
Rationalising Eiffel's Type System

A J H Simons

Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello Street, Sheffield S1 4DP, United Kingdom.

Email: A.Simons@dcs.shef.ac.uk

Abstract forbidding the redefinition of attribute types,
inverting the routine argument redefinition rule to
observe contravariance (redefined arguments
should have more general types), judging type
compatibility between parameterised types after
replacing the type parameters and introducing an
explicit type attribute scheme to handle Eiffel's
anchored types. Contravariance is a counter-
intuitive finding for subtyping models of inheritance
because it prevents the uniform specialisation of
function arguments and results. It forbids the
replacement of a function f:τ→τ closed over a type
τ by a function f:σ→σ closed over a subtype σ ⊆ τ
[Cardelli 86]. While insisting that Eiffel should
obey the contravariant rule, Cook ruefully admits
that:

Eiffel has too many polymorphic type mechanisms:
conformance, generic and anchored types, some of
which are flawed and others redundant. Cook's
suggested 1989 corrections to Eiffel's type rules,
most notably to make inheritance obey subtyping,
were not accepted by Meyer, Eiffel's designer, who
found them too restrictive. F-bounded
polymorphism has since been widely proposed as an
alternative to subtyping for describing the inherited
self-type. Here, we adopt F-bounds for all
polymorphic types in Eiffel, giving the flexibility
Meyer wants. We analyse the intended
expressiveness of conformance, anchored and
generic types and show how these can all be
replaced by a single, elegant parametric mechanism.

"[Contravariance] has the unfortunate effect of
making argument type redefinition almost
useless, since it is usually not very useful to
allow a redefined method to accept a larger class
of arguments" [Cook 89b, p62].

1. Introduction

When William Cook reported, in his Proposal for
Making Eiffel Type-safe [Cook 89b], that there
were loopholes in Eiffel's type system, this came as
a surprise to those who look to Eiffel as a model for
strongly-typed object-oriented languages. The crux
of this now well-known problem stems from Eiffel's
intention to base type conformance on subtyping,
while not managing to obey all the rules necessary
to achieve this.

In his reply to Cook [Meyer 89], Meyer objected to
the linking of exports with inheritance, which he
called impractical, and especially to the adoption of
contravariance. Rather than change Eiffel's type
rules to obey strict subtyping, Meyer introduced a
"global system validity check" to catch type errors
retrospectively in situations where polymorphic
aliasing would lead to run-time failure (see section
3 below). Technically, Meyer's solution works,
although from a mathematical standpoint it is
unsatisfying.

Cook's many suggested amendments to Eiffel's type
rules were intended to enforce strict subtyping.
These included linking exports with inheritance,

Proc. 18th Conf. Technology of Object-
Oriented Languages and Systems, eds.
C Mingins, R Duke and B Meyer
(Melbourne: Prentice-Hall, 1995).

Meyer's refusal to adopt contravariance arose
initially from observing the regularity captured by
Eiffel's anchored types:

"Examples such as the above, of which there are
thousands in practical Eiffel applications, make
it very hard to imagine how significant object-

365

oriented software can be written in a typed
language without a covariant policy. Many of
these examples use declaration by association,
which is only a syntactical abbreviation, but in
practice an essential one; its very availability
for routine arguments is only possible because
of the covariant rule" [Meyer 89, p12].

92] - conformance, generic types and anchored
types. In section 3, we illustrate the inconsistencies
of Eiffel's conformance, which is a weakened
notion of subtyping. Many instances of type failure
lead back to violations of the contravariant rule. In
section 4, we review generic types and anchored
types. We describe the intended use of these
mechanisms, but go on to show how, in
combination with conformance, they are multiply
redundant. In section 5, we introduce a cleaner type
semantics for Eiffel, making a proper distinction
between monomorphic and polymorphic types. We
eliminate conformance and combine anchored and
generic types in a single new mechanism. In section
6, we describe a scheme for propagating static
types into polymorphic parameters. The kind of
type failure illustrated in section 3 is successfully
trapped in our scheme.

Anchored types are those declared "by association".
The most common case is where an argument is
said to have the type like Current (ie is anchored to
the type of the current object). Anchored types
express something intuitive about classification
which we would want to preserve in an object-
oriented language, namely that a function f:τ→τ
closed over the class τ can be inherited by a class σ,
in which it is automatically retyped and closed over
the new class f:σ→σ. Meyer assumed that this
mechanism was merely a "syntactic abbreviation"
for type redefinition, subject to an interpretation in
a simple subtyping model of inheritance. As a
result, he was forced to conclude that a covariant
policy should be observed elsewhere for argument
redefinition. This conclusion is wrong, not least
because it is based on a false assumption: anchored
types are not syntactic abbreviations, they are
better explained using a different mechanism.

2. Relationship Between Subtyping and
F-Bounds

In the simple subtyping approach [Cardelli 84,
Cardelli 88a], object classes are identified with
types and inheritance is considered to be the same
thing as subtyping. In simple subtyping, we say
that an object of type X has a set of methods in the
type σ(X) since in general they may refer to self
and are therefore based on the type of X. The
expectation is that other objects of some type Y ⊆
X can be passed legally to these methods. In a
statically-bound system, this may usually be done
safely, albeit with a loss of type information since
methods in the type σ(X) can only return an object
of type X, even when passed an object of type Y.
However, it is a common practice in object-oriented
programming to replace some of a class X's
methods by redefined versions for a subclass Y, in
the type σ(Y) with the intention that these methods
will be invoked dynamically where the original
methods in the type σ(X) were expected. For this
reason, it is important to ensure that the type
signature of every redefined method in σ(Y) is a
subtype of its counterpart in σ(X). In particular,
redefined results must be subtypes (covariance) and
redefined arguments must be supertypes
(contravariance). This ensures that objects of type
Y can safely be passed to variables of type X.

