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Formal methods and testing are two important approaches that assist in the development of high-quality

software. While traditionally these approaches have been seen as rivals, in recent years a new consensus has

developed in which they are seen as complementary. This article reviews the state of the art regarding ways

in which the presence of a formal specification can be used to assist testing.
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1. INTRODUCTION

With the growing significance of computer systems within industry and wider society,
techniques that assist in the production of reliable software are becoming increasingly
important. The complexity of many computer systems requires the application of a
battery of such techniques. Two of the most promising approaches are formal methods
and software testing.

Traditionally formal methods and software testing have been seen as rivals. That
is, they largely failed to inform one another and there was very little interaction between
the two communities. In recent years, however, a new consensus has developed. Under
this consensus, these approaches are seen as complementary [Bowen et al. 2002; Hoare
1996]. This has led to work that explores ways in which they complement each other.

The use of a formal specification or model eliminates ambiguity and thus reduces the
chance of errors being introduced during software development. Naturally, there still
remains the issue of obtaining a formal specification that matches the actual customer
requirements and this is complicated by the tendency for stated requirements to change
during development. Where a formal specification exists, both the source code and the
specification may be seen as formal objects that can be analyzed and manipulated.
A formal specification could be analyzed in order to explore the consequences of this
specification and potentially find mistakes (see, for example, Kemmerer [1985]). If this
is done then we have greater confidence that we are testing the system under test
(SUT) against the actual requirements. The use of a formal specification introduces
the possibility of the formal and, potentially, automatic analysis of the relationship
between the specification and the source code. This is often assumed to take the form
of a proof, but such a proof cannot guarantee operational correctness. For this reason,
even where such a proof is believed to exist, it is important to apply dynamic testing
(see, for example, DeMillo et al. [1979], and Fetzer [1988]).

Software testing is an important and, traditionally, extremely expensive part of the
software development process, with the importance and cost depending on the na-
ture and criticality of the system. Studies have suggested that testing often forms
more than 50% of the total development cost, and hence dominates the overall pro-
duction cost. Where formal specifications and models exist, these may be used as
the basis for automating parts of the testing process and this can lead to more ef-
ficient and effective testing. It may transpire that its support for test automation
is one of the most significant benefits of formal model building. The links between
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testing and formal methods do, however, go well beyond generating tests from a formal
specification.

For example, if we have a formal specification then we may be able to use this as
the basis for generating a test oracle: a system that determines whether an observed
input/output behavior is consistent with the specification. Naturally, the datatypes used
in the specification are often more abstract than those in the SUT, in which case it is
necessary to have a user-supplied abstraction function. Note, however, that in general
such an abstraction function can be uncomputable.

Many systems have a persistent internal state and testing then includes finding an
input sequence that takes the system to a required state for a test and checking that
the state is correct after the test. Again, formal modeling can help us here, and provide
support for finding appropriate paths through a finite state structure. There is, as ever it
seems, a fundamental limitation to what is achievable due to the feasible path problem:
a chosen path might not be feasible and it is undecidable whether a path is feasible.
While this problem affects almost all formalisms, there are general approaches such as
constraint solving and theorem proving that can assist.

The presence of a formal specification or model makes it possible for the tester to
be clearer about what it means for a system to pass a test. This may be achieved
through the use of test hypotheses [Gaudel 1995] or design for test conditions [Ipate and
Holcombe 1997; Holcombe and Ipate 1998]. Similar ideas can be found in the generation
of tests from finite state machines in which some fault model is assumed [ITU-T 1997].
Using these approaches it is possible to generate tests that determine correctness with
respect to a specification under certain conditions, circumventing Dijkstra’s famous
aphorism that testing can show the presence of bugs, but never their absence [Dijkstra
1972]. If program analysis could be used in order to either prove that these conditions
hold or provide confidence in them holding, then we would have a very tight coupling
between specification and testing; a combined formal analysis of specification and test
could provide very strong guarantees of correctness.

On a slightly different tack, information gathered by testing may assist when using
a formal specification. Testing can be used in order to provide initial confidence in a
system before effort is expended in attempting to prove correctness. Where it is not
cost-effective to produce a proof of conformance, the developers may gain confidence
in the SUT through systematic testing. This might be complemented by proofs that
critical properties hold. A proof of correctness might also use information derived during
testing. Finally, a proof of correctness relies upon a model of the underlying system and
dynamic testing might be used to indirectly check that this model holds. An interesting
challenge is to generate tests that are likely to be effective in detecting errors in the
assumptions inherent in a proof.

In this article we explore the many ways in which the presence of a formal specifi-
cation can support testing. We explore issues such as what sorts of test cases do we
wish to produce; what does the result of applying these test cases tell us; and, how
can we generate them? We also discuss issues regarding testability—a property whose
significance is recognized in hardware development but much less so in software de-
velopment. The article is structured as follows. In Section 2 we provide a brief review
of formal methods and in Section 3 then discuss some general relationships between
formal methods and testing. Sections 4–8 describe work on generating tests from a
specification written using a model based notation such as Z, VDM, or B; a finite state
machine; a process algebra; a hybrid specification language; or an algebraic specifica-
tion language, respectively. Section 9 describes the use of model checking and constraint
satisfaction techniques in automating test generation. Section 10 discusses future re-
search directions and Section 11 draws conclusions.
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2. INTRODUCTION TO FORMAL METHODS

Formal specification languages are mathematically based languages whose purpose is
to aid the construction of systems and software. Often backed by tool support, they
can be used to both describe a system and also then to analyze its behavior, possibly
verifying key properties of interest.

The engineering rationale behind formal methods is that time spent on specification
and design will be repaid by a higher quality of product, this contributing to the com-
mercial rationale of trying to reduce the cost of rework later on. Formal methods of
course do not guarantee correctness, but their use aims to increase our understand-
ing of a system by revealing errors or aspects of incompleteness that might be (very)
expensive to rectify at a later date. Naturally, development is still likely to be iterative,
since requirements usually change during a development project and the use of formal
specification languages cannot be expected to entirely eliminate errors.

Over the last 25 years formal methods have reached a sufficient level of maturity so
that they are routinely applied in hardware construction, and applied with a certain
frequency in software construction, particularly for safety critical software. We now
describe the main types of formal specification languages before discussing the problem
of test generation in Sections 4–8.

2.1. Specification Languages

The primary idea behind a formal method is that there is benefit in writing a precise
specification of a system, and formal methods use a formal or mathematical syntax to
do so. This syntax is usually textual but can be graphical. A semantics is also provided,
that is, a precise meaning is given for each description in the language.

A specification of a system might cover one or more of a number of aspects, including
its functional behavior, its structure or architecture, or even cover aspects of nonfunc-
tional behavior such as timing or performance criteria.

A precise specification of a system can be used in a number of ways. First, it can be
used as the process by which a proper understanding of the system can be articulated,
thereby revealing errors or aspects of incompleteness. The specification can also be
analyzed or it can be verified correct against properties of interest.

A specification can also be used as a vehicle for driving the development process,
either through refining the specification toward code or by direct code generation. Of
course, a key aspect of the development process is testing, and a specification can also
be used to support the testing process. Indeed, the purpose of this article is to explore
this issue in some depth.

A variety of different formal specification techniques exist; some are general purpose
while others stress aspects relevant to particular application domains (e.g., concurrent
systems). Most are backed up by varying degrees of tool support. In what follows we
survey some of the most popular notations as a prelude to a discussion on how their
use can be integrated into the testing process.

2.2. Model-Based Languages

There are a number of different ways to write a precise specification. One approach is
to build a model of the intended behavior, and languages such as Z [Spivey 1988, 1992],
VDM [Jones 1991], and B [Abrial 1996] do so by describing the states the system could
be in together with operations that change the state.

The states of the system are typically described using sets, sequences, relations, and
functions, and operations are described by predicates given in terms of pre- and post-
conditions. There are a number of ways to structure such a specification. Z, for example,
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uses a language of schemas to do so, where each schema consists of a declaration to-
gether with a predicate which constrains the schema.

Consider, for example, the specification of a bounded stack. We describe the possible
states of the stack via a schema. We would like to use the stack to keep things that
come from a particular set, say Object. This can be specified in Z as follows:

[Object]

This defines a set, Object, and at this level of abstraction we are not concerned with the
structure of the elements of this set. Further, in order to specify the bounded stack, we
define a constant, say maxSize, beyond which the size of stack cannot grow:

maxSize == 20000.

Now, we can describe the possible states of the stack using the following schema:

Stack
items : seq Object

#items ≤ maxSize

This declares items to be a sequence of elements from the set Object such that the length
of items does not exceed maxSize. The following initialization schema StackInit gives
the initial configuration of the system. Priming (′) of a variable denotes the after state
of that component. Thus items′ refers to the after state of variable items.

StackInit
Stack′

items′ = 〈〉

The following operation, Top, returns the topmost value on the stack provided it is
not empty. The Top operation does not modify the state of Stack.

Top
�Stack
x! : Object

items �= 〈〉
x! = head items

We can further define the usual Pop and Push operation on the stack with obvious
functionality as follows:

Pop
�Stack
x! : Object

items �= 〈〉
items′ = tail items
x! = head items

ACM Computing Surveys, Vol. 41, No. 2, Article 9, Publication date: February 2009.
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Push
�Stack
x? : Object

#items < maxSize
items′ = 〈x?〉 � items

Various conventions are used in Z; for example, names ending in ? denote input, and
names ending in ! denote output (x? and x! are thus inputs and outputs of type Object,
respectively). �Stack denotes a potential change of state for components declared in
Stack, and �Stack denotes no change in state in an operation schema.

Further information about Z and applications is given in Spivey [1988, 1992]. In
Section 4 we discuss methods for testing on the basis of a model-based specification.

2.3. Finite State-Based Languages

Model-based languages such as Z, VDM, and B can describe arbitrarily general systems,
and have potentially infinite state. This generality has a drawback in that it makes
reasoning less amenable to automation. This drawback is not, however, present in the
case of finite state-based specification languages.

As their name suggests, finite state-based languages define their state from a finite
set of values, which are often presented graphically with state transitions representing
changes of state akin to operations in a notation such as Z. Examples of such lan-
guages include finite state machines (FSMs) [Lee and Yannakakis 1996], SDL [ITU-T
1999], Statecharts [Harel and Gery 1997], and X-machines [Holcombe and Ipate 1998].
FSM-based test techniques have been considered when testing from such specifications.
Much of the work on testing software from an FSM has been motivated by protocol con-
formance testing, since FSMs are suitable for specifying the control structure of a com-
munications protocol. However, more recently, FSM based testing has been used within
an approach called model-based testing in which a model is produced in order to drive
testing (see, for example, Farchi et al. [2002]; Grieskamp et al. [2002]). Note that the
term model-based is used rather differently in model-based testing and model-based
specification languages.

An FSM can be formally defined as F = (S, X, Y, h, s0, DF), where

—S is a set of n states with s0 as the initial state;

—X is a finite set of input symbols;

—Y is a finite set of output symbols;

—DF ⊆ S × X is the specification domain; and

—h : DF −→ P(S × Y) \ ∅ is a behavior function, where P(S × Y) is the powerset of
S × Y.

For (s, a) ∈ DF and (t, b) ∈ h(s, a), π = (s, a/b, t) will be called a transition from s
to t with input a and output b. A machine F is said to be a deterministic (FSM) when
| h(s, a) |= 1, for all (s, a) ∈ DF. In a deterministic FSM (DFSM) instead of the function
h we use the next state function δ and the output function λ (δ(s, a) = t, λ(s, a) = b, for
transition π . An FSM is said to be completely specified if DF = S × X.

Given an FSM F, there is a corresponding language L(F): the set of input/output
sequences (traces) that can occur from the initial state of F. Given FSMs F1 and F2, it
is normal to say that F1 conforms to F2 (or is a reduction of F2) if and only if F1 and F2

have the same input alphabets, F1 is defined whenever F2 is defined, and L(F1) ⊆ L(F2).
In the case where F1 and F2 are DFSMs, this reduces to L(F1) = L(F2).

ACM Computing Surveys, Vol. 41, No. 2, Article 9, Publication date: February 2009.
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Fig. 1. An FSM for a bounded stack.

An FSM representation of a bounded stack would be given as shown in Figure 1.
Here there are three states representing the conditions: the stack is empty; the stack
is full; and the stack is not empty and is not full. Note that transitions associated with
top have not been included since these do not alter the state. Further, in this diagram
the FSM is complete and thus the action of pop on the empty stack and push on a full
stack are stated.

The FSM as shown is nondeterministic since, when the stack is not full and is not
empty, the actions pop and push may leave the stack in this state or move it to a
different state. For example, if the stack contains one element then pop moves it to the
state Empty and otherwise pop does not change the state. If the size of the stack is
known, it is possible to produce a deterministic FSM that represents the stack. Here,
if the stack size is n, there would be one state for each 0 ≤ i ≤ n, the state associated
with i representing the condition in which the stack contains i elements.

Many specification languages such as Statecharts, SDL, and X-machines that have
a finite state structure have additional internal data. Transitions represent operations
that can access this data, change this data, and have guards that can refer to this data.
Such a specification is an extended finite state machine (EFSM). If the data consists of
variables with finite types then an EFSM can be expanded out to form an FSM, although
a combinatorial explosion can occur. Even if the types are not finite we describe such
specifications as being finite state-based since they model the system using a finite set
of states and an internal memory.

While techniques such as Z, VDM, and B are primarily targeted toward the descrip-
tion of sequential systems, notations such as SDL, Statecharts, and X-machines allow
explicit representation of concurrent activity. Specifications in these languages can of-
ten be seen as one or more EFSMs that may communicate. In Section 5 we discuss
methods for testing on the basis of a finite state-based specification.

2.4. Process Algebra State-Based Languages

Concurrency can be given a very elegant algebraic treatment, and process algebras de-
scribe a system as a number of communicating concurrent processes. Examples include
CSP [Hoare 1985], CCS [Milner 1989], and LOTOS [ISO 1989a].

Finite-state based languages such as Statecharts and SDL can also be used to describe
a system as a set of communicating concurrent processes. However, process algebras
have a rich theory that provides alternative notions of conformance described in terms
of implementation relations. The implementation relations capture several types of
observations that can be made, in addition to traces (sequences of inputs and outputs),
and different properties of the environment.

CSP, for example, describes a system as a collection of communicating processes run-
ning concurrently and synchronizing on events.

ACM Computing Surveys, Vol. 41, No. 2, Article 9, Publication date: February 2009.
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Fig. 2. A simple LTS.

A CSP definition of a stack might be given as follows:

Stack(〈〉) = push?x : X → Stack(〈x〉)
Stack(〈y〉 � s) = push?x : X → Stack(〈x〉 � 〈y〉 � s)

�
pop!y → Stack(s)

Here a parameterized process is described by guarded equations. Channels such as
push and pop can have input, ?x : X, or output, !y, associated with them. These events
can prefix behavior (denoted using →), allowing the sequencing of events to be pre-
scribed. Choice is modeled here by the operator �, and importantly there are operators
to express concurrent and communicating behavior. Note that this stack example is sim-
ilar to one that can be written in a finite state-based language. An example given below
brings out the differences between process algebras and finite state-based languages.

Interleaving is the concurrent execution of two processes where no synchronization
is required between the components. It is described by the process

P1 ||| P2

in which processes P1 and P2 execute completely independently of each other (and do
not synchronize even on events in common).

CSP also has a number of operators to describe parallel composition which allow
processes to selectively synchronize on events. For example, the interface parallel oper-
ator synchronizes on events in a given set A but all other events are interleaved. This
allows P1 and P2 to evolve separately, while events in A are enabled only when they
are enabled in both P1 and P2.

A labeled transition system (LTS) may be used to describe the behavior of a specifica-
tion written in a process algebra and thus work on testing from such specifications has
focused on testing from LTSs. Intuitively an LTS can be thought of as a representation
of the behavior of a system defined by the occurrence of events which change the state
of the system. Informally1 they are best represented as trees or graphs, where nodes
represent states and edges labeled with events represent transitions. See, for example,
Figure 2, which describes an example from Tretmans [1996]. Here, there is one initial
action, shil, which represents the input of a shilling. Having received the input of a
shilling, the system may now interact with its environment through the action liq or
the action choc that represent the output of a bar of liquorice or a bar of chocolate,
respectively. Having done this, the system is not capable of any further action; it is said
to deadlock.

The events occurring as labels are observable, and denote the set of actions the system
may perform. A special event τ is used to denote an internal (silent) action. Internal
actions are not observable.

1A formal definition of an LTS is given in, for example, Tretmans [1996].
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Fig. 3. Nonequivalent agents p1 (left) and p2 (right).

Recall that the semantics of an FSM F is the regular language L(F) and that in order
for one FSM F1 to conform to another FSM F2 we must have that L(F1) ⊆ L(F2). This
corresponds to observing elements from the set of traces that the SUT may produce.

Definition 1. A trace is a sequence of observable actions (or events). The traces of a
labeled transition system specification S, traces(S), are all sequences of visible actions
that S can perform.

For example, the set of traces of the LTS in Figure 2 is {ε, 〈shil〉, 〈shil, liq〉, 〈shil, choc〉},
where ε denotes the empty sequence.

LTSs have a richer notion of conformance than FSMs, reflecting the possibility of
making a wider range of observations. By contrast to DFSMs, trace equivalence is
almost never used. The conformance relations used with LTSs leads to agents that
would be equivalent in an FSM being distinguishable. Consider the example given in
Figure 3, described in Tretmans [1996]. Consider the first agent, p1. Having performed
shil, p1 is capable of performing either liq or choc. In contrast p2, having performed
shil, either is capable of performing liq but not choc or is capable of performing choc but
not liq. The two agents in Figure 3 are distinguishable where it is possible to observe
the refusal of an event. However, since the set of sequences of labels are the same, the
corresponding FSMs are equivalent.

An important observation is deadlock: an agent being in a state in which it cannot
act. It is often useful to reason about the sequences of actions that may take an agent
to a deadlock state.

There are a number of implementation relations that may be used with LTSs and
some of these are described in Section 6. They reflect different forms of communica-
tion and varying properties of the environment. These implementation relations also
vary in how they treat input and output: some do not distinguish input and output in
their treatment while other (more recently developed) implementation relations reflect
the nature of testing by treating input and output differently, insisting that the SUT
cannot block input and the environment cannot block output. In Section 6 we discuss
implementation relations and methods for testing on the basis of an LTS.

2.5. Hybrid Languages

Many systems are built with a combination of analog and digital components. In order
to specify and verify such systems it is necessary to use a specification language that
encompasses both discrete and continuous mathematics. There has been recent interest
in these hybrid languages, such as CHARON [Alur et al. 2000; Hur et al. 2003].

A simple example of a nonlinear hybrid system is that of a temperature controller. The
temperature of a room is controlled through a thermostat which continuously senses
the temperature and turns the heater on and off. The temperature is governed by a set of

ACM Computing Surveys, Vol. 41, No. 2, Article 9, Publication date: February 2009.
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Fig. 4. Hybrid automaton for temperature controller.

differential equations. When the heater is off, the temperature x decreases according to

x(t) = θe−Kt,

where t is the time, θ denotes the initial temperature, and K is a constant determined
by the room. When the heater is on, the temperature is governed by

x(t) = θe−Kt + h(1 − e−Kt),

where h is a constant that depends on the power of the heater. Initially, we assume that
the heater is on and the temperature is m degrees. We also wish that the temperature
is kept between m and M degrees. A hybrid automaton describing the system is given
in Figure 4.

As can be seen, the automaton has two states l0 and l1 with an initial condition x = m.
Each state is annotated by an invariant and has an associated physical law that governs
its rate of change (these laws are not shown in Figure 4). For example, while in state
l1 (in which the heater is off), the room temperature is always kept greater than the
minimum temperature and the temperature rate of change is governed by x(t) = θe−Kt.
As the room temperature drops to m degrees, the heater is turned on (state l0).

In Section 7 we discuss methods for testing on the basis of a hybrid specification.

2.6. Algebraic Languages

Process algebras are amenable to algebraic manipulation; however, there are also lan-
guages which describe a system solely in terms of its algebraic properties. These al-
gebraic specification languages describe the behavior of a system in terms of axioms
that characterize its desired properties. Examples of algebraic specification languages
include OBJ [Goguen and Tardo 1979; Goguen and Malcolm 2000] and the Common
Algebraic Specification Language (CASL) [Mosses 2004; Bidoit and Mosses 2003]. In
this article we use CASL in order to illustrate the approach.

In mathematical terms an algebra (or an algebraic system) consists of (1) a set of
symbols denoting values of some type, referred to as the carrier set of the algebra; and
(2) a set of operations on the carrier set. To describe the rules that govern the behavior
of the operations, it is necessary to specify the following:

—The syntax of the operations. This is done via a signature for each operation giving
the domain and range (or codomain), corresponding, in effect, to the input parameters
and the output of the operation, respectively.

—The semantics of operations. This is done via equations (or axioms) that implicitly
describe the required properties. The axioms are usually formulated as equations
each of which may be qualified by a condition.
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For example, an algebraic specification of a much-simplified bank system with an
account type might have the following operations:

—empty to create a new empty account;

—credit to credit money to an account;

—debit to withdraw money from an account;

—balance to enquire about the balance remaining in an account.

Assuming the existence of a specification of Nat, the natural number type, which is
used to represent money just for simplicity, the complete specification with operation
signatures and appropriate equations might be of the form

spec Bank =
Nat

then
sort account
ops

empty: account
credit : Nat * account -> account;
debit : Nat * account -> account;
balance : account -> Nat

vars
n: Nat; acc: account

axioms
balance( empty ) = 0;
balance( credit(n,acc)) = balance(acc) + n;
balance(acc) ≥ n => balance( debit(n,acc) ) = balance(acc) - n;
balance(acc) < n => balance( debit(n,acc) ) = 0 end

The first axiom says that the balance of an empty account is zero. The second axiom
says that the balance after crediting n units of money to an account acc is the balance
before the transaction with n added. The third axiom handles a debit in a similar way,
but subtracting rather than adding and only provided the withdrawal would not make
the balance negative. The last axiom says that an attempt to debit more than is in the
account empties the account of the money that is present, leaving a balance of zero,
that is, no overdraft is allowed.

Sometimes it is useful to classify operations into the following distinct categories:
constants, constructors, transformers, and observers. A constant operation returns an
initial object of the abstract type under consideration. Constructor and transformer op-
erations alter (or transform) a value of the type in some way. The difference between
constructors and transformers is that the former, together with constant operations,
form a minimal set of operations for generating any value of the type, that is, the
carrier set. Observer operations return values of some type other than the one under
consideration. In the example, empty is a constant operation, credit and debit are con-
structor operations, and balance is an observer operation. The specification, as written,
possesses no transformer operations.

One important argument in favor of the algebraic approach to specification is that the
equations can sometimes be used to provide a mechanism for evaluation of syntactically
valid, but otherwise arbitrary combinations of operations. For example, the sequence of
taking an empty account, crediting 100 units of money to it, and then enquiring about
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the resultant balance in the account, would be phrased as the expression E, where

E = balance( credit(100,empty))

Using axiom 2 with n=100 and acc=empty, this can be written as

E = balance( empty )+ 100

Then, using axiom 1, this becomes

E = 0 + 100

The process just illustrated, which uses the axioms as rewrite rules, is known as
term rewriting and if every sequence of rewrites converges to a unique normal form in
a finite number of steps, then the specification is said to be canonical. E is an example
of a ground term since, unlike the axioms, it does not involve any free variables. Term
rewriting is particularly useful, as far as testing is concerned, since algebraic specifica-
tions can then, in effect, be executed with chosen test situations. However, in general,
theorem proving has greater potential, since it enables interesting properties of such
specifications to be proved and we will see in Section 8 that this is sometimes required
in testing.

It should be noted that there are many different algebraic specification notations,
each with their own concrete syntax. Indeed, even within the same notation family
there can be numerous differences in dialect. Nonetheless, the ideas described above,
whereby the syntax of operations is specified by means of their signatures and the
behavior of operations in combination with each other is specified by means of equations,
are generic. In Section 8 we discuss methods for testing on the basis of an algebraic
specification.

3. FORMAL METHODS AND TESTING

3.1. Introduction

Software testing is mostly about empirically checking correctness. Formal methods, on
the other hand, have traditionally been about the formally verifying the correctness of
software. A major thrust of formal methods is the introduction of system models early
in the lifecycle, against which the software can be proven through the use of appropriate
mathematics.

A starting point for examining the relationship between these two disciplines is to
realize that both are model-based. The question naturally arises, what benefit can be
accrued from using testing techniques in relation to the models used in formal methods?
And what benefits might there be in using the mathematical basis of formal methods
in the domain of testing?

By using formal methods and testing together, we can reduce the cost of development
by applying testing techniques much earlier in the lifecycle while defects are relatively
inexpensive to correct. We might also be able to automate more of the testing process
by

—generating functional test cases from the specification of a system;

—deriving provably correct oracles for checking the results of tests.

Figure 5 portrays, in the form of the V-model, the limited benefits that can be accrued
to testing when the only formal model available is the code itself. Down the left-hand
side each deliverable can be checked but since only the code is a formal object this check-
ing is manual and depends upon interpreting potentially vague and ambiguous docu-
ments. Static analysis of the code can assist testing in deriving adequacy criteria, and
dynamic analysis of the code can be used to assess whether the criteria have been met.
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Fig. 5. Code-based testing.

Fig. 6. Early model-based testing.

Figure 6 portrays the far greater possibilities that exist when formality is introduced
into higher layers, the specification and design. Now, in addition to code-based testing,
the following model-based test processes become possible:

—Properties of the specification can be proved. The specification can be “tested” using
model checking or theorem proving.

—The specification can be validated by using testing techniques based on “executing”
the abstract model through animation.

—Coverage criteria can be applied to the abstract model represented by the specifica-
tion, for example, coverage of all logical conditions, or coverage of all paths through
a statechart. This allows us to determine whether we have covered the specifica-
tion as well as the code in testing. Naturally, as with code-based testing, automated
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test generation is complicated by the feasibility problem: the problem of deciding the
feasibility of a path is undecidable.

—System level functional test cases can be generated from the specification.

—An oracle for system tests can be derived for checking the results of actual test execu-
tions. As discussed earlier, this is complicated if the types used in the specification and
implementation are different, since we then need a user defined abstraction function.

—The design, and in turn the code, can be verified against the specification.

—Formal methods can suggest new kinds of execution models of code, with new kinds
of test adequacy criteria.

—Properties of the code can be proved.

—Execution models can be “tested” using model checking.

—Test management can be enhanced by reasoning about, for instance, the sequencing
of test cases.

The above processes that apply to the formal specification apply equally to other
formalized system models, such as the design, giving a model-based approach to testing
at every level of development.

We now describe a theoretical framework for understanding the relationship between
testing and proof, based largely on a key article by Gaudel [1995]. In addition to ad-
dressing the testing/proof relationship, the framework helps explain some important
things about the adequacy of finite test sets, and how their selection can be justified.

3.2. Foundations for Combining Formal Methods and Testing

While it may seem that all testing can tell us is whether an implementation conforms to
the specification on a given test set, it has been argued that it can tell us more than this.
Goodenough and Gerhart [1975] formalized this intuition through the notions of a test
technique being valid and reliable. A test technique is valid if for every faulty program
the test technique is capable of producing a test set that shows that the program is
faulty. A test technique is reliable if every test set that can be produced using the
technique leads to the same verdict (an implementation either passes all of the test
sets or fails all of the test sets). If a test technique is both valid and reliable then any
test set produced using this technique will determine whether an implementation is
correct. However, it has been observed that these properties, are not independent: if a
test technique fails to have one of these properties, it must have the other [Weyuker
and Ostrand 1980].

Weyuker and Ostrand [1980] introduced an alternative notion, that of a revealing
subdomain. A subdomain Di (of the input domain) is revealing if either the implementa-
tion conforms to the specification on all values from Di or the implementation conforms
to the specification on none of the values in Di. Given a revealing subdomain, it is suf-
ficient to choose only one test case from this subdomain. If one can divide the input
domain into a finite number of revealing subdomains then by taking one test case from
each subdomain one gets a finite test set that is guaranteed to determine correctness:
the SUT is correct if and only if it passes all of the test cases in the test set.

Young and Taylor [1989] presented a taxonomy of both static and dynamic ap-
proaches. They classify techniques as either sampling or folding, where sampling tech-
niques check a sample of values while folding techniques use abstraction to reduce the
set of values to be considered (they fold together states). Thus, for example, choosing a
test case from each of a finite set of subdomains is a sampling technique while symbolic
evaluation techniques use folding but also use sampling when not all paths through a
program are considered [Young and Taylor 1989].
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Fig. 7. Framework for the relationship between proof and testing.

A key article by Marie-Claude Gaudel [Gaudel 1995], which drew on the previous
work of Goodenough and Gerhart [1975] and Weyuker and Ostrand [1980] has laid down
a framework in which the relationship between testing and proof can be understood.
As illustrated in Figure 7, the framework admits a spectrum with two extremes: one
at the top-left of the diagram where no proof is carried out, but an infinite amount of
testing is necessary; the other at the bottom-right, in which no testing is performed,
but a complete proof of the system and its context is necessary.

Movement between the two extremes is possible by making assumptions about the
artefact under test that support the selection of smaller, eventually finite, test sets.
Most test selection techniques are based on assumptions such as

if the program is correct for one set of input values in this range, then it is correct for all such input

values

or

if the program is correct for one set of values that execute a particular path, then if is correct for all input

values that execute that path.

Such assumptions are referred to as test selection hypotheses. Although there are
probably several other types of test selection hypotheses, Gaudel [1995] identified two
types. The first example hypothesis above, for instance, is typified as a uniformity
hypotheses, being about the uniformity of program behavior on ranges of data. It is this
kind of assumption that is made every time test points are selected from an input data
subdomain.

The members of another class of hypotheses identified by Gaudel [1995] are known
as regularity hypotheses. These are about the assumed regularity of program behavior
as the size of data increases. For example, it might be assumed that, if the program
works for buffer sizes 0, 1, and 2, then it will work for buffers of all sizes. This would be
the underlying assumption being made when the system is tested only on buffer sizes
less than 3.

By stating test selection hypotheses and the resulting set of tests, the burden of
validation is shifted from testing to proof, that is, complete validation would involve
demonstrating successful execution of the tests, and proving the test hypotheses. It is
thought to be Professor Tony Hoare who first pointed out that a test is like proving the
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base case of an inductive proof; establishing the test hypothesis is akin to proving the
inductive step. Unfortunately, the base case of an inductive proof is usually the easy
bit; proving the inductive step, the test hypothesis, is hard.

There is a sense in which the amount of work represented through the spectrum is
invariant: at the extremes, infinite testing and complete proof of correctness are usually
both infeasible; in the middle, there may be a finite amount of testing to be done, but it
seems likely that complete proof of the assumptions that support the selection of a finite
test set remains infeasible. In the light of this, both proof and testing can only hope to
increase our confidence in correctness, but never demonstrate it absolutely. Note that
the idea of a test hypothesis is closely related to that of a fault domain [ITU-T 1997]: a
set F of models such that it is believed that the SUT is functionally equivalent to some
(unknown) element of F .

3.2.1. Description of Framework. This section describes the framework under the sim-
plifying assumption that programs are deterministic; it is straightforward to generalize
this to a nondeterministic SUT. Programs can only be proven correct, or demonstrated
to be correct by testing, with respect to a specification. We start with a characterization
of programs and specifications. For simplicity, it is assumed that a program, P, is a
partial function from concrete input values, I, to concrete output values, O, and that P
has no state:

P ∈ I 
→ O.

It is assumed that P terminates on all input values in its domain, dom(P). Write P(t)
to represent the result of executing P on input value t ∈ dom(P). The value t can be
viewed as a test of program P.

A specification, S, is a relationship between abstract input values, D, and abstract
output values, R:

S ∈ D ↔ R.

Because it is a relation rather than a function, a specification may define several
possible output values for a given input value. For a given input, d ∈ dom(S), the set of
permissible results is the image of the set {d} in S, written S(| {d} |).

To compare the results of a program, P ∈ I 
→ O, against its specification, S ∈ D ↔
R, a relation between abstract and concrete values is needed. For this, the following
abstraction functions are used:

AD ∈ I 
→→ D,

AR ∈ O 
→→ R.

Every abstract value is required to have at least one concrete representation, making
AD and AR surjections, that is, every element of D is in the range of AD, and likewise
for R and AR. The existence of such functions, of course, is not guaranteed in general,
but it is assumed that such a specification context does exist, and this assumption is
referred to as HMIN , the minimum hypothesis.

The essentials are now in place to talk about program correctness. First, the program
is required to be defined where the specification is defined. So all abstract input values
in dom(S) must have corresponding concrete representations for which the program
executes. In other words, the inverse image of dom(S) must be contained in dom(P):

A−1
D (| dom(S) |) ⊆ dom(P).
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Fig. 8. Program correctness with respect to a specification.

Second, the result of running the program on any test t ∈ dom(P) must be correct
with respect to the specification. Of course, some behaviors of P may be outside the
scope of the specification, in which case any behavior is acceptable:

∀ t ∈ dom(P) • AD(t) ∈ dom(S) ⇒ AR(P(t)) ∈ S(| {AD(t)} |).

For shorthand, if AD(t) ∈ dom(S) ⇒ AR(P(t)) ∈ S(| {AD(t)} |) holds for a given P, S, and
t, then CORRECT(P, S, t) holds, or in the case of a set of tests T,

CORRECT(P, S, T) ⇔ ∀ t ∈ T • CORRECT(P, S, t).

Solving CORRECT(P, S, t) is known as the Oracle problem (which in general is un-
computable).

This structure amounts to the commuting diagram shown in Figure 8. The sense in
which this diagram commutes is that the function resulting from the composition of P
and AR is contained in the relations resulting from the composition of AD and S. This
can be more formally expressed in the following way:

P; AR ⊆ AD; S.

Complete proof of program correctness amounts to proving this relationship. The
other extreme is exhaustive testing: running the program on every possible input,
usually an infinite set, and checking each result. This exhaustive test set is called

TMAX and must contain at least A−1
D (| dom(S) |).

Now the framework in Figure 7 can be slightly adapted. At the top, the program
P is correct with respect to its specification S if the minimum hypothesis HMIN can
be proven, and if every test in the infinite test set TMAX gives a correct result. At the
bottom, P is correct with respect to S with no testing necessary if HMIN ∧P; AR ⊆ AD; S
can be proven. In the middle of the spectrum, there are other choices of H and T, which
correspond to selections of tests and the test selection hypotheses that accompany them.

3.2.2. Test Selection. Designing a test strategy for a program involves selecting a fi-
nite test set that is considered to be adequate, in some sense. Usually, the sense of
adequacy is expressed in terms of covering certain paths in the program, or testing
every subdomain from a partition of the input data. There is an implicit belief in the
uniformity of the data, or in the regularity of the program structure, or both, which
leads to the selection of a single test case as a representative of a whole class of test
cases.

ACM Computing Surveys, Vol. 41, No. 2, Article 9, Publication date: February 2009.



P1: IAZ

CSUR102-09 ACM-CSUR January 21, 2009 21:34

9:18 R. Hierons et al.

The framework serves to emphasize the importance of defining, for every selected
test set T, the set of hypotheses H that express the adequacy of the set T. This is one
dimension of the relationship between testing and proof: it is necessary both to show
the success of the tests in T, and to prove the selection hypotheses in H.

Gaudel defines two kinds of selection hypothesis:

—Uniformity, which plays on the homogeny of a range of data. Here, if one test t is
passed in a uniform set T, then the hypothesis is that every test in T will be passed:
for a given P, S and T,

∀ t ∈ T • (CORRECT(P, S, t) ⇒ CORRECT(P, S, T)).

—Regularity, which plays on the structure, or size, of data. In this case, if all tests on
data up to a certain size limit l are correct, then the hypothesis is that every test on
larger data will be correct:
For a given P, S, and T, and some notion, size, of size let T′ = {t ∈ T • size(t) < l} in
CORRECT(P, S, T′) ⇒ CORRECT(P, S, T).

3.2.3. Examples of Test Selection Hypotheses. Consider a program sqrt to calculate the
positive integer square root of an integer. Its specification S requires a single integer
parameter, and specifies the result as the highest integer whose square is less than or
equal to the input. Functional testing of this program will typically focus on boundary
analysis of the single input. Data may be partitioned into three equivalence class:

{{0}, 1..maxint − 1, {maxint}}.

The belief that it is sufficient to test a single point of data from the class 1..maxint−1
gives rise to the following uniformity hypothesis:

(t1 ∈ {0} ∧ t2 ∈ 1..maxint − 1 ∧ t3 ∈ {maxint} ∧
CORRECT(sqrt, S, {t1, t2, t3})) ⇒ CORRECT(sqrt, S, 0..maxint).

Consider a bounded stack, instantiated with a size n and the type of data to be
processed. Operations on the stack change its state, treated here by considering the
state as an input and output to each operation.

A uniformity hypothesis may be used to select only a finite number of data values to
feed into the stack, and a regularity hypothesis may be used to limit the size of stack
to be tested, for example, if it works for stacks of size less than 3, then it will work for
all sizes of data.

Some other kind of hypothesis may be used to reflect that the program is expected to
behave the same regardless of the type of data it is instantiated to contain: if it works
for integers, then it will work for all types.

3.2.4. Test Selection Refinement. Gaudel [1995] also introduced the idea of moving up
and down the test selection spectrum by means of a form of refinement. Consider two
hypothesis/test set pairs (H1, T1) and (H2, T2). Intuitively, (H1, T1) refines (H2, T2) if

—the hypotheses get stronger, that is, H1 ⇒ H2, and

—the ability of T1 to detect defects is at least as strong as T2 where H1 is known to
hold.
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The simplest way of viewing this is that the refined test set is smaller, T1 ⊆ T2, but
this is not necessarily the case; it might be a different set altogether, based on stronger
hypotheses. More formally, (H1, T1) refines (H2, T2) if and only if H1 ⇒ H2 ∧ (H1 ∧
CORRECT(P, S, T1) ⇒ CORRECT(P, S, T2)).

Using this idea, the framework suggests a systematic step-wise approach to test set
development, in which the infinite set of tests is gradually refined into a workable set,
while the corresponding set of test selection hypotheses is collected.

3.3. Summary

Gaudel’s [1995] approach to the formalization of testing has been presented as a frame-
work for understanding the relationship between testing and proof. In essence, every
test is the base case of an inductive proof, whose inductive step forms a test selection
hypothesis remaining to be proved.

It turns out that these test selection hypotheses are difficult to discharge. However,
a consequence of this framework for testers is that test selection hypotheses should at
least be stated for every test set. Merely making an explicit statement of these selection
hypotheses will engender greater understanding of the testing process.

Further investigation of this framework could lead to an understanding of how car-
rying out partial proofs of correctness could mitigate the need for some testing: “If I
have proved part of my code to be correct, what remains for me to test?” or “Having
carried some testing, what remains for me to prove?”

4. TESTING FROM MODEL-BASED FORMAL SPECIFICATIONS

4.1. Introduction

Model-based formal specification languages, such as the Z notation, the B-method, and
VDM, allow the description of a computer-based digital artefact in terms of an abstract
state and operations on that state. The states of the system are typically described using
sets, sequences, relations, and functions. The operations are described by predicates
given in terms of pre- and postconditions. This approach was described in Section 2
and here we will use the specification of a bounded stack given there.

4.2. Test Selection Strategies

Test selection criteria based on model-based specifications have been considered in the
literature especially in the context of the Z notation (e.g., Ammann and Offutt [1994];
Carrington and Stocks [1994]; Hall [1988]; Stocks and Carrington [1996]); however,
the use of the B-Method [Legeard et al. 2002b], VDM [Dick and Faivre 1993], and
combinations of methods [Hierons et al. 2001] have also been considered.

4.2.1. Partitioning-Based Methods. Partition testing is a standard strategy in which the
input space is partitioned into subdomains, and test cases are drawn from each sub-
domain. Most test generation techniques for model-based specifications are based on
the principle of partitioning the input domain into equivalence classes on the basis of
the specification [Amla and Ammann 1992; Dick and Faivre 1993; Hall 1988; Hierons
1997b]. These equivalence classes are subdomains of the input space upon which it is
assumed that the behavior of the SUT is uniform and thus the techniques relate to
Gaudel’s [1995] uniformity hypothesis. A small sample of data is then selected from
each class: if the uniformity hypothesis holds then it is sufficient to choose one datum
in each class.

Hall [1988] gave an approach for testing from a Z specification by classifying the test
domains. The idea was based on considering various combinations after partitioning
of the input and output sets (domains) and states into subsets (subdomains), which
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typically appear in the declaration part of a specification, and conditions contained in
the predicates of the specification. This approach is structured, but less rigorous as
simple partitions of the input space are constructed by examining the obvious divisions
of the inputs.

Dick and Faivre [1993] demonstrated that, by rewriting the precondition and postcon-
dition of a VDM specification to disjunctive normal form (DNF), much of the partitioning
process can be automated. They also described a technique for extracting a finite au-
tomaton (FA) from the specification; the FA can be used to drive test execution. The
four steps in partition analysis are

—extraction of definitions by collecting all parts (precondition, postcondition, invari-
ants);

—unfolding of all definitions (in case of recursive definitions the unfolding is limited to
some predefined limited number);

—transformation of the definition to DNF to get the disjoint subdomains; and

—further simplification of each subdomain.

Consider, for example, the Pop operation on the Stack (Section 2). Applying the steps
of partition analysis would yield the following predicate which describes a single test
domain:

∃ items, items′ : seq Object; x! : Object •
#items ≤ maxSize ∧ items �= 〈〉 ∧ x! = head items ∧ items′ = tail items (1)

The approach of Hörcher [1995] applies to the selection of test cases and the evalua-
tion of test results. For test case selection, each operation is decomposed into a collection
of subcases defining a set of equivalence classes. With this end in mind, the operation’s
predicate part is transformed into DNF. Each Z schema describes an individual test
class. This approach is similar to that described by Dick and Faivre [1993] for VDM
specifications.

Amla and Ammann [1992] applied the category-partition method [Ostrand and Bal-
cer 1988] to Z specifications. The formal test specifications, in Amla and Ammann
[1992], are written in a language called TSL (Test Specification Language). A TSL
specification is divided into parameter, environment variable, and result sections. The
TSL generator produces test cases based on the combinations of input and environment
conditions specified in the result sections. Each specified combination of choices results
in a test frame. Ammann and Offutt [1994] provided a method for specifying the com-
binations of choices to be tested: the tester can then produce test cases by (potentially
automatically) generating actual data values for each choice.

The combination of category partition testing with the DNF approach [Dick and
Faivre 1993] has been used for generating test cases in Singh et al. [1997]. This is done
in two steps. In the first step, a classification-tree describing high-level test cases is
constructed from the formal specification of the test object. The second step involves
further refinement of high-level test cases by generating a DNF for them.

Domain propagation [Carrington and Stocks 1994] is a partition analysis strategy
devised in conjunction with the development of the Test Template Framework (cf. Sec-
tion 4.2.2). The domain propagation strategy uses a library of input domains for each
operator. For example, for binary set operations like A∪B or A∩B, the suggested input
domains include the combinations of possibilities for sets A and B where either of them
is empty, one is a subset of the other, they are joint, and they are disjoint. In the Push
operation schema, for the sequence concatenation operator, the two cases, items = 〈〉
and items �= 〈〉, will be considered.
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To apply domain propagation to an operator, the disjunction of its input domains
is conjoined to the predicate containing the operator. Then the whole schema is
transformed to DNF, and the false branches are removed. The effect is to propagate
the interesting subdomains of an operator up to the top level of the operation.

In addition to partitioning of the input domain, other methods to derive tests from
model-based specifications have been studied. These are described in the following
section.

4.2.2. Other Methods and Formal Test Frameworks. In practice, the abstract specifications
are often refined in multiple steps to obtain the final implementation (executable code).
Every refinement step provides more concrete information about the system by reduc-
ing the nondeterminism and possibly enlarging the domain. The relationship between
testing and refinement has been explored by Derrick and Boiten [1999] in the frame-
work of Z specifications. It describes how the FA used to drive test execution changes
upon refinement by providing a method to calculate an FA for a refinement from an
abstract FA.

Another strategy given in Carrington and Stocks [1994] is specification mutation.
This idea is inspired by mutation testing of programs. The specification is mutated,
and for each mutation a test is derived that distinguishes the behaviors of the mutated
and original specifications. The effect is to ensure that the SUT does not implement any
of the incorrect specifications. The mutations are chosen in order to simulate real faults
and thus the belief is that a test set that shows that the mutants are faulty will not be
passed by a faulty program. It is natural to capture this belief by a test hypothesis, but
it should be noted that this test hypothesis is not one of those considered by Gaudel
[1995]. The approach can also suffer from one of the standard problems with mutation
testing: there can be mutants that are equivalent to the specification and equivalence
is undecidable.

The Test Template Framework (TTF) [Carrington and Stocks 1994; Stocks 1993;
Stocks and Carrington 1996] uses the Z notation to conduct black box testing. A test
template is a Z schema that describes a set of test cases. A test template represents
a set of values that are equivalent according to the test techniques used to generate
the template, and can be refined by incorporating different test techniques. Test cases
are generated from the final test templates, which partition the input space. The test
template framework therefore gives a structure within which test case generation al-
gorithms can be applied.

Authors have considered the problem of testing from an object-oriented model-based
language such as ZEST [Stepney 1995] and Object-X [Cusack and Wezeman 1993;
Fletcher and Sajeev 1996]. There has also been work on testing from Structured Object-
based Formal Language (SOFL) specifications [Liu 1999; Liu et al. 2000; Offutt and
Liu 1999].

Another direction for the use of formal methods to aid testing is the formalization of
software testing criteria. A unification of two categories of test criteria, using program-
based and specification-based approaches, has been presented by Behnia and Waese-
lynck [1999] for B models. Vilkomir and Bowen [2001, 2002] have formalized control-
flow testing criteria using the Z notation. In Vilkomir and Bowen [2001], Z schemas
were presented for definitions of some of the main control-flow criteria. In Vilkomir
and Bowen [2002], a new reinforced condition/decision coverage criterion was proposed
and formalized using Z. These formal definitions help to eliminate the possibility of
ambiguities.

Rice and Seidman [1998] considered software analysis and testing at the architec-
tural level. They suggested using the architectural style description language ASDL
for this aim. An ASDL description is made up of three elements: templates, settings,
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and units. A generic Z schema that is invariant across all styles describes each element.
The authors considered the extension of a prototype ASDL toolset to include facilities
for analysis and testing.

Proposed approaches for specific tasks during testing include also testing the nonex-
istence of initial state in Z specifications [Miao et al. 1999], comparisons of the Z proof
with various types of testing [King et al. 2000], using dynamic specification slicing in
validating and debugging the Z specification [Chang and Richardson 1994], and test-
ing documents during B method-based software development [Taouil-Traverson and
Vignes 1996].

4.3. Test Automation

There is the potential to automate many of the test generation strategies described
in the previous sections. However, automation has its own problems and challenges.
Automatic generation of tests from formal specifications has been considered in
Ammann and Offutt [1994], Burton [2002], Hayes [1986], Jackson and Vaziri [2000],
and Meudec [1997]. Different heuristics are typically used to partition the input do-
main into equivalence classes and to select test data from these classes.

4.3.1. Automation Using Partitioning and Finite State Automaton. An algorithm that gener-
ates a partition of the input domain from a Z specification was introduced by Hierons
[1997b]. It was shown that such a partition can be used both for generation of test
cases and for the production of a FA model, which can be used to control the testing
process. The specifications were rewritten to a form in which both a partition of the
input domain and the states of a FA can be derived. The described rewrite rules were
shown to be confluent and terminating.

In Legeard et al. [2002a], an automatic test generation method for boundary testing
from Z or B specifications was presented. The method avoids the construction of the
complete FA, thereby avoiding the state explosion and nondiscovery (determining all
states and transitions) problems. First, subsets of the state space (boundary goals) are
computed from the DNF. The boundary states are obtained by traversal of the states
specified by the boundary goals. The method is supported by a tool-set: the BZ-Testing-
Tool environment [Ambert et al. 2002].

Burton [2002] described a technique for automatically generating tests from Z spec-
ifications based on user-defined testing criteria. The method is applicable to both par-
titioning and fault-based testing criteria. Automation is made possible by formally
specifying heuristics for generating tests using general-purpose theorem proving tools.
The condition under which a fault is detected was also formally specified in Burton
[2002]. The techniques have been implemented in the CADiZ general-purpose theorem
prover. This approach has also be applied to statechart specifications by first generating
Z specifications from them [Burton 2002].

A similar approach for generating test cases from B specifications, based on user-
defined criteria, was presented in Aertryck et al. [1997]. The authors described a general
framework, CASTING, that has been developed to support test generation.

Meudec [1997] applied the idea of partitioning and TTF domain propagation strategy
to VDM-SL expressions, and extended it to work better with quantifiers. His thesis dis-
cussed possible automation, and concluded that the complete simplification and VDM
automatic proving support that is needed may be beyond the state of the art, but that
constraint logic programming looks promising. Atterer [2000] presented automatic test
data generation, based on Meudec’s technique, from VDM-SL specifications.

In order to test an operation with a value from a subdomain, we may need to set
up the internal state since each element of a subdomain defines a value for both the
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state and the input to the operation. This introduces a sequencing issue: we may need
to apply a sequence of operations in order to set up the state for a test. The typical
solution to this problem is to generate a FA from the specification and use this as the
basis for sequencing [Dick and Faivre 1993; Hierons et al. 2001; Murray et al. 1998;
Watanabe and Sakamura 1996]. Naturally, if we choose a path through this FA then
there is no guarantee that this path is feasible.

4.3.2. The Oracle Problem. A specification can form the basis for generating an oracle
[Aichernig 1999; Hayes 1986; Richardson et al. 1992; Waeselynck and Behnia 1998].
Where it is possible to animate a specification, this animation can be used as an oracle
[Mikk 1995; Ciancarini et al. 1996; Al-Amayreh and Zin 1999 Aichernig 2001a, 2001b].
Often the types used in the specification and implementation are different, in which
case we need abstraction functions, but if development has proceeded through formal
refinement then such functions will have been produced.

Treharne et al. [1998] considered an alternative approach in which a prototype imple-
mentation is used. In their approach the results of test cases are evaluated by executing
the prototype specified in B and these test cases are further refined in order to make
them suitable for the actual SUT.

4.3.3. Other Methods. Jackson and Vaziri [2000] described a method for finding bugs
in the code based on specified properties. The method generates counterexamples for
the executions that violate the specification. The specification language, Alloy, is used
for specifying the properties of code. Alloy is influenced by Z and is strictly first order,
making automatic analysis possible. There are two steps involved in checking proper-
ties. First, the program statements are encoded into relational constraints over before
and after states. Second, conjunction of encoded formulae along with the negation of a
specification is constructed. The satisfying assignments for this formula give executions
that violate the specifications. SAT solvers are used for checking these formulae.

4.4. Case Studies and Tools

Approaches and techniques that use model-based formal specifications to assist soft-
ware testing have been applied for testing diverse safety-critical computer systems.

4.4.1. MATIS. The Multi-Modal Airline Travel Information System (MATIS) is an in-
teractive system, which allows a user to query a database about flight information.
Various search templates allow input from modalities such as speech, keyboard, and
mouse. Considering MATIS as an example, MacColl and Carrington [1998] demon-
strated how testing information for interactive systems can be derived from formal
specifications. The specification of MATIS uses Z to define the functionality and pre-
sentation, and CSP to define interaction.

For the functionality and presentation, the Test Template Framework (TTF) [Stocks
and Carrington 1996] was used to derive a hierarchy of test information. As particular
testing strategies, type-based selection, partition analysis, and domain propagation
were identified. The type-based approach was used for sets and here two cases were
used: the set is empty or it is nonempty. Naturally, all of these can be seen as applying
some uniformity hypothesis.

A test template hierarchy was produced for the following main operations of MATIS:
creating queries, providing a value for a named field, and searching the database. It
was found that the functionality and presentation views led to different but overlapping
sets of test templates. The tests produced from the Z specifications were complemented
by test cases produced from the CSP, essentially by devising an equivalent finite state
automaton M and producing a set of paths of M that included all transitions of M. One of
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the main conclusions was that the different viewpoints were useful for test generation
and led to different specification based test cases. However, while this piece of work
showed how specification based tests can be produced, the test effectiveness was not
evaluated.

4.4.2. VCS. The Voice Communication System 3020S (VCS) [Aichernig 2000; Hörl
and Aichernig 2000] supports voice communication between pilots and air traffic control
personnel via radio. VCS is a switched system for real-time transmission of continuous
voice data. VDM++ was used for formalizing the main part (the safety-critical core)
of the functional requirements. This formalization was carried out in parallel with the
design process and aimed to validate the functional requirements and the existing
acceptance tests.

The formalization process was based on 140 natural language requirements. The
process of producing a formal specification led to 108 questions being raised and this
resulted in 33 changes to the natural language requirement [Aichernig 2000]. It was
stated that this phase resembled a validation of the requirements.

A set of 65 test cases already existed, with a combined length of 200 steps. A total of
60% of these were formalized using VDM++. Each action by the test personnel and the
corresponding system’s reaction were translated into calls to methods of VDM++’s test
specification. This formalization process led to 16 errors being found in the test cases
and thus being corrected. The specification was animated using the test cases and the
IFAD VDM++ Toolbox (version 6.0). Animation led to seven minor errors being found
in the formal specification and thus assisted in validating the specification.

The IFAD VDM++ Toolbox was used to obtain test coverage information. It was
reported that the test cases gave quite a good coverage of the formal specification. It
was argued that this was both because the informal test generation process had been
very thorough and also because the coverage criterion used was “rather weak” and
thus a good coverage might mean relatively little [Aichernig 2000]. However, it was
also observed that the thorough manual test generation process, for a safety-critical
system, failed to produce a test set that covered the entire formal specification [Hörl
and Aichernig 2000]. It was also reported that by considering the specification it was
possible to produce “more economic” test cases each of which covered more system
functionality.

4.4.3. FlowBus. FlowBus is an application integration product, or middleware, for
communication in a number of ways via a single application programming interface
[Bicarregui et al. 1997]. Its main function is to provide a distributed, multiplatform,
interapplication message handling service. One part of this, the queue administration
tool (QAT) was developed formally using VDM and B. VDM and B were chosen because
of the tool support that was available. The development process included three main
steps:

—producing the initial VDM specification using VDM through Pictures (VtP);

—translate VDM specification by hand into B; and

—automatic generation of C source code from the B.

Test cases were generated from the VDM specification, which assisted the validation
of the manual translation of the VDM into B. The VDM Analysis Tool (VAT) was used for
partition analysis of operations and the system state using the DNF method. About 150
test domains were devised and about 500 test cases were produced for 34 operations.
Three faults in the original VDM were discovered. The test cases were also used to
check the B designs through animation using the B-Toolkit. This process was applied
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to 15 of the 34 operations and led to five faults being found, including one that was said
to be potentially serious.

4.4.4. GSM 11.11. GSM is a widely used standard for digital mobile phone systems.
In Legeard et al. [2002b], the authors considered the B specifications of a simplified
version of the GSM subset. For test generation, the TTF method was used. For this, the
B specification was translated into Z, and then the TTF method was applied to generate
tests from the Z specification. The main approach used was the DNF method. Although
some tools were used (mainly, Z/EVES), TTF generation is a manual process, requiring
extensive expertise. The Z schemas as well as the B specification of a fragment of the
GSM 11-11 Standard were provided in Legeard et al. [2002b].

Once the TTF leaves have been produced, it is necessary to produce test sequences
that “cover” the leaves. The authors made the observation that it is often undesirable
to instantiate the values of variables in the TTF leaves before test sequence generation
since this makes it more likely that an infeasible test case is defined: there is no feasible
path that includes the test case/leaf.

In parallel, the BTT method was used to generate tests from the B specification
and the two test sets were compared. BTT generated over 200 tests and 14 tests were
generated via TTF. However, it was reported that the BTT test set contained a lot of
repetition and potentially could be made more efficient. Based on the GSM case study,
Legeard et al. [2002b] noted the following distinctions between BTT and TTF:

—typically a lot more tests are generated by BTT than TTF;

—the BTT method maintains a clearer distinction between the state variables and input
parameters than the TTF;

—BTT generates more accurate oracles than TTF;

—TTF gives a more detailed analysis of the interesting partitions of the complex oper-
ations or predicates.

The main conclusion of Legeard et al. [2002b] was that BTT is better designed for
automation than TTF. It was also stated that some human interaction is probably
desirable since full automation can lead to an excessively large test set.

4.5. Summary

There has been much work on testing from a Z, B, or VDM specification. The test
generation techniques are typically based on the uniformity hypothesis: they partition
the input domain into a set of subdomains on which the behavior of the specification is
uniform. Test cases are then generated from each subdomain, and potentially around
the boundaries of the subdomains. At present it appears that no other test hypotheses
have been applied. However, a mutation-based approach [Burton 2002; Carrington
and Stocks 1994] has been used in which test data generation is driven by the search
for test data that distinguishes between the specification and mutants that represent
potential faults. This process can be seen in terms of one of two test hypotheses. One
test hypothesis is that if the SUT is faulty then its behavior is equivalent to that of
one of the mutants. However, this does not correspond to the usual motivation for
mutation. An alternative test hypothesis is that if a test set distinguishes between the
specification and mutants then it distinguishes between the specification and any faulty
SUT.

There have been several promising case studies in this area. The presence of a
model-based specification clearly helps test automation by assisting in the develop-
ment of an oracle. However, the expressive nature of model-based languages does raise
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issues in automated test generation since powerful analysis tools are required (typi-
cally theorem provers or constraint solvers) and many of the problems are generally
undecidable.

Model-based languages are often used to specify state-based systems. When applying
a test case, it may be necessary to find a sequence of operations to set up the internal
state of the SUT before the test case can be applied. Most reported approaches involve
deriving a finite automaton from the specification and generating the sequences from
this, but naturally a chosen path through the finite automaton may not be feasible.
Interestingly, the literature appears to say very little about a related problem, that of
checking that the state of the SUT is correct after a test. It may be possible to adapt
approaches from testing from finite-state specifications in which this is a major issue.

5. FINITE-STATE-BASED TESTING

5.1. Introduction

Many systems have a finite-state structure and FSMs are a natural way to describe
such a structure. The problem of testing from an FSM has thus received much atten-
tion. Moore’s [1956] seminal article proposed the conceptual framework for FSM-based
testing referring to a concept largely used by physicists, called gedanken experiments,
and Hennie [1964] enunciated the fundamental principles of transition checking. The
work was initially mainly motivated by automata theory and sequential circuit test-
ing but later was found to be relevant to the conformance testing of communication
protocols [Lee and Yannakakis 1996]. More recently FSM-based techniques have been
applied in model-based testing [Grieskamp et al. 2002; Farchi et al. 2002].

FSMs define a relatively poor language in terms of expressiveness and abstraction
techniques. However, the lack of expressiveness introduces some significant advan-
tages when analyzing FSMs. Many problems that are uncomputable for more general
languages are computable for FSMs and are often computable in low-order polynomial
time. This facilitates automating test sequence generation.

Many approaches for testing from an FSM rely on either a test hypothesis [Gaudel
1995] or a fault model [ITU-T 1997]. In both cases a test set might have the property
that, under the assumptions made, the test set is guaranteed to determine correctness.
Usually the test hypothesis, or fault model, places a bound on the number of states of
the SUT.

When testing based on an FSM F, we typically assume that the SUT is equivalent
to an unknown FSM I (the minimum hypothesis) and that a test set is supplied in
order to check whether I conforms to F. If F is deterministic then I conforms to F if
it is equivalent to F. If F is nondeterministic then there are alternative notions of I
conforming to F including F and I being equivalent, I being a reduction of F, or F being
quasiequivalent2 to I. FSM-based testing methods have been discussed in a number of
textbooks [Gill 1962; Kohavi 1978] and summarized in some survey articles [Lee and
Yannakakis 1996; von Bochmann and Petrenko 1994; Petrenko 2001; Sidhu and Leung
1989].

FSM-based techniques are based on definitions of conformance that are described in
terms of the language defined by the corresponding FA. They thus only consider the
traces observed; more general conformance relations exist when testing from a process
algebra specification and these are discussed in Section 6.

A simple example from Fujiwara et al. [1991] is shown in Figure 9. Here
F = (S, X, Y, h, s0) is an FSM specification in which S = {s0, s1, s2} is the set of states,

2Under quasiequivalence, if a specification F is partially defined then we need only consider the behavior of
SUT I for input sequences on which the behavior of F is defined [Petrenko 1991].
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Fig. 9. The FSM F.

X = {a, b, c} is the set of input symbols, Y = {e, f } is the set of output symbols, and
the behavior function is h(s0, a) = {(s1, e)}, h(s0, b) = {(s1, f )}, h(s0, c) = {(s2, e)},
h(s1, a) = {(s0, f )}, h(s1, b) = {(s2, f )}, h(s1, c) = {(s1, f )}, h(s2, a) = {(s2, f )},
h(s2, b) = {(s0, e)}, h(s2, c) = {(s0, e)}. It is clear that F is completely specified
(DF = S × X) and deterministic.

5.2. Test Criteria

Typical testing strategies aim to detect output faults, that is, transitions producing the
wrong output, and state transfer faults, that is, transitions going to incorrect states of
the SUT I. The test set, usually called a test suite, is built from the specification model F.

In testing we often wish to determine whether actions corrupt the internal state.
In order to achieve this, we need to apply further operations on the system that dis-
tinguish the expected internal state from (incorrect) alternatives. Two states s, t ∈ S
are distinguished by the input sequence x if h2(s, x) ∩ h2(t, x) = ∅. In the example, b
distinguishes s2 from both s0 and s1. The notion of an input sequence distinguishing
two states has been extended to the use of a set of input sequences or an adaptive
experiment [Petrenko et al. 1996].

In testing from a deterministic FSM (DFSM), we often use one of the following ap-
proaches in order to check the internal state:

(1) A set W of input sequences is called a characterization set if for every pair of distinct
states s, t ∈ S there is an input sequence w ∈ W such that λ(s, w) �= λ(t, w). It is
straightforward to show that {〈a〉, 〈b〉} is a characterization set for F.

(2) A distinguishing (D-) sequence of F is an input sequence D for which λ(s, D) �=
λ(t, D), for every pair s, t ∈ S, s �= t. The sequence 〈a, a〉 forms a D-sequence for F.

(3) A unique input output (UIO-) sequence for a state s ∈ S of FSM M is an input/output
sequence x/y such that x/y can be observed from s and from no other state of M:
y = λ(s, x) �= λ(t, x), for any t ∈ S \ {s}. Since 〈a, a〉 is a D-sequence for F, the
corresponding input/output sequences are UIOs for the states of F. For example,
〈a/e, a/f 〉 is a UIO for s0. However, there are shorter UIOs, such as the UIO 〈b/e〉
for s2.

An FSM F is minimal if no FSM with fewer states is equivalent to F. Any minimal
FSM has a characterization set. Not every minimal DFSM has a D-sequence or UIO-
sequences. FSM F is strongly connected if for each ordered pair of states (s, t) there
exists an input sequence that takes F from s to t.

If F is a DFSM then a set Q of input sequences is a state cover of F if Q contains
the empty sequence and for each state s ∈ S there is xs ∈ Q such that s = δ(s0, xs). A
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set P of input sequences is a transition cover of F if for each transition π = (s, a/b, t)
there are sequences p, pa ∈ P such that s = δ(s0, p). These notions may be extended to
nondeterministic FSMs: rather than insist that every state is reached by an element
of Q, we instead insist that every deterministically reachable state3 is reached by a
sequence in Q.

The set of sequences of transitions emerging from s ∈ S is denoted by Tr(s) and the
input sequences by Tr(s)in. A partial nondeterministic FSM is reduced if, for any distinct
states si, sj ∈ S, i �= j, it follows that Tr(si) �= Tr(sj). For more details concerning these
concepts see, for example, von Bochmann and Petrenko [1994], Fujiwara et al. [1991],
Gill [1962], Lee and Yannakakis [1996], Luo et al. [1994a], and Sabnani and Dahbura
[1998].

