
Lazy Systematic Unit Testing:�
JWalk versus JUnit�

Anthony Simons and Christopher Thomson�
http://www.dcs.shef.ac.uk/~ajhs/jwalk/�

Class-under-test� API size� JUnit asserts� JWalk oracles� JWalk total�
LinkedStack� 6� 9� 24� 220�

BoundedStack� 7� N/A� +35� 645�
LibraryBook� 5� 11� 20� 138�

ReservableBook� 9� N/A� +167� 1732�

J�Walk is a lazy systematic unit testing tool�
[1]. This is based on lazy specification,�

inferring a continuously changing�
specification from rapidly evolving code, by�
dynamic code analysis and programmer�
interaction, and systematic testing,�
generating complete test-sets that exercise�
and validate the state-space of the class-�
under-test (CUT) exhaustively to bounded�
depths [2].�

A�challenge was set up to contrast the�
effectiveness of semi-automated�

testing with JWalk against expert manual�
testing using JUnit [3], the most widely�
used testing tool in the agile community.�

T�wo related pairs of CUTs were tested,�
including a simple LinkedStack, later�

modified as a BoundedStack (a code�

[1] A. J. H. Simons, JWalk: lazy systematic unit testing. http://�
www.dcs.shef.ac.uk/~ajhs/jwalk/, 2007.�
[2] A. J. H. Simons, JWalk: a tool for lazy systematic testing of Java classes�
by introspection and user interaction, Automated Software Engineering,�
14 (4), December, ed. B. Nuseibeh, (Springer, USA, 2007), in press.�
[3] K. Beck, The JUnit Pocket Guide, 1st edn., O’Reilly, Beijing, 2004.�

evolution); and a LibraryBook, later�
extended as a ReservableBook (by�
inheritance). The competing testers were�
asked to develop “complete tests” for each�
initial class. Later, JWalk was allowed to�
propose further tests for the modified or�
extended versions.�

T�he table below shows how interactive�
oracle confirmation in JWalk covered�

more unique cases (in less time) than the�
manual assertions thought up by the expert�
for JUnit. JWalk then automatically tested�
all state-transition paths to depth 3,�

compared against slightly less than the�
transition cover for JUnit (nullops were not�
tested; two assertions were non-unique).�

W�hen retesting the modified or�
extended versions, JWalk found all�

additional observations on novel method�
interleavings, confirmed in under 18�
minutes, and then tested up to 1732 paths�
automatically. JWalk makes better use of�
test automation, proposing all key test�
cases for rapid review by the tester, and�
has much higher coverage than traditional�
regression testing.�

