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Abstract

Where no independent specification is available, 
object-oriented unit testing is limited to exercising all 
interleaved method paths, seeking unexpected failures.  
A recent trend in unit testing, that interleaves dynamic 
analysis between each test cycle, has brought useful 
reductions in test-set sizes by pruning redundant prefix 
paths.  This paper describes a dynamic approach to 
analyzing the algebraic structure of test objects, such 
that prefix paths ending in observer or transformer 
operations yielding unchanged, or derived states may 
be detected and pruned on-the-fly during testing.  The 
fewer retained test cases are so close to the ideal 
algebraic specification cases that a tester can afford to 
confirm or reject these cases interactively, which are 
then used as a test oracle to predict many further test 
outcomes during automated testing.  The algebra-
inspired algorithms are incorporated in the latest 
version of the JWalk lazy systematic unit testing tool 
suite, which discovers key test cases, while pruning 
many thousands of redundant test cases.

1. Overview

Systematic software unit testing methods fall into 
two categories.  Code-based testing methods seek to 
exercise all paths through the software, identifying 
unexpected unit failures.  Specification-based testing 
methods seek to validate the software unit completely 
against a formal specification, which serves as a test 
oracle.  Recently, these approaches have started to 
converge, particularly in the lazy systematic unit testing
method [1, 2], which combines semi-automatic 
inference of the test unit’s specification with systematic 
conformance testing from the specification.  The power 
of this method depends critically on an automated 
dynamic analysis to identify the most important test 
cases, whose outcomes must be confirmed by the tester.  

These key test cases then constitute the test oracle, used 
as a benchmark in fully automated testing.

This paper reports on a series of improvements to 
the dynamic analysis algorithms used by the JWalk lazy 
systematic unit testing tool suite [3].  These algorithms 
are deployed between each test cycle, using feedback 
from the previous test cycle to inform the test engine 
about which paths to extend in the following cycle.  
Starting from a baseline in which no test paths are 
pruned, rules of increasing sophistication are deployed 
to eliminate redundant test sequences.  These strategies 
include eliminating all prefix paths that:

 terminate in exceptions;
 terminate in observations;
 terminate in re-entrant states;

and require a fine-grained ability to judge the algebraic 
properties of methods on a call-by-call basis, rather 
than simply partition all methods into constructor, 
transformer or observer categories.  They also depend 
on the ability to judge object state equivalence in a 
flexible way, especially where their defining classes do 
not provide any consistent measure of equality.

In the rest of this paper, section 2 describes the 
increasing use of dynamic analysis during testing, to 
profit from feedback about the testing process.  Section 
3 describes the JWalk tool suite [3], highlighting the 
use of feedback-based code exploration to learn the 
algebraic specification of a test class, with hints from 
the programmer.  Section 4 describes the algorithms 
deployed to detect the algebraic structure of unseen test 
classes in more detail.  Section 5 demonstrates the 
effectiveness of algebra-motivated pruning rules for 
test-set reduction, comparing three different pruning 
rules.  Section 6 considers how the retained test cases 
may constitute the “ideal” test set, to be confirmed by 
the tester, and reused as an oracle to predict many 
thousands of test outcomes in fully automated testing.  
The paper concludes with some observations on the 
properties of the algebraic analysis technique.



2. Dynamic analysis in unit testing

In systematic object-oriented unit testing, the focus 
is on exercising all interleaved method combinations.  
The testing assumption is that failures result mainly 
from unexpected states, caused by invoking methods in 
orders that ignore the expected protocols for the class 
in question.  Since this is a laborious task to perform 
manually, automated approaches have been preferred.  
One of the earliest tools that generated all interleaved 
method paths was JCrasher [4].  This benefited from 
the Java programming language’s facility for meta-
analysis via the reflection API, a mechanism whereby 
compiled classes may be interrogated at run time to 
discover their public method interface.  This was used 
to generate a breadth-first exploration of the test class’s 
method invocation tree, using random techniques to 
populate each method-call with actual argument values.  
The focus of JCrasher was on forcing the test class to 
raise exceptions, expecting to identify code faults.  
However, the failures discovered were as much due to 
violated method preconditions, as they were to faulty or
non-robust code.  Later tools DSD-Crasher [5] and Jov
[6] tended to confirm this finding.  By contrast, JWalk
does not assume that exceptions are faults; the tester 
has the chance to accept or reject such outcomes [1].

Other approaches concentrated on reducing the size 
of the breadth-first test-set.  The Rostra tool [7] filtered 
the brute-force “whole method sequences” to yield 
“modifying method sequences”, more selective paths 
consisting solely of state-modifying methods.  These 
could be identified approximately from type signatures 
(typically, observer methods returned a result and state 
modifying methods returned void).  In principle, this 
yielded smaller test sets that covered the state space of 
the test object, by eliminating sequences with observers
in their prefix.  To be more accurate in judging the 
equivalence of object states, Rostra required the user to 
supply explicit state-equality testing predicates.  By 
contrast, JWalk does not require intrusive predicates or 
any kind of code instrumentation [1].

Another approach merged test paths by identifying 
common concrete states.  The Java Pathfinder tool [8, 
9] operated at a lower level, performing a partial order 
reduction analysis on sets of execution traces obtained 
directly from the Java bytecode interpreter.  The testing 
strategy was to generate all interleaved method 
sequences, then identify equivalence-classes into which 
test sequences fell, so that the tester (or testing tool) 
could preserve single exemplars from each equivalence 
class for future testing.  This generate-and-filter 
approach was expensive.  By contrast, the first tools to 
deploy dynamic analysis and test-path pruning during

the actual test-generation process were JWalk [1] and 
Randoop [10], which interleaved test generation and 
execution cycles.  The advantage of this was that 
redundant prefix paths could be detected earlier, and 
pruned from the active test set before these were 
extended in the next cycle.  Prefix sequences ending in 
an exception were pruned, based on the intuition that 
any path extending the prefix would always fail at 
exactly the same point, so not execute to completion.  
For example, the following pair of test sequences for a 
bounded Stack always fail at the same call to pop(),
raising an EmptyStackException, making the longer test 
sequence redundant:

new().pop()
new().pop().push(Object#1)

JWalk also pruned prefix paths ending in an 
observer-method, on the basis that this would not 
modify the state of the test object.  For example, JWalk
treated the following pair of sequences as equivalent, 
by determining empirically that neither size() nor 
isEmpty() modified the Stack object in question:

new().push(Object#1)
new().size().isEmpty().push(Object#1)

JWalk used Java’s reflection API to compare the 
shallow states of the test-object before and after each 
method execution, to detect side-effects.  This was a 
more accurate way of determining observer-methods 
than a static analysis of signatures and worked whether 
or not the test class defined an equals() method.  

The ability to map longer test sequences onto 
shorter sequences was used in JWalk to predict test 
outcomes dynamically for the longer sequences from 
known outcomes for the shorter sequences [1].  This 
was the first time that test prediction had been 
deployed during testing.  At the time, it was foreseen 
that a more thorough algebraic classification of all 
methods (see below) might yield an even greater test 
set reduction and much greater predictive power.  For 
example, if it could be determined that pop() were a 
transformer-method, undoing the effect of an earlier 
push(), returning the Stack object to a prior visited 
state, then the following sequences could be predicted 
to yield identical results:

new().push(Object#1).size()
new().push(Object#1).push(Object#2).pop().size()

Overall, if prefixes containing both observer and 
transformer methods could be mapped onto shorter 
prefixes, many more cyclic paths could be pruned 
during test generation; and outcomes for the longer 
sequences could also be predicted with certainty.



An algebraic data type is a structure consisting of 
operation signatures, typed in basic sorts (sets), whose 
semantics are defined using axioms (equations).  The 
axioms are constructed after identifying all operations 
as belonging to one of the categories:  constructor, 
transformer or observer.  Constructors are primitive, 
returning all unique instances of the given data type.  
Transformers and observers are derived, defined by the 
axioms in terms of the constructors.  Below, the term 
primitive is used instead of constructor, since the latter 
has a restricted sense in object-oriented programming:  
the primitives of a Stack include the push method as 
well as the new Stack constructor.

Our approach was partly inspired by the work of 
Henkel and Diwan, who induced the algebraic structure 
of Java classes semi-automatically by probing the 
behavior of test instances [11].  They derived an 
abstract data type signature from a concrete Java class 
through reflection, then generated and evaluated many 
ground terms, which were grouped into equivalence 
classes.  Thereafter, an important generalization step 
induced quantified axioms, which succinctly captured 
many ground term equations.  They also embedded this 

approach in a tool to help programmers write and 
debug algebraic specifications [12].  Our interest was 
mainly in the technique used to determine when objects 
had re-entered previously visited concrete states.  This 
involved converting objects into their serialized format 
(a binary encoding used to transfer objects to persistent 
storage or across distributed systems) and then hashing 
to yield a single code representing the object’s state.  
We found this approach unsuitable, for two reasons.  
Firstly, not every Java class declares that it supports 
serialization; and secondly, serialization offers no 
control over the depth to which object states are 
compared.  Our alternative solution is presented in 
section 4, below.

3. The JWalk family of testing tools

The current work relates to the latest version of the 
JWalk tool suite, which comprises a number of tools, 
including JWalkTester, a GUI-based testing tool in the 
spirit of JUnit [13], JWalkUtility, a command-line 
version that prints all results to standard output, and 
JWalkEditor [2], an integrated Java editor, compiler 

Figure 1:  JWalkTester performing an algebraic exploration of a Stack class to depth 3



and testing tool, with Java-sensitive syntax highlighting 
in the style of jEdit [14].  All of these incorporate the 
common JWalker test engine, which is also offered as a 
component toolkit API for integration with other 
editors or testing tools.  For this paper, JWalkTester
was used to generate all the examples and statistics 
below (see figure 1 for an example).

