
What Makes Testing Work: Nine Case Studies of

Software Development Teams

Christopher D Thomson*

Business School

University of Hull

Hull, UK

c.thomson@hull.ac.uk

Mike Holcombe, Anthony J H Simons

Department of Computer Science

University of Sheffield

Sheffield, UK

{m.holcombe,a.simons}@dcs.shef.ac.uk

Abstract— Recently there has been a focus on test first and test

driven development; several empirical studies have tried to

assess the advantage that these methods give over testing after

development. The results have been mixed. In this paper we

investigate nine teams who tested during coding to examine the

effect it had on the external quality of their code. Of the top

three performing teams two used a documented testing

strategy and the other an ad-hoc approach to testing. We

conclude that their success appears to be related to a testing

culture where the teams proactively test rather than carry out

only what is required in a mechanical fashion.

Testing; test first; test driven development; extreme

programming;emprical; qualitative; testing culture.

I. INTRODUCTION

Extreme programming (XP) [1] presents what is, on the
surface, a simple but effective testing practice known as test
first, or test driven development. The idea is reassuringly
simple, that unit tests should be defined and run before any
implementation is present. Several studies have attempted to
measure the effect of the test first practice on the quality of
the software produced and time taken, but the results
presented are inconclusive.

The testing practice of XP encompassed more than
simply test first. System testing is automated, incremental,
regular, and early. User acceptance testing is similar
although often less or not at all automated [1]. But these
features can be used independently of test first and perhaps
with some success. This raises our research question:

How does the practice of testing effect a team following

XP – or if test first is not followed then do the other practices
of XP still influence the way testing is performed and the
external quality?

We collected data from nine teams, which we present as
case studies. In the case studies the teams were novice users
of XP, who we provided with training. They were given the
option of using test first and whilst three teams expressed
enthusiasm they ultimately did not follow the practice

accurately. We found that the teams had a high degree of
variation in external quality that cannot be easily explained
by the teams’ testing practice alone or the practices of XP
alone. Instead we find that testing must become part of the
culture of the team, and can do so in at least two different
ways.

II. LITERATURE REVIEW

Test first (TF) is an established development technique
which is essentially the same as test driven development
(TDD). In both cases the aim is to write tests before writing
the functional code. This should in theory aid development
as the tests form the basis of the specification, design and
functional tests, whereas testing after the code is written is
regarded as only a testing technique [1; 2]. Whilst TF and
TDD are well defined, the traditional or test last technique is
interpreted differently by the studies in the literature
investigating this phenomenon. The studies’ definitions of
test last can be divided into roughly four categories, which
we will refer to as TL 1 to 4:

TL-1: Unspecified traditional method. Most
experiments provided at least a few hints as to the method
that the non-TF teams should follow, however some did not
[3-5]. The following statement was typical of the broad
definitions that these papers used: "the control group which
followed the traditional process" ([5], p132). As no further
discussion was made about the process followed we can't
make generalizations about what affected their performance.

TL-2: Specified traditional method. This method is
typified by manual or ad-hoc testing and was used in three
studies [6-8]. The method was defined thus: "no automated
tests were written and the project was developed in
traditional mode with a large up-front design and manual
testing after the software was implemented." ([7], p71) and
"a conventional design-develop-test (similar to waterfall)”
([6], p339). Lastly this study also noted that whilst the teams
had been asked to use unit tests, only one team wrote any [6].

TL-3: Unit tests written at the end of the development
cycle. Two studies identified a method that used unit testing
at the end of the development cycle [7; 9]. These studies
were able to provide some metrics on coverage to define the
amount of testing undertaken, but assumed that all tests were
only written and used at the end of the project. One study

*Author contributed whilst at the University of Sheffield.

also noted that in this method there was late integration of
the code [9].

TL-4: Unit tests written just after the code in an
iterative development cycle. In this final group the test
method was analogous to test first in all regards except that:
"automated tests were written shortly after code in an
iterative test-last fashion" ([7], p87). Of the five studies that
used this definition, three had iteration periods the same as
test first [7; 10; 11], and two had longer iteration periods [12;
13].

With these definitions in mind we can explore the results
of the previous experiments, which at first glance appear
contradictory. Two studies have targeted the design-
enhancing claims of TF. One group of studies showed that
the quality of the design produced as result of TF is better, in
that the units are less complex and smaller than those
developed using TL-2 and TL-3 methods [7]. However other
recent empirical evidence suggests that TF in some cases
degrades the quality of the design when compared to TL-4
[11], this was also apparent in one of the earlier individual
studies which used TL-4 [7].

The early studies that compared TF to TL-1 in terms of
performance were conducted by Müller in an academic
situation [5]. He found that TF teams were no quicker but
that there were marginal benefits to reliability and that
functions were reused more frequently. The other studies in
an academic setting had conflicting results. In the first TL-4
was compared with TF [10], where it was found that TDD
was marginally less efficient, with marginally higher quality
(not significant) [10]. The second study, again in an
academic setting, altered the work cycle so that the TL-4
group constructed larger chunks of code before testing, than
the TF group. The authors concluded that quality between
the teams was the same, but that TF wrote more tests, and
their productivity was higher but not significantly so [12].

Three TL-2 studies in academia found similar effects:
productivity was increased (but this was not significant,
perhaps due to a high degree of variability in the data [3])
and that quality was about the same [3; 7; 8]. In one study it
was noted that the increase in productivity was due to an
increase in testing time, with a decrease in coding time [3].
Another study identified that TF developers generated more
tests [7]. In contrast a TL-1 study found that the TF team
were 50% faster in development but this result was
compromised by the fact that the TF group had more
experience in software development [4].

To date, the results most favorable toward TF have come
from industrial studies [6; 7; 9; 13; 14]. In the case studies
the first found that the introduction of TDD gave a 40%
reduction of defects with the same overall productivity
against TL-3 [9]. The second case study found a reduction in
defects of 62% in TDD compared to TL-1 [14]. A final study
looked at several development projects and concluded that
when using TF mature developers delivered less complex
code, in smaller units compared to TL-2 and TL-3 [7]. In the
first comparative study the TDD group passed 18% more
tests than the TL-2 group but took 16% more time to do so
[6]. In the second, no significant differences were found
between TF and TL-4 and the researcher concluded that the

time permitted (2 hours) was not enough for differences to
emerge [7]. The final study found that the TF teams wrote
more tests and ran them more frequently than TL-4, although
this might have been influenced by the experimental
procedure which required TL-4 teams only to generate tests
towards the end of a story implementation [13].

The previous literature gives contrasting results for
similar experiments, in summary the results for TL-1 show
that TF is either as good as or better than TL-1, against TL-2
and TL-3 TF is better, and against TL-4 the results are more
mixed. The studies using TL-4 suggest that the issue of
iteration may be important. Three of the five studies that
included a concept of TL-4 concluded that TL-4 maybe
better that TF [7; 10; 11] the exception was based on a
version of TL-4 where the TL practice was iterated at the end
of a story, whereas TF was at the level of a sub-story [12;
13]. It could be that the effect of the testing frequency is
more important than when the tests are written. Thus deep
exploratory studies on testing methods are required in order
to identify confounding factors [15].

The literature therefore supports the argument that the
practice of testing takes many years for practitioners to
develop; nonetheless, novice developers often deliver good
quality software – although quality can be varied. This basic
aptitude or naïve method can confound the results of studies
that attempt to evaluate empirically the effectiveness of well
founded methods. In this paper we will use a qualitative
analysis to uncover the naïve methods used by three
successful teams. To do this we observed the testing
practices and their effect in nine case studies of student
teams following the XP method.

III. STUDY CONTEXT

In order to gain some further insight into the effects of
the test techniques TL1-4 as used by novices, data was
collected about the testing process followed by nine teams.
The teams selected their own members, each consisting of
between three to five students [16]. The teams were
composed of second or third year undergraduate students.
The students had no previous instruction on XP but had
experience developing software using a plan-driven
approach, which was presented in nine hours of lectures and
tutorials [19].

 The development projects ran over twelve weeks, for
fifteen hours a week. There were three industrial clients who
each provided a project, two required database driven
websites (B and C) and the other an e-learning environment
(A). Each client represented a small business and came with
a project brief, none had experience in commissioning
custom software. Client A had the most expertise in
computing, but this was derived from his degree several
decades previously having since moved into a different area.

The distribution of teams to projects follows the
randomized complete block experimental design [17];
however in this study we treat the teams as a multiple case
study [18]. The relationship between projects and teams is
shown in Table I, along with the programming language
used by the teams.

TABLE I. PROJECTS AND TEAMS

 1 2 3 4 5 6 7 8 9

Project C B B C C B A A A

Language P P CP P P P J J J

P – PHP, J – Java, CP – existing PHP program customized.

We collected data weekly in order to examine the testing

process over time. The students were instructed to submit
their test logs, test code/document, time spent testing and
program code having run the tests on a lab computer. For
this project, the authors selected three popular unit test tools
to be used by the teams: JUnit (Java); PHPUnit (PHP
classes) and Selenium (PHP pages).

IV. MEASUREMENT AND EVALUATION METHOD

In order to establish how successful the tests were, we
recorded the number of test files present for each team and
their outcome if run. Each week the number of tests was
calculated by counting the tests found in the teams’ working
directories.

To investigate the value of the testing process we
calculated the ratio successful test to unsuccessful test
outcomes to against the eventual external quality. To
determine the outcome of the test we referred to the logs. We
recorded each batch of tests submitted as a single test and if
one or more tests failed then a “fail” was recorded. In many
cases the tests submitted did not run because they were
incorrectly configured, in this case we recorded that they
“did not run”. It was not always clear if manual tests
documented had been run, therefore we recorded if they
were successful, if they were changed in the week, or if there
was evidence that they had been run, otherwise they were
recorded as “not run”. These tests were counted per test
document which contained one or more tests.

The test coverage was calculated by examining the tests
present in the final week of the project. This measurement
would reveal if coverage were related to successful projects.
This was calculated in terms of class coverage by the tests
provided. We define class coverage in a weakly as the
number of classes (files in the case of poorly structured PHP)
which had one or more test cases. We also identified two
additional types of test (which we counted within the manual
tests before) which were partially automated by the teams:
Abbot tests to test Java user interfaces [23]; and a custom
test harness which was produced by team seven.

We used the client’s mark to judge the external quality
[24] of the product produced. Unlike other methods of
assessing quality via humans, such as inspection, only one
person assesses the quality. As the population of clients for
each software system is exactly one, we sampled the whole
population. Thus whilst an agreement score cannot be
computed in the traditional sense, we can be confident that
the score is correct. In addition there is no evidence that
other product measurements are correlated to client
satisfaction. Another approach would be to collect post
deployment metrics (bug reports and so on); however this
would not be appropriate here, as three products were
developed for each problem and only one of these was

selected to be used in production. Lastly, whist users of the
software could also be surveyed; this is prone to problems in
relation to the requirements specification, where the users
and client are not in agreement. So, to measure the success of
a project, the only acceptable method is to interview the
client.

The measurement of external quality (50 points in total)
was split equally between the categories: demo, manual,
install guide, maintenance guide, ease of use,
understandability, completeness, innovation, robustness and
happiness. They are based on the products required as part of
the course (first four items) and secondly on product quality
metrics as discussed by Fenton [25]. A detailed description is
available in the lab pack [20]. This process selected the three
winning teams (3, 5 and 8).

Each developer completed a self assessment at the end of
the project. In this paper we consider the responses to the
open questions shown in Table II. The complete instrument
is in a lab pack [20]. This captured the developers’ individual
performance, which the developers described in their own
words.

Lastly, to evaluate if other project management factors
were more important for predicted quality, each member of
the team also answered a survey based on the Shodan
questionnaire which is used to evaluate XP adherence [21].
We used a shortened version, as questions on the metaphor
and changes to release plans were not relevant for our teams;
the full set of modified questions is available in a technical
report [22]. To calculate a value of adherence for each team
we took the mean value of the responses from the team
members.

V. DESCRIPTION OF THE CASES STUDIED

The teams were rated by the clients both in summary (as
summarized later in Table VI) and an overall grade (Table
III). The winning teams 3 and 5 scored the highest, but
despite winning for their client, team 8 scored slightly lower
than these teams and one of the others (team 6).

Our first observation on test technique was that no team
wrote tests before they wrote their code and all used a variant
of TL-4. Typically a team member would develop the tests
on his own local copy of the system before bringing them
into the lab to run and record the tests, but configuration
issues at this point meant that many of the tests failed to run
correctly – leading to the tests not being run (Fig. 1). For
example team 1 mostly found that their tests did not run
(although they attempted to run them most weeks) with only
two cases where they failed. In contrast team 4 was more
successful with the tests running and failing after week 6 and

TABLE II. SELF ASSESSMENT SURVEY QUESTIONS (EXTRACT)

In your own words please comment on your achievements.

In your own words please comment on your failures.

In your own words please comment on your role in the team.

TABLE III. TABLE III: EXTERNAL QUALITY FOR EACH TEAM

Team 1 2 3 4 5 6 7 8 9

Mark 29 33 39 29 38 35 28 34 34

being successful in week 10. Therefore when we examined
the cases, we used these results to indicate when tests were
being run by the team, rather than considering the outcome.