Ironically, Cook discovered the Eiffel type failure
problem while researching an alternative
mathematical model of class inheritance, F-bounded
quantification [Cook 89a, Canning 89a, Canning
89b] which is different from subtyping [Cook 90].
F-bounds were devised chiefly to explain the
evolution of the self-type under inheritance, but can
also be used to explain other anchored type
declarations [Simons 94a]. In the F-bounded
approach, classes are type families characterised by
a type generator and inheritance is a pointwise
inclusion relationship between type generators.

In the rest of this paper, we shall develop an
alternative solution to Cook's Eiffel type failure
problem, based on F-bounds. In section 2 we
outline the main differences between subtyping,
bounded quantification and F-bounded
quantification. The F-bounded approach permits
covariant restriction on redefined argument types
and the implicit retyping of inherited functions, in
the style desired by Meyer; however type
conformance is no longer based on subtyping. In
sections 3 and 4, we review the three different type
mechanisms provided by Eiffel [Meyer 88, Meyer

Due to the loss of type information when a class Y
inherits methods in the parent type σ(X), later work
[Cardelli 85, Cardelli 88b, Ghelli 90] explored the

366

addition of bounded universal quantification to
express the type of polymorphic methods. In
bounded quantification, an object's methods are
given the type ∀(t ⊆ X).σ(t) to express the idea that
they may acquire more precise type signatures for
each subtype object of a given type. This work was
founded on a simple generalisation of the second-
order λ-calculus [Cardelli 85, Danforth 88]. The
expectation was that a class Y, inheriting a method
from X with the type ∀(t ⊆ X).σ(t), would obtain a
version typed in σ(Y) by the replacement of the
type parameter t. Unfortunately, this expectation
was only fulfilled in the context of non-recursive
types. In λ-calculus explanations of type recursion,
the recursive type of t has to be fixed at t = X,
making bounded quantification no more expressive
than simple subtyping for methods inherited by the
subtype Y. Apart from the addition of
polymorphism to the type model, a class Y was still
expected to conform to a class X according to
simple subtyping. Cardelli has since moved away
from λ-calculus models in favour of his own object-
calculus [Cardelli 90, Cardelli 91, Cardelli 92a,
Cardelli 92b].

thing as simple subtyping, since it is nearly always
the case that methods σ(Y) are not subtypes of
methods σ(X), therefore Y is not a subtype of X.
Instead, different type checking rules are used,
based on a point-wise comparison of types created
from generators. Instead of insisting that Y ⊆ X,
F-bounded quantification requires all possible
instantiations of the two generators to be pointwise
in a subtype relationship, in other words, where the
class constrained by ∀(t ⊆ GY[t]) inherits from the
class ∀(t ⊆ FX[t]), we require that:

∀(t ⊆ GY[t]).GY[t] ⊆ FX[t].

Object-oriented languages reflect the above findings
in different ways, depending on their adoption of
simple subtyping, bounded quantification or F-
bounded quantification to explain the typing of
inheritance. Trellis [Schaffert 86] is one of the
earliest languages treating classes uniformly as
types to handle subtype relations correctly.
Together with the type rules of POOL-I [America
90] and of Emerald [Black 86], Trellis observes
both the covariant rule for function results and
contravariant rule for function arguments. Sather
[Omohundro 94] has a polymorphic type variable
SAME, which it interprets as a syntactic
abbreviation for the type of each new inheriting
class [Szypersky 93]. This means that inherited
functions returning results in the type SAME are
considered subtype functions, so long as SAME
does not also occur as an argument type.

At around the same time, work by Cook, Canning,
Hill, Olthoff and Mitchell [Cook 89a, Canning 89a,
Canning 89b, Cook 89c, Cook 90] showed that
bounded quantification did not deliver useful type
signatures for polymorphic functions in the context
of recursive types. Their F-bounded quantification,
a higher-order subtyping theory, delivers more
appropriate types for the same polymorphic
functions. In F-bounded polymorphism, an object's
methods are given the type ∀(t ⊆ F[t]).σ(t) to
express the fact that the type of self in the inherited
part of an object must change before being
combined with new methods. A class is not a type
X, but a family of types whose upper bound is
constrained by a type generator ∀(t ⊆ FX[t]), a
polymorphic construct from which the simple types
of objects can be recovered when they are created.
The simple type X of an object created from a class
∀(t ⊆ FX[t]) is given by X = FX[X], which is
explained in the λ-calculus in terms of the fixed
point theory of recursion. The result of applying
FX[t] to X delivers a set of methods for the object in
the type σ(X). An object of type Y inheriting
methods in the type ∀(t ⊆ FX[t]).σ(t) obtains
versions which are retyped in σ(Y), exactly as
desired. As a result, inheritance is not the same

Generally, Eiffel identifies class with type and
inheritance with subtyping [Meyer 88, Meyer 92].
In its typing rules for function replacement, it
follows the covariant rule for results, but rejects the
contravariant requirement for arguments [Meyer
89]. Coincidentally, Eiffel obeys contravariance for
axiom redefinition [Simons 94b], although this is
justified in terms of Meyer's programming by
contract metaphor, rather than from subtyping
considerations [Meyer 88, p256-7]. This internal
inconsistency has been discussed on the internet
newsgroup comp.lang.eiffel.

Above, Cook and Meyer both agree that subtyping
models unfairly restrict the expressiveness of
object-oriented languages. In view of this, it is
clear that F-bounded polymorphism has a lot to
offer. F-bounded type matching rules have been
introduced in the experimental languages Abel

367

[Harris 91], TOOPL [Bruce 94a] and PolyTOIL
[Bruce 94b], exclusively to describe the self-type.
Elsewhere, the substitution of one component for
another is explained using simple subtyping. In our
proposal below, we extend the use of F-bounds to
describe the internal polymorphic parts of a class.
So far, no language has based its polymorphic types
uniformly on F-bounds. We show how this
approach significantly simplifies the typing of
object-oriented programs, while capturing all their
traditional flexibility.

POWER_SIGNALs do this by calculating the
power of their POWER_SAMPLEs:

class SIGNAL
feature -- Creation omitted for brevity

rectify(arg : SAMPLE) : INTEGER is
do -- simple strategy

Result := arg.magnitude
end

end -- SIGNAL

class POWER_SIGNAL inherit SIGNAL
redefine rectify
feature -- Creation omitted for brevity

rectify(arg : POWER_SAMPLE) :
INTEGER is

do -- more sophisticated strategy
Result := arg.power

end
end -- POWER_SIGNAL

3. Difficulties with Conformance and Subtyping

In Eiffel, a class conforms to another if it inherits
from it [Meyer 92, p219], whether directly or
transitively. Eiffel's conformance deviates from
subtyping by allowing the uniform specialisation of
function arguments and results in descendant
classes. Programs may therefore be passed as type-
correct, but hide run-time type failure [Cook 89b].
We illustrate this with a practical signal-processing
example in Eiffel [Simons 94a]. Two kinds of
SAMPLE are devised to encapsulate INTEGER
data values:

The salient fact is that rectify() in SIGNAL has
been replaced in POWER_SIGNAL by a function
expecting a subtype argument, in violation of
contravariance. This seems reasonable until you
have a variable elsewhere in the program which
expects a SIGNAL and is passed an argument
which is a POWER_SIGNAL:

class SAMPLE
feature -- Creation omitted for brevity

data : INTEGER;
magnitude : INTEGER is
do -- absolute value of sample

if data < 0
then Result := - data
else Result := data

end
end

end -- SAMPLE

some_routine is
local

sam : SAMPLE;
sig : SIGNAL;
pow : POWER_SIGNAL;

do
!!sam.make(...);

-- creates a SAMPLE
!!pow.make(...);

-- creates a POWER_SIGNAL
sig := pow;

-- statically correct,
-- since pow ⊆ sig

sig.rectify(sam);
-- statically correct; but
-- hides runtime type failure!

end -- some_routine

class POWER_SAMPLE inherit SAMPLE
feature -- Creation omitted for brevity

power : INTEGER is
do -- square of sample

Result := data * data
end

end -- POWER_SAMPLE

such that a POWER_SAMPLE object has in total
the features data, magnitude and power. Next, we
devise two kinds of SIGNAL which process
samples of each respective variety. Our intuition is
that SIGNALs rectify their SAMPLEs by
calculating their magnitude, whereas

Here, since sig now legally contains an instance of
POWER_SIGNAL, sig.rectify(sam) invokes the
replaced function defined in POWER_SIGNAL.
This call was checked statically with respect to
SIGNAL, yet the replaced function invokes in turn
a call to sam.power, which fails since its argument

368

is of type SAMPLE, for which power is not
defined.

type in some routine, contravariance requires that a
more general substitution be made.

Meyer's patch to fix this [Meyer 89, p14-17]
monitors aliasing of the kind sig := pow; and in
this context retypes the features of SIGNAL with
the most restricted types of any object it aliases,
anywhere in the system. For this reason it is called
a "global" check. At assembly time,
sig.rectify(sam) would therefore raise a type error,
where the retyped rectify is passed too general an
argument.

It is clear (notwithstanding the "global system
validity check") that Eiffel's conformance rules are
formally too lax. But it is equally clear that forcing
Eiffel to obey subtyping would severely limit the
language. In the worst case, a type appearing both
as an argument and as a result to a function could
never be redefined, since it would have to obey
contravariance and covariance simultaneously. For
this reason, we reject simple subtyping as a model
for type substitution during polymorphic
inheritance.Violating contravariance is also responsible for

other kinds of formal type failure involving generic
classes in Eiffel. If we parameterise our SIGNAL
and POWER_SIGNAL classes:

4. Difficulties with Generic and Anchored Types

Eiffel has three distinct type mechanisms, which
can interact in unusual ways. Hereafter, we shall
use conformance in a restricted sense, to distinguish
Eiffel's inheritance-based type compatibility from
its other mechanisms. The second mechanism is
anchored types. These are declared using a syntax:
<variable> : like <anchor> and have the intention
of linking the type of the variable to the type of
some other attribute or argument, named as the
anchor. If the type of the anchor is subsequently
redefined, then the variable type changes to match
this. Mathematically, this is a kind of type
substitution mechanism [Palsberg 94], or an
implicit variant of parametric polymorphism with a
default instantiation for the parameters [Cook 89b].
The third mechanism is called genericity, or
generic types. This is an explicit parametric
polymorphism, generalised in [Meyer 92] to allow
constraints placed on the actual types which may
replace the parameters. In our example from
section 3 above, SIGNAL [S -> SAMPLE] is the
type of a SIGNAL which has a parameterised
sample type S. S may be replaced by SAMPLE or
indeed by any type conforming to SAMPLE, such
as POWER_SAMPLE.

class SIGNAL [S -> SAMPLE]
feature -- Creation omitted for brevity

rectify(arg : S) : INTEGER is
do -- simple strategy

Result := arg.magnitude
end

end -- SIGNAL

class POWER_SIGNAL
[T -> POWER_SAMPLE]
inherit SIGNAL [T] redefine rectify

feature -- Creation omitted for brevity
rectify(arg : T) : INTEGER is
do -- more sophisticated strategy

Result := arg.power
end

end -- POWER_SIGNAL

we can construct types POWER_SIGNAL
[POWER_SAMPLE] and SIGNAL [SAMPLE]
which obey the parametric form of the conformance
rule in [Meyer 88, p262] and [Meyer 92, p221-
224]; yet clearly the same kind of type failure as
the one above results from aliasing an object of type
POWER_SIGNAL [POWER_SAMPLE] with a
variable of type SIGNAL [SAMPLE]. Cook points
out that a subtyping relationship between two
generic classes (here, between POWER_SIGNAL
[T] and SIGNAL [S]) is not assured by respectively
substituting conformant actual types (here,
POWER_SAMPLE which conforms to SAMPLE)
into their formal generic parameters (T and S).
Instead, the issue is whether the resulting types,
with all parameters replaced, obey subtyping.
Where a generic parameter occurs as an argument

Our first difficulty with Eiffel is that it makes no
clear distinction between monomorphic and
polymorphic types. In non-object-oriented
languages, a variable with the type SAMPLE
contains an object of exactly this type. In Eiffel, it
may also contain objects of any conforming type,
such as POWER_SAMPLE. In effect, any variable
with a simple type is also inherently polymorphic
and this weakens the notion of simple type in Eiffel.

369

Given better mechanisms to handle polymorphism,
Eiffel should retain a straightforward static type (its
non-reference expanded types nearly have this
quality). In any case, the polymorphism based on
conformance is not especially useful in the context
of inheritance, since it leads to the kind of type-loss
described in section 2.

[Ichbiah 79]. In constructions such as LIST [T]
and ARRAY [T], the type parameter T abstracts
over the unknown element type. It is useful to delay
instantiating the parameter until the point of use,
since this allows client programs to make static
assumptions about the element-type. A client
program using a LIST [SAMPLE] can depend on
its elements having the static type SAMPLE. A
further flexibility is introduced by constrained
genericity [Meyer 92, p202-3]. The supplier of the
class SIGNAL [S -> SAMPLE] can also make
assumptions about the type instantiating S. He can
write routines inside SIGNAL that depend on its
register containing something of the static type
SAMPLE. This generalisation of parametric
polymorphism was present earlier in the
experimental language Russell [Demers 78].

To overcome this, the like <anchor> mechanism
permits inherited functions to evolve in type, such
that no type-loss occurs when they are attached to a
new type. Anchored types, especially like Current,
permit the automatic retyping of inherited functions.
As we shall see later, anchored types form the basis
for an F-bounded polymorphic interpretation of
classes. However, in [Meyer 89] they are merely
supposed to be syntactic abbreviations for the types
which replace them. Against this, it is clear [Meyer
92, p224-6] that anchored types do not enter into
further conformance relations quite like normal
types. In the following:

However, it is not the case in Eiffel that
instantiating all type parameters results in a static
type. A LIST [SAMPLE] is still inherently a
polymorphic type. Typically, this property is put to
good use when constructing heterogenous
collections, in which a LIST [SAMPLE] object
contains elements of mixed types, such as
SAMPLEs and POWER_SAMPLEs. But this
flexibility also opens up the type system to allow a
variable of the type LIST [SAMPLE] to receive
objects of the types TREE [SAMPLE], TREE
[POWER_SAMPLE] and so on (assuming that
TREE [T] conforms to LIST [T]). We believe that
this significantly reduces the useful type constraints
provided by a parametric polymorphic mechanism.
Again, it seems ironic that the anchored type
mechanism in Eiffel currently provides a stronger
constraint than this. Nonetheless, we shall want to
retain the ability to build heterogenous collections.

sam1 : SAMPLE;
sam2 : like sam1;
sam3 : POWER_SAMPLE;
sam1 := sam2;

-- OK because like sam1
-- conforms to SAMPLE

sam2 := sam1;
-- disallowed, even though
-- sam1 and sam2 have equal type

sam2 := sam3;
-- disallowed, even though
-- sam3 conforms to sam1

only the first assignment is allowed. The others are
disallowed on the grounds that anchored types like
X may be subsequently redefined in descendant
classes and are therefore not safe targets for
assignment, except given another object of type like
X. Anchored types behave less like standard Eiffel
types and more like a classic parametric
polymorphic mechanism in which, once the
parameters are replaced, the type of the expression
is static. We are in favour of such a clear
distinction between monomorphism and
polymorphism; however, it seems strange that
Eiffel's quasi-static types are more flexible than its
polymorphic types!

In combination, it seems that Eiffel has too many
type mechanisms. Its quasi-static type is actually
polymorphic and mixes with two other polymorphic
type mechanisms. Because of this, it is possible to
specify essentially the same polymorphic type in
different ways. Below, we define the SIGNAL
class slightly differently from the definitions given
in section 3. Here, SIGNAL has a component
attribute register to hold a single polymorphic
SAMPLE. The rectify() function now operates
upon the value stored in this register. We may
obtain very similar styles of SAMPLE
polymorphism using conformance and genericity in
the definition of SIGNAL:

Generic types in Eiffel serve the same purpose as
the classic parametric polymorphic mechanisms in
languages like Standard ML [Milner 90] or Ada

370

class SIGNAL
-- to hold polymorphic samples

feature
-- polymorphic register based
-- on conformance
register : SAMPLE;
rectify : INTEGER is
do Result := register.magnitude end

end -- SIGNAL

We suggest that a new Eiffel class SAMPLE[]
might be introduced in the following way, using
square brackets to enclose a type parameter T,
standing for the self-type:

class SAMPLE [T]
feature -- Creation omitted for brevity

data : INTEGER;
magnitude : INTEGER is
do -- absolute value of sample

if data < 0
then Result := - data
else Result := data

end
end

end -- SAMPLE

class SIGNAL [S -> SAMPLE]
-- to hold polymorphic samples

feature
-- polymorphic register based
-- on genericity
register : S;
rectify : INTEGER is
do Result := register.magnitude end

end -- SIGNAL
This style supercedes Eiffel's current usage of
square brackets to introduce generic sub-parts of a
class (reconsidered below), since the parameter
stands here for the whole class. The special
construction like Current is no longer needed,
since T may be used elsewhere in the class to
denote the self-type. A class definition is
understood to have the meaning of a generator
for a family of objects with the polymorphic type
∀(T ⊆ ΦSAMPLE [T]).T, where:

A marginal increase in flexibility is gained through
parameterising the register, since although a
SIGNAL [POWER_SAMPLE] will rectify its
samples in exactly the same way as a SIGNAL
[SAMPLE], its register will return an element of
type POWER_SAMPLE; whereas the
conformance-based register can only return the
static type SAMPLE, even when it contains a
POWER_SAMPLE object. It is this insight which
allows us to see that constrained genericity fulfils
all the obligations of conformance-based
polymorphism; and provides more by capturing the
evolving type of the register, much in the spirit of
like <anchor>. For this reason, we propose to
replace Eiffel's conformance polymorphism by an
explicit parametric mechanism with constraints.

ΦSAMPLE = λT.{data: INTEGER,
magnitude: INTEGER}

In new Eiffel, we suggest that a monomorphic type
SAMPLE might be introduced implicitly, being
understood as the least fixed point of the
SAMPLE[] class. In λ-calculus terms, this relates
our notions of class and type in the following way:

5. A Uniform F-Bounded Polymorphism SAMPLE = ΥΥ ΦSAMPLE
-- type is least fixed point of class

SAMPLE = ΦSAMPLE [SAMPLE]
-- type satisfies its class's F-bound

Our proposal for a new Eiffel depends on
distinguishing the notions of class and type. A
class defines a polymorphic family of objects
having different but related types. A type defines a
monomorphic family of objects having identical
type. The polymorphic type of a class is
constrained by an F-bound [Canning 89a]
expressed using a type generator. This generator
will always have at least one unreplaced type
parameter, usually standing for the type of self,
equivalent to like Current. A monomorphic type is
defined as the least fixed point of such a type
generator [Cook 90].

Generally we contrast the notation SAMPLE[],
used to denote a polymorphic class, with the
notation SAMPLE, used to denote a monomorphic
type. In what follows, class features will either be
given static types or class types.

Next, we incorporate old-style generic parameters.
A new Eiffel class may introduce several
parameters constrained by F-bounds, abstracting
over further polymorphic sub-parts. This has the
syntactic feel of Eiffel's existing constrained generic

371

parameter mechanism, but also replaces
conformance-based polymorphism. In order to
avoid the proliferation of type parameters up front,
we simply introduce them internally at the point
where they are needed:

some example types with their equivalent λ-
calculus meanings:

sig_of_pow_sam : SIGNAL [S = SIGNAL
[T = POWER_SAMPLE]];

class SIGNAL [S]
feature -- Creation omitted for brevity

register : SAMPLE [T];
rectify(arg : SAMPLE [T]) : INTEGER is
do -- simple strategy

Result := arg.magnitude
end

end -- SIGNAL

= ΥΥ (ΦSIGNAL [ΥΥ ΦPOWER_SAMPLE])

polysig_of_sam : SIGNAL [[T = SAMPLE]];

= ∀(S ⊆ ΦSIGNAL [(ΥΥ ΦSAMPLE), S]).S

sig_of_polysam : SIGNAL [S = SIGNAL];

= ∀(T ⊆ ΦSAMPLE [T]).(ΥΥ (ΦSIGNAL [T]))
Formally, the self-type S of class SIGNAL[]
depends on the particular type substituted into the
parameter T in register and rectify, which must
satisfy the F-bound of SAMPLE []. We understand
such a parameterised class definition to mean a
generator for a family of objects having the
polymorphic type:

This illustrates how parameters may be replaced in
any order. In keeping with our earlier notational
conventions on class and type, we adopt the usual
sugared syntax to write the monomorphic type
SIGNAL, meaning the (frequently used) double
least fixed point:

signal_of_sample : SIGNAL;∀(T ⊆ ΦSAMPLE [T]).
∀(S ⊆ ΦSIGNAL [T, S]).S

= ΥΥ (ΦSIGNAL [ΥΥ ΦSAMPLE])

where:
A similar binding style can be used to retype
polymorphic features during inheritance:ΦSIGNAL = λT.λS.{register: T,

rectify: T → INTEGER}
class POWER_SAMPLE [U]
inherit SAMPLE [T = U]
feature -- Creation omitted for brevity

power : INTEGER is
do -- square of sample

Result := data * data
end

end -- POWER_SAMPLE

This kind of uniform F-bounded typing for
polymorphic sub-parts has not been widely
advocated before. PolyTOIL's matching rule
[Bruce 94b] explains the typing of self using F-
bounds and otherwise requires redefined functions
to obey subtyping. The Johns Hopkins group
[Eifrig 94] propose (F-bounded) open and
(monomorphic) closed types for self, with
monomorphic types elsewhere. The Abel group
[Harris 91] went as far as considering subtype-
bounded parameters for polymorphic sub-parts in
their unfinished final report.

T = U captures the retyping of self, in the same
manner as using like Current in old Eiffel.
Formally, the self-type U of the new class is
distributed to the parent's type generator,
according to Cook's model of inheritance
[Cook 89c, Cook 90]. We understand inheritance
to be a shorthand for defining a child class
∀(U ⊆ ΦPOWER_SAMPLE [U]).U, where:

The introduction of polymorphic sub-parts in a
class results formally in the stacking up of type
parameters, which later must be bound to actual
types. Rather than burden the programmer with the
full λ-calculus machinery for the flexible rebinding
and fixing of types, we suggest an explicit
parameter-substitution style which uses nesting to
respect dependency among self-types. We give

ΦPOWER_SAMPLE =
λU.ΦSAMPLE [U] ⊕ {power: INTEGER}

= λU.{data: INTEGER, magnitude: INTEGER,
power: INTEGER}

372

using Cook's operator ⊕ to perform record type
concatenation with override.

