Design Patterns as Litmus Paper to Test the
Strength of Object-Oriented Methods

Anthony J H Simors Monique Snoeckand Kitty S Y Hung

1 Department of Computer Science, University of Sheffield,
Sheffield, United Kingdom
2 Département d'Informatique, Université Libre de Bruxelles,
Brussels, Belgium

Abstract

This papershows how DesigiPatternamay be used to reveal properties
of object-oriented development methodBhe responsibility-driven and
event-driven design methods are contrasted inwidnethey transform
and layer systems. Each methodelevates a different modularising
principle: contract minimisatioand existence dependency. Different
design patterns, such &éediator, Chain of Responsibility, Template
Method, Commandnd Compositeemerge for each methotlustrating
the particular bias and the different design decisions each makes.

Keywords: Object-oriented design,system layering, subsystem
identification, design patterns, responsibility-driven desi@RDD),
event-driven design (EDD), minimisation of contractsxistence
dependency

1 Introduction

The vast majority of object-oriented analysis and design metiredis agreement
that theidentification ofsubsystems is amportant task. Subsystemsare the
building blocks that allow a system to be decoupled for various reasons, such as (i)
to run ondifferent processors; (i) to b#eveloped by differenteams; (iii) to
compile as a separate module; (iv) to facilitate substit@iahextension; or (v)
simply because the subsystem is itselfraportant domain abstractiorHowever,

not manyobject-oriented methodsffer any kind of systematic processn the
form of axiomatised stepsfor developing subsystemthat are optimally
partitioned according tsome desigreriteria. Indeedsome methods, such as
Booch [3], p229, emphasise the continual nekd creativity and intuition,
believingthat it isimpossible tocodify the desigmrocess. Other methods, such
as OMT [20]choose tesplit systems upaccording tosubjectivecriteria, such as
layers (code substratesjrtual machines) angartitions (intuitively-determined
subsystem modules).Instead, itwould be better if subsystems were selected

according to measurablaternal criteria, such as theegree of inter-module
coupling [18], which corresponds to the numbemtér-object references needed
for message sending the object-oriented model. A good systelasign method
should minimise inter-object coupling acraashbsystem boundariend thereby
also fostessubsystem reuse new contexts.

More recentlyDesign Patterndiave emerged as the "distilled productshigfh-
guality object-oriented designs [10Each pattern is a solution to a small-scale
design problem, created according to the single principle: "Encapsulatarthe
that changes". Patterns as diverseAdistract Factory(creational),Composite
(structural) andCommand(behavioural)all rely directly onthis principle, by
reorganising designs around polymorphic plug-in points, wimiaia subsequently
be filled by specialised concrete componentse application of Design Patterns
is normally asystem desigmctivity, in the sense weare seekingabove. But,
Design Patterns are again applietlitively to particular problem/solutiospaces
[10] by expert developers who recognise these situationthelrest of this paper,
we use Design Patterns in a quite diffensay, asthe "litmus paper" tgudge the
quality or strength of particular object-oriented development methods.

Because we werénterested in comparing the kinds eystematic guidance
provided by object-oriented design methods to non-expert developers, we needed
to select methods whictvere obviouslydirective intheir modelling approach.
We considered that Booch [3] and OOSE [15] rely over-much on edgestoper
intuition in the identification ofobject conceptand subsystems. OMT [20],
Coad-Yourdon [6, 7hnd Shlaer-Mellor [22] allhave a data-driven foundation
that is amenable to systematic entity-relationship modelling (ERM), which
elevategddata dependencgs itssystemmodularisation principle. Theeliverable

of ERM is a set of normalisedatafiles (equiv. 3NF) whichsaysnothing about

the procedural structure of tlsgsteminterrogating the data. We dalentually
find two methods which satisfied our criterfiar providing proper direction for
object-oriented design. Section 2 reformulatesResponsibility-DriverDesign
method [28, 29, 27] from aystematic viewpoint, especialtle much-neglected
systemdesign stage, which elevatesntract minimisationas its modularising
principle. Section 3 presents an origigalent-Drivenapproach adapted from the
work of the second author and hewlleagues [24, 25], whicklevatesexistence
dependencws its guiding principléor modular decomposition. Both approaches
areevaluated fotheir potential tadentify properly-layered subsystemith loose
external coupling. In our assessment of thesecontrasting methods, we use
Design Patterns in an unuswedy: asindicators of the desigdecisions taken by
the methods. Wallow the systematic application of the methods themselves
generate the Patterns whithey naturally tend to promote. We regard the
emergence of Design Patternsexfdence ofthe quality of the methodsnd the
generation of different Design Patterns as an indication of the particular bias of
each method. This connection has not been made before.

2 Responsibility-Driven Design: Contract Minimisation

Responsibility-Driven Design (RDDegardsobjects asehavioural abstractions,
characterised at a coarse scaletlhy "responsibilities'that they bear, which

translate 1:M at a finer scale intioe services they provide [28]Data attributes
are assigned later, omaed-to-know basis [4]The design method [2%perates

in two phases: the first generative phageduces new obje@bstractions using
the CRC-card modelling technique [2Rnd the second transformatiorndiase

identifies tightly-coupled regionand layersthe systemusing a coupling metric
called "minimisation of contracts". RDD is especially good fodecentralising

control, distributing system behaviour throughout a society of objects [27].

Most second-hantteatments olRDD [4, 3, 13] mistakenlyfocus only on the
informal aspects othe first phase; and thensometimes misunderstand its
purpose. It is trughat RDD and CRC-card modelling are helpful foromote
more active iz behavioural)object conceptssuch asmanageror controller
abstractions [3].However,the generative phase BDD is best@appliedab initio,
not after the prior construction objectmodels. It is important tkeep entity
boundaries plastic while responsibilities are being elicited and redistributed - prior
objectmodelling tends to fix these boundaries early. RDD is compatibieith
other behaviour-centred approaches [11, 21, 12] wisehscripts/scenarios/use-
cases [15] to explorsystemrequirementdeforeassigning behaviours wbjects.
However, very fewauthors have picked up dhe systematic layeringffered by
the second transformational phaseR®D, which webelievehasbeen unfairly
neglected.

2.1 The Rules of RDD

We arechiefly interested inRDD for its power to transform systemdesigns,
especiallythe much-neglectednd often misunderstood second phadd¢owever,

for completeness' sakitne whole RDD proceskasbeen codified irthe following

10 rules(an arbitrary numbetut sufficient for our purposes), shown in table 1.
The rules are an original semiformal characterisation of published informal
descriptions of the RDD method [29, 4, 27]. We have made certain aspects of the
RDD process more explic{rules 1, 3), introduced a halting-condition (rule 4)
and anovel decision function (rules 5, 6) fdetermininghow an entity should be

split when it is judgedoo large(by rule 1). Anovel coupling weighting (rule 8),
which we have found useful ithe Discovery method [23] helps tshow the
degree of functional dependency expressed in a static client-server coupling.
Rules 1-3 goverrthe initial conceptualisation of domain entitiesRules 4-6
generate more esoteric entities to decentralise computaéinddetermine their

final granularity by the size constraiabd single-purpose requiremenRules 7-

10 govern thesystematicrestructuring of thesystem,generatingdesign-level
entities needed to reduce system coupling ("minimise contracts", in [29]).

RDD rule 1: Identify entities orthe basisthatthey fulfil a small (2-7)
cohesive set of responsibilities, each a coarse-graitadedment of (par
of) the purpose ofthe entity; concepts which bear no responsibility g
either simple attributes, or vacuous.

RDD rule 2: Considerhow each entity fulfilsits responsibilities,
establishing collaborations with subcontractor entities, to whic
delegates some parts of its responsibilities.