All of the JWalk tools were conceived with a vision 
to support agile software development methods, such 
as XP [15], in which test-driven development is the 
cornerstone.  The goal was to bring together the rigor 
of formal specification-based testing methods and the 
flexibility of constant code refactoring.  Earlier work 
from our research group had highlighted how even 
simple finite-state specifications could greatly improve 
the selection of tests written for XP [16]; and also how 
re-using saved tests in regression testing was not as 
secure as previously assumed [17, 18].  Nonetheless, 
XP and similar methods remained wary of lightweight 
specifications, requiring a different approach.

The lazy systematic unit testing method was 
devised, based on the two notions of lazy specification, 
the ability to infer the evolving specification of a unit 
on-the-fly by dynamic analysis, and systematic testing, 
the ability to explore and test the unit’s state space 
exhaustively to bounded depths [1].  Lazy specification
refers to a delayed approach to software specification, 
in which the specification evolves rapidly in parallel 
with frequently modified code [2].  The specification is 
inferred by a semi-automatic analysis of a prototype 
software unit, with some user-interaction.  Systematic 
testing refers to a complete, conformance testing 
approach, in which the tested unit is shown to conform 
exhaustively to a specification, up to the testing 
assumptions, so providing guarantees of correctness 
once testing is over [18].

The featured JWalkTester tool supports three test 
strategies, which are protocol-, algebra-, and state-
based.  In the protocol strategy, all interleaved methods 
are executed on test instances in a breadth-first manner.  
In the algebraic strategy, all algebraic constructions are 
explored, driving test instances into all their distinct 
concrete states.  In the state-based strategy, the high-
level (or abstract) states of the test class are discovered 
by exploration, and test instances are driven through all 
their high-level states and transitions.  Dynamic 
analysis is critical in detecting actual state changes 
empirically, rather than relying on a static analysis of 
variable assignments, or method signatures, since some 
updates are conditional on particular argument values.  
The algebraic exploration technique uses only primitive
algebraic constructions to extend test sequences.  This 
also reduces the search space when seeking high-level 

states, found by evaluating the reached concrete states 
using the natural state predicates of the test class.  In 
this way, the dynamic analysis techniques reported here 
optimize both low- and high-level state exploration.

The JWalkTester tool may be executed in three 
modalities, to inspect, explore and validate the test 
class.  In the inspect-modality, it extracts the public 
constructor and method interface of the test class, 
including public methods inherited from superclasses.  
It may also probe the test class by dynamic analysis, to 
discover its algebraic structure (a new feature, from 
JWalk v1.0), or its high-level state-space [1].  In the 
explore-modality, the tool constructs and executes test 
sequences according to the chosen test strategy and 
displays the results, sorted by test path length, in a 
tabbed output pane for the tester to examine.  Figure 1 
illustrates exploring all algebraic constructions of a 
Stack class, to depth 3.  In the validate-modality, the 
tool also interacts in a limited way with the tester, who 
must confirm or reject certain key test outcomes, which 
are compiled in an oracle and used to predict further 
test outcomes.  Eventually, over 90% of testing is fully 
automated using saved, or predicted outcomes [1, 2].

Dynamic analysis has a role to play in determining 
when a particular test outcome should be identified as 
significant and presented to the tester for confirmation; 
and also when that same test result could be used to 
predict further test outcomes.  The whole benefit of 
lazy systematic unit testing is to minimize the user 
interaction required to create a complete test oracle.  
The goal of dynamic analysis is therefore to identify, in 
some sense, the “ideal” test cases for presentation to 
the tester.  In the context of this paper, this is 
interpreted as all observations on the leaves of the tree 
of all novel primitive algebraic constructions.

4. Dynamic analysis of algebraic structure

Previously, the old version 0.8 of the JWalk toolset 
had a rudimentary ability to classify observer methods 
(see section 2) and so prune redundant paths whose 
prefix contained observers.  The current work improves
on this in two ways:  by pruning redundant paths 
containing both observers and transformers in the 
prefix; and by applying the dynamic state analysis and 
test prediction rules per method invocation, which 
allows further predictions to be made when states are 
not modified by methods that might, at other times and 
for other arguments, update state.  

The old algorithm compared shallow state vectors 
taken from the test object, before and after each 
method invocation, to identify and classify observer-
methods.   In  the  improved  algorithm,  we  wanted  to



compare the concrete state after each method 
invocation with every earlier state in the same test 
sequence, to identify re-entrant methods that returned 
the test object to some prior visited state.  For this, a 
more compact encoding of state was desirable.  

When discussing the algebraic nature of object 
states, the semantic issue of equality arises.  Comparing 
two objects might make use of an equals() method 
naturally provided by their class; but then, some classes 
might not define such a method (in Java, they would 
inherit Object’s method by default, which compares 
object references for identity).  Supporting mixed 
notions of reference, shallow and deep equality might 
be considered inconsistent.  Furthermore, the behavior 
of any user-defined equals() method might be faulty, or 
might conflict with the proper algebraic notion of 
equality [19], which is defined as all observations on 
the data type yielding (recursively) equivalent results.  
For this reason, we wanted to find a more consistent 
and repeatable means of determining state equality, 
which could nonetheless be controlled by the tester.

The approach we eventually adopted replaced the 
old strategy of extracting object state vectors, which 

might consume memory resources, by the computation 
of a single hash code to represent the whole state of the 
object.  This is similar to Henkel and Diwan [11], 
except that the hash value is not based on Java’s 
serialized format, which is not always available.  An 
internal release 0.9 of the JWalk toolset [20] computed 
hash codes from the persistent oracle value string 
representation [1] of each object, which the JWalk tools
compute for all types.  However, the processing time 
and storage required to generate the oracle strings 
repeatedly were unacceptably high.  Also, the benefits 
we were seeking did not actually require persistent 
states to be compared across different test runs.  So it 
was feasible to compute hash codes directly from 
objects and values in memory.

Primitive types, such as int, and “boxed” Java types, 
such as Integer, and types with a natural hash code 
based on their value, such as String, use their natural 
hashCode() method.  The hash code for any other kind 
of object is obtained by combining the hash codes for 
its fields, where the combined code reflects both the 
order and value of each field (using a prime multiplier 
for the position).  Fields are extracted by reflection, 

Figure 2:  JWalkTester analyzing the algebraic properties of a ReservableBook class



bypassing the usual visibility restrictions.  Where a 
field is an object reference, a choice exists to apply the 
hashing algorithm recursively, or simply return a code 
based on the memory address.  This is controlled by a 
depth parameter supplied by the tester, denoting the 
object tree-depth to which state comparisons should be 
conducted (specifying shallow, or deeper equality).

Given this compact encoding of object state, it was 
relatively easy to incorporate the extra information into 
the core test engine.  This constructs TestSequence
objects, consisting of many TestCase objects, each of 
which exercises a single constructor or method.  The 
state of the target object is encoded immediately after 
executing each TestCase, and cached locally.  Once a 
TestSequence has fully executed, it is possible to query 
the sequence to find if the final state was unchanged, or 
re-entrant (see figure 1, where these indicators are 
appended to certain test outcomes).  This is a fast 
algorithm, which compares the final state code with the 
penultimate one; or with all earlier state codes in the 
sequence.  The chances of accidental hash collisions 
are remote, especially since sequences are short (up to 
low tens of TestCases), and all injected test input 
values are already quasi-unique, thanks to the 
monotonic test input generation strategy [1, 3].

The latest version 1.0 of the JWalk toolset infers the 
algebraic structure of the test class by successive 
conservative approximations, probing the dynamic 
behavior of the class.  Figure 2 shows JWalkTester
discovering automatically the algebraic structure of a 
ReservableBook.  The operations of the class are 
classified into the categories: {primitive, transformer, 
observer}.  All object constructors are assumed to be 
primitive, unless it can be proven that they are derived, 
creating the identical object from fewer supplied initial 
parameters, in which case they are reclassified as 
transformers.  All methods are initially assumed to be 
observers, until they are found to modify state, in 
which case they are first classified as primitive; but if 
later they are found to drive the target object into 
previously visited states, their category is revised to 
transformer.

5. The role of algebra in test pruning

Algebra-inspired analysis adds to the growing set of 
sophisticated measures that allow a testing tool, with 
interleaved test generation, execution and analysis 
phases, to prune redundant test sequences.  The size of 
the baseline test set (constructors and all interleaved 
methods) may be calculated algorithmically from the 
size of the test class’s public API.  A class with c
constructors and m methods has cmk test sequences of 

length k, therefore  cmk sequences altogether, for any 
bounded depth 0  k  n.  For example, a bounded 
Stack with just one public constructor and the six 
methods {push, pop, top, size, isEmpty, isFull} has 1 + 
6 + 36 + 216 +… sequences.  For bounded depth n = 3, 
we would expect a maximum of 259 sequences.

The first pruning rule drops prefix paths ending in 
raised exceptions.  The effect of this can be observed 
by running any JWalk tool in protocol exploration
mode.  Test cycle 0 creates the Stack instance.  Out of 
the six sequences exercised in test cycle 1, two raise 
exceptions (pop() and top() called on an empty Stack).  
This causes 12 paths to be pruned in test cycle 2 (all 6 
extensions of each failed path).  The remaining 4 paths 
from test cycle 1 are extended to yield 24 paths in test 
cycle 2.  Of these, another 6 paths terminate with 
exceptions (mostly consisting of an observer, followed 
by pop() or top()), causing 108 sequences to be pruned 
from test cycle 3.  Cumulatively, 120 test sequences are 
pruned during 3 test cycles, leaving 139 test sequences 
that were actually constructed and executed.  This is a 
useful saving, compared to the 259 sequences that 
could have been attempted (see table 1).

The second pruning rule drops prefix paths ending 
in algebraic observers, which do not modify the state of 
the target object.  In this case, for the same Stack, 30 
paths were pruned in test cycle 2 and a further 204 
paths in test cycle 3.  Cumulatively, 234 test sequences 
were pruned over 3 cycles, leaving only 25 tests that 
were actually constructed and executed.  This compares 
even more favorably with the original 259 sequences!