5.3. Test Generation

5.3.1. Completely Specified, Deterministic FSMs. First we consider the case of determin-
istic, minimal, and completely specified FSMs. Here the conformance relation between
F and I is equivalence (F is equivalent to I if and only if they produce the same output
sequence for every input sequence).

The transition tour (TT) method [Naito and Tsunoyama 1981] produces a test suite
that executes all transitions of the specification. From the example in Figure 9 we
might produce the following test sequence: 〈a/e, c/f , a/f , b/f , b/f , a/f , c/e, c/e, b/e〉. This
method only attempts to find output faults and can be seen as being based on the test
hypothesis that each transition of I has the expected final state. A variant of TT with
even lower fault detection, called the modified T method [Sato et al. 1989] covers all
states, but not necessarily all transitions. Both methods make no attempt to find state
transfer faults.

The D-method [Gonenc 1970; Hennie 1964; Kohavi 1978] relies on the existence
of a distinguishing sequence D and is based on the test hypothesis that I contains
no more states that F. The method checks whether all the states of the specification
si, 0 ≤ i ≤ n − 1 are correctly implemented by the SUT using a sequence Dτ (t0, s1)D
· · · τ (tn−1, s0)D, where ti = δ(si, D), 0 ≤ i ≤ n − 1, and, for s, t ∈ S, τ (s, t) denotes an
input sequence that takes the machine from state s to t. In order to check a transition
π = (s, a/b, t) when the machine is in state s′, a sequence τ (s′, s′′)Dτ (t′′, s)aD is used
that transfers the machine to the intermediary state s′′ that is verified and then τ (t′′, s)
takes the machine from t′′ to s and finally with the input a the transition π is tested
and its final state verified. The D-method checks all the transitions for both output and
transfer faults. Efficient ways of minimizing the test suite have been proposed [Hierons
and Ural 2006; Ural et al. 1997].

The transition checking approach introduced by Hennie [1964] has been adapted
using the simple I/O sequences [Hsieh 1971], which then has become known as UIO
sequences [Sabnani and Dahbura 1998], and the method called the UIO-method. These
methods assume that I has no more states than F and there is a reset that brings I
from every state to the initial state. For every transition from s to s′ accepting input a,
we use a test sequence τ (s0, s)aUIOs′ , where UIOs′ is the UIO sequence for s′. Consider,
for example, a test for the transition t = (s1, b/f , s2) from the example. Since t has final
state s2, and this state has UIO 〈b/e〉, the test sequence 〈a/e, b/f , b/e〉 is produced. A test
suite is obtained by concatenating, for each transition, the transition’s test sequence
prefixed with the reset transition [Sabnani and Dahbura 1998].

3A state s is deterministically reachable if and only if there is some input sequence x such that the input of
x when the FSM is in its initial state must lead to s being reached.
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There are a number of problems associated with the use of a reset, including the
fact that the reset may be difficult to realize [Broekman and Notenboom 2003; Hi-
erons 2004a; Yao et al. 1993]. Another approach, which does not rely on reset transi-
tions but assumes that I has no more states than F, builds the test suite as an op-
timal path that contains test segments for all transitions [Aho et al. 1988]. A test
segment from a transition t leaving state s is a test sequence for t without the prefix
that reaches state s. These test segments may be combined, possibly by including addi-
tional transitions, to produce a single test sequence. Further optimizations are obtained
in the case of overlapping test sequences [Yang and Ural 1990; Miller and Paul 1993;
Hierons 1997a]

The above versions of the UIO-method do not check that the UIOs identify the states
of I. They can thus be seen as being based on the test hypotheses that I has no more
states than F and that the UIOs used identify the states of I. If we instead use the test
hypothesis that I has no more states than F then the resultant test does not guarantee
to reveal all faults [Chan et al. 1989]. Similar to the D-method, an additional step
can be included in order to verify the states when reset transitions are present [Chan
et al. 1989](UIOv-method) or not [Yao et al. 1993] (UIOG-method). In each case the
resultant test sequence is guaranteed to determine correctness as long as the test
hypothesis holds. Even though both the D-sequence and UIO-sequences do not have a
polynomial upper bound [Lee and Yannakakis 1994], for many applications the FSMs
used do have short UIO-sequences for all states [Sabnani and Dahbura 1998] and
therefore the class of FSMs having UIO sequences has received much attention for test
generation.

The D-method and UIO-method assume that the SUT has no more states than the
specification FSM. Where this assumption might not hold, the W-method can be used.
The W-method relies on a test suite Z provided by Z = Q({ε} ∪ X ∪ · · · Xm−n+1)W, where
Q is a state cover, ε is the empty string, m represents an upper bound on the number
of states of the SUT, and W is a characterization set [Chow 1978; Vasilevskii 1973].
This method, which assumes that a reset transition is present and correctly imple-
mented, has full fault coverage relative to the assumption that the number of states of
the SUT does not exceed m. Consider the following example, state cover Q = {ε, 〈a〉, 〈c〉}
and characterization set W = {〈a〉, 〈b〉}. Assuming that the implementation has no
more than four states, we get the following test suite: {ε, 〈a〉, 〈c〉}({ε} ∪ {〈a〉, 〈b〉, 〈c〉} ∪
{〈a〉, 〈b〉, 〈c〉}{〈a〉, 〈b〉, 〈c〉}){〈a〉, 〈b〉}. Shorter test suites can often be obtained by using
sets of prefixes of sequences from W for the identification of the final states of the
transitions that do not appear in the state cover set (Wp-method) [Fujiwara et al.
1991].

The literature on testing from a DFSM discusses fault models rather than test hy-
potheses. However, these are similar concepts and almost all of the techniques for
generating a test suite from a DFSM use a combination of some of the following test
hypotheses:

(1) There are no state transfer faults.

(2) The sequences generated for checking the states of F are also effective in checking
the states of I.

(3) I has no more states than F.

(4) I has no more than m states for a given integer m.

(5) There is a reset operation that is known to take I back to its initial state irrespective
of the current state.
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5.3.2. Partial FSMs. Many real specifications are partial: they do not cover all possi-
ble state-input combinations in the FSM specification [Sidhu and Leung 1989]. Con-
sequently a partially defined FSM is used instead. Due to various interpretations of
the missing transitions, called undefined transitions, noncore, or don’t care, different
semantics have been considered [von Bochmann and Petrenko 1994]. These transitions
may be considered implicitly defined, which means that either they are substituted by
looping transitions with null outputs or with transitions going to an error state and
yielding an error output. In this way a complete FSM specification is obtained and
any of the testing strategies presented above may be applied. Another view on these
transitions considers them to be forbidden transitions; these are never executed by the
implementation. In this case the test suite must either avoid these transitions or check
that the transitions cannot be executed.

5.3.3. Nondeterministic FSMs. An NFSM can be nondeterministic for one or more of the
following reasons [Cavalli et al. 1996]. First, for a state s and input x there may be two
or more transitions from s with input x where all of these transitions have the same
output. Second, for a state s and input x, there may be two or more transitions from s
with input x where these transitions have different output. If the only nondeterminism
is of the first type then it can be transformed out. However, if the second type is present
then the NFSM is not equivalent to any DFSM [Cavalli et al. 1996]. A third source of
nondeterminism is internal transitions that have no input; if all the internal actions
from a state have the same output then it is equivalent to the first case and otherwise
it is equivalent to the second case [Cavalli et al. 1996].

Nondeterminism can arise in the specification for several reasons. First, it can rep-
resent nondeterminism that is required in the SUT I, in which case I conforms to F if it
is equivalent to F. Alternatively, nondeterminism can represent options. In this case it
is sufficient that all of the behaviors in I are contained in F; I is a reduction of F. More
general notions of conformance have been considered for process algebra specifications
and these are discussed in Section 6.

Nondeterminism introduces some additional issues: (a) observability of every possible
response of the SUT associated with a particular input sequence and (b) the existence
of nonequivalent states where for every input sequence there is some common output
sequence that can be observed from both states with this input sequence [Luo et al.
1994b]. In order to address the first problem, a fairness assumption (test hypothesis)
is often made, called the complete testing assumption [Luo et al. 1994b], which says
that there is some integer α such that if an input sequence x has been applied α times
from some state s ∈ S then it is guaranteed that every output sequence associated
with s and x has been observed. Naturally the fairness assumption holds if the SUT is
deterministic but it is not clear how it can otherwise be justified. The second problem
led to the concept of an observable NFSM (ONFSM). An NFSM is observable if for any
state s ∈ S, input a ∈ X, (s, a) ∈ DA, and output b ∈ Y there is at most one state t ∈ S
such that (t, b) ∈ h(s, a). Every NFSM can be rewritten to an equivalent ONFSM but
this rewriting can lead to a combinatorial explosion.

Various testing strategies have been devised for different types of FSMs representing
the SUT I and utilizing different notions of conformance [Petrenko 2001]. When the
specification is a minimal ONFSM, the implementation is an FSM with at most a
given number of states and we are testing for equivalence, a test suite based on the
Wp-method may be produced [Luo et al. 1994b]. When the implementation is an FSM
with a known upper bound on the number of its states, and the reduction relationship
is used, then a test suite can be built [Yevtushenko et al. 1991; Petrenko et al. 1994;
Hierons 2004b]. This test suite is guaranteed to determine correctness under these test
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hypotheses. Note that, where the SUT is known to be deterministic, the test suite may
be further reduced [Petrenko et al. 1996].

5.3.4. Communicating FSMs. Many systems may be more naturally and simply mod-
eled by a set of FSMs rather than a single FSM. The FSMs that may communicate and
cooperate in this way are called communicating FSMs (CFSMs). The communication
is supported by queues and channels. A model consisting of CFSMs contains a number
of CFSMs F1, . . . , Fp [Luo et al. 1994b] such that

(1) each Fi consists of an FSM plus an input first-in and first-out (FIFO) queue where
input symbols coming through the channels or from the environment are stored; Fi
consumes inputs only from that queue;

(2) between each pair Fi, Fj there are two FIFO channels, each for one direction; and

(3) if Fi and Fj can communicate through a channel between them, then a symbol sent
through this channel enters the input queue in the other machine.

A system of CFSMs can sometimes be transformed into an equivalent FSM by using
exhaustive reachability analysis [Luo et al. 1994b]. This is possible when all queues
and channels have finite lengths. When inputs from the environment can be sent to the
system only if all the queues and channels are empty (the slow environment assumption)
[Luo et al. 1994b], then the resulting FSM has up to n1 · · · np states, where ni is the
number of states of Fi. In order to avoid the combinatorial state explosion, some methods
aim to test the transitions of the individual components [Hierons 2001]. The CFSM
model is also used as a framework for testing an FSM in context [Petrenko 2001].

An alternative approach, which does not require the CFSMs to be expanded, is called
the Hit-or-Jump algorithm [Cavalli et al. 1999]. This algorithm aims to produce a test
sequence that executes every transition of an SUT A that is operating in a context
defined by another machine C. This algorithm is iterative, terminating when the se-
quence contains every transition of A. At each stage the algorithm applies a search,
with bounded depth, for a sequence that executes a transition of A that has not yet
been covered. If such a sequence is found then this is a “hit” the sequence is added
to the current test sequence and the search repeats. If a sequence is not found then
a randomly generated sequence, a “jump” is added to the current sequence and the
process is repeated.

5.3.5. Extended FSMs. Many finite-state-based specifications are actually extended
FSMs (EFSMs). An EFSM is an FSM extended with input and output parameters,
context variables, operations, and predicates, defined over context variables and input
parameters [Petrenko et al. 1999]. It is possible to apply a uniformity hypothesis to the
data and generate a set of test sequences from the FSM produced by abstracting out
the data from the EFSM. This can be seen as testing the control structure of the SUT.
However, the paths chosen need not be feasible in the EFSM. Recent work has shown
how the feasible path problem can be overcome for EFSMs in which all operations and
guards are linear [Uyar and Duale 1999; Duale and Uyar 2004].

If we do not apply this uniformity hypothesis then testing an EFSM means testing
both components of it: the control portion and the data portion [Petrenko et al. 2004;
Ural et al. 2000]. These two parts may be seen as being distinct elements that are
independently tested: the FSM-based methods may be applied for the control part and
data flow testing methods are used for the data part [Ural et al. 2000]. Alternatively,
sometimes an EFSM can be transformed into an equivalent FSM [Petrenko et al. 1999].
These methods often run into the well-known state explosion problem [Lee and Yan-
nakakis 1996]; in some cases there are more effective methods [Petrenko et al. 1999].
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In the context of X-machines, which are a way of describing EFSMs [Eilenberg 1974],
a set of test hypotheses have been proposed. These test hypotheses, also called design
for test conditions, significantly simplify the test generation problem and eliminate
the feasible path and state explosion problems [Holcombe and Ipate 1998; Ipate and
Holcombe 1997, 2000; Hierons and Harman 2000, 2004; Balanescu et al. 1999]. They
eliminate the feasible path problem by requiring that all paths be feasible, potentially
achieving this by adding unique inputs to trigger the transitions.

The techniques described above all aim to produce a test sequence that in some sense
covers the specification EFSM. However, they can suffer from the state explosion prob-
lem and the feasible path problem unless strong restrictions are applied. An alternative
approach has been proposed in which a set of test purposes is produced and for each test
purpose we generate a test case that satisfies the test purpose. A test purpose is a de-
scription of the requirement for a test, such as executing a particular transition or some
sequence of transitions. A test purpose can be represented by a finite state automaton
and a test case then automatically generated by applying reachability analysis to the
product of the test purpose and the specification. While this reachability analysis can
suffer from the state explosion problem, it has been found that tools such as TVEDA
that apply an on-the-fly approach are often effective in practice [Kerbrat et al. 1999;
Jard and Jéron 2005]. Typically the test purposes are provided by the tester but they
can be generated automatically from an EFSM specification for a given test criterion
such as executing all transitions [Kerbrat et al. 1999]. An alternative, more restricted,
type of test purpose is a required sequence of interactions which can be described as a
message sequence chart (MSC). There are tools such as AUTOLINK that apply reacha-
bility analysis to the product of the specification and an MSC in order to produce a test
sequence [Schmitt et al. 1998].

Some attempts have been made to convert specifications made in the context of
other formal models into FSM equivalent descriptions in order to use testing methods
based on FSMs. This includes methods for converting variants of Z [Dick and Faivre
1993; Derrick and Boiten 1999; Hierons 1997b], Statecharts [Bogdanov 2000; Hierons
et al. 2001], and SDL [von Bochmann et al. 1997] specifications into equivalent FSMs
models.

5.4. Case Studies and Tools

5.4.1. Applying Graph-Based Methods to Protocols. Sidhu and Leung [1989] reported on
experiments in which they applied four standard test techniques: the TT-method, the
D-method, the UIO-method, and the W-method. They performed experiments using two
FSMs, one of which was a small FSM they created while the second was a transport
protocol. For each FSM they randomly generated a large number of faulty FSMs and
evaluated the techniques by applying the corresponding test sequences to these faulty
machines. They found that the test sequence generated using the TT-method missed
some faulty machines while the test sequences generated using the other methods found
all faulty machines. However, these experiments only considered two small FSMs: one
with five states, the other with 15 states. The strength of this study is the large number
of faulty machines generated: a total of 10 million for the FSM with five states and
100, 000 for the FSM with 15 states.

Test sequence generation, using UIOs, has been represented as a digraph optimiza-
tion problem [Aho et al. 1988]. The authors reported on their experience of using this
approach at AT&T Bell Laboratories. They stated that practical experience showed a
reduction, of test sequence length, of at least a factor of 3. However, they did not report
details regarding the systems tested in this way or state what impact this had on test
effectiveness.
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5.4.2. A Protocol for Military Mobile Radios. Uyar et al. [2003] described a recent appli-
cation of UIOs and digraph optimization algorithms to a protocol for military mobile
radios [MIL-STD 188-220B 1998]. The protocol was specified using in the order of 20,000
lines of the formal specification language Estelle [ISO 1989b] and was effectively in the
form of a set of communicating EFSMs with timers.

Test sequences were automatically generated in the following manner. The EFSMs
were rewritten (by a tool) into a form in which every path is feasible. While the problem
of deciding whether a path is feasible is generally uncomputable, the authors restricted
their approach to cases where operations and guards are linear. The rewriting avoided
the state explosion problem that occurs when EFSMs are rewritten to form FSMs.
The digraph optimization algorithm of Aho et al. [1988] was applied to the expanded
EFSMs, using the rcpt tool, in the knowledge that the resultant paths were guaran-
teed to be feasible. This process resulted in in the order of 10,000 tests. The authors
found that these tests gave in excess of a 200% increase in the number of transitions
covered in testing. They also reported that the tests are being applied in practice and
have uncovered real faults.

5.4.3. An Intelligent Network Service. The Hit-or-Jump method was evaluated on an In-
telligent Network service [Cavalli et al. 1999]. This system was specified in about 3,000
lines of SDL. The authors reported that the Hit-or-Jump approach implemented in
the TESTGEN-SDL tool covered all of the transitions of the component of interest
using a test sequence of length 150 while a random walk required a test sequence
of length 1402. The approach was not directly compared with those that produce the
entire state space using reachability analysis. Instead, an attempt was made to gen-
erate this state space but this was terminated at a point when there were over two
million transitions and over half a million states. The authors observed that by termi-
nating at this point they had covered less than 50% of the transitions of the individual
components.

5.4.4. Pocket PC Applications. El-Far et al. [2001] described the application of a model-
based testing approach, based on FSMs, to several Pocket PC applications supplied
by Microsoft. In order to produce FSMs, they had to apply some restrictions, such as
putting an upper bound on the number of messages in an Inbox application. They
reported that when they applied this automated testing approach to a system near
release they found some real faults. However, they did not say which test sequence
generation techniques were applied, stating that this was confidential. They also made
no attempt to compare the results with other techniques.

5.4.5. AGEDIS Case Studies. Automated Generation and Execution of Test Suites in
Distributed Component-based Software (AGEDIS) was a 3-year project that inves-
tigated the use of model-based testing. This used the specification language of the
GOTCHA tool [Benjamin et al. 1999] which is based on finite automata (using an im-
perative programming language). GOTCHA generates test sequences to provide cover-
age of a specification’s states and transitions. A related approach has been developed
by researchers at Microsoft who produced a tool that generates an FSM from an Ab-
stract State Machine Language (AsmL) specification and generates test sequences on
the basis of this [Barnett et al. 2003].

Craggs et al. [2003] reported on five case studies performed within the AGEDIS
project; all used real industrial systems provided by partners. Two of the case studies
were carried out in the early stages of AGEDIS and before any tools had been devel-
oped. The three other projects used AGEDIS tools. The AGEDIS tools use the AGEDIS

ACM Computing Surveys, Vol. 41, No. 2, Article 9, Publication date: February 2009.



P1: IAZ

CSUR102-09 ACM-CSUR January 21, 2009 21:34

9:34 R. Hierons et al.

Modelling Language (AML), which is similar to UML. Test generation used reachability
analysis based on a model and a test purpose.

A number of interesting observations were made and we describe two of these here.
When testing part of a Transit Computerization Project, it was found that the size of
the SDL requirements specification made automated test sequence generation difficult.
A model produced in the GOTCHA tool for the purpose of testing was much simpler:
it has 57 states and 137 transitions in contrast to the 500, 000 states and 800, 000
transitions produced from the SDL specification. Thus, a model produced for the pur-
pose of supporting testing was found (in testing) to be more useful than the require-
ments specification. However, no results were published regarding the effectiveness of
the test sequences. When considering a nondeterministic model, for a publish-subscribe
system, it was found that it was helpful if the test suites were not preset: they were
implemented using a tool that determines which input to apply next on the basis of
the previous input/output values.

5.4.6. A Network Controller: Media Oriented Systems Transport (MOST). Pretschner et al.
[2005] investigated the effectiveness of model-based testing. They applied manual and
automated test generation, in each case with or without a model. The system con-
sidered was a network controller, Media Oriented Systems Transport (MOST), for an
infotainment network used within automotive industries [MOST Cooperation 2002].
This was modeled as a set of 12 communicating EFSMs. The authors stated that
when implemented this model corresponded to about 12,300 lines of C (not counting
comments).

For model-based testing, the AUTOFOUS tool [Huber et al. 1997] was used in order
to produce the model and constraint logic programming was used to generate test cases
from the model and test specifications. The authors found that the process of producing
a formal model identified problems with the requirements. The tests produced on the
basis of a model were found to be more effective than those produced without a model:
they found more errors. Interestingly, the key difference found was in the number of
requirement errors found: the tests produced with or without a model found a similar
number of faults caused by programming errors but the tests produced from a model
found more faults caused by errors in the requirements. This was in addition to issues
discovered in building the model. The tests produced from a model using automated
and manual approached were equally effective when the test size was fixed. More errors
were found when automated test generation was used to produce a larger test set (an
extra 11% with a test set of six times the size). The results thus suggest that separate
value is provided by both the use of a model as the basis for test generation and by
larger test sets but not by automated test generation on its own.

5.4.7. Generating Tests from Test Purposes. There are tools such as TVEDA that aim
to produce test cases that satisfy given test purposes (see, e.g., Kerbrat et al. [1999]).
Typically the test purposes are provided by the tester but it has been observed that these
can be generated automatically [Kerbrat et al. 1999]). An alternative, more restricted,
type of test purpose is a required sequence of interactions which can be described as a
message sequence chart (MSC). There are tools such as AUTOLINK that automatically
produce test cases from an EFSM model on the basis of an MSC (see, e.g., Schmitt et al.
[1998]).

5.5. Summary

This section has reviewed the literature on testing software on the basis of an FSM
model or specification. This is an area that has received much attention and that
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contains many relevant results. The interest has been motivated by the widespread
use of state-based specifications and in particular their use in specifying communica-
tions protocols. More recently, FSMs have been used in model-based testing.

Most work in the area of testing from finite state-based models does not discuss test
hypotheses but instead considers fault models. However, fault models are an extremely
similar concept: like test hypotheses, they postulate restrictions on the behavior of the
SUT and are used to drive test generation. In fact, some of the standard assumptions
made in FSM-based testing are similar to the test hypotheses of Gaudel [1995]. For
example, the assumption when testing from an FSM with n states that the SUT behaves
like an unknown FSM with at most m states can be seen as a regularity hypothesis: if
this holds and the SUT is faulty then there exists an input sequence of length at most
m + n − 1 that leads to a failure. When testing from an EFSM, it is common to apply a
uniformity hypothesis on the data.

The lack of expressiveness of FSMs but their suitability for automated test sequence
generation has led to situations in which developers and testers write specification or
models in more expressive languages and a tool converts these into FSMs that then
act as the basis for test sequence generation. While this seems to provide the bene-
fits of both expressive languages and automated test sequence generation, a number
of challenges remain. For many systems we cannot simply produce an FSM by tak-
ing all combinations of values for internal variables and all states: this may lead to
an infinite state space and even if the state space is finite it is likely to be extremely
large. If we apply an abstraction then we have two issues to consider. First, this may
abstract out information that could help us in testing. Second, the abstraction could
lead to a model in which there are paths that are feasible and so could be chosen
in test sequence generation, but do not correspond to feasible paths in the original
model. There has been some work on rewriting an EFSM in order to eliminate this
feasible path problem but this work either assumes that all operations and predicates
are linear [Uyar and Duale 1999; Duale and Uyar 2004] or it places restrictions on
the structure of the EFSM and potentially requires theorem proving or constraint
satisfaction techniques [Hierons et al. 2004]. Naturally, the general problem is not
computable.

New challenges are likely to result from current trends, toward systems that are
highly distributed and possibly include mobile components. If we consider the state
space of a system composed of a set of distributed components, we get a combinatorial
explosion. Thus, for such systems, our analysis is likely to be at least exponential in the
worst case. If we wish to test such systems, we need ways of overcoming this problem.
One possibility might be to identify common classes of system for which the required
analysis is tractable. Potentially we might also take advantage of approaches such as
partial order reduction that are used in model checking to overcome such problems
[Clarke et al. 1999]. Of course, in testing we have the additional problem that we want
these properties to hold in the SUT as well as our model.

6. TESTING FROM PROCESS ALGEBRA SPECIFICATIONS

6.1. Introduction

Process algebras, such as LOTOS [ISO 1989a], CCS [Milner 1989], and CSP [Hoare
1985], provide an elegant formalism that focuses on the communication between enti-
ties. Since labeled transition systems (LTSs) are often used to describe the semantics
of process algebras, this section discusses the problem of testing on the basis of labeled
transition systems. Indeed, LTSs themselves form a suitable basis for modeling the
behavior of processes and components, particularly where issues of concurrency arise.
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Fig. 10. Test cases t1 and t2.

Fig. 11. Nonequivalent agents p1 and p2.

6.2. Test Cases with State-Based Verdicts

In an LTS context, testing is seen as the interaction between an agent representing
the SUT and an agent representing the test case. A test case is thus an LTS in which
different sequences of interactions lead to different verdicts. There are two standard
verdicts for a test run: pass (the SUT has passed the test run) and fail (an erroneous
behavior has been observed and so the SUT is known to be faulty). The verdict in-
conclusive has also been considered [Brinksma 1988]: while the behavior observed is
consistent with the specification, the SUT is not deemed to have passed the test. Typ-
ically this corresponds to the test objective not being achieved due to nondeterminism
in the specification and possibly the SUT.

A test case is a labeled transition system with a mapping v from states to verdicts.
Suppose test case t and the SUT p are executed together and they deadlock with t in
state s. Then the result of this test run is the verdict v(s). The SUT fails a test case if
one or more test runs lead to the verdict fail. It passes the test if and only if all possible
test runs lead to the verdict pass.

Consider the test cases t1 and t2 given in Figure 10. t1 involves the action shil fol-
lowed by the action choc. Here, the implementation passes the execution with t1 if it
does not deadlock until both actions have occurred; otherwise it fails. In contrast, the
implementation only fails t2 if it either fails to allow action shil or, having allowed shil,
it does not allow either liq or choc. Thus, the agent p2 shown in Figure 11 may fail t1

but pass t2.
Given a test case, there may be many possible test runs. For example, p2 may either

pass or fail a single use of t1 since, after the action shil, p2 either moves to a state that
only allows liq (and then fails the test) or moves to a state that only allows choc (and
then passes the test run). Thus, even if a test run returns the verdict pass, there is
no guarantee that the test case will produce pass for all test runs. Thus, a test case
may have to be executed many times in order to guarantee that the lack of an observed
failure means that the SUT passes the test, possibly an infinite number of times. If
some fairness assumption is made then we may feel that it is sufficient to apply a test
case some predetermined number of times and this can be seen as a test hypothesis.
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A set of test cases forms a test suite. The following are clearly desirable properties of
a test suite.

Definition 2. (1) A test suite is sound if from an implementation failing some test
case from this suite it is possible to deduce that the implementation is faulty.

(2) A test suite is complete if from an implementation passing every test case from
this suite it is possible to deduce that the implementation is correct.

There are a number of algorithms for defining sound and complete test suites
[Brinksma et al. 1998; Leduc 1991; Phalippou 1994; Tretmans 1996; Wezeman 1989].
Typically these algorithms show how one can generate sound test cases and have the
property that if the SUT passes all possible resultant test cases then it must be cor-
rect. Unfortunately, since fault models and test hypotheses are not used in order to
restrict the possible behaviors of the SUT, the set of all possible test cases need not be
finite. Naturally, different algorithms are required with different implementation re-
lations. Some alternative implementation relations are given in Section 6.3 and some
test generation algorithms are described in Section 6.4.

6.3. Implementation Relations

Implementation relations, conformance, and testing are closely intertwined, since a
test suite is used to determine whether an implementation conforms to a specifica-
tion. Different implementation relations arise due to different testing scenarios, and in
particular, the observations a test case can make of the SUT.

Different testing architectures gives rise to different interactions between the SUT
p and the test case t. Initially we consider the simplest case of p and t communicating
by synchronous interaction, that is, p can perform an event a if and only if t performs
the same event a. We denote this synchronous communication by ||; thus we consider
testing scenarios based upon the behavior of p || t.

The observations made of p by t are related to the notion of implementation rela-
tions in the following manner: the observations of the implementation must be consis-
tent with those of the specification. Thus, for an implementation I, specification S, if
runs(t, I) denotes the observations made by testing I with test case t, we can define an
implementation relation ≤R by

I ≤R S iff ∀ t ∈ LTS : runs(t, I) ⊆ runs(t, S).

Varying the power of the observations gives rise to different implementation relations.
We now describe some of the implementation relations, though it should be noted that
we do not cover all implementation relations discussed in the literature including some
recent extensions with probabilities (see, e.g., López and Núñez [2004]).

6.3.1. Trace Preorder. The simplest implementation relation is the trace preorder ≤tr,
which is similar to the notion of conformance used with FSMs.

Definition 3. If p and s are labeled transition systems with the same set of labels
then p ≤tr s if and only if traces(p) ⊆ traces(s).

For example, it is straightforward to see that the agents in Figure 11 (a copy of
Figure 3) are related by p2 ≤tr p1.

6.3.2. Testing Preorder. A more discriminating implementation relation (and hence set
of tests) is given by the testing (or failure) preorder, denoted ≤te. This arises when we
consider observations given by the following definition.
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Fig. 12. A simple LTS.

Definition 4. Suppose the test case t and the system p have the same label set L
(i.e., same set of observable events). When testing p with t, the set obs(t, p) denotes the
traces that are capable of leading to deadlocks. That is, a trace σ is in obs(t, p) precisely
when p || t can perform σ but after it has done this no action can be observed (i.e., it
has deadlocked).

In a similar fashion, the set of observations, obs′(t, p), that t can make with respect
to p denotes the traces that are capable of being performed. That is, a trace σ is in
obs′(t, p) precisely when p || t can perform σ .

Thus the set obs(t, p) denotes the traces that are capable of leading to deadlocks,
while obs′(t, p) denotes the traces that may be observed.

For example, consider the process p given in Figure 12 (a copy of Figure 2) and the
test p2 given in Figure 11. It is possible for p || p2 to deadlock after either 〈shil, liq〉
or 〈shil, choc〉 and, so obs(p, p2) = {〈shil, liq〉, 〈shil, choc〉}. Further, it is clear that
obs′(p, p2) = {ε, 〈shil〉, 〈shil, liq〉, 〈shil, choc〉}.

The testing preorder is then defined via these notions of observation.

Definition 5. Given systems p and s with label set L, p ≤te s if and only if for every
test case t with label set L we have that obs(t, p) ⊆ obs(t, s) and obs′(t, p) ⊆ obs′(t, s).

Although the testing preorder is in some senses a natural notion of testing and im-
plementation for a concurrent system, it suffers from the disadvantage that it requires
quantification over all possible traces in checking the test cases, as opposed to all traces
from the specification.

6.3.3. The conf Relation. The implementation relation conf was introduced by
Brinksma to overcome this problem. The observations it relies on are similar to those
made by the testing preorder. However, it only requires one to check for consistency of
observations made with respect to what was in the original specification.

Definition 6. Given systems p and s with label set L, p conf s if and only if for every
test case t with label set L we have that obs(t, p) ∩ traces(s) ⊆ obs(t, s) and obs′(t, p) ∩
traces(s) ⊆ obs′(t, s).

Both requirements consider traces from the specification only. The first states that
whenever a test case t may deadlock, when interacting with the SUT p after trace
σ ∈ traces(s), then t may deadlock after trace σ when interacting with the specification
s.

Testing using the conf relation concerns checking whether the SUT does not have
unspecified deadlocks for traces in the specification. However, it does not check whether
the SUT has extra traces; thus it can allow additional functionality in the SUT. This
is not the case with the testing preorder: the testing preorder can thus be seen as the
combination of conf with the trace preorder, that is, ≤te=≤tr ∩ conf.

To illustrate the conf relation, consider a test case that first applies shil and then
applies choc. When combined with p2 this may deadlock after one action since p2 is
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Fig. 13. Process p3.

capable of moving to a state from which it cannot perform choc. However, when com-
bined with p1, this test case cannot deadlock until both actions have occurred. Thus
¬(p2 conf p1).

Now consider the process p3 given in Figure 13. It is clear that p3 conforms to p
under conf since p3 may be produced from p by simply adding a new action that is not
mentioned in the trace of p. In contrast, we have that p3 �≤te p since p3 may perform a
sequences of actions that p cannot: the trace 〈shil, mint〉.

6.3.4. The ioco Relation. The implementation relations described so far all see com-
munication as processes synchronizing on actions. However, processes may communi-
cate through message exchange: a process sends a message to other processes. Im-
portantly, testing usually involves communicating through messages being passed
between a tester and the SUT. Communication between the tester and the environ-
ment is asymmetric: the SUT cannot block input and the environment cannot block
output.

It is normal to call an LTS in which we differentiate between input and output an
input output transition system (IOTS): this is an LTS in which the set L of labels is
partitioned into the set LI of input and the set LO of outputs. It is usual for the name
of an input to start with ? and the name of an output to start with ! and thus a pro-
cess p sending the value a to process p′ is represented through a transition in p with
label !a ∈ LO and a transition in p′ with label ?a ∈ LI. By definition an IOTS is input-
enabled: for every state s and input ?a there must be a transition from s with label
?a. The inability of a process to produce either an output or perform an internal ac-
tion in state q is represented by adding a (quiescence) transition from q to q with label
δ [Tretmans 1996]. Testing requires the ability to observe the outputs and thus it is
necessary to be able to observe quiescence. While this is normally implemented using
a timeout, in general we cannot observe quiescence and so the ability to observe this
can be seen as a test hypothesis. An additional test hypothesis is that the specifica-
tion and implementation are input-enabled, since it must be possible to describe then
as IOTSs.

Given a process p and trace σ , p after σ represents the set of processes that can occur
after σ . Given a set P of processes, out(P) denotes the set of output events that processes
in P can produce. Note that this can include quiescence. The ioco relation adapts conf
in a manner that reflects this asymmetry between input and output [Brinksma et al.
1997].

Definition 7. Given systems p and s with label set L that has been partitioned into a
set LI of inputs and a set LO of outputs, p ioco s if and only if for every trace σ ∈ traces(s)
of s we have that the following holds:

out(p after σ ) ⊆ out(s after σ ).
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Fig. 14. Processes s, q1, and q2.

The intuition behind this has two elements: if p can produce output !x after σ ∈
traces(s) then s must also be able to produce !x after σ and if after σ the process
p can be in a state from which it cannot produce output (quiescence) then so can s.
Implementation choice is allowed where the response to an input in a state is not given
in the specification IOTS.

Consider the processes s, q1 and q2 from Tretmans [1996] given in Figure 14 (quies-
cence is not shown). Then q1 ioco s but not q2 ioco s since, after the button is pressed,
?but, q2 can produce output !choc but s cannot.

6.4. Test Generation

The literature contains a range of test generation algorithms for the differing imple-
mentation relations. Here we sketch an overview of two such algorithms for generating
a sound test suite: one for conf and one for ioco.

6.4.1. Test Generation for conf . We now describe a recursive test generation algorithm
for conf [Tretmans 1996] that at each stage is parameterized by a set A of actions. If s
cannot perform any actions from A, except possibly the unobservable event τ , the test
suite is the process stop that represents deadlock. Otherwise, for each action a from A,
a test case ta is produced. Let A = {a1, . . . , an}. Then the test suite generated is

(a1 → ta1
)�(a2 → ta2

)� · · · �(an → tan ).

Suppose that after a, s may be any one of s1, . . . , sm. Then ta is the test case for
(τ → s1)�(τ → s2)� · · · �(τ → sn).

It remains to say how the set A of actions for s may be determined. One possible choice
is to have A containing at least one element from the set of actions of each process s′
such that s may become s′ through internal actions only. If all possible tests that may
result from different choices for A are produced then the overall test suite is guaranteed
to be complete [Tretmans 1996].

Now consider the process p1 given in Figure 11 and the choice A = {shil}. We thus get a
test t1 = shil → t′1. After shil the process p1 is a process that can either perform choc and
then deadlock or perform liq and then deadlock: this is the process choc → stop�liq →
stop. Thus t′1 is the test produced for the process τ → (choc → stop�liq → stop). Thus
t′1 is choc → t′′1�liq → t′′1 where t′′1 is the test case for τ → stop. Thus t′1 = choc →
stop�liq → stop. The overall test for p1 is thus shil → (choc → stop�liq → stop).

If we apply the same process to p2 the key difference is that there are two possible
processes after shil. The final test t′2 produced from p2 is shil → (τ → choc → stop�τ →
liq → stop). Test cases t′1 and t′2, without verdicts, are shown in Figure 15.
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Fig. 15. Test cases t′
1

and t′
2
.

6.4.2. Test Generation for ioco. We now describe a test generation algorithm given in
Brinksma et al. [1997] that takes as input a subset F of the set traces(s) of s and
produces a test case for the implementation relation ioco. The aim is to test the output
of the SUT after traces in F . The test generation algorithm is nondeterministic but
each application of it produces a single test case which is deterministic: whenever an
input is to be applied in this test case, there is only one input that can be applied. Thus,
each state of the test case is either a pass state, a fail state, has one transition leaving
it with a label from LI, or has one transition leaving it for each element of LU plus a
transition with label θ representing observing quiescence.

The recursive algorithm works in the following way. At each stage the algorithm
nondeterministically chooses to either terminate, apply an input, or observe an output.
If the choice made is to terminate then the verdict is pass and no more inputs or
observations are required. The choice to apply an input can only be made if the set F
contains a trace in which the next action after the current trace is an input, in which
case such an input is applied. If the choice is to observe an output then the test case
encapsulates three situations:

(1) If an output that is not specified is provided and the trace observed until this point
is in F then return fail since this represents an erroneous behavior after an element
of F .

(2) If an output that is not specified is provided and the trace observed until this point
is not in F then return pass since we cannot observe an output after a trace in F
by continuing to test from this point.

(3) If the output is consistent with the specification then testing continues.

The test case produced in the above manner only returns fail if it leads to an unspec-
ified output after some trace in F . If for some F the SUT passes all test cases that can
be produced using this algorithm then the SUT must conform to s under the restriction
iocoF of ioco to F [Brinksma et al. 1997]. Naturally, we can set F to be the set of traces
of s.

6.5. Case Studies and Tools

Some of the main case studies in this area were produced in the Cote de Resyste project
in which the TorX tool was developed [Tretmans and Brinksma 2003]. TorX is a proto-
type test tool for the ioco implementation relation that operates in an on-the-fly man-
ner. There are two modes: random selection in the automatic mode and interactively
by the user in the manual mode. In automatic mode, at each step TorX determines
the set of events (inputs and outputs) that should be possible and randomly selects
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one of these: it thus randomly chooses to either apply an input or observe an output.
The TorX architecture includes a module (explorer) that analyzes the specification and
thus by introducing a new module it is possible to use TorX with a different specifica-
tion language. Explorers have been developed for several languages including LOTOS
and Promela, the language used by the SPIN model checker [Tretmans and Brinksma
2003].

The applicability of TorX was investigated through a small “chatbox protocol,” the
Conference Protocol, that sits on top of UDP. The stated intention was that this would
be relatively simple and yet also quite realistic. An implementation was developed and
27 mutants of this produced. Two of these mutants were intended to be equivalent
under the implementation relation used (ioco) while the others were intended to be
faulty. Testing using TorX found all faulty implementations using test runs of length
at most 500. The tool was also applied to the mutants that were intended to be correct
and test runs of length in excess of 450,000 were produced.

The project investigated the testing of part of a payment box that was intended to
work within an automated highway toll system. This system was designed to bill the
owners of vehicles that passed a toll gate and thus would have to deal with many
transactions in parallel. Additional complications were provided through the use of
encryption, which meant that the tool could not interact directly with the SUT. The
implementation studied had been tested in a traditional manner. The case study found
two faults. One of these faults was found when using a model checker to validate the
formal specification and the other was found through testing. The test runs applied
were of length up to 50,000, again showing that long test runs can be automatically
generated and applied. In addition, it was found that parallelism was not problem-
atic. However, while two faults were discovered several issues were raised by the case
study. In particular, the real-time nature of the SUT was found to be a problem since
the test tool was not always able to provide an input in the required time, leading to
timeouts.

A third case study was the Philips EasyLink Protocol for communications between
a television set and a video recorder. Here TorX was used to test an implementation of
the television side of the protocol. It was reported that some faults were detected even
though the implementation tested had passed through conventional testing, but these
faults were described as “nonfatal.”

The model checker FDR [Formal Systems (Europe) Ltd 1997] for CSP offers support
for implementation relations such as trace, failures, and failures-divergences refine-
ment. The Concurrency Workbench for the New Century (CWB-NC) [Cleaveland et al.
2000] allows the user to describe a concurrent system in a design language such as
CCS and analyze the behavior of the system with different methods such as equiva-
lence checking, preorder checking, model checking, and random simulation. Different
input languages can be used in the CWB-NC via use of the Process Algebra Compiler
(PAC) [Sims 1999].

In a similar vein is CADP (for Construction and Analysis of Distributed Processes, for-
merly known as CAESAR/ ALDEBARAN Development Package), which is a toolbox for
protocol engineering [Garavel and Hermanns 2002]. It is dedicated to the efficient com-
pilation, simulation, formal verification, and testing of descriptions written in LOTOS.
It accepts three different input formalisms: LOTOS; low-level protocol descriptions
specified as LTSs; and networks of communicating automata. In addition to support
for equivalence checking, model checking, simulation checking, etc., it has support for
the testing process via TGV [Fernandez et al. 1996], a tool for the generation of confor-
mance test suites based on verification technology. TGV takes as entries a description
of a protocol’s behavior and a test purpose, which selects the subset of the protocol’s
behavior to be tested. It produces test suites, which are used to assess the conformance
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of a protocol implementation with respect to the formal specification of the protocol.
The generation of test sequences in TGV is achieved using on-the-fly state-space explo-
ration. Traditionally, a test purpose is defined using an automaton forming a tree-like
structure of states and transitions. However, loops are now allowed (see, e.g., [Jard and
Jéron 2005]).

A number of tools use a common test derivation engine with support for input in dif-
ferent formats. For example, TestComposer [Kerbrat et al. 1999] uses TGV and allows,
among other things, specifications written in MSC.

6.6. Summary

This section briefly reviewed material on process algebras, their underlying semantic
model (labeled transition systems), and methods for generating tests from a labeled
transition system (LTS) specification. The literature on testing from an LTS is quite
different from that found for many other formalisms in that it focuses on the different
types of communication and thus observation that might occur. This has resulted in a
range of implementation relations and corresponding test suite generation algorithms.

Process algebras and FSMs are similar in that they model or specify a system through
a set of states and transitions between these states. Process algebras are the more
expressive, especially when dealing with nondeterminism, and the implementation
relations relate to the ability of the tester to make observations. An interesting research
question is whether such implementation relations can be effectively translated to the
area of testing from an FSM with a fault model.