RDD rule 3: Add data attributes, on reed-to-know basis, to thos
entities bearing a primary responsibility fmanaging the datagonvert
passive concepts into attributes.

RDD rule 4: Continue subcontracting until theoarse-graineg
statements of responsibility reatife fine granularity of singlservices
(methods).

RDD rule 5: If an entity acquire®o many responsibilitiesnd these
arecohesive, restatte responsibilities more generaiynd delegate the
detail to new (invented) subcontractors.

RDD rule 6: If an entity acquire®o many responsibilitiesnd these
are notcohesive,partition the entity intotwo or more peer entitieg
according to grouped responsibilities.

RDD rule 7: For each entity, group itervicesinto contracts, one
contract per set afervices invoked by a distinct set of clientagdex the
contracts.

RDD rule 8: Draw a collaboratiograph, linking clientsvia directed
arcs to contracts indexed in each server entity; logp#reservice
weighted strength of each collaboration.

RDD rule 9: Aggregate tightly-couplesiibsystemiside new mediato

entities; uncouple the componerdad have their contracts migrate

outwards to the aggregate entity.

RDD rule 10: Generalise groups of entitibsit offer, orthatinvoke the
same, or similar contracts; merge communication pathadérom the

|

=

e

e

general entity; add dynamic binding.

Table 1: Ten Rules of Responsibility-Driven Design

The terms used in RDD are sometimes misunderstood, imparticular:
responsibility, collaboratiorandcontract

* A responsibilityis not necessarilthe samehing as aservice, but may be
(rules 1and 4); it is astatement of purpose, not the name of a method,;
keeping this coarser-grained view affects the operation of rules 5-6.

* A collaborationis bestthought of as a connection, or couplirmgtween a
client and aserver [29],rather than thenessages setetweenthem [19];
the coupling view is needed for rule 9 to operate correctly.

» The transformational stage depends crucially on identifgorgracts sets of
services in a class interfatieat are used by common sets of clief23].
Meyer's use of the term "contract” is different [16], standing for the reciprocal
agreemenbetween eclient and aserver governing correct invocation and
exception-handlingn a single methad

Henderson-Sellerand Edwards distinguishMeyer's "method contracts" from
Wirfs-Brock's "class contracts”, understood tahee set of method contraaised
by each client [13]. Each client-server collaboratiauld then begoverned by a
single contract. RDD is slightly more subtléhan this,grouping services into
contracts according teach distinct set of clientghich invokethem. This means
that agiven client-server collaboration may eventually be governed by one or
more contracts, depending on whether the sdrasrother clients whicimvoke
intersecting groups of services his distinctionaffectsthe operation of rule 10
above. Insummary,RDD is aresponsibility-drivenapproach, which optimises
the communication pattern among entities, by transferringdasgonsibility for
handlingmessage requests arouheé system. The cleverness in RDD lies in its
ability to merge communicatigmaths, so reducing thdegree of static inter-entity
coupling required. This is consonant with Parnas' dictum on modularity [18].

2.2 Transformations in RDD

A version of thewell-known ATM banking machine example is presented to
illustrate the operation of thRDD process. Nouns frorthe original problem
description, such ageller, Money, CheckingAccouate selected as candidate
objectabstractions ("entities”, hereafter). Sets of responsibiitiezonstructed
for each of these entities, for example, according to the grammar:

P:=R|R"and"R|R"or"R | (R)
where R is the set of atomiwatural language statemerasd P arenon-atomic

statements of responsibility constructed from these. The initial entitiéitened
and retainednly if theycan beconceived avearingsomekind of responsibility

(rule 1), soconcepts likedMoneydo not surviveexcept aghe balanceattribute of
a CheckingAccoungentity (rule 3). Collaboratorare elicited (rule 2where
these server-entities arebviously involved in the fulfilling of client
responsibilities; this information is entered GRC cards. Figure $hows the
initial collaboration pattern between these first-cut domain entities.