Fig. 2 summarizes the data collected on when manual
tests were run. Only four of the teams recorded manual tests
(3, 4, 5 and 7). The overall testing strategy in terms of code
class coverage for each of the teams is summarized in Fig. 3.
This shows that only teams 4 and 7 mixed manual and
automated tests with team 7 using their own custom test
harness and Abbot. Teams 3 and 5 only used manual tests
(although they had automated tests, these had insignificant
low coverage). Teams 1, 2, 6 and 8 only ran automated tests
and team 9 ran both automated tests and Abbot tests.

Fig. 4 shows the time that the teams reported for testing.
This mostly correlates with the amount of testing shown in
Figs. 1 and 2, with the exception of the manual testing for
team 6, where the team did not record any documented
manual tests.

We pre-tested all the developers to establish their basic
level of ability before the start of the project. Table IV shows
the mean pre-test scores for each team, each out of 100. A
previous result on a larger data set [16] showed that these
tests could account for around 27% of the variance in the
mark for external quality as awarded by the client based. For
this set of data there does not appear to be any direct
relationship between the pre-test score and external quality.
Thus ability does not appear to be strongly related to
performance for these teams.

Table V shows the responses from the Shodan
questionnaire. The data clearly shows that the teams all
interpreted and applied the XP practices differently. For
example for pair programming team 1 scored 8/10 and teams
3, 5 and 7 scored 3/10. We consider the impact of this effect
in the discussion.

Figure 1. Frequency of automated testing.

Figure 2. Frequency of formal manual testing.

0

1

2

3

4

5

6

7

8

4 5 6 7 9 10 11 6 4 5 6 6 7 8 9 10 5 7 5 6 7 9 11 5 6 5 6 5

1 2 3 4 5 6 7 8 9

Te
st

 r
u

n
s

passed

failed

didn't run

Week:

Team:

0

2

4

6

8

10

12

6 7 11 4 5 6 7 11 4 5 6 9 12 4 5 6 7 8 9 10 11 12

3 4 5 7

Te
st

 r
u

n
s

passed

failed

not run

Week:

Team:

Figure 3. Class coverage at the end of the project.

Figure 4. Time in hours spent testing.

Lastly, the data collected from the developer surveys was
summarized along with comments received from the client
(Table VI). For easy reference each column is labeled by a
letter and each row by the team number. Empty cells indicate
that either the team or client respectively did not comment on
that subject. In some cases the client or team was vague in
their descriptions of the problems encountered and this is
reflected in evidence presented in Table VI. A brief analysis
of the table indicates that the teams were highly variable in
their approaches. In the discussion that follows we use the
descriptions in Table VI to explore the interpretation of the
other data.

VI. DISCUSSION

A. Overview

Initial investigations into the quantitative data presented
Figs. 1-4 and Tables 3-5 found no significant correlations
between external quality and the various measurements.
Furthermore the qualitative data in Table VI also gives no
clear indication as to why certain teams produced the best
systems. Therefore a more detailed analysis was required to
compare the teams.

In terms of success, the assessment of the teams’
products by the client was conducted using the external
quality measurement (Table III) and comments (Table V).
The clients’ comments highlighted two things that varied
between the teams: the completeness of the functionality
included and the robustness of the system developed (Table
VI: C and D).

B. Factors that Led to Success and Failure

Completeness seems to have been a particular issue for
three of the teams. In two cases there were instances of
members not being fully involved (Teams 2 and 9, Table VI:
C) and in team 2 the willingness of one member take on the
majority of the coding and thus being overloaded (Table VI:
D). Team 4 was reported both by the team (Table VI: D) and
the client as being disorganized (Table VI: E). Robustness
was a factor for two of the other teams (Table VI: F): In team
1 this may have been due to the time wasted on automated
tests that never functioned as intended (Table VI: A-C), and
for team 6 the problems with the tests not keeping pace with
the code evolution (Table VI: A). Lastly team 7 was the only
team where the client had serious difficulties understanding
and installing the software (Table VI: F). In the end he was

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5 6 7 8 9

Team

Manual tests Automated tests Custom tests Abbot

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9

Team

Unit Testing

Testing

TABLE IV. PRETEST SCORES FOR EACH TEAM [16]