When the third pruning rule is added to drop prefix 
paths ending in algebraic transformers, which re-visit 
earlier states, a similar picture is seen.  As before, 30 
paths are pruned in test cycle 2, but a further 210 paths 
are pruned in cycle 3 (an increase of 6).  Cumulatively, 
240 test sequences were pruned over 3 cycles, leaving 
only 19 tests that were actually constructed and 
executed.  This is a tiny fraction of the 259 sequences 
that could have been attempted (see table 1).  When 
looking at the retained test sequences, these are almost 
exclusively paths of the form:

new().size()
new().push(Object#1).size()
new().push(Object#1).push(Object#2).size()

that is, paths which force the test object through all 
algebraic constructions, then make all observations (or 
exercise all transformers) at the leaves of the algebraic 
tree.  In terms of state exploration alone, this is close to 
the ideal test set that a programmer might have wished 
to create manually, since it tests all fine-grained 
properties of the class.  Yet, since it was created by 



algorithm, we can be confident that it is complete, up to 
the chosen bounded depth.

Table 1.  Pruning applied to Stack

Stack base exc obs alg
0 1 1 1 1
1 7 7 7 7
2 43 31 13 13
3 259 139 25 19
4 1555 667 43 25
5 9331 3391 79 31

Table 2.  Pruning applied to Wallet

Wallet base exc obs alg
0 1 1 1 1
1 6 6 6 6
2 31 31 11 11
3 156 156 16 16
4 781 781 26 21
5 3906 3906 41 31

To evaluate the power of the new algebraic pruning 
rules under known conditions, a series of experiments 
were conducted using the standard set of test classes 
used to develop the JWalk toolset.  These include a 
Stack (which exhibits obvious state-like behavior; and 
has a well-known abstract data type algebra); a Wallet
(whose behavior depends more on the values supplied 
as method arguments); and a basic LibraryBook and its 
subclass, ReservableBook (both with re-entrant states 
and abstract algebras to discover; these were included 
to verify JWalk’s ability to detect all novel interleaved 
method combinations to test, after extending a class by 
inheritance).  Stress testing was also carried out by 
exercising the standard Java library classes Character
and String (both known to have very large APIs).

Tables 1-4 indicate the cumulative sizes of the 
retained test sets, after pruning rules 1-3 are 
successively applied, for test cycles of increasing 
length.  The numbers of pruned sequences may be 
obtained by subtracting the size of the featured test set 
from the size of the baseline set, in each case.

In the tables, the leftmost column gives the test 
cycle index number (where cycle 0 is construction; 
cycle 1 is method paths of length 1, etc).  The column 
base indicates the size of the baseline test set (all 
interleaved methods).  The column exc gives the test 
set size after pruning rule 1 is applied (drop exception
prefixes).  The column obs likewise gives the test set 
size after pruning rule 2 is also applied (drop observer

prefixes).  The final column alg gives the test set size 
after pruning rule 3 is also applied (drop transformer
prefixes).  This last column reflects the algebraic 
filtering strategy used in the current version 1.0 of the 
JWalk toolset.

The results indicate an impressive ability to rule out 
redundant test sequences by automatic analysis.  For 
test classes whose methods have preconditions relating 
to state, such as Stack, a useful reduction is achieved by
the first pruning rule.  For test classes such as Wallet, 
whose method preconditions are rarely violated, no 
reduction may be seen until the observer-prefix pruning 
rule is applied.  Wallet’s state is affected more by the 
choice of amounts credited and debited than anything 
else, so rarely re-visits earlier states.  On the other 
hand, the LibraryBook cycles through two states in 
response to the issue() and discharge() methods.  Here, 
not only does the complete algebraic filtering strategy 
(dropping exceptional, observer and transformer
prefixes) prune more redundant cases, but the test set 
reaches a stable state of 9 ideal test cases, from test 
cycle 2 onward.

Similarly, the ReservableBook subclass (see figure 2 
for its API) cycles through four states in response to the 
issue(), discharge(), renew() and cancel() methods.  It 
eventually stabilizes on 41 ideal test cases after cycle 4.  
(Note that in cycle 5, protocol exploration exhausted 
the available memory; but the more aggressive pruning 
in algebraic exploration allowed testing to continue).

Table 3.  Pruning applied to LibraryBook

LibBook base exc obs alg
0 1 1 1 1
1 5 5 5 5
2 21 21 9 9
3 85 81 13 9
4 341 301 17 9
5 1365 1101 21 9

Table 4.  Pruning applied to ReservableBook

ResBook base exc obs alg
0 1 1 1 1
1 9 9 9 9
2 73 73 25 25
3 585 561 49 33
4 4681 4185 97 41
5 37449 mx 169 41

The effectiveness of algebraic analysis can be seen 
in the huge reductions in test-set sizes, focusing on the 



most important test cases.  Stack retained the best 
0.33% paths (pruning 9,300 redundant paths), Wallet
retained the best 0.79% paths (pruning 3,875 paths), 
LibraryBook retained the best 0.66% paths (pruning 
1,356 paths) and finally ReservableBook retained the 
best 0.12% paths (pruning 37,408 paths).  When stress 
testing using java.lang.Character (1 constructor and 78 
methods), protocol exploration exhausted memory in 
cycle 3 (a baseline of 480,715 paths), but algebraic 
exploration stabilized on 79 test cases from cycle 1.  
Similarly, for java.lang.String (13 constructors and 64 
methods) protocol exploration exhausted memory in 
cycle 3 (a baseline of 54,093 paths), but algebraic 
exploration stabilized on 845 test cases from cycle 1 
(using a custom index generator [3] to avoid out-of-
bounds char array access during String construction). 