i

Savings Checking
Account Account

Card Teller Dispenser
Reader

Terminal Nightsafe

Figure 1: Pre-transformed RDD collaborations

Clearly, there is a degree of arbitrary interpretatiothaearly selection obbject
abstractions; nonetheleal entitiesselected must hawhe required behavioural
properties. The elicitation rules (1-3) are perhkgss automatichan thelater
rules, buthis isinevitableand not &ault. We have deliberately chostre most
obviousdomain-influenced initiainodel, which fails to differentiate thaetivities
of the Teller and fails to generalise orypes of Account although the RDD
method would equally accept a more percepiniBal conceptualisation. The
strength ofRDD lies inits ability to reorganisehe initial model according to
modularising principles, forcing the invention of new abstractions.

In figure 2, the desigprocess is more advanced, gt yet complete. An early

and obvious generalisation on common responsibilities time interfaces of
SavingsAccounand CheckingAccounhas generated the abstracicountparent

class (rule 10). When all the responsibilities of the existing entities are listed, the
two most overburdened entitiese Teller and CardReader both of which have

over 7 responsibilities (rule 1), so these need to be split.

The CardReadermust read, validateencodeand transmitaccountand PIN
numbers, search for accoumtsd authorise connections to them. Ttlice of
applying rule 5overrule 6 to splitCardReaderis determined by théact that its
responsibilities argudged cohesive, since thayl involve the samecollaborators
and attributes. According to rule 5, mew entity, Verifier, is spunoff as a
delegate ofCardReadermwith the responsibility tohandle andvalidate PINs. In
retrospect, this is gooddesign decision, sincddardReadelhas noneed to retain

the PIN number (rule 3nce ithas read the card amIN number [4]. Notice
how this is an instance of ti&hain of Responsibilitpattern [10], p223, in which
the responsibility taerify PIN numbers passed onto a delegate object. RDD wiill
tend to generate @hain of Responsibilitpattern every time rule 5 is invoked.

:

/N

Verifier Savings Checking
Account Account

Reader

Withdrawa
Terminal Dispenser
) Deposit

Figure 2: Partially-elaborated RDD collaborations

Nightsafe

i

In contrast with this, th@eller entity must be partitioned into peeltgcause its
many responsibilities are not cohesive (rule 6), even when restated. This is judged
by observing howdeposit moneyequires collaborating with thdightSafeand
Accouni whereasvithdraw moneyrequires collaborating with th@ispenserand
Accountandlastly, inspect balancenly requires collaborating with thé&ccount
So, three peeimanager entities" (rule 6) adevised tchandle each distingype

of Teller-transaction.Notethat the rulerequires invention of new entitiegnd it

is up to thedeveloper to providsignificant nameshased orthe partitioning of
responsibilities. The elaborational rules 4-6R®ID tend to generate manager
entities to handle differemstystemfunctions, by virtue of the constraint (rule 1) on
the number of responsibilities assigned to each entity. Wessditer how this
leads inevitably to instances of tBemmandehavioural pattern [10].

By drawing the collaboratiograph (rule 8)after the proper determination of
contracts (rule 7), weee in a more visuaay how individual clients areoupled

with their servers. Atthis time, areas of strong amdeak coupling may be
identified. In our example, one of the kinds of withdrawal to be supported is
really a transfer of funds, which leads to the undesired cross-coupling highlighted
in figure 3 (a): Withdrawalis theonly manager-entity with a cross-linkage to one

of its peers. This is strorgyidencethat rule 9should be applied to remove the

cross-coupling.This rule mandates the introduction ohew entity to aggregate
over the subsystemand manage theommunication betweethe parts. Calling
this new entity th@ransfermanager, we encapsulaW¥ithdrawalandDeposit as
shown in figure 3 (b).Withdrawalno longer needs a direct referencé&posit
Notice howthis is an instance of thdediator pattern [10], p273: th@&ransfer
entity coordinates thesequence of interactiongetween the Deposit and
Withdrawal managers, sucthat these do not need to refer to each other; the
anomalougransfer moneyontract ismoved fromWithdrawal to thisnew entity.
RDD rule 9 always generatedlediator patterns, where othewbject-oriented
methods might be content to let the cross-coupling remain.

Withdrawal linkage
Terminal i ””””” Terminal ’{ Withdrawal
_" Deposit
Deposit
() (b) »

Figure 3: Aggregating over a closed subsystem

The last group of transformatiorievolves considering hovthe contracts of
Accountareinvoked by clients. OncAccountresponsibilities have been refined
down tothe level of individual servicegby rule 4), thesemay be groupednto
named and indexed contracts according to the distinct sets of clientsinvioioh
them. According to rule 7Accounteventually offers fivecontracts, many of
which only contain oneservice each: (linspect balances used byBalance
Deposit and Withdrawal (2) make depositis used byDeposit (3) make
withdrawal is used byWithdrawal (grouping together theservices request
withdrawal and withdraw amoun)t (4) commit changess used byDepositand
Withdrawal andfinally (5) connect to accounis used byerifier, (grouping
together the serviceslid a/c?, valid PINanda/c frozen?.

Figure 4 (a) is a fragment of tleystem, showing howepositand Withdrawal
invoke the Account contract (4) in common, but otherwise invoke apparently
separate contracts (and (3) each. This is nonethelessggestive, according to
rule 10, thatsomegeneralisation ofithdrawal and Depositshould handle all
communication withAccount Calling thisnew abstract entity dransaction
manager, theesponsibility for invokingAccountcontracts migrates upwards to
Transaction In figure 4 (b), contract (4ommit changess now invoked directly

by Transaction(instead of separately ByccountandWithdrawa). Contracts (2)
make deposiand (3) makewithdrawal arejudged sufficientlysimilar, from the
perspective operforming a transactionthat anabstract methottansact(intymay

be provided inTransaction,which is subsequently redefinethd dynamically
bound inthe descendantBeposit and Withdrawal to perform the appropriate
deposit or withdrawal actionThe effect ofthis transformation is to merge the
communication paths leading from different manager-entitiesctmunt First,
the duplicate paths to contract (4) are mergieel) the paths toontracts (2) and
(3) are merged (on the basis of polymorphism).

Account 2 Account
3 2+3
Q 4 4
2 = deposit w .
3=withdraw | = single L
4 = commit p
V4|
A use same | - merged
contract P
Terminal
Withdrawal Transaction

Terminal l
Transfer Transfer <F

Deposit
Deposit Withdrawal

() (b)

il

Figure 4: Generalising on commonly-invoked contracts

From figure 4 (b), it is cleahat therevised contracts (2+3)nd(4) arenow only
used by the clienfransaction so these may also be merdpbgrule 7), making it
possible to combinghe transact(int) and commit() methods. Notice how these
transformations lead systematically toiagtance of th@emplate Methogattern
[10], p325, in the form of ransactiors handleRequest(Account&pethod. This
method is the templafer all single transactions on actcount First, itinvokes

a virtualtransact(intymethod stub, followed by a concremmmit()method, on an
Accountinstance. Transactiors descendants will provide appropriate concrete
implementations fotransact(int) c.f. [10], p327.

The continuingprocess of generalisation (ruld®), 7) eventually predicts an
abstract superclass fBalance TransferandTransaction which allcommunicate
with Account Since thisentity will be the root o&ll managers handling banking
requests, we reintroduckeller as the abstract superclass in the final design in
figure 5, having a single contract (1+2+3+4) witbcount We emphasisthat it

is the similarity in theavay different manager-entities communicate whbcount
judged according to contracts, which motivatke introduction of theTeller

entity; the fact that this corresponds to an existing concdptianalysis domain

is serendipitous. Notice howeller is an instance of thEommandpattern [10],
p233: Teller encapsulates different kinds of abstract banking requests, which are
fielded by its more concrete subclassed his could be represented by a
polymorphichandleRequest(Account&pethod. Further merging dfeller and
Verifier is prevented by their too-different external interfaces.