Team 1 2 3 4 5 6 7 8 9

Pre Test 2 66 64 72 74 65 71 69 58 76

Pre Test 3 67 58 62 77 72 69 53 65 69

TABLE V. SHODAN SCORES FOR EACH TEAM

 Team 1 2 3 4 5 6 7 8 9

A Automated unit tests 4 4 0 2 1 4 2 3 2

B Customer acceptance tests 2 2 0 1 1 3 4 0 3

C Test-first design 5 4 0 2 1 3 0 0 3

D Pair programming 8 6 3 5 3 5 3 7 4

E Refactoring 3 5 2 4 3 5 4 4 2

F Release planning/planning game 4 4 5 3 4 5 2 4 2

G Short releases 5 7 4 1 5 3 3 3 5

H Stand-up meeting 1 6 0 8 3 6 0 1 2

I Continuous integration 7 5 2 6 4 6 5 9 4

J Coding standards 9 6 7 8 4 6 8 9 4

K Collective code ownership 7 6 5 8 6 9 6 9 5

L Sustainable pace 7 6 6 5 8 7 7 5 7

M Simple design 6 6 5 6 6 7 8 6 7

forced to mark their system based on a demonstration that
the team gave him, with little time for him to explore it by
himself. In summary most of the non-winning teams failed in
a single area, most likely as an oversight.

This leaves us with the winning teams. Teams 3 and 5
produced extensive manual tests in the second half of the
project (Fig. 2), although team 5 left the writing of most until
the last week of development (Fig. 3). The comments from

the members of team 5 suggest that they did ad-hoc testing
prior to this as the whole team highlighted their lack of
documented tests (Table VI: B). Team 8 took a different
approach and, based on their comments (Table VI: A), were
more inclined to deliver functionality. By inspecting team
8’s code we found that they developed it in a highly iterative
way. When we inspected team 8's directory and we
discovered that there were working areas for each of the

TABLE VI. TABLE VI: QUALITATIVE OVERVIEW OF THE TEAMS

 A B C D E F

Team Automated testing Manual testing Team involvement

in testing

Team

Communication

Client impression Client assessment

1

Errors in the test script
were difficult to

resolve: “Our major

failure was [the lack
of] a runable test

script”.

After the first two
weeks they abandoned

the automated methods

as they felt they were
falling behind.

Everyone, around
60 hours total.

Frequent contact
using a variety of

online tools. Frequent

meetings and pair
programming.

Slow to start but then
worked well and creative.

Functionally
comprehensive

product but some

parts of the system
failed.

2

The tester “found

testing first with PHP
time consuming and

challenging”.

Mostly ad-hoc as

the code was
written.

One member was did

most of the coding
and testing.

One member often did not

turn up for meetings. They
relied on MSN for

communication.

Not very innovative. Brief documentation, some

missing functionality,
robust.

3

Hard to write as they

modified an open
source product. This

interfered with the

tests.

Detailed manual

tests in the second
half of the project.

Several members. Used multiple lines of

communication and met
frequently.

 Documentation was clear,

but was complex to use.
Mostly functionally

complete and robust.

4

“The selenium testing

took a long time to

complete
successfully”.

 One member who

was also responsible

for the website.

Ad-hoc meetings where

"jobs were never really

assigned so we didn't know
who was doing what"

Laid back and

lacked urgency. Had

some good ideas.

Not all functionality was

delivered and the

documentation was not
detailed.

5

Did not use PHP

classes so could not
use PHPUnit.

"We never really

did enough
documented

testing".

Members worked on

tests for their own
code.

Worked together in the lab

but did not pair program or
integrate their code

frequently.

Started slowly. Some features did not work

as expected, but more
robust than team 1.

Provided features were

comprehensive and
creative.

6

Greatest number of

tests. But these were

reported to be difficult
to maintain as the

project evolved.

Manual tests were

used but

undocumented.

One member who

spent most of his time

testing.

Shared their code regularly,

but did not integrate it.

 Documentation was

comprehensive but not

detailed enough. Was not
functionally complete and

some functions reported

errors.

7

Did not understand

how to run or write

unit tests. Used a
custom test harness.

Used both manual

and Abbot tests.

 Communicated mainly by

email with few meetings.

 Did not install and run

properly and documentation

was too complex.

8

11 unit tests: spending

time on testing "could

jeopardize the
completion of the

project."

Very little testing

recorded.

Two members. The team frequently

integrated their code (up to

3 times a week).
Communicated frequently

to set tasks and check

progress.

 Clear documentation, with

some unexpected but not

erroneous results.

9

JUnit was used. Focused on ad-hoc

testing, Abbot

found to be
unreliable.

Two members who

did most of the work.

Described their team as

having poor team-working

skills.

 Documentation was brief

but clear. Was not easy to

use, and some options were
hidden or disabled. Some

features difficult to

understand.

members as well as a combined solution. The combined
solution was copied up to three times a week as the
individual elements were integrated; this showed the regular
integration of the system. The ad-hoc testing associated with
the iterative development appears to have ensured that they
kept the project working. The client’s comment about
unexpected but not erroneous results adds further weight to
this argument (Table VI: F), as ad-hoc testing may be less
likely to identify such problems if everything seems to be
working fine. Given that both iteration and testing could be
important factors we can reassess the remaining teams
concentrating on these factors.

C. The Effect of the XP Process

The Shodan questionnaire (Table V) measured
compliance to XP practices. Team 8 ranked highest on
several questions (coding standards, shared code ownership,
continuous integration and pair programming). This fits well
with the other observations of team 8's method; however
other teams (notably team 1) have similar patterns of process
on the same questions but did not do so well overall.
Furthermore it is surprising, given the iterative nature of the
programming style that team 8 adopted, that they should
rank so low on the short releases measurement. This
indicates that their success was not dependent on client
feedback (as they did not give releases to the client) but on
internal feedback mechanisms within the team. Lastly the
other two winning teams (3 and 5) did not rank highly on
these questions with the exception of team 3 which was
ranked fourth on the short releases question only.

It is important to note that in the responses to each of the
Shodan questions only one of the winning teams (3, 5 or 8)
was present in the top four, indeed in several cases a winning
team was also at the bottom of the scale. Thus the practices
that were related to the questions were not universally
important to success. We also investigated if it was the
combination of factors that was important. As previously
noted, despite ranking highly on similar questions, teams 8
and 1 had different outcomes. The main failure of team 1 as
assessed by the client was that several parts of the system did
not work (Table VI: F). The Shodan survey showed two
differences between these teams: team 1 was ranked fourth
for collective code ownership whereas 8 was ranked top
(Table V) and team 1 attempted more unit testing but with
similar coverage to team 8 (Table V, Fig. 3).

Therefore we can speculate that a team using a highly
iterative process, sharing its code and integrating this in
regular builds is more likely to achieve greater external
quality than one which does not share its code as frequently
and relies on automated testing with low coverage.

D. Success Without Documented Testing

The conditions for success, as achieved by team 8, can be
further refined by examining the problems the other teams
encountered. For example, in team 2 only one member
focused on writing the code for the system (Table VI: C)
making activities like pair programming less advantageous
(as there is no need to disseminate information and the pair
observer may have had very little interest in the code being

written) (Table V). In team 6 one person focused on testing
(Table VI: C) and as a result found it hard to keep pace with
rapidly evolving code (Table VI: A) as it was refactored
(Table V – ranked top for refactoring).

Thus we can broaden the definition of the advantageous
method used by team 8 to include the observation that
regular integration (by inspecting their code) that was led by
two members (Table VI: C) led to ad-hoc code review and
testing (Table VI: D). This was more effective than the other
methods because of its regularity. We might then speculate
that this led to team 8 being acutely aware of the tests
required without the documentation process which teams 3
and 5 used. Furthermore as teams 3 and 5 did not benefit
from the iterative approach we might further speculate that
these teams required the documented testing method to
ensure quality.

E. Success Using Documented Testing

In terms of manual tests, teams 3 and 5 achieved class
coverage of 40% spending 20-30 hours testing mostly in the
second half of the development period (Figs. 1, 2, 3 and 4).
Two other teams recorded notable amounts of documented
manual testing (4 and 7) and team 6 spent around 30 hours
manually testing without documented records (Figs. 2 and
4). Team 4 regularly ran their tests from early on in their
project (Figs. 1 and 2), but the tests only had low class
coverage (Fig. 3), but despite this the client did not address
the issue of robustness of the code, commenting instead on
missing features and lack of urgency towards the end (Table
VI: E and F). Team 7 achieved 30% class coverage for their
tests (Fig. 3) but their product was too complex for the client
to understand (Table VI: F). Team 6 did not leave evidence
of manual tests but recorded time doing them so these must
have been ad-hoc (Fig. 4). As with the unit testing for team 6
it seems these tests did not keep up with the final evolution
of the code (Table VI: A), allowing the faults into the final
version (Table VI: F).

Thus to be successful, the tests must be accurate and up
to date. For two of these teams, this seemed to be an issue
but for the other team, although their code was robust, it was
not complete. Thus we speculate that for testing to be
effective the tests should be reviewed to ensure they are
current and that this cannot be carried out by a single
member effectively.

