
Dynamic Analysis of Algebraic Structure to Optimize Test Generation and
Test Case Selection

Anthony J H Simons and Wenwen Zhao
Department of Computer Science, University of Sheffield

a.simons@dcs.shef.ac.uk, zhaoww18@hotmail.com

Abstract

Where no independent specification is available,
object-oriented unit testing is limited to exercising all
interleaved method paths, seeking unexpected failures.
A recent trend in unit testing, that interleaves dynamic
analysis between each test cycle, has brought useful
reductions in test-set sizes by pruning redundant prefix
paths. This paper describes a dynamic approach to
analyzing the algebraic structure of test objects, such
that prefix paths ending in observer or transformer
operations yielding unchanged, or derived states may
be detected and pruned on-the-fly during testing. The
fewer retained test cases are so close to the ideal
algebraic specification cases that a tester can afford to
confirm or reject these cases interactively, which are
then used as a test oracle to predict many further test
outcomes during automated testing. The algebra-
inspired algorithms are incorporated in the latest
version of the JWalk lazy systematic unit testing tool
suite, which discovers key test cases, while pruning
many thousands of redundant test cases.

1. Overview

Systematic software unit testing methods fall into
two categories. Code-based testing methods seek to
exercise all paths through the software, identifying
unexpected unit failures. Specification-based testing
methods seek to validate the software unit completely
against a formal specification, which serves as a test
oracle. Recently, these approaches have started to
converge, particularly in the lazy systematic unit testing
method [1, 2], which combines semi-automatic
inference of the test unit’s specification with systematic
conformance testing from the specification. The power
of this method depends critically on an automated
dynamic analysis to identify the most important test
cases, whose outcomes must be confirmed by the tester.

These key test cases then constitute the test oracle, used
as a benchmark in fully automated testing.

This paper reports on a series of improvements to
the dynamic analysis algorithms used by the JWalk lazy
systematic unit testing tool suite [3]. These algorithms
are deployed between each test cycle, using feedback
from the previous test cycle to inform the test engine
about which paths to extend in the following cycle.
Starting from a baseline in which no test paths are
pruned, rules of increasing sophistication are deployed
to eliminate redundant test sequences. These strategies
include eliminating all prefix paths that:

 terminate in exceptions;
 terminate in observations;
 terminate in re-entrant states;

and require a fine-grained ability to judge the algebraic
properties of methods on a call-by-call basis, rather
than simply partition all methods into constructor,
transformer or observer categories. They also depend
on the ability to judge object state equivalence in a
flexible way, especially where their defining classes do
not provide any consistent measure of equality.

In the rest of this paper, section 2 describes the
increasing use of dynamic analysis during testing, to
profit from feedback about the testing process. Section
3 describes the JWalk tool suite [3], highlighting the
use of feedback-based code exploration to learn the
algebraic specification of a test class, with hints from
the programmer. Section 4 describes the algorithms
deployed to detect the algebraic structure of unseen test
classes in more detail. Section 5 demonstrates the
effectiveness of algebra-motivated pruning rules for
test-set reduction, comparing three different pruning
rules. Section 6 considers how the retained test cases
may constitute the “ideal” test set, to be confirmed by
the tester, and reused as an oracle to predict many
thousands of test outcomes in fully automated testing.
The paper concludes with some observations on the
properties of the algebraic analysis technique.

2. Dynamic analysis in unit testing

In systematic object-oriented unit testing, the focus
is on exercising all interleaved method combinations.
The testing assumption is that failures result mainly
from unexpected states, caused by invoking methods in
orders that ignore the expected protocols for the class
in question. Since this is a laborious task to perform
manually, automated approaches have been preferred.
One of the earliest tools that generated all interleaved
method paths was JCrasher [4]. This benefited from
the Java programming language’s facility for meta-
analysis via the reflection API, a mechanism whereby
compiled classes may be interrogated at run time to
discover their public method interface. This was used
to generate a breadth-first exploration of the test class’s
method invocation tree, using random techniques to
populate each method-call with actual argument values.
The focus of JCrasher was on forcing the test class to
raise exceptions, expecting to identify code faults.
However, the failures discovered were as much due to
violated method preconditions, as they were to faulty or
non-robust code. Later tools DSD-Crasher [5] and Jov
[6] tended to confirm this finding. By contrast, JWalk
does not assume that exceptions are faults; the tester
has the chance to accept or reject such outcomes [1].

Other approaches concentrated on reducing the size
of the breadth-first test-set. The Rostra tool [7] filtered
the brute-force “whole method sequences” to yield
“modifying method sequences”, more selective paths
consisting solely of state-modifying methods. These
could be identified approximately from type signatures
(typically, observer methods returned a result and state
modifying methods returned void). In principle, this
yielded smaller test sets that covered the state space of
the test object, by eliminating sequences with observers
in their prefix. To be more accurate in judging the
equivalence of object states, Rostra required the user to
supply explicit state-equality testing predicates. By
contrast, JWalk does not require intrusive predicates or
any kind of code instrumentation [1].

