
Lazy Systematic Unit Testing: JWalk versus JUnit

Anthony J H Simons and Christopher D Thomson
Department of Computer Science, University of Sheffield

{A.Simons, C.Thomson}@dcs.shef.ac.uk

Abstract

Lazy systematic unit testing with JWalk is compared

against regression testing with JUnit, the leading agile
testing tool. JWalk produced exhaustive test sets more
quickly and recalculated full state and transition
coverage, when testing modified or extended classes.
For the same time and effort invested, JWalk tested up
to two orders of magnitude more paths than manual
tests created for JUnit by an expert tester.

1. The JWalk testing tool

JWalk is a lazy systematic unit testing tool [1]. The
lazy systematic testing method is based on lazy
specification, inferring a continuously changing
specification from rapidly evolving code, by dynamic
code analysis and programmer interaction, and
systematic testing, generating complete test-sets that
exercise and validate the state-space of the class-under-
test (CUT) exhaustively to bounded depths [2].

The JWalk tool allows the human tester first to
validate the CUT’s specification by exploration, then
to compile a test oracle interactively, confirming key
properties of the CUT. These are re-used predictively
during automated testing, which verifies the states and
transitions of the CUT exhaustively.

2. JWalk challenges JUnit

A challenge was set up to contrast the effectiveness
of semi-automated testing with JWalk against expert
manual testing using JUnit [3], the most widely used
testing tool in the agile community. The first part was
to compare the coverage of expert manual test-case
selection against JWalk’s proposed tests. The second
part was to demonstrate the improved coverage of
JWalk’s regenerated tests over regression testing.

Two related pairs of CUTs were tested, including a
simple LinkedStack, later modified as a BoundedStack

(a code evolution); and a LibraryBook, later extended
as a ReservableBook (by inheritance). The competing
testers were asked to develop “complete tests” for each
initial class. Later, JWalk was allowed to propose
further tests for the modified or extended versions.

Table 1 shows how interactive oracle confirmation
in JWalk covered more unique cases (in less time) than
the manual assertions thought up by the expert for
JUnit. JWalk then automatically tested all state-
transition paths to depth 3, compared against slightly
less than the transition cover for JUnit (nullops were
not tested; two assertions were non-unique).

Table 1. Unique tested paths

CUT API

size
JUnit

asserts
JWalk

oracles
JWalk

total
LinkedStack 6 9 24 220
BoundedStack 7 n/a +35 645
LibraryBook 5 11 20 138
ReservableBook 9 n/a +167 1732

When retesting the modified or extended versions,
JWalk found all additional observations on novel
method interleavings, confirmed in under 18 minutes,
and then tested up to 1732 paths automatically. JWalk
makes better use of test automation, proposing all key
test cases for rapid review by the tester, and has much
higher coverage than traditional regression testing.

3. References

[1] A. J. H. Simons, “JWalk: lazy systematic unit testing”,
http://www.dcs.shef.ac.uk/~ajhs/jwalk/, 2007.

 [2] A. J. H. Simons, “JWalk: a tool for lazy systematic
testing of Java classes, by design introspection and user
interaction”, J. Auto. Softw. Eng., 2007, to appear.

[3] K. Beck, The JUnit Pocket Guide, 1st edn., O’Reilly,
Beijing, 2004.