VII. CONCLUSIONS

A. Summary

The most striking thing about the cases presented is the
differences between the teams. All the teams were following
much the same development technique with some variability
and the evidence supports this. The variability in the process
was noticeable in the testing method used (Figs. 1 to 4) and
the way the team approached the development task with
regards to the practices of XP (Figs. 7 and 8). Analysis of the
cases suggested that none of the practices of XP, or testing
alone, or XP and testing in conjunction could by themselves
guarantee a high level of external quality.

The winning teams all carried out testing that could
identify errors, some documented and some ad-hoc. To
achieve this it was apparent that a review process was
required to ensure tests developed kept pace with evolution
in the code. This could be achieved by documented tests, or
ad-hoc tests that the team was aware of, due to their regular
repetition. To achieve an effective review process more than
one team member was needed to be involved in testing, so
that the changes to the code could be identified.

B. Testing Culture

Teams 3 and 5 knew what to test because they had a

document test plan; team 8 knew what to test because they

had a culture of repeating a familiar set of ad-hoc tests. In

both cases a 'testing culture' was present and the quality that

client required was delivered. The 'testing culture' for the

winning teams has the characteristics listed in Fig. 5.

However for teams to win, well tested code was not

enough. They also needed to completely satisfy the
requirements of the client. The teams which did not wholly
satisfy the requirements were disorganized in some way
often due to members not fully taking part in the
development process.

C. Recommendations

In summary, for teams to achieve the highest levels of
external quality, as judged by a client, the team needs to have
a testing culture and be organized enough to deliver the
client’s requirements. Both test-first and a highly iterative
test last method met the requirements for a testing culture
which explains the previous positive results for these
methods in the literature. A less documented or less iterative
test last method is perhaps less likely to meet the
requirements for a strong testing culture, leading to the
negative results found in comparison.

 Based on the analysis of data collected, it is
recommended that a testing culture is fostered in
development teams, particularly if their members are
novices. What counts is not so much the chosen testing
method, but proactive involvement in testing, either through
frequent ad-hoc testing or documented testing that increases
towards the end of the project. In both cases the successfully
collaborating team should contain at least two testers who
are also involved with at least two testers who are also
involved in the programming task.

D. Validity

We should consider the weight of the evidence in the
light of the theoretical and literal replications of cases
presented [18]. Theoretical replications represent those
where the context or method is significantly different, thus
we expect theoretical replications to have different
outcomes. Literal replications are where the context and
method are similar, and similar results are expected.

In terms of theoretical replication no test-first cases were
available although a variety of TF-cases in the TL-4 group
were available. Unlike case studies found in the literature
unit, manual and ad-hoc testing techniques were also
investigated. Given this partitioning we had teams in each of
the three replications thus we had some literal replication,
although some teams fell into multiple partitions. However,
the instruction given to the teams to help them use unit tests
was clearly not sufficient, given the number of tests that
failed on technical grounds. Thus the relationship between
the cases studied and unit testing is not theoretically
replicated.

Given the results of the analysis, the theoretical
replications as partitioned by testing method was not enough
to explain the differences and some consideration to testing
culture must be given instead. This suggests that further
theoretical replications should be planned to investigate the
effects of strong testing culture and unit testing, since there
were no cases studied thus far with both.

E. Future Work

The emergence of a testing culture with novice
developers during highly iterative development and regular
integration is an alluring concept. In general, software
developers are not keen on testing. Extreme programming
and test-first have gone some way to address this, but writing
unit tests, even after the code exists, is still challenging, as
can be seen from the case studies. If an iterative method with
the right features can lead to the same outcome then this is
desirable if the effect can be replicated and controlled.

Therefore we recommend that future research looks more
closely at the effect of iteration and how developers cope
with testing during integration. Ideally a future research
project should observe, in detail, a development team that
plans to use an iterative approach with frequent integration
and ad-hoc testing. Given the difficulty of analyzing the
quantitative data in a meaningful way we recommend the use
of ethnography to discover the significant features of this
process which are likely to be in the detail of the
observations.

ACKNOWLEDGMENT

We thank the reviewers for their invaluable help in
improving the presentation of this paper.

EPSRC Grant awarded: £500K over three years (March
2006-2009) to carry out research in the Observatory.
EP/D031516 - the Sheffield Software Engineering
Observatory.

 A balance between testing and programming.

o Where testers are part of the programming team.

 More than one person responsible for testing.

 Tests kept current.

 Either:

o Documented testing, increasing towards the end of the

project, or

o Ad-hoc throughout the project combined with regular

integration of code.

Figure 5. The characteristics of a testing culture.

REFERENCES

[1] K. Beck, and C. Andres, Extreme Programming Explained: Embrace
Change, 2004.