Another approach merged test paths by identifying
common concrete states. The Java Pathfinder tool [8,
9] operated at a lower level, performing a partial order
reduction analysis on sets of execution traces obtained
directly from the Java bytecode interpreter. The testing
strategy was to generate all interleaved method
sequences, then identify equivalence-classes into which
test sequences fell, so that the tester (or testing tool)
could preserve single exemplars from each equivalence
class for future testing. This generate-and-filter
approach was expensive. By contrast, the first tools to
deploy dynamic analysis and test-path pruning during

the actual test-generation process were JWalk [1] and
Randoop [10], which interleaved test generation and
execution cycles. The advantage of this was that
redundant prefix paths could be detected earlier, and
pruned from the active test set before these were
extended in the next cycle. Prefix sequences ending in
an exception were pruned, based on the intuition that
any path extending the prefix would always fail at
exactly the same point, so not execute to completion.
For example, the following pair of test sequences for a
bounded Stack always fail at the same call to pop(),
raising an EmptyStackException, making the longer test
sequence redundant:

new().pop()
new().pop().push(Object#1)

JWalk also pruned prefix paths ending in an
observer-method, on the basis that this would not
modify the state of the test object. For example, JWalk
treated the following pair of sequences as equivalent,
by determining empirically that neither size() nor
isEmpty() modified the Stack object in question:

new().push(Object#1)
new().size().isEmpty().push(Object#1)

JWalk used Java’s reflection API to compare the
shallow states of the test-object before and after each
method execution, to detect side-effects. This was a
more accurate way of determining observer-methods
than a static analysis of signatures and worked whether
or not the test class defined an equals() method.

The ability to map longer test sequences onto
shorter sequences was used in JWalk to predict test
outcomes dynamically for the longer sequences from
known outcomes for the shorter sequences [1]. This
was the first time that test prediction had been
deployed during testing. At the time, it was foreseen
that a more thorough algebraic classification of all
methods (see below) might yield an even greater test
set reduction and much greater predictive power. For
example, if it could be determined that pop() were a
transformer-method, undoing the effect of an earlier
push(), returning the Stack object to a prior visited
state, then the following sequences could be predicted
to yield identical results:

new().push(Object#1).size()
new().push(Object#1).push(Object#2).pop().size()

Overall, if prefixes containing both observer and
transformer methods could be mapped onto shorter
prefixes, many more cyclic paths could be pruned
during test generation; and outcomes for the longer
sequences could also be predicted with certainty.

An algebraic data type is a structure consisting of
operation signatures, typed in basic sorts (sets), whose
semantics are defined using axioms (equations). The
axioms are constructed after identifying all operations
as belonging to one of the categories: constructor,
transformer or observer. Constructors are primitive,
returning all unique instances of the given data type.
Transformers and observers are derived, defined by the
axioms in terms of the constructors. Below, the term
primitive is used instead of constructor, since the latter
has a restricted sense in object-oriented programming:
the primitives of a Stack include the push method as
well as the new Stack constructor.

Our approach was partly inspired by the work of
Henkel and Diwan, who induced the algebraic structure
of Java classes semi-automatically by probing the
behavior of test instances [11]. They derived an
abstract data type signature from a concrete Java class
through reflection, then generated and evaluated many
ground terms, which were grouped into equivalence
classes. Thereafter, an important generalization step
induced quantified axioms, which succinctly captured
many ground term equations. They also embedded this

approach in a tool to help programmers write and
debug algebraic specifications [12]. Our interest was
mainly in the technique used to determine when objects
had re-entered previously visited concrete states. This
involved converting objects into their serialized format
(a binary encoding used to transfer objects to persistent
storage or across distributed systems) and then hashing
to yield a single code representing the object’s state.
We found this approach unsuitable, for two reasons.
Firstly, not every Java class declares that it supports
serialization; and secondly, serialization offers no
control over the depth to which object states are
compared. Our alternative solution is presented in
section 4, below.

3. The JWalk family of testing tools

The current work relates to the latest version of the
JWalk tool suite, which comprises a number of tools,
including JWalkTester, a GUI-based testing tool in the
spirit of JUnit [13], JWalkUtility, a command-line
version that prints all results to standard output, and
JWalkEditor [2], an integrated Java editor, compiler

Figure 1: JWalkTester performing an algebraic exploration of a Stack class to depth 3

and testing tool, with Java-sensitive syntax highlighting
in the style of jEdit [14]. All of these incorporate the
common JWalker test engine, which is also offered as a
component toolkit API for integration with other
editors or testing tools. For this paper, JWalkTester
was used to generate all the examples and statistics
below (see figure 1 for an example).

All of the JWalk tools were conceived with a vision
to support agile software development methods, such
as XP [15], in which test-driven development is the
cornerstone. The goal was to bring together the rigor
of formal specification-based testing methods and the
flexibility of constant code refactoring. Earlier work
from our research group had highlighted how even
simple finite-state specifications could greatly improve
the selection of tests written for XP [16]; and also how
re-using saved tests in regression testing was not as
secure as previously assumed [17, 18]. Nonetheless,
XP and similar methods remained wary of lightweight
specifications, requiring a different approach.

The lazy systematic unit testing method was
devised, based on the two notions of lazy specification,
the ability to infer the evolving specification of a unit
on-the-fly by dynamic analysis, and systematic testing,
the ability to explore and test the unit’s state space
exhaustively to bounded depths [1]. Lazy specification
refers to a delayed approach to software specification,
in which the specification evolves rapidly in parallel
with frequently modified code [2]. The specification is
inferred by a semi-automatic analysis of a prototype
software unit, with some user-interaction. Systematic
testing refers to a complete, conformance testing
approach, in which the tested unit is shown to conform
exhaustively to a specification, up to the testing
assumptions, so providing guarantees of correctness
once testing is over [18].

The featured JWalkTester tool supports three test
strategies, which are protocol-, algebra-, and state-
based. In the protocol strategy, all interleaved methods
are executed on test instances in a breadth-first manner.
In the algebraic strategy, all algebraic constructions are
explored, driving test instances into all their distinct
concrete states. In the state-based strategy, the high-
level (or abstract) states of the test class are discovered
by exploration, and test instances are driven through all
their high-level states and transitions. Dynamic
analysis is critical in detecting actual state changes
empirically, rather than relying on a static analysis of
variable assignments, or method signatures, since some
updates are conditional on particular argument values.
The algebraic exploration technique uses only primitive
algebraic constructions to extend test sequences. This
also reduces the search space when seeking high-level

states, found by evaluating the reached concrete states
using the natural state predicates of the test class. In
this way, the dynamic analysis techniques reported here
optimize both low- and high-level state exploration.

The JWalkTester tool may be executed in three
modalities, to inspect, explore and validate the test
class. In the inspect-modality, it extracts the public
constructor and method interface of the test class,
including public methods inherited from superclasses.
It may also probe the test class by dynamic analysis, to
discover its algebraic structure (a new feature, from
JWalk v1.0), or its high-level state-space [1]. In the
explore-modality, the tool constructs and executes test
sequences according to the chosen test strategy and
displays the results, sorted by test path length, in a
tabbed output pane for the tester to examine. Figure 1
illustrates exploring all algebraic constructions of a
Stack class, to depth 3. In the validate-modality, the
tool also interacts in a limited way with the tester, who
must confirm or reject certain key test outcomes, which
are compiled in an oracle and used to predict further
test outcomes. Eventually, over 90% of testing is fully
automated using saved, or predicted outcomes [1, 2].

Dynamic analysis has a role to play in determining
when a particular test outcome should be identified as
significant and presented to the tester for confirmation;
and also when that same test result could be used to
predict further test outcomes. The whole benefit of
lazy systematic unit testing is to minimize the user
interaction required to create a complete test oracle.
The goal of dynamic analysis is therefore to identify, in
some sense, the “ideal” test cases for presentation to
the tester. In the context of this paper, this is
interpreted as all observations on the leaves of the tree
of all novel primitive algebraic constructions.

4. Dynamic analysis of algebraic structure

Previously, the old version 0.8 of the JWalk toolset
had a rudimentary ability to classify observer methods
(see section 2) and so prune redundant paths whose
prefix contained observers. The current work improves
on this in two ways: by pruning redundant paths
containing both observers and transformers in the
prefix; and by applying the dynamic state analysis and
test prediction rules per method invocation, which
allows further predictions to be made when states are
not modified by methods that might, at other times and
for other arguments, update state.

The old algorithm compared shallow state vectors
taken from the test object, before and after each
method invocation, to identify and classify observer-
methods. In the improved algorithm, we wanted to

compare the concrete state after each method
invocation with every earlier state in the same test
sequence, to identify re-entrant methods that returned
the test object to some prior visited state. For this, a
more compact encoding of state was desirable.

When discussing the algebraic nature of object
states, the semantic issue of equality arises. Comparing
two objects might make use of an equals() method
naturally provided by their class; but then, some classes
might not define such a method (in Java, they would
inherit Object’s method by default, which compares
object references for identity). Supporting mixed
notions of reference, shallow and deep equality might
be considered inconsistent. Furthermore, the behavior
of any user-defined equals() method might be faulty, or
might conflict with the proper algebraic notion of
equality [19], which is defined as all observations on
the data type yielding (recursively) equivalent results.
For this reason, we wanted to find a more consistent
and repeatable means of determining state equality,
which could nonetheless be controlled by the tester.

The approach we eventually adopted replaced the
old strategy of extracting object state vectors, which

might consume memory resources, by the computation
of a single hash code to represent the whole state of the
object. This is similar to Henkel and Diwan [11],
except that the hash value is not based on Java’s
serialized format, which is not always available. An
internal release 0.9 of the JWalk toolset [20] computed
hash codes from the persistent oracle value string
representation [1] of each object, which the JWalk tools
compute for all types. However, the processing time
and storage required to generate the oracle strings
repeatedly were unacceptably high. Also, the benefits
we were seeking did not actually require persistent
states to be compared across different test runs. So it
was feasible to compute hash codes directly from
objects and values in memory.

Primitive types, such as int, and “boxed” Java types,
such as Integer, and types with a natural hash code
based on their value, such as String, use their natural
hashCode() method. The hash code for any other kind
of object is obtained by combining the hash codes for
its fields, where the combined code reflects both the
order and value of each field (using a prime multiplier
for the position). Fields are extracted by reflection,

Figure 2: JWalkTester analyzing the algebraic properties of a ReservableBook class

bypassing the usual visibility restrictions. Where a
field is an object reference, a choice exists to apply the
hashing algorithm recursively, or simply return a code
based on the memory address. This is controlled by a
depth parameter supplied by the tester, denoting the
object tree-depth to which state comparisons should be
conducted (specifying shallow, or deeper equality).

Given this compact encoding of object state, it was
relatively easy to incorporate the extra information into
the core test engine. This constructs TestSequence
objects, consisting of many TestCase objects, each of
which exercises a single constructor or method. The
state of the target object is encoded immediately after
executing each TestCase, and cached locally. Once a
TestSequence has fully executed, it is possible to query
the sequence to find if the final state was unchanged, or
re-entrant (see figure 1, where these indicators are
appended to certain test outcomes). This is a fast
algorithm, which compares the final state code with the
penultimate one; or with all earlier state codes in the
sequence. The chances of accidental hash collisions
are remote, especially since sequences are short (up to
low tens of TestCases), and all injected test input
values are already quasi-unique, thanks to the
monotonic test input generation strategy [1, 3].

The latest version 1.0 of the JWalk toolset infers the
algebraic structure of the test class by successive
conservative approximations, probing the dynamic
behavior of the class. Figure 2 shows JWalkTester
discovering automatically the algebraic structure of a
ReservableBook. The operations of the class are
classified into the categories: {primitive, transformer,
observer}. All object constructors are assumed to be
primitive, unless it can be proven that they are derived,
creating the identical object from fewer supplied initial
parameters, in which case they are reclassified as
transformers. All methods are initially assumed to be
observers, until they are found to modify state, in
which case they are first classified as primitive; but if
later they are found to drive the target object into
previously visited states, their category is revised to
transformer.

5. The role of algebra in test pruning

Algebra-inspired analysis adds to the growing set of
sophisticated measures that allow a testing tool, with
interleaved test generation, execution and analysis
phases, to prune redundant test sequences. The size of
the baseline test set (constructors and all interleaved
methods) may be calculated algorithmically from the
size of the test class’s public API. A class with c
constructors and m methods has cmk test sequences of

length k, therefore  cmk sequences altogether, for any
bounded depth 0  k  n. For example, a bounded
Stack with just one public constructor and the six
methods {push, pop, top, size, isEmpty, isFull} has 1 +
6 + 36 + 216 +… sequences. For bounded depth n = 3,
we would expect a maximum of 259 sequences.

The first pruning rule drops prefix paths ending in
raised exceptions. The effect of this can be observed
by running any JWalk tool in protocol exploration
mode. Test cycle 0 creates the Stack instance. Out of
the six sequences exercised in test cycle 1, two raise
exceptions (pop() and top() called on an empty Stack).
This causes 12 paths to be pruned in test cycle 2 (all 6
extensions of each failed path). The remaining 4 paths
from test cycle 1 are extended to yield 24 paths in test
cycle 2. Of these, another 6 paths terminate with
exceptions (mostly consisting of an observer, followed
by pop() or top()), causing 108 sequences to be pruned
from test cycle 3. Cumulatively, 120 test sequences are
pruned during 3 test cycles, leaving 139 test sequences
that were actually constructed and executed. This is a
useful saving, compared to the 259 sequences that
could have been attempted (see table 1).

The second pruning rule drops prefix paths ending
in algebraic observers, which do not modify the state of
the target object. In this case, for the same Stack, 30
paths were pruned in test cycle 2 and a further 204
paths in test cycle 3. Cumulatively, 234 test sequences
were pruned over 3 cycles, leaving only 25 tests that
were actually constructed and executed. This compares
even more favorably with the original 259 sequences!

When the third pruning rule is added to drop prefix
paths ending in algebraic transformers, which re-visit
earlier states, a similar picture is seen. As before, 30
paths are pruned in test cycle 2, but a further 210 paths
are pruned in cycle 3 (an increase of 6). Cumulatively,
240 test sequences were pruned over 3 cycles, leaving
only 19 tests that were actually constructed and
executed. This is a tiny fraction of the 259 sequences
that could have been attempted (see table 1). When
looking at the retained test sequences, these are almost
exclusively paths of the form:

new().size()
new().push(Object#1).size()
new().push(Object#1).push(Object#2).size()

that is, paths which force the test object through all
algebraic constructions, then make all observations (or
exercise all transformers) at the leaves of the algebraic
tree. In terms of state exploration alone, this is close to
the ideal test set that a programmer might have wished
to create manually, since it tests all fine-grained
properties of the class. Yet, since it was created by

algorithm, we can be confident that it is complete, up to
the chosen bounded depth.

Table 1. Pruning applied to Stack

Stack base exc obs alg
0 1 1 1 1
1 7 7 7 7
2 43 31 13 13
3 259 139 25 19
4 1555 667 43 25
5 9331 3391 79 31

Table 2. Pruning applied to Wallet

Wallet base exc obs alg
0 1 1 1 1
1 6 6 6 6
2 31 31 11 11
3 156 156 16 16
4 781 781 26 21
5 3906 3906 41 31

To evaluate the power of the new algebraic pruning
rules under known conditions, a series of experiments
were conducted using the standard set of test classes
used to develop the JWalk toolset. These include a
Stack (which exhibits obvious state-like behavior; and
has a well-known abstract data type algebra); a Wallet
(whose behavior depends more on the values supplied
as method arguments); and a basic LibraryBook and its
subclass, ReservableBook (both with re-entrant states
and abstract algebras to discover; these were included
to verify JWalk’s ability to detect all novel interleaved
method combinations to test, after extending a class by
inheritance). Stress testing was also carried out by
exercising the standard Java library classes Character
and String (both known to have very large APIs).

Tables 1-4 indicate the cumulative sizes of the
retained test sets, after pruning rules 1-3 are
successively applied, for test cycles of increasing
length. The numbers of pruned sequences may be
obtained by subtracting the size of the featured test set
from the size of the baseline set, in each case.

In the tables, the leftmost column gives the test
cycle index number (where cycle 0 is construction;
cycle 1 is method paths of length 1, etc). The column
base indicates the size of the baseline test set (all
interleaved methods). The column exc gives the test
set size after pruning rule 1 is applied (drop exception
prefixes). The column obs likewise gives the test set
size after pruning rule 2 is also applied (drop observer

prefixes). The final column alg gives the test set size
after pruning rule 3 is also applied (drop transformer
prefixes). This last column reflects the algebraic
filtering strategy used in the current version 1.0 of the
JWalk toolset.

The results indicate an impressive ability to rule out
redundant test sequences by automatic analysis. For
test classes whose methods have preconditions relating
to state, such as Stack, a useful reduction is achieved by
the first pruning rule. For test classes such as Wallet,
whose method preconditions are rarely violated, no
reduction may be seen until the observer-prefix pruning
rule is applied. Wallet’s state is affected more by the
choice of amounts credited and debited than anything
else, so rarely re-visits earlier states. On the other
hand, the LibraryBook cycles through two states in
response to the issue() and discharge() methods. Here,
not only does the complete algebraic filtering strategy
(dropping exceptional, observer and transformer
prefixes) prune more redundant cases, but the test set
reaches a stable state of 9 ideal test cases, from test
cycle 2 onward.

Similarly, the ReservableBook subclass (see figure 2
for its API) cycles through four states in response to the
issue(), discharge(), renew() and cancel() methods. It
eventually stabilizes on 41 ideal test cases after cycle 4.
(Note that in cycle 5, protocol exploration exhausted
the available memory; but the more aggressive pruning
in algebraic exploration allowed testing to continue).

Table 3. Pruning applied to LibraryBook

LibBook base exc obs alg
0 1 1 1 1
1 5 5 5 5
2 21 21 9 9
3 85 81 13 9
4 341 301 17 9
5 1365 1101 21 9

Table 4. Pruning applied to ReservableBook

ResBook base exc obs alg
0 1 1 1 1
1 9 9 9 9
2 73 73 25 25
3 585 561 49 33
4 4681 4185 97 41
5 37449 mx 169 41

The effectiveness of algebraic analysis can be seen
in the huge reductions in test-set sizes, focusing on the

most important test cases. Stack retained the best
0.33% paths (pruning 9,300 redundant paths), Wallet
retained the best 0.79% paths (pruning 3,875 paths),
LibraryBook retained the best 0.66% paths (pruning
1,356 paths) and finally ReservableBook retained the
best 0.12% paths (pruning 37,408 paths). When stress
testing using java.lang.Character (1 constructor and 78
methods), protocol exploration exhausted memory in
cycle 3 (a baseline of 480,715 paths), but algebraic
exploration stabilized on 79 test cases from cycle 1.
Similarly, for java.lang.String (13 constructors and 64
methods) protocol exploration exhausted memory in
cycle 3 (a baseline of 54,093 paths), but algebraic
exploration stabilized on 845 test cases from cycle 1
(using a custom index generator [3] to avoid out-of-
bounds char array access during String construction).