6. The role of algebra in test prediction

The utility of algebraic analysis can be measured in 
another way, while interacting with the JWalk tools in 
the algebraic validation mode, when inferring the test 
oracle for a given class.  The first benefit of the new 
algorithms is that fewer test cases are presented to the 
tester for manual confirmation or rejection than before.  
This is partly due to the extra pruning rule (see section 
5) and partly due to the improved capability for test 
prediction, which is still not quite complete, an 
interesting finding that we explain below.

Table 5.  Algebraic confirmations per cycle

Class :  cycle 0 1 2 3 4 5
Stack 0.8 1 5 4 9 12 26
Stack 1.0 1 5 4 4 4 4
Wallet 0.8 1 4 4 4 8 12
Wallet 1.0 1 4 4 4 4 8
LibBook 0.8 1 2 3 2 3 2
LibBook 1.0 1 2 3 - - -
ResBook 0.8 1 2 8 12 30 40
ResBook 1.0 1 2 8 6 6 -

The power of the JWalk test engine comes from its 
predictive rules, especially predictions about sequence 
equivalence-classes.  Whereas version 0.8 only mapped 
sequences containing observers in the prefix onto 
shorter sequences, version 1.0 also maps sequences, 
whose prefix contains transformers, onto equivalent 
shorter sequences.  Table 5 shows the improvement 
gained, which starts to become noticeable from test 
cycle 3, where sequences with prefixes ending in 
transformers start to be pruned.  Note that the tally of 
confirmations for ReservableBook is reduced even 

further, because this class inherits a partial oracle from 
its parent LibraryBook and only asks the tester to 
confirm novel interleaved combinations of methods.

Summing the counts of confirmations across a row 
in table 5 gives the cumulative confirmations to depth 
5.  By test cycle 5, the tool is presenting significantly 
fewer cases to the tester for validation than before.  For 
example, in the current algebraic validation mode, the 
tester confirmed 22 cases over 5 cycles for the Stack, 
whereas in the old version of the same mode, the tester 
had to confirm 57 cases (35 more confirmations).

Table 6.  Residual protocol confirmations

Class :  cycle 0 1 2 3 4 5
Stack 0.8 - - - - - -
Stack 1.0 - - - - 4 8
Wallet 0.8 - - 1 12 99 691
Wallet 1.0 - - 1 12 100 704
LibBook 0.8 - - - - - -
LibBook 1.0 - - - - 3 -
ResBook 0.8 - - - - - mx
ResBook 1.0 - - - - 20 mx

Note also that the total number of confirmations is 
strictly less than the number of paths actually explored.  
For example, whereas the tester confirmed 22 cases 
(over 5 cycles) for the Stack, the tool explored 31 cases 
altogether (see table 1), making 9 further automatic 
validations, based on predictions about test outcomes.  
On examining these cases, they are all found to be 
opportunistic predictions that methods with a void-
result type are expected to yield no result (see the 
discussion in section 7).  All the other cases presented 
to the tester were of observations made on the leaves of 
the tree of all algebraic constructions.  We may 
conclude with some confidence that the algebraic 
validation mode is the most economical way to present 
the tester with significant test cases that define (most 
of) the behavior of the test class.

This is borne out in table 6, where the majority of 
the remaining test outcomes in the brute-force protocol 
validation mode are predictable from the oracles that 
were trained in algebra validation mode.  Recall from 
tables 1-4 how protocol exploration had many 
thousands of test cases.  To be able to validate most of 
these automatically, having confirmed only a few tens 
of cases by hand, is an outstanding success and the 
hallmark of the lazy systematic unit testing method.

However, the benefits gained by pruning the extra 
transformer-prefixes in the newer version of the JWalk
toolset are not completely carried forward when using 
the smaller trained oracles to predict all test outcomes 



in protocol validation mode.  Some of the extra cases 
that were pruned by the more aggressive algebraic rule 
had to be confirmed in protocol mode, indicating that 
the revised prediction rule, while more powerful than 
the old version, is not quite as effective as hoped.  For 
example, in the current protocol validation mode, the 
tester had to confirm 12 residual cases over 5 cycles for 
the Stack, compared to no residual cases in the old 
version of the same testing mode.

Nonetheless, this is still a net gain, since in the old 
version, the tester had previously confirmed 35 extra 
cases (see table 5), so in fact the new version still saved 
the tester 35 – 12 = 23 confirmations for this example.  
Likewise, for the LibraryBook example, the new 
version saved 7 – 3 = 4 cases and the ReservableBook
saved 70 – 20 = 50 cases.  The Wallet example proved 
somewhat resistant to re-entrant state prediction in both 
tool versions.  The states of this object were influenced 
more by argument values (which were quasi-unique on 
each call) and states tended not to be re-entered.