[2] B. Vodde, and L. Koskela, “Learning Test-Driven Development by
Counting Lines,” Software, IEEE, vol. 24, no. 3, 2007, pp. 74-79.

[3] L. Huang, “Analysis and Quantification of Test-first programming,”
master's thesis, Dept. Computer Science, University of Sheffield,
2007.

[4] R. Kaufmann, and D. Janzen, “Implications of test-driven
development: a pilot study,” Proc. 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2003), New York, ACM, 2003, pp. 298-
299.

[5] M. Müller, and O. Hagner, “Experiment about test-first
programming,” Software, IEE Proceedings, vol. 149, no. 5, 2002, pp.
131-136.

[6] B. George, and L. Williams, “A structured experiment of test-driven
development,” Information and Software Technology, vol. 46, no. 5,
2004, pp. 337-342.

[7] D. Janzen, “An Empirical Evaluation of the Impact of Test-Driven
Development on Software Quality,” doctoral thesis, University of
Kansas, 2006.

[8] A. Gupta, and P. Jalote, “An Experimental Evaluation of the
Effectiveness and Efficiency of the Test Driven Development,” Proc.
First International Symposium on Emprical Software Engineering and
Measurement, IEEE, 2007, pp. 285-294.

[9] E. M. Maximilien, and L. Williams, “Assessing test-driven
development at IBM,” Proc. 25th International Conference on
Software Engineering, 2003, pp. 564-569.

[10] M. Pancur, M. Ciglaric, M. Trampus, and T. Vidmar, “Towards
empirical evaluation of test-driven development in a university
environment,” Proc. EUROCON 2003. Computer as a Tool. The
IEEE Region 8, IEEE, 2003, pp. 83-86, vol. 2.

[11] M. Siniaalto, and P. Abrahamsson, “Does test-driven development
improve program code? Alarming results from a comparative case
study,” Proc. Second IFIP TC 2 Central and East European
Conference on Software Engineering Techniques, (CEE-SET 2007),
Poznan, Poland, Springer-Verlag, 2007, pp. 143-156.

[12] H. Erdogmus, M. Morisio, and M. Torchiano, “On the effectiveness
of the test-first approach to programming,” Software Engineering,
IEEE Transactions on, vol. 31, no. 3, 2005, pp. 226-237.

[13] A. Geras, M. Smith, and J. Miller, “A prototype empirical evaluation
of test driven development,” Proc. 10th International Symposium on
Software Metrics, 2004, pp. 405-416.

[14] L. Crispin, “Driving Software Quality: How Test-Driven
Development Impacts Software Quality,” Software, IEEE, vol. 23,
no. 6, 2006, pp. 70-71.

[15] D. Janzen, and H. Saiedian, “Test-driven development concepts,
taxonomy, and future direction,” Computer, vol. 38, no. 9, 2005, pp.
43-50.

[16] C. D. Thomson, and M. Holcombe, The Sheffield Software
Engineering Observatory Archive: Six Years of Empirical Data
Collected from 74 Complete Projects, tech. report CS-09-01, Dept.
Computer Science, Univ. of Sheffield, 2009.

[17] B. Ostle, and L. C. Malone, Statistics in Research: Basic Concepts
and Techniques for Research Workers, Iowa State Press, 1987.

[18] R. Yin, Case study research: Design and methods, Sage, 2008.

[19] M. Holcombe, Running an Agile Software Development Project,
Wiley, 2008.

[20] C. Thomson, and M. Holcombe, Software Hut Lab Pack, tech. report
CS-09-03, Dept. Computer Science, University of Sheffield, 2009.

[21] L. Williams, L. Layman, and W. Krebs, Extreme Programming
Evaluation Framework for Object-Oriented Languages--Version 1.4,
tech. report TR-2004-18, Department of Computer Science, North
Carolina State University, 2004.

[22] J. Karn, C. D. Thomson, S. J. Wood and G. Michaelides, The Shodan
Adherence Survey for Extreme Programming: Sheffield Revision 1,
tech. report CS-09-05, Dept. Computer Science, University of
Sheffield, 2009.

[23] T. Wall, “Abbot framework for automated testing of Java GUI
components and programs,” 2002-2008;
http://abbot.sourceforge.net/doc/overview.shtml.

[24] F. J. Macias, “Empirical assessment of extreme programming,”
doctoral thesis, Dept. Computer Science, University of Sheffield,
2005.

[25] N. Fenton, and S. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, PWS Publishing Co, Boston, 1997.