Test hypotheses and fault models have played a relatively small role in the litera-
ture on testing from a process algebra. There is the usual minimum hypothesis, that
the SUT can be modeled using the same formalism. In addition, when using the ioco
implementation relation it is necessary to be able to observe the failure of the SUT
to produce an output (quiescence) and the implementation must be input-enabled
and these can be seen as a test hypotheses. In contrast to the work on testing from
FSMs, there do not exist standard fault models and the development of such models
could be a topic for future research. The lack of such fault models has led to most test
generation algorithms being nondeterministic.

The research on testing from a process algebra specification has largely focused on
testing from an LTS. An LTS does not have data and the process of expanding out a
description that contains data to form an LTS can lead to a combinatorial explosion
and is not feasible if the datatypes are infinite. Recent work has investigated ways of
overcoming this problem. One possibility is to use uniformity and regularity hypothe-
ses: uniformity hypotheses are used to partition each datatype into a finite number of
subdomains and regularity hypotheses are used to restrict the lengths of the traces
considered. If we also include a fairness assumption then we can produce a finite test
suite that is guaranteed to determine correctness as long as these test hypotheses hold
[Gaudel and James 1998; Lestiennes and Gaudel 2002]. An alternative is to use sym-
bolic transition systems; conformance relations and test generation algorithms have
recently been developed for such models [Frantzen et al. 2004].

It is sometimes possible to apply an alternative approach to testing from an LTS
which involves converting the LTS specification into an FSM. A test suite is then gen-
erated from this FSM (see, e.g., Petrenko et al. [1994]). The advantage of this approach
is the ability to use the fault models and test generation algorithms developed for FSMs.
However, there is the disadvantage that either we are restricted to the implementa-
tion relations that are used in testing from an FSM or we have to produce a different
transformation for each implementation relation.
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7. TESTING HYBRID SYSTEMS

7.1. Introduction

Hybrid systems are dynamical systems consisting of interacting discrete and con-
tinuous components. Typically they are control applications and are often used in
(safety/time) critical systems. Examples include air and sea traffic management sys-
tems [Godhavn et al. 1996], automated highway systems [Varaiya 1993], industrial
automation [Ravn et al. 1995; Varaiya 1993], and automotive control systems [Antsak-
lis et al. 1995, 1999; Antsaklis 1997; Stauner et al. 1997; Girard et al. 2005].

The complexity of these systems has recently risen sharply as they have to cope with
massive sensory and actuator uncertainty and must act in real time within complex
environments which are spatially extended, dynamic, stochastic, and largely unknown.
Traditional approaches that dealt separately with their continuous and discrete aspects
are inadequate.

Individual feedback control scenarios are naturally modeled as interconnections of
modules characterized by their input/output behavior. Modal control, by contrast, nat-
urally suggests a state-based view, with states representing control modes. Modern,
software-based control systems usually involve both styles of control. The distinct mod-
eling techniques need to be reconciled in order to support a systematic methodology for
the design, validation, and implementation of control software.

To meet these challenges, mathematical theories that combine, in a coordinated fash-
ion, continuous mathematics (e.g., the differential and integral calculi) and discrete
mathematics (e.g., first-order logics) are used to provide adequate formal support for
the modeling and analysis of hybrid systems, and the development of software for these
systems.

7.2. Models and Specification Formalisms

The dichotomy between the input/output (feedback) view and the state (multimodal)
view is often presented in a restricted setting, as a dichotomy between continuous
and discrete control. Continuous feedback control focuses on the analog interaction
of the controller with a physical entity, through sensors and actuators. Continu-
ous control models and design techniques have been developed, used, and validated
extensively.

Commonly used models for hybrid systems, such as hybrid automata, combine state-
transition diagrams for discrete behavior with differential equations or inclusions for
continuous behavior. For example Manna and Pnueli [1992] modeled a hybrid system
as a phase transition system,4 �. The semantics is based on sampling computations
that sample the continuous behavior of a hybrid system at important, countably many
observation points. � is defined as � = 〈V, 
, T , A, I〉 where

—V is a finite set of state variables that is partitioned into a set of discrete variables,
Vd, and a set of continuous variables Vc: V = Vd ∪ Vc;

—
 is the initial condition characterizing the initial states;

—T is the finite set of transitions;

—A is a finite set of activities, where each activity is a conditional differential equation
of the form p → ẋ = e, where p is a predicate over Vd (often called the activation
condition), e is an expression over V, and x ∈ Vc; and

—the set I is a finite set of important events that should never be missed when sampling.

4The time domain is taken to be the nonnegative reals, R+ and that R∞ = R+ ∪ {∞}.
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Within such a model, properties are specified using a temporal logic with the ex-
tension that state formulae (assertions) may refer to the variable T representing a
real-time clock.

Because of the continuous-versus-discrete focus, however, the mechanisms for com-
position and abstraction of hybrid automata are rather primitive. These models
were developed for studying decision problems about the analysis of hybrid sys-
tems, yielding, for example, conditions under which reachability is decidable. How-
ever, they have a number of shortcomings when used for design. For example, they
have limited expressive power (a simple delay element cannot be modeled as a hybrid
automaton).

7.3. Design Synthesis and Verification

In theory, the approaches to hybrid controller design guarantee that the requirements
specification is satisfied by design. In practice, system complexity often limits the appli-
cability of automatic controller synthesis methods, and currently, a common approach
to the design of hybrid controllers involves independently coming up with a reasonable
design for both the discrete and continuous parts. The combined hybrid controller is
then put together by means of interfaces, and verification/testing is carried out to en-
sure that it satisfies certain properties. Typically, some design errors are found, and
the verification/testing attempt supplies the design engineer with diagnostic informa-
tion that is helpful for reformulating the design. The process of simulation, verification
attempts, and redesign is iterated until a successful design is obtained. This approach
has been motivated by the success of verification and testing techniques for finite-state
systems.

The push toward stronger verification and testing techniques has been in the direc-
tion of extending the standard finite state machine results to incorporate progressively
more complicated continuous dynamics. The first extension was for systems with clocks
[Alur and Dill 1990]. Support tools for finite-state machines with clocks have been im-
plemented (KRONOS [Daws et al. 1995], UPPAAL [Bengtsson et al. 1995], and Timed
COSPAN [Alur and Kurshan 1996]) and used successfully for the automatic analysis of
real-time hardware and software. Since the possible values of clocks range over the real
numbers, the state space of real-time systems is infinite and so formal verification pro-
ceeds symbolically, by representing sets of states using symbolic constraints. Symbolic
state space analysis techniques have been extended from real-valued clock variables to
all real-valued variables whose trajectories can be characterized using piecewise-linear
envelopes [Alur et al. 1993]. If the guarded assignments and invariants of hybrid au-
tomata are linear constraints on continuous states, and the differential equations are
replaced by linear constraints on first derivatives, then we obtain the class of linear hy-
brid automata, which can be analyzed fully automatically. A typical linear constraint on
first derivatives is a rectangular differential inclusion, which can be used to model, for
example, time measured by clocks with bounded drift, or distance covered by vehicles
with bounded speed.

Recall the example given in Figure 4 of Section 2. This is a simple nonlinear hybrid
system that describes a temperature controller. The temperature of a room is controlled
through a thermostat that continuously senses the temperature and turns the heater
on and off. The temperature is governed by a set of differential equations.

As can be seen, the automaton has two states l0 and l1 with an initial condition set
to x = m (naturally, we get a different test run if we have a different initial condition).
A test run of such a system is depicted in Figure 16. The test run shows the hybrid
behavior of the controller: the discrete behavior of the heater as it changes from ON to
OFF and vice versa. It also shows its continuous behaviors as time progresses within
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Fig. 16. Test run of automata.

a state. Such a test run can be obtained using UPPAAL (which provides a graphical
interface) and HYTECH.

7.4. Testing Techniques

As a result of the combination of a discrete state-space and continuous variables, the
automated analysis of hybrid automata is challenging. Naturally, the problem of au-
tomating test data generation is also challenging. One testing approach is to simulate
the hybrid automaton; the simulator can then drive test execution.

Tan et al. [2004] described an approach for testing from a hybrid automaton. They
used the language CHARON that is a visual language for describing hybrid automata
and for which there is tool support that will implement a CHARON model in C++.
The approach described is to develop two additional hybrid automata for testing: one
is deterministic and describes the test case while the other encapsulates the required
(linear temporal logic) properties. These two automata play two roles. First, the model
is validated through being composed with these two automata. Then the SUT is tested
by being composed with the code generated from these automata.

The simulation of hybrid automata can be computationally expensive and this can
have an impact on testing. A variant on the hybrid language HCC [Gupta et al. 1998],
called DCML, has been designed in an attempt to overcome this within the context
of modeling hardware [Kondo and Yoshida 2005]. One of the key differences between
DCML and HCC is that DCML does not allow the use of inequalities and this is said
to simplify solving algebraic equations [Kondo and Yoshida 2005].

There has been significant interest in the use of timed automata and timed in-
put/output automata (TIOA) that extend finite automata and FSMs, respectively, with
either time or a set of clocks. Such automata can be seen as a form of hybrid system in
which there is one continuous variable that represents time. The importance of real-
time properties for many systems, and the use of specification languages such as SDL
that include clocks, has led to much interest in testing from timed automata and TIOA
and here we briefly review some of the work in this area.

The addition of time to a finite automaton leads to an infinite-state machine, assum-
ing time is represented by a variable with an infinite domain. Naturally, finite-state
structures are easier to analyze and thus easier to test from. In order to produce a finite
model, it is possible to define an equivalence relation on time, with a finite number of
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equivalence classes, and on the basis of this expand out the automaton to form a re-
gion graph (see, e.g., Alur and Dill [1994]; En-Nouaary et al. [2002]). En-Nouaary et al.
showed that when the trace equivalence conformance relation is used, test sequences
can be generated from a grid automaton derived from the region graph of a TIOA by
adapting standard FSM-based test techniques [En-Nouaary et al. 1998, 2002]. The grid
automaton is produced by using a coarse grained model of time in which the granularity
depends on the number of clocks. The authors showed that the resultant test suite is
guaranteed to detect certain classes of faults, including timing faults such as constraint
widening or restriction, assuming that a well-defined set of test hypotheses hold. These
test hypotheses are similar to those used in testing from an FSM and include the as-
sumption that the number of vertices of the region graph of the SUT is no greater than
that of the specification, rather than placing a bound on the number of states of the
automaton representing the SUT.

Cardell-Oliver [2000] investigated the problem of testing against a set of commu-
nicating TIAO with data specified in UPPAAL. Naturally the addition of either con-
currency or data can lead to a state explosion problem, although since the datatypes
are finite the feasible path problem is decidable. The approach taken is to define test
views, which are similar to test purposes, and for each test view to produce a testable
timed transition system (TTTS). Test sequences are then generated from each TTTS
in order to check trace equivalence. The resultant TTTS gives complete fault coverage
of the implementation’s TTTS as long as the implementation’s TTTS has no additional
states, a fairness assumption holds, and it is possible to reset the implementation. A
similar approach was described by Koné [2001], who tested from a TIOA using a test
requirement by taking the synchronous product of the automaton and the test require-
ment. The product is generated on-the-fly so that testing need not consider all states
in the product.

In FSM-based testing, there are test generation techniques that are based on test
hypotheses that place a limit m on the number of states of the SUT. The size of the
resultant test suite increases exponentially as the difference between m and the number
n of states of the specification increases and thus in practice m is chosen so that m − n
is small. Similar approaches are possible when testing from a TIOA. Interestingly,
however, Cardell-Oliver [2000] noted that small errors in timing constraints in the
SUT can lead to a significant increase in the number of states of the automaton from
which tests are generated (in this case the TTTS). It is thus argued that a choice of m
such that m−n is small makes little sense here and thus the test generation algorithms
use the stronger hypothesis m = n.

The approaches, for testing from TIOA, described above all considered the same no-
tion of conformance: trace equivalence. However, the literature on testing from an LTS
has shown that more general implementation relations exist and it is thus natural to
ask whether other notions of conformance are relevant when testing real-time systems.
Recently the ioco relation, described in Section 6, has been extended to timed ioco (tioco)
[Krichen and Tripakis 2004, 2005]. Test trees are produced using symbolic reachability
techniques. Two cases are considered: a digital clock and an analogue clock. For a digital
clock, both preset and on-the-fly test generation are described while only an on-the-fly
technique is developed for an analogue clock. Naturally, a digital clock is more relevant
to testing since the tester’s clock will have a finite precision. An interesting additional
extension to previous work allows the user to provide a model of the clock that could,
for example, represent the degree of precision available.

Nielsen and Skou [2003] applied symbolic reachability analysis in order to generate
test cases. They considered a restricted form of a time automaton, called an Event
Recording Automaton (ERA), and produced coarse equivalence classes of time based on
the guards of the transitions. ERAs are timed automata in which the only way a value

ACM Computing Surveys, Vol. 41, No. 2, Article 9, Publication date: February 2009.



P1: IAZ

CSUR102-09 ACM-CSUR January 21, 2009 21:34

9:48 R. Hierons et al.

can be assigned to a clock is when an event a occurs, in which case the clock associated
with a is reset. In addition, there are no internal actions. The stated advantage of using
ERAs is that they can be determinized. The use of coarse equivalence classes has the
potential to reduce the impact of the state explosion problem. Tests are generated based
on a conformance relation similar to conf which thus does not distinguish between input
and output; communication is through synchronization.

Recent work has considered the problem of testing against a model in which the delay
introduced by an action is specified using a distribution [Núñez and Rodrı́guez 2003].
There is thus the problem of checking whether the true distributions are equivalent
to the specified distributions. Naturally, this cannot be decided by testing but testing
can be used to sample from the distributions. Combined with the use of statistical
techniques, it is thus possible to estimate the true distribution up to a given level of
confidence [Núñez and Rodrı́guez 2003].

7.5. Case Studies and Tools

Current work on testing hybrid systems has focussed on the use of simulation. For exam-
ple, Tan et al. [2004] described a Model-based Monitor Instrumenting and Synthesizing
Toolkit (M2IST) that will produce a hybrid automaton from a property written in a lin-
ear temporal logic. The automaton is composed with the (instrumented) SUT in order to
check that the property is preserved in testing. Tan et al. [2004] applied their approach
to a Sony AIBO robotic dog. The model contained analogue input (the visibility of the
ball and the angle between the head of the dog and the ball) and a discrete control
structure. The intention of the system was that the dog chase the ball. The property
encoded in linear temporal logic was that an alarm would be raised if the dog lost track
of the ball 50 s or more after the ball became visible, at which point would starts to bark.
This property was successfully converted into CHARON code and composed with the
system model and a test automaton for simulation. It was reported that the behavior
of the code for the actual robotic dog was consistent with the simulation.

Tools have also been developed for testing from timed automata. Nielsen and Skou
[2003] describe a prototype test tool, for testing from an event automaton, called
RTCAT. This applies symbolic reachability techniques and partitions the states based
on the guards of transitions. The RTCAT tool was applied to the Philips Audio Protocol
that had been designed for exchanging control information between audio/visual com-
ponents [Nielsen and Skou 2003]. The protocol has a 5% tolerance to timing errors in
order to allow some drift in clocks and should also detect message collision. The sender
and receiver were both modeled as ERAs with 16 and 8 states, respectively. Test genera-
tion was found to be feasible and it was reported that in each case state partitioning led
to fewer than 100 states and the total test length was less than 1000 for breadth-first
generation and less than 2000 for depth-first. However, the test effectiveness was not
assessed.

Cardell-Oliver [2000] described the application of her approach to a train-gate system
using UPPAAL for test generation. The train-gate model consisted of three automata:
a train, a controller, and a gate. The approach was found to be feasible for this exam-
ple. The technique allows inputs and outputs to be hidden and includes a notion of
environment variables being visible that leads to an equivalence relation on states in
which equivalence classes represent equality of the values of visible variables. As one
would expect, these factors were found to have an impact on the size of the resultant
test graph (TTTS), as did the choice of time interval used by the clock. For example,
moving from a time interval of 1 to a time interval of 30 led to a TTTS represented by a
graph with 658 edges being replaced by a TTTS represented by a graph with 90 edges.
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Krichen and Tripakis [2005] have produced a tool called Timed Test Generator (TTG)
that implements their test technique for generating tests from a TIOA using the imple-
mentation relation tioco. The tool takes as input the specification and a Tick automa-
ton that represents a clock and outputs an executable that performs test generation.
There are four options regarding test generation: interactive, random, coverage-based,
or exhaustive to a given depth. Several forms of coverage have been implemented,
such as all actions, all locations, and all states (combinations of locations, variable val-
ues, and symbolic clock valuations). Test generation is achieved through reachability
analysis.

Krichen and Tripakis [2005] applied their approach to the Bounded Retransmission
Protocol for transmitting files over a lossy medium. In this protocol, acknowledgment
messages are used to confirm that a packet has been received; if the sender does not
receive an acknowledgment within a specified time then a timeout occurs and the packet
is resent. There is a given limit on the number of times a packet is sent. Experiments
were performed with a clock automaton representing a precise clock and a clock period
of 1. The authors performed test generation using a range of coverage criteria including
all configurations, where a configuration represents a symbolic state which includes the
location, values for variables, and a symbolic representation of the values of the clocks.
The potential combinatorial explosion was demonstrated; while there were only four
locations there were 14,687 configurations. However, it was found that it was possible
to cover all configurations using 24 test trees of depth 6–53. Depth-first exhaustive test
generation was found to be significantly less effective with, for example, only 18% of
configurations being covered with 317 tests.

7.6. Summary

There has been much recent interest in hybrid systems that combine state structures
with discrete and continuous variables. The inclusion of continuous variables adds sig-
nificant challenges and makes the application of testing approaches based on the state
structure problematic. It appears that the main focus has been on the development,
analysis, and simulation of hybrid automata; testing is achieved through simulation.
By contrast, there has been little work on test hypotheses and notions of test coverage.

The situation is rather different for a special type of hybrid automaton: timed au-
tomata. Here there is only one continuous variable, time, possibly represented by clocks.
By defining an equivalence relation on time, it is possible to partition the states of
the timed automaton and form a finite automaton from which test sequences can be
produced. Classic FSM- or LTS-based test techniques, and their corresponding test
hypotheses, can then be used.

While FSM test hypotheses and techniques can be used with timed automata, it is
unclear how useful these are in practice. First, there is the possible state explosion when
partitioning the states of the timed automaton. By using a coarser equivalence relation,
we can get fewer states but naturally the corresponding test sequences “cover” less of the
model. Currently there appears to be a lack of evidence regarding the tradeoff between
the cost of testing and test effectiveness as influenced by the choice of equivalence
relation used. In addition, the test hypotheses used concern the automaton produced
by state partitioning but it may be more meaningful, for the tester, to phrase test
hypotheses in terms of the timed automaton model. For example, we might believe that
the SUT is “similar” to the timed automaton model, for some notion of similarity, but
this need not relate to the same notion of similarity between the two automata produced
using state partitioning.
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8. ALGEBRAIC SPECIFICATIONS AND TESTING

8.1. Introduction

This section considers the relationship between algebraic specifications and testing. A
number of authors have exploited the parallel that exists between algebraic specifica-
tions of abstract data types (ADTs) and classes in object-oriented (OO) programs. An
ADT is an entity that encapsulates data together with operations that manipulate that
data. In OO programs, classes are constructed by providing an interface that lists the
operations (or methods) of the class and a body that actually implements the opera-
tions. A class may also contain instance variables (or attributes) that define the state of
an object in the class. This similarity between ADT specifications and class interfaces
suggests that there is a huge potential role for formal algebraic specifications in testing
OO software.

8.2. Test Criteria

When algebraic specifications are used in testing, the problem of a potentially infinite
number of test cases naturally still arises. As with more traditional forms of testing,
test criteria can help in deciding on the adequacy of the selected test cases. In fact there
are few criteria associated with testing from algebraic specifications but these will now
be considered.

The earliest work that employed algebraic specifications in testing was the devel-
opment of the DAISTS system [Gannon et al. 1981] and it is perhaps not surprising
that it utilized versions of traditional structural testing criteria. For example, in or-
der to increase confidence in the thoroughness of the user-defined test cases, DAISTS
insisted that each part of both the axioms and the implementation code be executed
at least once. The system also incorporated a rather more sophisticated expression-
coverage criterion. This involved “isolation of each subexpression in both axioms and
code and reporting any expression that was never evaluated or failed to vary on all
evaluations” [Gannon et al. 1981, page 220]. In other words, this criterion ensured that
all subexpressions evaluated to two different results.

One of the most significant developments in specification-based testing is the generic
theory of Gaudel and colleagues [Gaudel 2001; Gaudel and James 1998] that was de-
scribed in Section 3. Interestingly, initial instantiations of this work have focused on
algebraic specifications. With regard to algebraic specifications, it is claimed that an ex-
haustive test set composed of all ground values of the axioms will guarantee program
correctness if the exhaustive test set exposes no faults. Of course, this is not really
practicable due to the infinite nature of the exhaustive test set. Hence, regularity and
uniformity hypotheses, as described previously in Section 3, may be introduced to limit
the size of the test set.

A regularity hypothesis requires identification of some complexity measure, which
typically, in the algebraic specification context, is the size of a test expression, where
size can be measured as the number of constant and constructor operations occurring
in the term. Then the regularity hypothesis says that, if the implementation works cor-
rectly for all tests up to a certain size k, say, it will work for all tests with size greater
than k. A uniformity hypothesis says that if a program works correctly for some input
from a subdomain, then it works correctly for all inputs from the subdomain, that is,
the program behaves uniformly in the subdomain. Interestingly, it has been noted that
symbolic evaluation techniques could be used to check that a uniformity hypothesis
holds in the SUT [Richardson and Clarke 1985]. Typically, in an algebraic specifica-
tion, the domain of some abstract type may involve fairly obvious partitioning. Then,
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representative values of the subdomains may be chosen under the hypothesis that, if
the implementation works for tests involving those chosen values, it will work for all
tests with other values from the subdomains. Clearly the use of regularity and unifor-
mity hypotheses is not restricted to the context of algebraic specifications. However, it
is true to say that they were first developed and used as criteria for helping restrict the
potentially very large, if not infinite, number of test cases that might be generated for
the exhaustive test set of an algebraic specification.

In practice, one of the perceived values of partitioning an input domain into sub-
domains on which the behavior of the SUT should be uniform is the generation
of test data around the boundaries in boundary value analysis (BVA) (see, e.g.,
White and Cohen [1980]; Clarke et al. [1982]; Legeard et al. [2002a]). The essential
idea is that the boundaries in the SUT may not be those in the specification (domain
errors) and that by taking test cases either side of the expected boundary and close to
this boundary we are likely to find such domain errors. This does not fit easily with
the uniformity hypothesis that implicitly assumes that the boundaries in the SUT are
correct. Naturally, we might produce alternative hypotheses that reflect the possibil-
ity of domain errors. One possibility is to assume that the actual boundaries in the
SUT and those in the specification are related in a particular way. For example, if an
expected boundary is a straight line or plane then we could assume that the actual
boundary is either correct or is also of the same form (e.g., a line/plane) and is at least
a certain “distance” from the expected boundary, for some measure of distance such as
the volume that lies between the two boundaries.

8.3. Test Generation

Test cases can be generated from algebraic specifications in two distinct, but related,
ways: by using the syntax of operations; and by using the axioms. The first method was
originally presented by Jalote [1983] and later used by Jalote and Caballero [1988] in a
controlled experiment to assess the effectiveness of the generated test cases at detecting
faults in implementations. The same approach has also been used by Woodward [1993]
in the OBJTEST system, which was also the vehicle for a similar controlled experiment
[Allen and Woodward 1996]. The second method was originally presented by Gannon
et al. [1981] as part of the DAISTS system. It has also been used by Doong and Frankl
[1991, 1994] in their ASTOOT tool, by Gaudel and colleagues [Bernot et al. 1991; Bougé
et al. 1986; Choquet 1986] with an approach based on logic programming, and more
recently by Tse and colleagues [Chen et al. 1998, 2000, 2001].

As an illustration of the first method of test case generation by purely using operation
syntax, consider the OBJTEST system [Woodward 1993] that automatically generates
test expressions from algebraic specifications in the OBJ notation. Each operation in
an OBJ algebraic specification is taken in turn and, for each of the arguments in its
domain, further operations are substituted whose ranges are of the appropriate type.
This substitution continues up to a user-defined depth of operation nesting (i.e., in
effect, this is a regularity hypothesis). In order that a finite number of ground terms
are generated, specific values have to be selected for certain data types such as the
natural numbers (i.e., in effect, this is a uniformity hypothesis). Various other user
controls exist to prune what is essentially an exhaustive enumeration. For the example
Bank specification from Section 2.6, an automatically generated set of test cases with
operation nesting depth at most 4, balance as the observer (i.e., last) operation in the
sequence, and the monetary amount fixed solely at 100 would be as listed in Figure 17.
If the test expressions can be reduced to normal form, this gives rise to an oracle for
the testing process. Of course, such abstract test cases need appropriate modification
to be used as part of a test script for testing the actual implementation. In addition, if
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Fig. 17. Example test expressions generated from the syntax of the operations in an algebraic specification.

a sort is not observable then in testing we cannot compare values and so such terms
cannot be directly used as oracles (see, e.g., Machado [2000]).

As an illustration of the second method of test case generation by using the axioms,
consider the DAISTS system [Gannon et al. 1981] that required the user to supply
terms that were substituted for the free variables of the axioms. For example, using the
Bank specification, for axioms 3 and 4 one might choose the following two substitutions:

—n = 50, acc = debit( 25, credit( 100, empty ) )

—n = 75, acc = debit( 100, credit( 100, empty ) )

DAISTS then invoked the implementation functions corresponding to the sequence of
operations on the left-hand side and on the right-hand side of the axiom and compared
the results. A discrepancy would have indicated a fault.

The tool LOgic for Functions and Testing (LOFT) produced tests cases based on ax-
ioms but also explicitly used test hypotheses [Marre 1995]. The tool implemented the
uniformity and regularity hypotheses and was capable of automatically generating
such hypotheses. In order to apply regularity hypotheses, LOFT contained functions
that determined the number of nonconstant generators. Unfolding was used in order
to suggest possible uniformity hypotheses, in effect subdomains defined by cases in one
axiom were introduced into other axioms and this process could be repeated. This pro-
cess was automated, with the user specifying which operations should not be unfolded
and defining a limit on the depth of unfolding.

The ASTOOT system of Doong and Frankl [1991, 1994] was in many ways rather
similar, except that a tool was used to generate random sequences of syntactically
valid operations having particular properties. For each sequence S1, the axioms were
used as rewrite rules to generate an equivalent sequence S2. ASTOOT also had
the facility for generating a nonequivalent sequence, so that, in general, test cases
were of the form (S1, S2, tag), where tag is either equivalent or non-equivalent.
The operation sequences were written in a manner more akin to a program trace rather
than a functional form. For example, the expression E of Section 2.6 might appear as
E = empty.credit(100).balance.

Chen et al. [1998] improved on the ASTOOT approach of using pairs of equivalent
ground terms as the basis for test case generation by introducing the notion of a funda-
mental pair. A fundamental pair is formed by replacing all the variables on both sides
of an axiom by normal forms rather than just any syntactically valid term. Chen et al.
proved that a complete implementation of a canonical specification is consistent with
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respect to all equivalent terms, if and only if it is consistent with respect to all fun-
damental pairs. Thus, the use of fundamental pairs as test cases is sufficient to cover
all equivalent terms. For the Bank example of Section 2.6, the two equivalent ground
terms

—balance( credit( 50, credit( 100, empty ) ) )

—balance( credit( 100, empty ) ) + 50

can be obtained by replacing the variables n and acc in axiom 2 by the normal forms 50
and credit( 100, empty ), respectively; hence they form a fundamental pair. However,
the following pair of equivalent ground terms is not fundamental:

—balance(credit( balance(credit(50,empty)), credit(100,empty) )),

—150

Although the set of fundamental pairs is a proper subset of the set of equivalent
ground terms, it may still be an infinite set. Chen et al. [1998] suggested an algorithm
for generating a finite number of test cases that relies on constructing all patterns
of normal forms from the constants and constructors of the abstract type under test,
such that the pattern length does not exceed some positive integer k, determined from
white-box analysis of the implementation or, alternatively, supplied by the tester. This
is not unlike a regularity hypothesis. Chen et al. also recommend testing using non-
equivalent ground terms, like Doong and Frankl [1991, 1994].

8.4. Case Studies and Tools

8.4.1. A Text Editor. DAISTS [Gannon et al. 1981] stands for Data-Abstraction Imple-
mentation, Specification and Testing System. It is a compiler-based tool developed by J.
Gannon, P. McMullin, and R. Hamlet that allow ADTs implemented in SIMPL-D to be
tested for consistency with specification axioms, given user-supplied test cases and an
equality function for each new type in the specification. McMullin and Gannon [1983]
used the DAISTS system to specify, implement, and test a record-oriented text editor
similar to the one described by Kernighan and Plauger [1981]. The editor requires a
list of editing commands in a file, which it then applies to the file of text that is to be
edited. The editor maintains a pointer to the current position in the file being edited
and commands operated relative to that position. Commands include text insertion,
deletion, and pattern search with substitution.

Although the text editor was a well-known and carefully documented situation, sev-
eral problems were found in the requirements when the algebraic specification was
developed. The full text editor specification consisted of four modules with a total of
211 axioms. Unit testing ensured that the axioms and the implementation were con-
sistent for the chosen test data. As mentioned previously, the built-in monitoring of the
DAISTS system required test data to be supplied to execute every axiom branch and
every implementation statement. With regard to the DAISTS requirement of expres-
sion coverage, namely, that each expression in the axioms and the code had at least two
different values during testing, a value of 95% was easy to achieve, but higher than
that required considerable effort. Integration testing exposed two faults. One fault was
manifested as a function that extracted a subrecord with one character too many and
originated from an incorrect >= in place of a >. The other fault was manifested as a
routine that inserted duplicate characters and, in fact, both the specification and the
implementation were wrong in the same way.

McMullin and Gannon [1983] concluded that, although the use of algebraic axioms
as a formal specification language was unwieldy in parts, the overall experience was

ACM Computing Surveys, Vol. 41, No. 2, Article 9, Publication date: February 2009.



P1: IAZ

CSUR102-09 ACM-CSUR January 21, 2009 21:34

9:54 R. Hierons et al.

a successful one with requirements deficiencies being highlighted and very few faults
persisting until the integration testing stage.

8.4.2. A Unix-Like Directory Display Tool. Gerrard et al. [1990] advocated the use of al-
gebraic specifications to perform “design time testing”. As a case study they used a
specification of a tool for producing a flattened representation of a hierarchical Unix-
like directory structure. Given as input a directory structure in the form of a tree and
a directory name within the tree, the tool was required to output in a list-like manner
the underlying subtree that had the given name as its parent.

Gerrard et al. [1990] distinguished between two kinds of formal specification: a re-
quirements specification which states the nature of a problem nonalgorithmically and
a constructive specification to “blueprint the design for a solution”. For the latter they
used the OBJ algebraic specification language with its equationally defined ADTs and
for the former they used an enrichment of OBJ with so-called “theory” modules that
accommodate first-order logic.

In essence, the requirements specification constitutes theorems to be proven about
the constructive specification. Since verification was not practically feasible however,
Gerrard et al. [1990] relied upon testing of the constructive OBJ specification using
its term rewriting feature and regularity and uniformity hypotheses. The number of
names in the directory structure was used as the complexity measure for the regularity
hypothesis and the value 5 was chosen giving rise to 22 different tree structures. Even
with this limitation, the number of test cases was infinite, because there were infinitely
many names from which to choose the required five. Since no semantic value was at-
tached to the names, a uniformity hypothesis was used to justify an arbitrary set of four
names for populating a single representative from each of the 22 trees. Two observer
operations were developed in OBJ to help check that the original tree structure and its
flattened form were identical. One of these observer operations required enumeration
of the paths from the root node for each of the tree structures. In total, this approach
gave rise to 2024 separate test expressions for execution by the term rewriting engine,
every one of which gave the expected result. The test expressions were generated man-
ually, but Gerrard et al. remarked that some degree of automation would have been
beneficial.

It should be emphasized that this case study differs from the others described here
in that the algebraic specification itself is being validated against a more abstract
specification. Such validation can have significant value since fixing faults in a speci-
fication is much more expensive if we do not find these faults until later development
phases. Gerrard et al. [1990] considered the development of the algebraic specification
as a step in the design process and its testing was seen as a way of ensuring a se-
cure design. Of course, we can never entirely get away from the issue of whether our
specification or requirements statement is correct since ultimately we are aiming to
satisfy a set of unstated user requirements rather than a formal statement of these
requirements.

8.4.3. An Automated Subway System. Dauchy et al. [1993] used an algebraic specifica-
tion of a safety-critical piece of software to derive test cases. The specification was for
the safety control part of the onboard software of an unmanned subway system; it was
written in the PLUSS algebraic specification language. The LOFT tool was used to per-
form automatic test data selection on two modules. LOFT [Bernot et al. 1991; Bougé
et al. 1986; Dauchy et al. 1993] stands for LOgic for Functions and Testing and was
developed by Gaudel and colleagues. It transformed axioms specified in PLUSS into
Horn clauses. Then a logic programming system in Prolog is utilized to generate test
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data automatically. The process is controlled by regularity and uniformity hypotheses
chosen by the user.

One module, called doors, was concerned with the control mechanism for opening the
doors. Its function was to raise an alarm and invoke emergency braking if a dangerous
situation occurs. In general, the doors should normally only open on the platform side
while the train is not moving. However, to increase passenger flow, the doors are allowed
to open when the speed is less than some small value. Track-side doors are permitted
to open if the train is stopped on a side track.

The other module, called overspeed, was responsible for firing an alarm if the train’s
speed was too high. In normal operation the limiting speed is variable and is the small-
est of four separate limit speeds, depending on (1) the position of the first train ahead; (2)
the point before which the train must stop; (3) some authorizations from ground-based
equipment; and (4) the geometry of the track.

The full specification consisted of 10 other, more primitive, modules in addition to
the two that were the focus of concern. One key module used by both the doors and the
overspeed modules was called state; it defined the data structure to store the current
values of the train parameters.

Modules were tested bottom-up, that is, every used module in a given module under
test was assumed to be already tested. Uniformity hypotheses were applied to types
defined in the used modules, that is, it was assumed good enough to have just one value
of a subdomain in the test set. Regularity hypotheses were applied to types defined in
the module under test. Few details were supplied of the number of tests generated and
there is no report of any faults discovered. However, Dauchy et al. [1993] remarked
that application of their approach to the doors module was “surprisingly easy” and led
to some integration testing scenarios that the manufacturer had not planned to test.
Application to the overspeed module was apparently more difficult, largely because the
decomposition of the domain of the limiting speed was the product of the decompositions
for the four separate limiting speeds in an axiom for the minimum of four parameters.
This led to some proposed refinements in the test selection tool in order to keep the
number of test cases tractable.

8.4.4. Two Abstract Data Types. ASTOOT [Doong and Frankl 1991, 1994] stands for A
Set of Tools for Object-Oriented Testing and can be considered as a generalization of
DAISTS. It was developed by Doong and Frankl and was aimed at class testing of OO
programs. It consists of three components: a test driver generator, a compiler, and a
simplifier. The driver generator uses the interface of the class under test to build a test
driver that, when executed, reads test cases, executs them and then checks the results.
The compiler and simplifier work together forming a tool for the automatic generation
of test cases from algebraic specifications in the LOBAS notation.

Doong and Frankl [1991, 1994] described two case studies that involved using
ASTOOT to test “buggy” ADT implementations of a priority queue and a sorted list. Al-
though described as case studies, the investigation had some features more indicative
of a controlled experiment. The priority queue was implemented using a “heap,” which
is a complete binary tree in which each node is greater than or equal to its children. A
single off-by-one fault was introduced in the delete operation. The sorted list was im-
plemented using a 2-3 tree (a special case of a B-tree) and consisted of approximately
1000 lines of Eiffel code. The buggy version was produced by deleting one particular
line of the implementation.

For each ADT, correct algebraic specifications were produced in the authors’ LOBAS
specification language. Using the specification axioms, several thousand test cases were
randomly generated for each ADT with various sequence lengths of operations, various
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ranges in which parameter values could lie, and various frequencies of occurrence of the
different operators involved. For each test case, the equivalent simplified sequence after
term rewriting was generated. The test cases were executed on the buggy implementa-
tions with the help of an automatically produced test driver. By using an approximate
method for determining observational equivalence of the classes under test, the per-
centages of test cases were determined that exposed the fault in each implementation.
For both ADTs, results showed that long original sequences do better than shorter
ones, provided that the range of parameters is large enough to take advantage of the
lengths. Doong and Frankl [1991, 1994] offered some tentative guidelines for test case
generation that reflected this finding.

8.4.5. Other Tools. Daistish [Hughes and Stotts 1996], as the name implies, is a system
similar to DAISTS but was designed to be more directly applicable to OO programs that
operate, not by function application, but rather by means of methods that may alter the
state of an object as a side effect. It was developed by Hughes and Stotts as a Perl script
that processes an ADT specification, along with the code for implementing the ADT, to
produce a test driver. Prototype versions were developed for programs written in Eiffel
and C++.

ROCS [Chen et al. 2000] stands for Relevant Observable ContextS, which is the tech-
nique implemented in this system by Chen, Tse, and Deng. It first utilizes the funda-
mental pair approach of Chen et al. [1998], combined with regularity and uniformity
hypotheses, to generate a finite number of test cases. To determine observational equiv-
alence of objects resulting from the set of fundamental pairs, a series of methods called
the relevant observable context is constructed from the implementation of a given alge-
braic specification. The ROCS system has been embedded into a C++ interpreter.

8.5. Summary

Testing using algebraic specifications has been a continuing and well-established area
of research since the early 1980s, when Gannon et al. [1981] developed the DAISTS
system. Algebraic specification-based testing has a number of advantages in that it
can lead to a high degree of automation in terms of generating test cases, generat-
ing test drivers, and checking results. The influential work of Gaudel and colleagues
[Bernot et al. 1991; Bougé et al. 1986; Gaudel 2001; Gaudel and James 1998] on generic
specification-based testing was initially applied to algebraic specifications. The notion
of a testing context incorporating test hypotheses, such as the regularity and uniformity
kinds, is particularly well suited to algebraic specifications and gives the approach a
solid theoretical foundation.

With the rise in popularity of OO ideas, a number of researchers have made use of
the connection between algebraic specifications of ADTs and classes in OO programs.
The Daistish system of Hughes and Stotts [1996] was an explicit attempt to adapt the
DAISTS approach to an OO setting. Another notable example was the work of Doong
and Frankl [1991, 1994] on testing classes in OO programs. It focused on the interaction
of operations and was directly inspired by the theory of algebraic specifications for
ADTs. Their ASTOOT tool had the interesting feature of automatically generating, not
only pairs of equivalent operation sequences, but also pairs of nonequivalent sequences,
that is, negative test cases. Chen et al. [1998, 2000] improved on Doong and Frankl’s
work by proposing an approach for test case selection from algebraic specifications
based on the notion of fundamental pairs. They have proved the sufficiency of the
fundamental pair approach for test generation [Chen et al. 1998].

One of the difficulties with respect to algebraic specification-based testing has been
the lack of any well-defined incremental strategy for integration testing. Most work is
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geared to testing at the class or unit level. If the approach is to be useful at the system
testing level, strategies for testing from hierarchical modular specifications need to be
developed. Zhu [2003] has highlighted this issue and started to address the problem.
In addition, Machado [2000] has shown how one can define oracles and generate test
suites from a structured specification. Chen et al. [2001] have also considered testing
interactions among objects of different classes in a given cluster and decided that al-
gebraic specifications were not ideal. As part of the TACCLE methodology, they have
promoted the use of “contract” specifications for such purposes, in recognition of the cur-
rent trend “to integrate different specification languages, each able to handle different
aspects of a system” [Clarke and Wing 1996, page 627].

9. FORMAL VERIFICATION AND ITS ROLE IN TESTING

Formal verification offers a rich toolbox of mathematical techniques that can both sup-
port and supplement the testing of computer systems. The toolbox contains varied tech-
niques such as temporal-logic model checking [Clarke et al. 1986; Queille and Sifakis
1982], constraint logic programming [Marriott and Stuckey 1998], propositional satisfi-
ability [Lynce and Marques-Silva 2002], and theorem proving [Robinson and Voronkov
2001], with modern automated tools for verifying software often combining several of
them.

Of most relevance regarding its relation to testing is model checking, for two reasons.
First, it is a fully automated verification technique that is today incorporated in many
commercial systems design tools and has proved useful in a wide range of case stud-
ies [Clarke and Wing 1996]. Second, model checkers [Cimatti et al. 1999; Holzmann
2003] provide witnesses and counterexamples for the truth or violation of desired tem-
poral properties, respectively, which can not only be fed into simulators for animation
but can also be used for generating test cases.

9.1. Automated Reasoning

Automated reasoning, and in particular model checking, plays an ever increasing role in
testing. Model checking involves the use of decision procedures to determine whether a
model of a discrete state system satisfies temporal properties formalized in a temporal
logic. These decision procedures conduct a systematic generation and exploration of
the underlying system’s state space [Clarke et al. 1999; Manna and Pnueli 1995]. If
the system model is finite state, this exploration may be conducted automatically using
model checking algorithms [Clarke and Emerson 1981; Clarke et al. 1986; Lichtenstein
and Pnueli 1985; Queille and Sifakis 1982; Vardi and Wolper 1986].

Temporal logics [Bradfield and Stirling 2001; Emerson 1990; Pnueli 1977; Stirling
1992] make it possible to express statements about a system’s behavior as it evolves
over time. Typically, assertions include safety properties, defining what should always
be true of a system, and a set of liveness properties, reflecting conditions that a system
must eventually satisfy. The most widely used temporal logics are LTL [Manna and
Pnueli 1995; Pnueli 1977] and CTL [Clarke et al. 1986]. LTL is a linear-time temporal
logic that interprets formulae over system runs, which makes it suitable for specifying
test sequences. In contrast, CTL is a branching-time logic that interprets formulae
over computation trees, which enables one to reason about structural properties of the
underlying system and to consider various coverage criteria employed in testing.

Model checkers either work on system models that are provided by a user, or automat-
ically extract system models from software source code. Examples of model checkers
following the former approach include NuSMV [Cimatti et al. 1999] whose model-
ing language targets hardware systems, and Spin [Holzmann 2003] whose modeling
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language Promela is aimed at modeling distributed algorithms and communications
protocols. Examples of the latter approach include the model checker Java PathFinder
[Havelund and Pressburger 1998], which interfaces with Java; Verisoft [Godefroid
1997], operating on C/C++ programs; and C programs-based SLAM [Ball and Ra-
jamani 2001] and BLAST [Henzinger et al. 2003].