How may we explain the mixed performance of test 
prediction rules associated with re-entrant states?  The 
reason for this has to do with the exact concrete states 
of the objects that are being compared.  For example, 
the tools can detect that the following two sequences 
leave the target Stack object in the same state:

new()
new().push(Object#1).pop()

and from this fact, they can predict some test 
outcomes for the longer sequence, based on extending 
such pairs of sequences with simple observations:

new().size()
new().push(Object#1).pop().size()

which map onto the same outcome.  However, the 
tools cannot always make use of re-entrant state 
information in other kinds of extension, which do not 
leave the target object in the same concrete state:

new().push(Object#1)
new().push(Object#1).pop().push(Object#2)

That is, the two Stacks produced by these sequences 
are not equal, because their top elements are different, 
as a consequence of the value generator synthesizing a 
new, distinct instance of Object as the argument to the 
second push() in the longer sequence.

In hindsight, this kind of situation will occur 
frequently in transformer-related cycles, because the 
JWalk toolset always synthesizes quasi-unique input 
values for each method argument, so that these values 
may be distinguished when later observed (note that it 
is significant, in figure 1, that the result of the top()

method is Object#2, rather than Object#1).  The only 
way to improve the tools’ reasoning ability further 
would be to add some kind of symbolic generalization 
over concrete argument values, perhaps in the spirit of 
axiom induction [11, 12]. 

7. Conclusions

Algebra-inspired analysis has been shown to have a 
hugely beneficial influence on the reduced generation 
of test sequences and the selection of “ideal” test cases.  
Determining the space of all algebraic constructions
for a class-under-test is the best way to focus a test 
generator on the most relevant test cases that will 
exercise all the distinct, fine-grained behaviors of the 
class.  In the above examples, the test sets were 
eventually reduced to a few tens of key test cases, 
which could be confirmed manually and reused in 
predictive testing.  This was compared against the 
many thousands of test cases that might be generated in 
any baseline, or protocol exploration strategy.

Perhaps the single most important aspect is having a 
tool, such as JWalkTester, to guide the tester through 
all the relevant cases.  Our previous experiments have 
shown that trying to achieve similar complete test 
coverage by manual test case selection will yield much 
poorer results [2, 21].  The JWalk tools take control of 
the selection of test cases, here guided by algebraic 
analysis, relieving the tester of this burden.  Another 
key feature of the JWalk tool suite is the ability to 
interleave cycles of test generation, execution and 
analysis.  That is, the generation of each new test cycle 
is informed by an analysis of the results from the 
previous cycle.  This allows the tool to select which 
paths to expand in the next cycle, rather than over-
generating all test paths and filtering these afterwards 
[4-9];  and is also quite different from prioritizing and 
re-ordering test suites [22, 23].  JWalk avoids 
generating any redundant paths in the first place, yet 
seeks to identify all the distinct test cases (not a subset) 
in the test class’s algebra, or high-level state space.

Regarding the influence of algebraic analysis 
techniques on test outcome prediction, the results are 
still very good, but sometimes mixed.  Many thousands 
of test outcomes were predicted for the protocol 
validation mode, after training up an oracle in the 
algebra validation mode.  It is clear that mapping 
sequences with observers in the prefix onto shorter 
sequences (with known outcomes) has a strong 
predictive power.  However, mapping sequences with 
transformers in the prefix onto shorter sequences 
without cycles may not yield quite as many predicted 
gains.  This was found to be due to an interaction 



between the predicted cyclic behavior and the injection 
of different input values, resulting in objects whose 
states were not in fact equivalent.

One aspect of the test prediction strategy worth 
highlighting is that the decision to map onto a known 
shorter sequence is made on a case-by-case basis, and 
is not based on any global classification of all methods 
into primitive, transformer or observer operations.  
This is because a given method may, on subsequent 
invocations, choose to modify the state of the target 
object, or leave it unchanged.  The Wallet test case 
demonstrated this behavior, in that sometimes the 
debiting-action was blocked (if the requested amount 
exceeded the balance) and sometimes it succeeded.  
However, whenever the state context for a predictive 
rule applies, the rule may always be applied safely, 
because states are always compared empirically.

For this reason, we call this kind of prediction a 
strong, or conservative assumption, which is always 
guaranteed to hold, unlike the weak, or opportunistic
assumption made when expecting a void-method to 
return no result.  The latter prediction is potentially 
vulnerable to false positives (viz. a void-method, which 
should raise an exception, but does not, and is passed 
by default).  In practice, such fault cases are identified 
in the following test cycle [1, 2], when the tester 
observes extra paths that should have failed.

Acknowledgement:  Thanks are due to Arne-Michael 
Toersel (at TaicPart ’07) for the Wallet test case; and to 
Mihai-Gabriel Glont, for inspiring the GUI design of 
the JWalkTester tool.

8. References

[1] A. J. H. Simons, “JWalk: a tool for lazy systematic testing
of Java classes, by design introspection and user interaction”, 
J. Auto. Softw. Eng., 14 (4), 2007, pp. 369-418.
[2] A. J. H. Simons, N. Griffiths and C. D. Thomson, 
“Feedback based specification, coding and testing”, Proc. 3rd

Test. in Acad. and Indust. Conf.: Pract. and Research Tech.,
eds. M. Roper, G. M. Kapfhammer and L. Bottaci, IEEE, 
Windsor, UK, 2008, pp. 69-73.
[3] A. J. H. Simons, “JWalk: lazy systematic unit testing”, 
http://www.dcs.shef.ac.uk/~ajhs/jwalk/, 2009.
[4] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic 
robustness checker for Java”, Software: Practice and 
Experience, 34(11), 2004, pp. 1025-1050.
[5] C. Csallner and Y. Smaragdakis, “DSD-Crasher: a hybrid 
analysis tool for bug finding”, Proc. 5th ACM Sigsoft Int. 
Symp. on Softw. Testing and Analysis, ACM, Portland, 
Maine, 2006, pp. 245-254.
[6] T. Xie and D. Notkin, “Tool-assisted unit test selection 
based on operational violations”, Proc. 18th IEEE Int. Conf. 

Automated Softw. Eng., IEEE, Montreal Canada, 2003, pp. 
40-48.
[7] T. Xie, D. Marinov and D. Notkin, “Rostra: a framework 
for detecting redundant object-oriented unit tests”,  Proc. 
19th IEEE Conf. Automated Softw. Eng., IEEE, Washington 
DC, 2004, pp. 196-205.
[8] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda, 
“Model checking programs”, Automated Softw. Eng. J., 
10(2), 2003, pp. 203-232.
[9] W.Visser, C. S. Pasareaunu and R. Pelánek, “Test input 
generation for Java containers using state matching”, Proc. 
5th ACM Sigsoft Int. Symp. Softw. Testing and Analysis, 
ACM, Portland, Maine, 2006, pp. 37-48.
[10] C. Pacheco, S. K. Lahiri, M. D. Ernst and T. Ball, 
“Feedback-directed random test generation”, Proc. 29th Int. 
Conf. Softw. Eng., IEEE Computer Soc., Minneapolis, USA, 
2007, pp. 75-84.
[11] J. Henkel and A. Diwan, “Discovering algebraic 
specifications from Java classes”, Proc. 17th Europ. Conf. 
Obj.-Oriented Progr., LNCS 2743, Springer, Darmstadt, 
Germany, 2003, pp. 431-456.
[12] J. Henkel and A. Diwan, “A tool for writing and 
debugging algebraic specifications”, Proc. 26th Int. Conf. 
Softw. Eng., IEEE Computer Soc., 2004, pp. 449-458.
[13] K. Beck, The JUnit Pocket Guide, O’Reilly, Beijing, 
2004.
[14] S. Pestov et al., “jEdit programmer’s text editor”, 
http://www.jedit.org/, 2009.
[15] K. Beck, Extreme Programming Explained: Embrace 
Change, 2nd edn.  New York: Addison-Wesley, 2005.
[16] W. M. L. Holcombe, “Where do unit tests come from?”,  
Proc. 4th Int. Conf. on Extreme Progr. and Flexible Proc. in 
Softw. Eng., LNCS 2675, Springer, Genova, Italy, 2003, pp. 
161-169.
[17] A. J. H. Simons, “Testing with guarantees and the 
failure of regression testing in eXtreme Programming”, Proc. 
6th Int. Conf. on Extreme Progr. and Flexible Proc. in Soft. 
Eng., LNCS 3556, Springer, Sheffield, UK, 2005, pp. 118-
126.
[18] A. J. H. Simons, “A theory of regression testing for 
behaviourally compatible object types”, Softw. Test., Verif. 
Reliab., 8(2), 2006, pp. 133-156.
[19] H. Y. Chen, T. H. Tse and T. Y. Chen, “TACCLE: a 
methodology for object-oriented software testing at the class 
and cluster levels”, ACM Trans. Softw. Eng. Meth., 10(1),
2001, pp. 56-109.
[20] W. Zhao, “Test prediction in revisited states of JWalk”, 
MSc dissertation, Department of Electronic and Electrical 
Engineering, University of Sheffield, 2008.
[21] A. J. H. Simons and C. D. Thomson, “Benchmarking 
effectiveness for object-oriented unit testing”, Proc. 1st

Software Testing Benchmark Workshop, IEEE 1st Int. Conf. 
Softw. Testing, Lillehammer, 2008.
[22] A. Smith, J. Geiger, G. M. Kapfhammer and M. L. 
Soffa, “Test suite reduction and prioritization with call 
trees”, Autom. Softw. Test., 2007, pp. 539-540.
[23] Z. Li, M. Harman and R. M. Hierons, “Search 
algorithms for regression test case prioritisation”, IEEE 
Trans. Softw. Eng., 33, 2007, pp. 225-237.


