − th communicating X-machine in the

system, and

• R is a communicating relation between the n X-
machines.

In FLAME GPU, an agent is represented as a form of state
machine that consists of: internal memory (M as in the formal
definition), an agent’s functions (next state partial functions,
F, in the formal definition) a set of states (Q as in the formal
definition) and the X-Machine agents can only communicate
through messages. This can be observed in Figure 1, this
state diagram represents a set of states, functions and input
and out data that can be processed through these functions
and the agent’s memory can be updated every time step that
is needed through this process. The smallest unit that can be
processed by current FLAME GPU is an agent and whenever
agents communicate with each other, all agent memory needs
to be updated in every transition function from one state to
another.

We propose an alternative representation of CXM model in
which individual units of m (members of the memory set M)
for each agent function (ϕ in Φ, in the formal definition) that
can communicate using a subset of data in the messages list
r (members of the communicating relation set R). Focusing
on a subset of this data will minimise the data movement and
memory transitions. Extracting data dependencies of agents
functions is the key to solve this issue. Figure 2 shows the
main idea of our proposed method. Instead of reading and
writing all agent memory in every state transition, the focus
will be on the dependent data of each function (the subset of
agent memory that has been used within each function).

IV. AUTOMATIC DISCOVERY OF DATA DEPENDENCY FROM
THE EXISTING CS MODEL

This section proposes an automatic method to extract data
dependency from an existing complex-scaling (CS) model
described using X-machine modelling. It translates an existing
CXM model into a representation with the data-aware form
described in the previous section. Customising kernel wrapper
functions by reading and writing a subset of the agent will
help to minimize the data movement between host and device
during simulation time. An automated process has been created
using flex and bison tools to parse agent function C code
from FLAME GPU and produce all dependency data between



Fig. 1. Stream X-Machine Specification, M and M’ represent the agent
memory set before and after agent function F1 which inputs and outputs
messages to the message list. [27]

Fig. 2. The smallest unit that can be processed through transition function is
individual variables of agent memory instead of an agent’s full memory set
to minimise data movement.

Fig. 3. Processing stages used to create the FLAME GPU runtime, showing
original (purple) and additional (red) data paths.

Fig. 4. The total data movement reduction of each function within circle
model.

transaction functions. Extensible Stylesheet Transformations
(XSLT) are then used to create the new version of the model,
XMLModelFile.xml, which is data-aware and will reduce
data movement. In the first stage, the parser will generate an
XML file that consists of function names and the In_data,
Out_data, and In_messages within each function if there
are any. By combining the original XMLModelFile.xml
with the produced file from the first stage, the second stage
will generate a new XMLModelFile.xml using (XSLT).
The output of this process is a new XMLModelFile.xml
that contains meta information describing data dependencies.
Figure 3 shows how the proposed method is linked to the
current FLAME GPU. In this figure, which describes the
processing stages used to create the FLAME GPU runtime,
the existing data path is shown by purple arrows and the
data path used in our new pre-processing stage is shown with
red arrows. The dependency generator parses the behavioural
function scripts and produces an XML file of data dependency.
Combining this file with the XML model file using the XSLT
processor will generate an XML model file with extra meta
information that will help to reduce data movement. An
updated XSLT template processor converts the new XML
model into simulation code by customising data transactions
from the discovered meta-data. This meta-data will be linked
to function scripts to generate an executable simulation. There
are three types of data that need to be discovered: the in-
data to each function, the out-data from each function and
finally the in-messages. An example of in-data and out-data
is shown in figure 5: the left side (A) of the figure shows the
original code of the model description while the right side (B)
of the figure shows the model description after adding meta-
data. This example shows the dependency data that have been
extracted from the function called ’Move’ within the Circle
model [30]. Figure 4 and table I shows the total reduction of
data within each function in the circle model.

V. APPLY THE CHANGES TO FLAME GPU TEMPLATE TO
ACCESS THE REQUIRED DATA

FLAME GPU generates simulations by linking XSLT tem-
plates with the function files to generate a simulation program.
All agents and messages memory will be accessed during



TABLE I
THE TOTAL MEMORY ACCESS FOR EACH AGENT FUNCTION IN THE CIRCLE MODEL AND THE PERCENTAGE OF REDUCTION AFTER APPLYING OUR

APPROACH

Function name Total Memory access In-data Out-data Total reduction

Input 12 5 2 41%
Output 12 3 0 75%
Move 12 4 2 50%

Fig. 5. A: A part of the circle model description showing function ’move’.
B:The model description after adding meta-data. C: The actual body of the
function ’move’ from function.c file

this process using fast caches, shared memory for agent
variables and texture memory for message variables. With the
proposed method the templates have been modified to access
only required data for both agent and messages. The original
template that accesses all agent memory is shown in Figure 6
while Figure 7 shows the template code accessing a subset of
this data for both reading and writing memory.