The main challenge in model checking arises from the complexity of today’s systems,
since model checking algorithms are linear in the size of the studied system’s state
space. Thus, implementations of model checkers are based on clever data structures and
techniques for storing and manipulating large sets of states. Binary Decision Diagrams
(BDDs) [Bryant 1986; McMillan 1993], as employed in NuSMV, is a prime example
of such a data structure. Advanced model checking techniques include partial-order
reduction [Godefroid 1996; Peled 1998; Valmari 1990], such as that implemented in
the Spin model checker, which exploits semantic symmetries in models; and on-the-fly
algorithms [Henzinger et al. 1996; Holzmann 1996], which construct only those states
of a model that are relevant for checking the temporal properties of interest.

Questions regarding the semantics of software are often undecidable and software
often gives rise to models with either infinite or very large state spaces. This means
that a model checker may either run out of memory or fail to complete a search in a
reasonable amount of time. In order to extend the scope of model checking, one either
has to improve model-checking techniques or use abstraction in order to simplify the
problem. For example, some integer variables might be turned into Booleans by only
discriminating between the values of those variable being zero or nonzero.

An example of the former was Eisner [2005], who reported success applying symbolic
model checking to a C program implementing a cache. King et al. [2000] reported that
proving conformance of a large safety-critical system written in Spark ADA to its Z spec-
ification proved more effective in finding faults than testing, because people involved
in proof construction had to understand what was being proven. This is consistent with
the observation mentioned in Section 5.4.

Model checking using abstraction was described in Corbett et al. [2000] and Holz-
mann and Smith [2001]. More recent approaches, such as the SLAM and BLAST tools,
automatically and incrementally construct models from source code by discovering and
tracking those predicates over program variables that are relevant to verifying a tem-
poral property at hand. If a path violating the property is discovered, it is necessary
to determine whether this path is only an artifact of the model, due to an overly ag-
gressive abstraction, or a genuine counterexample. Checking this involves collecting
constraints on program variables along the counterexample path and using decision
procedures (such as those employed in theorem proving) to check if they are collectively
satisfiable. If the counterexample path turns out to be infeasible, a more precise model
can be constructed by the addition of a few constraints derived from those collected,
so as to make the considered path infeasible without overburdening the model with
all those constraints. Subsequently, another attempt to find a counterexample can be
attempted and so on.

9.2. Formal Verification and Testing

At first sight, formal verification and testing seem to be quite different things. Auto-
mated verification is a static activity that involves analyzing system models, with the
analysis completely covering all paths in a model. In contrast, testing is a dynamic
activity that studies the real-world system itself, that is, its implementation or source
code, but often covers only a limited number of system paths.

Nevertheless, this distinction between model checking and testing has increasingly
become blurred, as more and more model checkers work directly on the source code
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of software implementations, rather than on user-provided models. We have already
mentioned BLAST and SLAM [Eisner 2005; Gunter and Peled 2005], which operate
on C source code. Model checkers for Java code include Bandera [Corbett et al. 2000],
Java PathFinder [Havelund and Pressburger 1998], and SAL [Park et al. 2000], which
combine model checking with abstraction and theorem proving techniques, too. Another
example for source code verification is the VeriSoft model checker [Godefroid 1997],
which systematically searches state spaces of concurrent programs written in C or C++
by means of a stateless search heuristic that borrows ideas from partial-order reduction.
When executing source code in this manner, send and receive primitives as well as
control structures are extracted and checked on-the-fly. Facilities for extracting models
from source code have recently also been included in Spin [Holzmann 2003]. However,
the trend of checking temporal properties directly on software implementations is not
an activity restricted to compile-time, but may also be conducted at run-time which
corresponds to what is called run-time monitoring [Artho et al. 2005; Havelund and
Rosu 2004].

The most important role for formal verification in testing is in the automated gener-
ation of test cases. In this context, model checking is the formal verification technology
of choice; this is due to the ability of model checkers to produce counterexamples in
case a temporal property does not hold for a system model. The question of interest
is how best to derive input sequences in order to test some implementation against
its specification. In the context of conformance testing [Lee and Yannakakis 1994], for
example, one may assume that a specification is given as a state machine and has
already been successfully model-checked against temporal properties φ. To generate
test sequences, one can then simply model-check the specification again, but this time
against the negated properties ¬φ. The model checker will prove ¬φ to be false and
produce counterexamples, in the form of system paths highlighting the reason for the
violation. These counterexamples are essentially the desired test sequences [Callahan
et al. 1996]. Naturally, a number of issues remain since this approach is not always
feasible and there is the problem of mapping test sequences expressed at the level of
the model used to concrete test cases.

This basic idea of using temporal formulæ as “test purposes” has been adapted to
generating test sequences for many design languages, including Statecharts [Hong et al.
2001], SCR [Ammann and Black 2000; Gargantini and Heitmeyer 1999], SDL [Engels
et al. 1997], and Promela [de Vries and Tretmans 2000]. In these approaches, the
temporal properties φ mentioned above are either derived from user requirements,
such as usage scenarios [Engels et al. 1997], defined by a tester in the form of a test
purpose LTS [Jard and Jéron 2005] (Section 5.4), or generated according to a chosen
coverage criterion [Hong et al. 2001]. Indeed, many coverage criteria based on control-
flow or data-flow properties can be specified as sets of temporal logic formulae [Hong
et al. 2002, 2003], including state and transition coverage as well as criteria based on
definition-use pairs. Given a specification, reference [Ammann et al. 1998] proposes to
mutate it and use a model checker to derive sequences distinguishing between the two;
given a way to generate all likely faulty implementations, it is possible to produce tests
to detect such faults.

Recently, novel approaches to combining model checking and testing have been pro-
posed, which involve learning strategies [Peled 2003]. Black-box checking [Peled et al.
2002] is intended for acceptance tests where one has access to neither the design nor the
internal structure of the system-under-test. This kind of checking iteratively combines
Angluin’s algorithm for learning the black-box system, Vasilevskii-Chow’s algorithm
for black-box testing the learned model against the system (Section 5), as well as
automata-based model checking [Vardi and Wolper 1986] for verifying various prop-
erties of the learned model. Adaptive model checking [Groce et al. 2002] may be seen as
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a variant of black-box checking where a system model does exist but may not be accu-
rate. In this case, learning strategies can be guided by the partial information provided
by the system model. However, counterexamples produced via model checking must
then be examined for whether they are genuine or the result of an inaccuracy in the
model.

A different learning approach was described in Ernst [2001], one which uses the
Daikon tool to prove nontrivial properties of software. Daikon monitors a program
which is run on a number of tests, collecting information on relations between variables.
By their nature, such relations do not necessarily hold for all possible runs and the
likelihood of this depends on the quality of a test set used. It turns out that many such
relations can be automatically proven by a theorem prover and subsequently used as
lemmas to automatically demonstrate properties of the program considered [Win and
Ernst 2002].

Another interesting line of research involves model checking of programs where code
fragments, such as procedures, are missing. In unit checking [Gunter and Peled 2005],
the behavior of the missing procedure is provided by specifications of drivers and stubs.
These specifications employ logical assertions in order to relate program variables be-
fore and after a missing procedure’s execution. Given a specification of program paths
suspected of containing a bug, a program under investigation is searched for possible
executions that satisfy the specification. Theorem-proving technologies are used to cal-
culate path conditions symbolically, so as to report only bugs within paths that can
indeed be executed during actual program runs.

The model checker BLAST has been extended to automatically generate test vec-
tors for driving a given program into locations exhibiting a desired predicate [Beyer
et al. 2004]; similar results have been reported in Gunter and Peled [2005], and Artho
et al. [2005]. As the underlying technology relies on symbolic execution for handling
arithmetic operators and alias relationships between program variables, paths to such
locations are checked for feasibility as in unit checking.

Theorem proving was also used by Burton [2002] for checking that category-partition
tests (Section 4.2.1) cover the whole of the input space of a specification. Partitions were
checked for emptiness in Helke et al. [1997].

Formal techniques can be used to verify that an output from a system under test is
consistent with a specification. This was done using theorem proving in Burton [2002]
and model checking in Callahan et al. [1996].

Model checking and theorem proving are not the only two techniques for test gener-
ation; Gotlieb et al. [1998] and Pretschner et al. [2005] employed constraint logic pro-
gramming; propositional satisfiability techniques were used in Wimmel et al. [2000],
and Marinov and Khurshid [2001].

We have described above how verification techniques can be applied to test generation
from a specification and how they can be used to check program code. Testing can be used
to check specifications: (1) before proving properties, one might wish to have confidence
that those properties actually hold, which can be accomplished by using approaches
such as evolutionary computation to find a counter-example [Tracey et al. 2000]; (2)
Liu [1999] described how tests can be generated for different parts of a specification in
order to detect inconsistencies in it.

9.3. Summary

Formal verification, and in particular model checking, complements testing in various
ways. First, both formal verification and testing may be carried out on a system model
even before a single line of code has been written. Second, while the strength of tradi-
tional testing technologies lies largely in analyzing sequential code, model checking
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excels when investigating the communication behavior of concurrent and multi-
threaded systems. Third, formal verification techniques can be employed to generate
test suites and results from testing can be used to construct better models of software
for verification and test generation [Harder 2002]. When combined with theorem prov-
ing, constraint logic programming, and propositional satisfiability techniques, model
checking thus becomes a powerful tool for testing software.

10. FUTURE RESEARCH DIRECTIONS

This article has reviewed the state of the art regarding ways in which formal specifi-
cations can be used to assist in software testing. In doing so, it has raised a number of
issues and we have seen that there have been differing degrees of success with these
issues across the formalisms. In this section we briefly review these issues, grouping
them into the following types of research questions:

(1) What sorts of tests do we need and what can these tell us?

(2) How can we generate the desired tests?

(3) How can we evaluate our techniques?

(4) What do we mean by “testability” and how can we enhance this?

We now briefly consider each type of question.

10.1. What Sorts of Tests Do We Need and What Can These Tell Us?

We test for a purpose—typically to detect faults and/or provide some degree of confi-
dence in the quality of our system. So, we wish to use a test suite that achieves this
purpose efficiently and effectively. However, we do not know a priori whether our sys-
tem is faulty and, if it is, which test cases will have the highest likelihood of revealing
faults. This is one of the fundamental issues in testing.

Fault domains, which capture the (believed) class of possible implementations, have
been used in some areas primarily testing from finite-state machines and stream X-
machines. In these cases fault domains are often based on the notions of output faults
and state transfer faults. Moreover, to make complete strategies possible, there is an
upper bound on the number of states. Alternatively, a fault domain can simply restrict
the input and output domains of the implementation to those of the specification and
place an upper bound on the number of states of the implementation—under these
conditions complete strategies still exist. These approaches originated in the area of
testing hardware for manufacturing faults, as opposed to design/logical faults, and here
there is a good understanding of the types of faults that can occur and their potential
impact. In contrast, it is unclear how we can place a useful upper bound on the number
of states of software: one that leads to a test suite of reasonable size. This is because
the test suite size grows exponentially in the possible number of extra states.5

The use of test hypotheses has been proposed in testing from algebraic specifications
(see, e.g., Gaudel [1995]) and these test hypotheses are similar to fault domains. It has
also been shown that test hypotheses and fault domains can be used when comparing
test criteria and test suites [Hierons 2002]. However, we have the problem of choosing
appropriate test hypotheses—how can we know that these hold in our system? For both
fault domains and test hypotheses, we could link the choice with risk but it is unclear
how to do this in a systematic manner.

5Adaptive techniques [Hierons 2004b] can help here since when using these approaches the combinatorial
explosion is not guaranteed to occur. However, in the worst case they suffer from the same combinatorial
explosion.
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Interestingly, the appealing ideas of fault domains and test hypotheses have largely
been restricted to a few specification paradigms. For example, such ideas have only
recently been applied to testing from label transition systems [Lestiennes and Gaudel
2002] and there has been very little work applying such approaches to testing from
model-based specifications.6 This seems a little strange, and the existence of appropri-
ate fault domains/test hypotheses for these formalisms is very much an open problem.

If we are to use a fault domain or test hypothesis, we want to use one that is likely to
hold for our system. Ideally, we also want to verify that it holds—either through static
analysis/proof or testing. Thus, the issues here relate to testability, an issue that we
discussed in Section 10.4.

It seems likely that the types of faults that we can expect to be present in a system
depend upon several factors, such as system and problem properties (e.g., perceived
risk), the development methodology used, the experience of the staff, and any tools used.
For example, are we likely to see different types of faults if we use formal refinement or
autocoding? Thus, if we want to develop useful fault domains or test hypotheses then
we may well benefit from focussing on particular classes of systems and environments.7

This suggests the following research question.
Are there well-defined classes of systems for which we have a fault domain or test

hypothesis that is

(1) likely to hold;

(2) useful in test generation; and

(3) relatively easy to verify?

If we can find such classes of systems, it may be possible to devise targeted techniques
for verifying the corresponding test hypotheses/fault domains.

10.2. How Can We Generate the Desired Tests?

Having decided what types of test cases we need, possibly on the basis of some fault
domain or test hypothesis, we have the problem of generating a suitable test suite.
One of the great benefits of having a formal model is the potential to automate the
test generation process, and we have seen that much attention has been paid to this
problem.

It is arguable that the area in which there has been most progress in automated test
generation is testing from a finite-state machine (FSM) or labeled transition system
(LTS). The presence of an FSM or LTS specification simplifies test generation since
most of the relevant problems (such as equivalence) are decidable; this facilitates au-
tomation. Automation is further assisted by developments in model checking and the
fact that it is often possible to express test optimization in terms of graph traversal
problems for which there are known algorithms. In contrast, when considering a speci-
fication in another formalism, often such problems are undecidable and this complicates
test generation. As we have seen, there has been some success in test automation for
other formalisms, and developments in model checking may well build on these re-
sults. However, in order to facilitate automated test generation it may be necessary to
insist on testability properties. While we cannot expect a single notion of testability
to be appropriate across all application domains, the development of domain/language

6The work on testing from Boolean specifications has, however, considered classes of faults (see, e.g., Kuhn
[1999], Tsuchiya and Kikuno [2002], and Lau and Yu [2005]) and Burton [2002] showed how such an approach
can be used when testing from a Z specification.
7By a class of system, we include factors such as the development methodology used and staff experience.
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specific testability properties and corresponding automated test generation algorithms
may well prove to be a significant area for future research.

Even when dealing with FSM and LTS specifications, there are a number of research
questions.

(1) Testing concurrent/distributed systems. Many systems are specified as a set of
components that cooperate in order to produce the required functionality. Many
approaches that analyze such specifications can encounter the state explosion
problem—the number of states of the overall system can grow exponentially with
the number of components we have. The questions then are: when can we overcome
the state explosion problem and how can we do this?

(2) Testing from partial/incomplete specifications. In practice many specifications are
incomplete, sometimes because of the pressures of development schedules (only the
“core” elements are specified) and sometimes because a component’s context means
that it should not receive certain input values or sequences. However, many current
test generation techniques assume that the specification is complete—the challenge
is to extend these to incomplete specifications.

(3) Systematic adaptive testing. Adaptivity is useful, and sometimes essential, when
testing from a nondeterministic specification. Consider, for example, the testing
of some function involving two subsystems interacting where an initial connection
must be established over an unreliable medium. If the test controls the process of
setting up the connection then it must be adaptive since the number of attempts
required cannot be known in advance. However, many test generation techniques
assume that the specification is deterministic and produce preset test cases. Thus,
there is the challenge of generating efficient systematic8 test suites consisting
of adaptive test cases. Note that some current test generation tools do apply
adaptive/on-the-fly techniques [Kerbrat et al. 1999].

10.3. How Can We Evaluate Our Techniques?

There are many alternative test criteria and test generation techniques. It is thus
natural for a tester to ask “What criterion/technique is best for my system?”. Here best
refers to expected effectiveness and cost and thus relates to risk. In order to answer
such questions, we want to be able to reason about the test criteria and techniques and
how these relate.

Hamlet [1989] noted that ideally we want a relation ≤ such that for criteria C1 and
C2, C1 ≤ C2 if and only if whenever there is some test suite satisfying C1 that finds a
fault then every test suite that satisfies C2 will find this fault. If this is the case then
we know that we lose nothing in terms of fault detecting power if we replace a test suite
produced to satisfy C1 with a test suite produced to satisfy C2. However, Hamlet also
observed that no real test criteria are related under ≤ and this has led to the use of
weaker comparators such as subsumes.

It has recently been observed that when testing a system we can use information
about the system, in the form of a fault domain or test hypotheses, when comparing
test criteria or techniques [Hierons 2002]. For example, one criterion might be stronger
than another, along the lines suggested by Hamlet [1989], for systems with a given
property but not for all systems. However, for this observation to be useful we need
to find classes of system and real test criteria for which this is the case. Another open
question is whether information about the system can be used to refine other approaches

8By systematic, we mean that they satisfy some given test criterion. In turn, the test criterion could be based
on a fault domain or test hypothesis.
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to comparing test criteria and techniques (see Weyuker [2002] for a review of approaches
to comparing test criteria).

In addition to developments in theory, it would be extremely useful to have further
empirical studies regarding the efficiency and effectiveness of alternative test tech-
niques and criteria across a range of systems. This would be facilitated by the presence
of a set of benchmark systems and specifications drawn from several application do-
mains. Tools that allowed test techniques to be rapidly prototyped would also encourage
empirical evaluation.

10.4. What Do We Mean by ‘Testability’ and How Can We Enhance This?

There are several rival definitions of testability. However, there appears to be at least
two issues that relate to testability.

(1) How easy is it to generate a test suite that satisfies the given test criterion?

(2) How good are test suites, that satisfies the test criterion, at finding any faults that
are present in the SUT?

It is thus clear that testability depends on system and specification properties and
which test criterion or technique we are using. For example, there has been work on
improving the testability of code when applying genetic algorithms in test data gen-
eration [Harman et al. 2004]. Most work on testability has considered the code rather
than the specification. However, there are some exceptions.

(1) Some approaches to testing from an extended finite state machine (EFSM) involve
abstracting away the data and guards/conditions from the EFSM to form a finite-
state machine (FSM) and then generating sequences/paths from the FSM. For each
path produced in this way, we then have to find an input sequence that leads to
the corresponding path in the EFSM being traversed. Unfortunately the presence
of infeasible paths in the EFSM can cause problems here. There has thus been
interest in transforming an EFSM into one that either contains no infeasible paths
or one in which the test criterion can be satisfied using paths that are known to be
feasible. While this problem is generally uncomputable, there are classes of systems
for which it can be solved [Uyar and Duale 1999; Duale and Uyar 2004].

(2) When testing a state-based system, we need to set up the internal state for a test
and check it after a test. This problem is simplified if we are allowed to augment
our specification with functions that are designed to achieve this.

(3) Sometimes a specification of a state-based system may be rewritten in order to aid
testing [Burton 2002]. Specifically, some specifications can be rewritten to simplify
the problem of distinguishing states of the system.

(4) Testability can relate to properties of the environment, an example being the “rea-
sonable environment” assumption often made when testing from communicating
FSMs. Here it is assumed that the SUT processes an input before the next input is
received.

11. CONCLUSIONS

This survey has described formal methods, software testing, and a number of ways in
which a formal specification can be used in order to assist testing. We have seen that
software testing benefits from the presence of a formal specification in a number of im-
portant ways. In particular, the presence of a formal specification aids test automation
and allows the tester to reason about test effectiveness.
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Interestingly, a number of related ideas have appeared in different domains. For
example, the notion of a test hypothesis was introduced for testing against an algebraic
specification. This is similar to the use of a fault model in testing from a finite-state
machine.

There has been much work on using formal specifications to improve the testing pro-
cess. In contrast, there seems to have been little work on the use of testing to aid in
the application of formal methods. Further, there has not been a signification amount
of work on combining static analysis and testing. This seems to be an area that holds
much promise, since static and dynamic analysis provide such different types of in-
formation: typically, static analysis provides general information about a model of the
implementation while dynamic analysis provides specific information about the actual
implementation under test.

A number of major challenges remain. We have seen that a test set may be guar-
anteed to determine correctness under certain well defined conditions. Where we can
verify that the implementation under test satisfies these conditions, the test set deter-
mines correctness. This observation leads to the question of whether there exist such
conditions or assumptions that are likely to hold for a wide range of systems and are
relatively simple to verify. It seems likely that such assumptions will be domain spe-
cific. A further issue arises where we have refined the specification down to code. Where
such a process has occurred, what sorts of tests are likely to be useful? Can we direct
our testing so that it is likely to find problems in the refinement or to check the axioms
that underpin the proof of correctness of the refinement? If the refinement has not been
proved to be correct, what impact does the potential for refinement errors have on the
processes of converting abstract test cases into concrete test cases and checking that
the observed output is consistent with the specification?

There is a very tangible benefit to answering the above research questions. In his
invited talk at ICSE ’05, Littlewood [2005] reaffirmed the inadequacy of test data to
provide statistical evidence for the dependability of high-integrity software systems.
He supports the use of probabilistic networks (see, e.g., Fenton et al. [2002]) to fuse
disparate sources of evidence to substantiate a probabilistic claim about the reliability
or safety of a system. We believe that a sound formal understanding of the precise
division of responsibilities between formal proof (applied to programs, specifications,
and test hypotheses) and testing (as empirical evidence) is a necessary precondition to
the development of such assessment models.
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