6. The role of algebra in test prediction

The utility of algebraic analysis can be measured in
another way, while interacting with the JWalk tools in
the algebraic validation mode, when inferring the test
oracle for a given class. The first benefit of the new
algorithms is that fewer test cases are presented to the
tester for manual confirmation or rejection than before.
This is partly due to the extra pruning rule (see section
5) and partly due to the improved capability for test
prediction, which is still not quite complete, an
interesting finding that we explain below.

Table 5. Algebraic confirmations per cycle

Class : cycle 0 1 2 3 4 5
Stack 0.8 1 5 4 9 12 26
Stack 1.0 1 5 4 4 4 4
Wallet 0.8 1 4 4 4 8 12
Wallet 1.0 1 4 4 4 4 8
LibBook 0.8 1 2 3 2 3 2
LibBook 1.0 1 2 3 - - -
ResBook 0.8 1 2 8 12 30 40
ResBook 1.0 1 2 8 6 6 -

The power of the JWalk test engine comes from its
predictive rules, especially predictions about sequence
equivalence-classes. Whereas version 0.8 only mapped
sequences containing observers in the prefix onto
shorter sequences, version 1.0 also maps sequences,
whose prefix contains transformers, onto equivalent
shorter sequences. Table 5 shows the improvement
gained, which starts to become noticeable from test
cycle 3, where sequences with prefixes ending in
transformers start to be pruned. Note that the tally of
confirmations for ReservableBook is reduced even

further, because this class inherits a partial oracle from
its parent LibraryBook and only asks the tester to
confirm novel interleaved combinations of methods.

Summing the counts of confirmations across a row
in table 5 gives the cumulative confirmations to depth
5. By test cycle 5, the tool is presenting significantly
fewer cases to the tester for validation than before. For
example, in the current algebraic validation mode, the
tester confirmed 22 cases over 5 cycles for the Stack,
whereas in the old version of the same mode, the tester
had to confirm 57 cases (35 more confirmations).

Table 6. Residual protocol confirmations

Class : cycle 0 1 2 3 4 5
Stack 0.8 - - - - - -
Stack 1.0 - - - - 4 8
Wallet 0.8 - - 1 12 99 691
Wallet 1.0 - - 1 12 100 704
LibBook 0.8 - - - - - -
LibBook 1.0 - - - - 3 -
ResBook 0.8 - - - - - mx
ResBook 1.0 - - - - 20 mx

Note also that the total number of confirmations is
strictly less than the number of paths actually explored.
For example, whereas the tester confirmed 22 cases
(over 5 cycles) for the Stack, the tool explored 31 cases
altogether (see table 1), making 9 further automatic
validations, based on predictions about test outcomes.
On examining these cases, they are all found to be
opportunistic predictions that methods with a void-
result type are expected to yield no result (see the
discussion in section 7). All the other cases presented
to the tester were of observations made on the leaves of
the tree of all algebraic constructions. We may
conclude with some confidence that the algebraic
validation mode is the most economical way to present
the tester with significant test cases that define (most
of) the behavior of the test class.

This is borne out in table 6, where the majority of
the remaining test outcomes in the brute-force protocol
validation mode are predictable from the oracles that
were trained in algebra validation mode. Recall from
tables 1-4 how protocol exploration had many
thousands of test cases. To be able to validate most of
these automatically, having confirmed only a few tens
of cases by hand, is an outstanding success and the
hallmark of the lazy systematic unit testing method.

However, the benefits gained by pruning the extra
transformer-prefixes in the newer version of the JWalk
toolset are not completely carried forward when using
the smaller trained oracles to predict all test outcomes

in protocol validation mode. Some of the extra cases
that were pruned by the more aggressive algebraic rule
had to be confirmed in protocol mode, indicating that
the revised prediction rule, while more powerful than
the old version, is not quite as effective as hoped. For
example, in the current protocol validation mode, the
tester had to confirm 12 residual cases over 5 cycles for
the Stack, compared to no residual cases in the old
version of the same testing mode.

Nonetheless, this is still a net gain, since in the old
version, the tester had previously confirmed 35 extra
cases (see table 5), so in fact the new version still saved
the tester 35 – 12 = 23 confirmations for this example.
Likewise, for the LibraryBook example, the new
version saved 7 – 3 = 4 cases and the ReservableBook
saved 70 – 20 = 50 cases. The Wallet example proved
somewhat resistant to re-entrant state prediction in both
tool versions. The states of this object were influenced
more by argument values (which were quasi-unique on
each call) and states tended not to be re-entered.

How may we explain the mixed performance of test
prediction rules associated with re-entrant states? The
reason for this has to do with the exact concrete states
of the objects that are being compared. For example,
the tools can detect that the following two sequences
leave the target Stack object in the same state:

new()
new().push(Object#1).pop()

and from this fact, they can predict some test
outcomes for the longer sequence, based on extending
such pairs of sequences with simple observations:

new().size()
new().push(Object#1).pop().size()

which map onto the same outcome. However, the
tools cannot always make use of re-entrant state
information in other kinds of extension, which do not
leave the target object in the same concrete state:

new().push(Object#1)
new().push(Object#1).pop().push(Object#2)

That is, the two Stacks produced by these sequences
are not equal, because their top elements are different,
as a consequence of the value generator synthesizing a
new, distinct instance of Object as the argument to the
second push() in the longer sequence.

In hindsight, this kind of situation will occur
frequently in transformer-related cycles, because the
JWalk toolset always synthesizes quasi-unique input
values for each method argument, so that these values
may be distinguished when later observed (note that it
is significant, in figure 1, that the result of the top()

method is Object#2, rather than Object#1). The only
way to improve the tools’ reasoning ability further
would be to add some kind of symbolic generalization
over concrete argument values, perhaps in the spirit of
axiom induction [11, 12].

7. Conclusions

Algebra-inspired analysis has been shown to have a
hugely beneficial influence on the reduced generation
of test sequences and the selection of “ideal” test cases.
Determining the space of all algebraic constructions
for a class-under-test is the best way to focus a test
generator on the most relevant test cases that will
exercise all the distinct, fine-grained behaviors of the
class. In the above examples, the test sets were
eventually reduced to a few tens of key test cases,
which could be confirmed manually and reused in
predictive testing. This was compared against the
many thousands of test cases that might be generated in
any baseline, or protocol exploration strategy.

Perhaps the single most important aspect is having a
tool, such as JWalkTester, to guide the tester through
all the relevant cases. Our previous experiments have
shown that trying to achieve similar complete test
coverage by manual test case selection will yield much
poorer results [2, 21]. The JWalk tools take control of
the selection of test cases, here guided by algebraic
analysis, relieving the tester of this burden. Another
key feature of the JWalk tool suite is the ability to
interleave cycles of test generation, execution and
analysis. That is, the generation of each new test cycle
is informed by an analysis of the results from the
previous cycle. This allows the tool to select which
paths to expand in the next cycle, rather than over-
generating all test paths and filtering these afterwards
[4-9]; and is also quite different from prioritizing and
re-ordering test suites [22, 23]. JWalk avoids
generating any redundant paths in the first place, yet
seeks to identify all the distinct test cases (not a subset)
in the test class’s algebra, or high-level state space.

Regarding the influence of algebraic analysis
techniques on test outcome prediction, the results are
still very good, but sometimes mixed. Many thousands
of test outcomes were predicted for the protocol
validation mode, after training up an oracle in the
algebra validation mode. It is clear that mapping
sequences with observers in the prefix onto shorter
sequences (with known outcomes) has a strong
predictive power. However, mapping sequences with
transformers in the prefix onto shorter sequences
without cycles may not yield quite as many predicted
gains. This was found to be due to an interaction

between the predicted cyclic behavior and the injection
of different input values, resulting in objects whose
states were not in fact equivalent.

One aspect of the test prediction strategy worth
highlighting is that the decision to map onto a known
shorter sequence is made on a case-by-case basis, and
is not based on any global classification of all methods
into primitive, transformer or observer operations.
This is because a given method may, on subsequent
invocations, choose to modify the state of the target
object, or leave it unchanged. The Wallet test case
demonstrated this behavior, in that sometimes the
debiting-action was blocked (if the requested amount
exceeded the balance) and sometimes it succeeded.
However, whenever the state context for a predictive
rule applies, the rule may always be applied safely,
because states are always compared empirically.

For this reason, we call this kind of prediction a
strong, or conservative assumption, which is always
guaranteed to hold, unlike the weak, or opportunistic
assumption made when expecting a void-method to
return no result. The latter prediction is potentially
vulnerable to false positives (viz. a void-method, which
should raise an exception, but does not, and is passed
by default). In practice, such fault cases are identified
in the following test cycle [1, 2], when the tester
observes extra paths that should have failed.

Acknowledgement: Thanks are due to Arne-Michael
Toersel (at TaicPart ’07) for the Wallet test case; and to
Mihai-Gabriel Glont, for inspiring the GUI design of
the JWalkTester tool.

8. References

[1] A. J. H. Simons, “JWalk: a tool for lazy systematic testing
of Java classes, by design introspection and user interaction”,
J. Auto. Softw. Eng., 14 (4), 2007, pp. 369-418.
[2] A. J. H. Simons, N. Griffiths and C. D. Thomson,
“Feedback based specification, coding and testing”, Proc. 3rd

Test. in Acad. and Indust. Conf.: Pract. and Research Tech.,
eds. M. Roper, G. M. Kapfhammer and L. Bottaci, IEEE,
Windsor, UK, 2008, pp. 69-73.
[3] A. J. H. Simons, “JWalk: lazy systematic unit testing”,
http://www.dcs.shef.ac.uk/~ajhs/jwalk/, 2009.
[4] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic
robustness checker for Java”, Software: Practice and
Experience, 34(11), 2004, pp. 1025-1050.
[5] C. Csallner and Y. Smaragdakis, “DSD-Crasher: a hybrid
analysis tool for bug finding”, Proc. 5th ACM Sigsoft Int.
Symp. on Softw. Testing and Analysis, ACM, Portland,
Maine, 2006, pp. 245-254.
[6] T. Xie and D. Notkin, “Tool-assisted unit test selection
based on operational violations”, Proc. 18th IEEE Int. Conf.

Automated Softw. Eng., IEEE, Montreal Canada, 2003, pp.
40-48.
[7] T. Xie, D. Marinov and D. Notkin, “Rostra: a framework
for detecting redundant object-oriented unit tests”, Proc.
19th IEEE Conf. Automated Softw. Eng., IEEE, Washington
DC, 2004, pp. 196-205.
[8] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda,
“Model checking programs”, Automated Softw. Eng. J.,
10(2), 2003, pp. 203-232.
[9] W.Visser, C. S. Pasareaunu and R. Pelánek, “Test input
generation for Java containers using state matching”, Proc.
5th ACM Sigsoft Int. Symp. Softw. Testing and Analysis,
ACM, Portland, Maine, 2006, pp. 37-48.
[10] C. Pacheco, S. K. Lahiri, M. D. Ernst and T. Ball,
“Feedback-directed random test generation”, Proc. 29th Int.
Conf. Softw. Eng., IEEE Computer Soc., Minneapolis, USA,
2007, pp. 75-84.
[11] J. Henkel and A. Diwan, “Discovering algebraic
specifications from Java classes”, Proc. 17th Europ. Conf.
Obj.-Oriented Progr., LNCS 2743, Springer, Darmstadt,
Germany, 2003, pp. 431-456.
[12] J. Henkel and A. Diwan, “A tool for writing and
debugging algebraic specifications”, Proc. 26th Int. Conf.
Softw. Eng., IEEE Computer Soc., 2004, pp. 449-458.
[13] K. Beck, The JUnit Pocket Guide, O’Reilly, Beijing,
2004.
[14] S. Pestov et al., “jEdit programmer’s text editor”,
http://www.jedit.org/, 2009.
[15] K. Beck, Extreme Programming Explained: Embrace
Change, 2nd edn. New York: Addison-Wesley, 2005.
[16] W. M. L. Holcombe, “Where do unit tests come from?”,
Proc. 4th Int. Conf. on Extreme Progr. and Flexible Proc. in
Softw. Eng., LNCS 2675, Springer, Genova, Italy, 2003, pp.
161-169.
[17] A. J. H. Simons, “Testing with guarantees and the
failure of regression testing in eXtreme Programming”, Proc.
6th Int. Conf. on Extreme Progr. and Flexible Proc. in Soft.
Eng., LNCS 3556, Springer, Sheffield, UK, 2005, pp. 118-
126.
[18] A. J. H. Simons, “A theory of regression testing for
behaviourally compatible object types”, Softw. Test., Verif.
Reliab., 8(2), 2006, pp. 133-156.
[19] H. Y. Chen, T. H. Tse and T. Y. Chen, “TACCLE: a
methodology for object-oriented software testing at the class
and cluster levels”, ACM Trans. Softw. Eng. Meth., 10(1),
2001, pp. 56-109.
[20] W. Zhao, “Test prediction in revisited states of JWalk”,
MSc dissertation, Department of Electronic and Electrical
Engineering, University of Sheffield, 2008.
[21] A. J. H. Simons and C. D. Thomson, “Benchmarking
effectiveness for object-oriented unit testing”, Proc. 1st

Software Testing Benchmark Workshop, IEEE 1st Int. Conf.
Softw. Testing, Lillehammer, 2008.
[22] A. Smith, J. Geiger, G. M. Kapfhammer and M. L.
Soffa, “Test suite reduction and prioritization with call
trees”, Autom. Softw. Test., 2007, pp. 539-540.
[23] Z. Li, M. Harman and R. M. Hierons, “Search
algorithms for regression test case prioritisation”, IEEE
Trans. Softw. Eng., 33, 2007, pp. 225-237.