VI. RESULTS

To evaluate the benefits of using the proposed system,
this section will show the comparison of results between the
current FLAME GPU and the modified version using the
benchmark model that was proposed by [31]. The benchmark
model is based on the concept of particle-based simulation
and accepts input parameters that control both system
scalability and agent homogeneity. For system scalability, the
population size for each agent type will be increased. In agent
homogeneity, the focus will be on increasing the complexity

Fig. 6. The original XSLT template generating code that accessing all
memory.

Fig. 7. The modified XSLT template that generates code accessing required
data only.

for both individuals (by increasing communication) and
the overall population (by increasing diversity of agent
type). Three different benchmarks were used to examine
the performance efficiency for both systems: scalability,
divergence within the population and divergence within an
agent. The machine used for benchmarking both versions
uses NVIDIA TITAN Xp graphics card with 3840 CUDA
cores and 12 GB of memory. An average for running each
experiment was 10 times for each sample.



Fig. 8. Comparison of average execution time against population size,
showing unmodified (blue) and modified (orange) FLAME GPU; and rate
of improvement (grey)

A. Scalability

This benchmark measures the scalability of the performance
of both systems. The population size of each agent type
starts with 100,000 agents and ends with 800,000 agents.
This benchmark is based on the same example that was
used by Alzahrani et al. [31]. It is representative of scaling
the population size of the model and the simulation was
performed for 100 iterations. In Figure 8 the proposed method
(orange line) shows significant speed improvements when
compared to current FLAME GPU ( blue line). The grey line
within the same figure shows the percentage of performance
enhancement, with population size equal to 300,000 and above
the average of improvement reaches 80%. This shows the
optimal utilization of GPU memory by FLAME GPU ”which
provides a good balance between a large number of threads
required to hide memory access latencies with the limited
register availability of the underlying architecture.” [32]

B. Performance Impact on Agent Complexity

The main concept of this experiment is to observe the effects
of divergent behaviour (within an agent) on the execution
time for both systems. Based on the same example that is
used by the benchmark model within [31], this benchmark
is representative of increasing the individual complexity of
an agent, and that means more functions in each layer every
cycle. As the function layers represent the control flow of
simulation processes in FLAME GPU, adding more agent
functions every time will increase the number of layers in each
cycle (as functions of the same agent need to be processed in
sequential order) and that will lead to increasing the execution
time of each iteration. The increase in execution time can
be observed in Figure 9 for both versions (current version
with the blue line and modified one with orange line) with
significant improvements of execution time when using the
proposed system. The improvement rate can be observed in the
grey line in the same figure, and with more divergence within

Fig. 9. Comparison of processing time against number of communicating
agents (slave-to-master), showing unmodified agents (blue) and modified
(orange) FLAME GPU; and rate-of-improvement (grey).

an agent, the modified system showed more time reduction in
simulation execution time compared with the current system.
The population size that has been used in this benchmark is
100,000 for each type of agent, and each simulation was run
for 100 iterations using the same environment size.

C. Performance Impact on Population Complexity

Observing the system performance while increasing popu-
lation complexity will be the focus of this benchmark. This
experiment starts with a simple model containing three types
of agent, ten agent functions and three kind of message
and ends with 30 agent types, 100 agent functions, and 30
message types. The grey line in Figure 10 shows the amount
of improvement in the execution time that the proposed system
achieved over the current system. The execution time that has
been performed in both systems can be observed in the same
figure, the blue line represents the current FLAME GPU, and
the orange line shows the system using the proposed method.
Each simulation in this benchmark was run for 100 iterations
using the same environment size and the population size of
each agent type was 100,000 agents.

VII. CONCLUSIONS

In this paper, we have shown the impact of minimising data
movement on performance for complex simulation models
using FLAME GPU. Three stages have been carried out within
this work, to reduce data movement and examine the effects
on the system. The first stage focused on designing and
implementing a dependency parser to analyse and integrate
data dependency within Complex System (CS) models. The
second step showed how the FLAME GPU framework was
modified to minimise data movement based on discovered data
dependencies. In the third stage, a benchmark model has been
used to experimentally evaluate the performance of decreasing
the data movement through a benchmark model.

Three benchmark experiments have been used to evaluate
the overall performance of the new system. These experiments



Fig. 10. Comparison of average execution time against population divergence,
showing unmodified of using current (blue) and modified (orange) FLAME
GPU; and the rate of improvement (grey).

focused on measuring the ability for the new system to reduce
simulation execution time under specific criteria (scalability
and system homogeneity). Comparing the benchmark results
of the current and new system show that reducing data move-
ment within CS simulation improves overall performance. The
scaling population size experiment for both systems showed
that the new method helped to reduce execution time by ap-
proximately 80% and tends to stabilise around this percentage
as population size increases. A significant improvement has
resulted from using the proposed method within the divergence
benchmark. Execution time was reduced by 70% when running
the agent divergence benchmark and by around 45% while
examining the population divergence experiment.
Work is ongoing to evaluate the proposed method using differ-
ent models such as the circle model [30] and the Keratinocyte
(cell) model [33]. For the next step, comparing FLAME GPU
with other ABM platforms using this approach is needed. Our
plan is to apply the data-aware approach on other platforms
(OpenMP applications) and compare the results with FLAME
GPU using the same models.
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