∀(t ⊆ ΦPOWER_SAMPLE [t]).
ΦPOWER_SAMPLE [t] ⊆ ΦSAMPLE [t]

Since we must extend Cook's model to allow
rebinding of polymorphic sub-parts, inheritance
may now involve a multiple distribution of new type
parameters to old:

by inheritance, then the most general solution is
F[t] = ΦPOWER_SAMPLE [t].

6. Binding and Scope of Type Parameters

class POWER_SIGNAL [P]
inherit SIGNAL [S = P[T = U]]

redefine rectify
feature -- Creation omitted for brevity

rectify(arg : POWER_SAMPLE [U]) :
INTEGER is

do -- more sophisticated strategy
Result := arg.power

end
end -- POWER_SIGNAL

Everywhere in new Eiffel, we distinguish variables
with a simple static type from those with a
polymorphic type, using square brackets to indicate
polymorphic types:

sam1 : SAMPLE; -- monomorphic type
sam2 : SAMPLE []; -- polymorphic class
sam3 : SAMPLE [X]; -- polymorphic class

The variable sam1 has the monomorphic type
SAMPLE and can only receive objects of exactly
this type. The variable sam2 has the polymorphic
type ∀(T ⊆ ΦSAMPLE [T]).T and may therefore
receive objects of any type satisfying this bound,
for example, POWER_SAMPLE ⊆ ΦSAMPLE
[POWER_SAMPLE]. The variable sam3 is also
polymorphic, but links its type instantiation to other
occurrences of X in the local context, so we have:

Again, we use nesting to indicate that the self-type
S has been rebound to a P in which the component
type T is rebound to a U. Formally, this inheritance
construction produces a generator for a more
restricted class of objects. This class has the
polymorphic type:

∀(U ⊆ ΦPOWER_SAMPLE [U]).
∀(P ⊆ ΦPOWER_SIGNAL [U, P]).P pow : POWER_SAMPLE;

sam1 := pow;
-- incorrect, since pow and sam1
-- have different types

sam2 := pow;
-- correct, since pow observes
-- sam2's F-bound

sam3 := pow;
-- correct, provided that the binding
-- X = POWER_SAMPLE is consistent

where:

ΦPOWER_SIGNAL =
λU.λP.ΦSIGNAL [U, P]

⊕ {rectify: U → INTEGER}
= λU.λP.{register: U, rectify: U → INTEGER}

We draw special attention to the fact that, due to
the way F-bounds work, the retyping of rectify
involves a covariant restriction. This is correct,
since it is not possible to obtain a more general F-
bound by merging a type parameter with a less
restricted parameter, because the pointwise
instantiation rule for F-bounds would ensure that
the bound drawn over both were the more restricted
of the two. Mathematically, this is the greatest
lower bound F[t] in:

The most general object type which may be
assigned to a polymorphic variable is the least fixed
point of the F-bound. This places an upper bound
on polymorphic assignment in a way analogous to
the existing Eiffel conformance rule. Linked
polymorphic types allow the propagation of strong
type-constraints within a local block, like Eiffel's
existing type parameters. Formally, we bind all
such local type parameters upon entry to the block:

∀(t ⊆ F[t]). F[t] ⊆ ΦPOWER_SAMPLE [t]
∧ F[t] ⊆ ΦSAMPLE [t] λ(X ⊆ ΦSAMPLE [X]).(... sam3 := pow; ...)

[POWER_SAMPLE]
Since we already know that:

373

to prevent the multiple instantiation of X by
different types. Polymorphic local variables and
function arguments have the scope of their function
body. Object attributes have a scope bounded by
the outermost function with a handle on the same
self. If-statements are problematic only when
alternative type bindings occur in each branch. In
this case, we compute the most specific type
information possible (cf [Eifrig 94]) and insert a
run-time type check when retrieving objects from
polymorphic variables.

Our type system is expressive enough to permit
polymorphic sig to alias monomorphic pow, but
prohibit the passing of too general an argument sam
to the aliased object's rectify. Initially, the type
checker sets up the following context:

Γ0
sam : SAMPLE,
pow : POWER_SIGNAL,
sig : ∀(T ⊆ ΦSAMPLE [T]).

∀(S ⊆ ΦSIGNAL [T, S]).S

Once a polymorphic type has been instantiated, all
expressions in that type are fixed for the whole of
the enclosing block. We assume a generalised type
binding rule of the form:

When the checker encounters the assignment
sig := pow, this propagates actual type information
into sig. The assignment rule requires the
unpacking of the recursive type POWER_SIGNAL
since it wants to bind parameters in the order T, S.
This done, the rule is applied twice to generate
extended contexts:

Γ v : ∀(T ⊆ F[T]).Θ[T],
 Γ e : Θ[t ⊆ F[t]]
 ASSIGN-LVAR
 Γ, v := e v : Θ[t] Γ1

sam : SAMPLE,
pow : POWER_SIGNAL,
sig : ∀(S ⊆ ΦSIGNAL[

POWER_SAMPLE, S]).S

in which T is a type parameter, t is a type and Θ[]
is a type expression, possibly involving further F-
bounded quantification. The rule says that in a
given context Γ, if variable v has a polymorphic
type and expression e replaces the first parameter in
v with a suitable type, then the assignment v := e
extends the context Γ in which v is partially
instantiated with the type of e. The rule may be
applied recursively until no more parameters can be
instantiated. To illustrate the power of our
parametric scheme, we shall type-check the earlier
example from section 3 which was incorrectly
accepted by Eiffel's current conformance rule:

Γ2
sam : SAMPLE,
pow : POWER_SIGNAL,
sig : POWER_SIGNAL

Now, the call sig.rectify(...) is checked. This
function has acquired the static type:

POWER_SIGNAL →
(POWER_SAMPLE → INTEGER)

some_routine is
local

sam : SAMPLE;
-- monomorphic, T fixed

sig : SIGNAL [];
-- polymorphic, S not fixed

pow : POWER_SIGNAL;
-- monomorphic, P and U fixed

do
!!sam.make(...);
!!pow.make(...);
sig := pow;

-- polymorphic assignment
sig.rectify(sam);

-- static type failure detected!
end -- some_routine

and expects an argument of static type
POWER_SAMPLE; but instead it gets one of the
wrong type, SAMPLE. The error is therefore a
straightforward static type mismatch.

Our type system provides a much stronger and
more subtle static typing than is currently available
in object-oriented languages. The call
sig.rectify(...) in Eiffel would normally be resolved
by dynamic binding. Because we propagate static
type information in our system, we can bind rectify
statically. We believe that Meyer's "global system
validity check" would permit rectify in this context
to accept an argument of static type
POWER_SAMPLE [Meyer 89, p14-17] since he
adopts a pessimistic policy of retroactively retyping

374

the features of sig : SIGNAL with the most
restricted types of any object it aliases, anywhere in
the system. Our example will clearly allow this,
but will also allow the more subtle sig.rectify(sam)
where sam has the declared polymorphic type
∀(t ⊆ SAMPLE [t]) and in the same block receives
an object of type POWER_SAMPLE. Clearly,
Eiffel could not statically detect the dynamic type of
objects without an expensive global flow analysis.
Our approach is not expensive and less pessimistic
than Meyer's, since type constraints are propagated
within local blocks, rather than across the whole
system.

be instantiated by different types conforming to the
same F-bound, leading to heterogenous structures.
In order to do this, we must first reverse the order
of quantification for the self-type and the
component-type, binding the component inside the
quantification of self. This is a higher-order
approach, since the self-type parameter must now
range over recursive type functions, rather than
over recursive types [Harris 91].

Our parametric mechanism propagates more static
information than comparable type systems [Simons
94c]. Nonetheless, heterogenous collections and
branching constructs with mixed types, such as if-
statements which return one from a collection of
simple types all satisfying the same F-bound, give
rise naturally to unresolved polymorphic types. A
compiler can statically detect such situations
[Palsberg 94] and insert exactly the required form
of dynamic type check at the point where objects
are transferred to variables with simple, or more
restricted polymorphic types. Throughout, we still
require only two kinds of typed variable: mono-
and polymorphic.

7. Conclusions and Further Work

We have presented a revised syntax for Eiffel which
has only two kinds of typed variable: monomorphic
and polymorphic. We have eliminated
conformance-based polymorphism, on the grounds
that in its current form it is mathematically
unsound; and were it to be corrected, it would be
practically useless as a mechanism for typing
object-oriented languages. We retain polymorphic
assignment and argument-passing, propagating type
constraints into blocks wherever parameters receive
actual types, or are merged with other type
parameters (not described in detail in this paper).
In the latter case, the constraint preserved is the
greatest lower bound. Algorithms for performing
this kind of analysis already exist, such as
Robinson's unification algorithm [Robinson 65].
Our approach to polymorphism is more in harmony
with other parametric approaches [Milner 78] but is
new in that it is based on F-bounds. The systematic
use of F-bounded parameters to type polymorphic
structures has not been proposed before. Earlier
work has concentrated only on the typing of self.

Further work in this area must include a syntactic
mechanism for propagating type constraints
between two mutually dependent F-bounds,
generating mutually recursive types. A non-
parametric type substitution model [Palsberg 94]
has shown that this is possible in principle. We
have also recently explored the type-theoretic effect
of adding class axioms into our model [Simons
94b]. This is a salient concern in any complete type
system for Eiffel.

The author would like to thank William Cook for
inspiration, Kim Bruce and Warren Harris for their
help and influence on the development of these
ideas.

Linking the instantiation of type parameters
naturally leads to a homogenous style of
polymorphism. The order of quantification for
types with polymorphic sub-parts usually binds the
type of the sub-part first. It is therefore easy to
design homogenous lists, arrays and trees using our
approach. We first suggested using unlinked type
parameters as a basis for heterogenous
polymorphism in [Simons 94a]. By binding the tail
of a recursive structure over a different component
type parameter from the head, we obtain a structure
with the same polymorphic type as self, but having
a different parameterisation. The parameters may

References

[America 90] P America (1990), 'Designing an
object-oriented language with behavioural
subtyping', Proc. Conf. Foundations of Object-
Oriented Lang., 60-90.

[Black 86] A Black, N Hutchison, E Jul and H
Levy (1986), 'Object structure in the Emerald
system', Proc. 1st ACM Conf. Object-Oriented
Sys., Lang. and Appl., 78-86.

375

[Bruce 94a] K Bruce (1994), 'A paradigmatic
object-oriented programming language: design,
static typing and semantics', J. of Func. Prog.,
4(2), 127-206.

[Cardelli 92a] L Cardelli (1992), 'Extensible
records in a pure calculus of subtyping', Research
Report 81, DEC Systems Research Center,
January. Reprinted in: Theoretical Aspects of
Object-Oriented Programming, eds. C A Gunter
and J C Mitchell (1994), MIT Press, 373-426.[Bruce 94b] K Bruce, A Schuett and R van

Gent (1994), 'PolyTOIL: a type-safe polymorphic
object-oriented language', Technical Report,
Department of Computer Science, Williams
College; also published as an extended abstract in
ECOOP '95.

[Cardelli 92b] L Cardelli and J Mitchell (1992),
'Operations on records (summary)', Proc. 5th Int.
Conf. Math. Found. Prog. Lang. Semantics, pub.
LNCS, 442, Springer Verlag, 22-52.

[Canning 89a] P Canning, W Cook, W Hill, W
Olthoff and J Mitchell (1989), 'F-bounded
polymorphism for object-oriented programming',
Proc. 4th Int. Conf. Func. Prog. Lang. and Arch.,
Imperial College London, September, 273-280.

[Cook 89a] W Cook (1989), A denotational
semantics of inheritance, PhD Thesis, Brown
University.

[Cook 89b] W Cook (1989), 'A proposal for
making Eiffel type-safe', Proc. 3rd European Conf.
Object-Oriented Prog., 57-70; reprinted in
Computer Journal 32(4), 305-311.

[Canning 89b] P Canning, W Cook, W Hill and
W Olthoff (1989), 'Interfaces for strongly-typed
object-oriented programming', Proc. 4th ACM
Conf. Object-Oriented Lang., Sys. and Appl., 457-
467.

[Cook 89c] W Cook and J Palsberg (1989), 'A
denotational semantics of inheritance and its
correctness', Proc. 4th ACM Conf. Object-Oriented
Prog., Sys., Lang. and Appl., 433-443.[Cardelli 84] L Cardelli (1984), 'A semantics of

multiple inheritance', in: Semantics of Data Types,
LNCS 173, eds. Kahn, MacQueen and Plotkin,
Springer Verlag, 51-68.

[Cook 90] W Cook, W Hill and P Canning
(1990), 'Inheritance is not subtyping', Proc. 17th
ACM Symp. Principles of Prog. Lang., 125-135.

[Cardelli85] L Cardelli and P Wegner (1985),
'On understanding types, data abstraction and
polymorphism', ACM Computing Surveys, 17(4),
471-521.

[Demers 78] A Demers, J Donahue and G
Skinner (1978), 'Data types as values:
polymorphism, type-checking, encapsulation', Proc.
5th ACM Symp. on Principles of Prog. Langs., 23-
30.[Cardelli 86] L Cardelli (1986), 'Amber',

Combinators and Functional Programming
Languages, LNCS, 242, 21-47. [Danforth 88] S Danforth and C Tomlinson

(1988), 'Type theories and object-oriented
programming', ACM Computing Surveys, 20(1),
29-72.

[Cardelli 88a] L Cardelli (1988), 'A semantics of
multiple inheritance', Information and
Computation, 76, 138-164.

[Eifrig 94] J Eifrig, S Smith, V Trivonov and
A Zwarico (1994), 'Application of object-oriented
type theory: state, decidability and integration',
Proc. 9th ACM Conf. Object-Oriented Prog., Sys.,
Lang. and Appl., 16-30.

[Cardelli 88b] L Cardelli (1988), 'Structural
subtyping and the notion of power type', Proc. 15th
ACM Symp. Principles of Prog. Langs., 70-79.

[Cardelli 90] L Cardelli (1990), 'Notes about
F≤', unpublished manuscript. [Ghelli 90] G Ghelli (1990), 'Modelling

features of object-oriented languages in second-
order functional languages with subtypes', LNCS,
489, 311-337.

[Cardelli91] L Cardelli and G Longo (1991), 'A
semantic basis for Quest', J. of Func. Prog., 1(4),
417-458.

376

[Harris 91] W Harris (1991), Typed Object-
Oriented Programming: ABEL Project
Posthumous Report, Hewlett-Packard Laboratories.

[Simons 94c] A J H Simons, Low E-K and Ng
Y-M (1994), 'An optimising delivery system for
object-oriented software', Object-Oriented Systems
1(1), 21-44.

[Ichbiah 79] J Ichbiah, J Barnes, J Heliard,
B Krieg-Bruckner, O Roubine and B Wichmann
(1979), 'Rationale and design of the programming
language Ada', ACM Sigplan Notices, 14(6).

[Szypersky 93] C Szypersky, S Omohundro and
S Murer (1993), 'Engineering a programming
language: the type and class system of Sather',
Technical Report TR-93-064, International
Computer Science Institute, Berkley CA.[Meyer 88] B Meyer (1988), Object-Oriented

Software Construction, Prentice-Hall.

[Meyer 89] B Meyer (1989), 'Static typing for
Eiffel', Interactive Software Engineering Technical
Report TR-EI-18, January; updated in July 1989;
also supplied with: 'Eiffel 2.3 Release Notes',
Interactive Software Engineering, Inc., 1990.

[Meyer 92] B Meyer (1992), Eiffel: The
Language, Prentice-Hall.

[Milner 78] R Milner (1978), 'A theory of type
polymorphism in programming', J. of Comp. and
Sys. Sci., 17, 348-375.

[Milner 90] R Milner, M Tofte and R Harper
(1990), The Definition of Standard ML, MIT
Press.

[Omohundro 94] S M Omohundro (1994), The
Sather 1.0 specification, International Computer
Science Institute, Berkley CA.

[Palsberg 94] J Palsberg and M I Schwartzbach
(1994), Object-Oriented Type Systems, John Wiley.

[Robinson 65] J A Robinson (1965), 'A machine-
oriented logic based on the resolution principle', J.
of ACM, 12(1).

[Schaffert 86] C Schaffert, T Cooper, B Bullis,
M Kilian and C Wilpolt (1986), 'An introduction to
Trellis/Owl', Proc. 1st ACM Conf. Object-Oriented
Prog., Sys., Lang., and Appl., pub. ACM Sigplan
Notices, 21(11), 9-16.

[Simons 94a] A J H Simons (1994), Exploring
Object-Oriented Type Systems, OOPSLA-94
Tutorial 28, ACM Press.

[Simons 94b] A J H Simons (1994), 'Adding
axioms to Cardelli-Wegner subtyping', Department
of Computer Science Report CS-94-6, University
of Sheffield.

377