N\
Verifier Savings Checking
Account Account
7
Card Teller
Reader
Terminal Transfer Transaction Balance

Nightsafe }‘7 Deposit Withdrawal 4.{ Dispenser

Figure 5. Fully-transformed RDD collaboration graph

2.3 Subsystems and Coupling in RDD

The kinds ofsubsystems identified by RDRre equivalent towell-factored
modules withminimal inter-moduleprocedure calls. We emphastbat it is the
systematic application of rules 7-10 which layers systems propanig;this is the
aspect of RDD which is most often neglectdthe per-service weighting measure
(rule 7) lets the designsee how many servicemach collaboration is carrying, in
highly-coupled systems. It providesationalefor placingsubsystem boundaries:
you aggregate ovethe mosttightly-coupledparts of thesystem(with high per-
service countspnd break thesystem at weakly-couplepgoints (with low per-
service counts). RDD subsysterare eventually much better motivatedhan
Coad-Yourdorsubjectq6].

RDD supportsthe bottom-up discovery ofMediator patterns, where each
Mediator is a properly-layered subsystenilhe aggregatesubsystemTransfer
obviatesthe needor its componenfransactionmanagers to beoupled directly

to each other. Instead, it initiates the communcdiEtweenthem, handling the
transfer of requestandmoney in a controlled sequence, possidgording state
information in theprocesqrule 3). For example, the withdrawal requesty be
refused, in which casthe deposit cannot gahead. This iddeally handled
internally by theTransfermanager.

Most methods encourage clustering of classes sifttilar external interfaces (we
showedthis with the grouping oBavingsAccounaind CheckingAccoununder
Accounyj, in other wordstheir similar behaviour is grouped according tow
they act as serversRDD isunique in its ability to cluster classegstematically
according tchow they invoke their clientdVe emphasise how clevris is - it is
the only approach which canoptimise the opposite (usually invisible,
encapsulated) end of the collaboration relationship. Through the partitioning of
class servicesnto contracts (rule 7)and the construction of fine-grained
collaboration graphs (rule &DD supportghe bottom-up discovery of emplate
Method and Command patterns. In particular, it is theer-client-set
identification of contracts which allowthe designer tseesimilarities in the
globalpattern of invocation. Coarser-grained definitions of a collaborgtiaph
[13, 19] do nosshowpatterns of invocation; bunly patterns of coupling. This
will permit the aggregatioactivity (rule 9) to proceed, bubt the generalisation
activity (rule 10).

3 Event-Driven Design: Existence Dependency

The seconabject-oriented design method we consider isodginal one,based

on a process algebra [25, 8] and a conceptual modelling approach [24]. We call it
Event-driven desigEDD) because it takdbke viewpointthat all computation is
made up of events, on which objects must synchronise in order to participate. The
notion of event participation is deliberately abstract, avoiding early assignment of
responsibility to objects for carrying out actions. A motivating example is where a
Copy of a library book istaken out on loan by 8orrower. which object is
responsible for performinghis action? Theevent-driven approackays that
neither is, instead both participate ib@rowing event This viewpoint is similar

to theview of communication defined in CSP [14]; whereas traditionatsage-
passing is more like CCS [17].

Entities are identified initially as simple data abstract@mg are inserted into an
object-event tablOET). Every entity should have one or more associated
creation and deletion events bounding the lifetime of its exis{seesfigure 6 for
examples); these alegged inthe table. Furtheevents, which trigger thmain
systemoperations, aralso loggedagainst allthose entities which participate in
each event. An existence dependegcgph (EDG) is constructed, in parallel
with the OET (see also figuré). This isdifferent from an entity-relationship

diagram in thakeverylink is an existence- or lifetime-dependency relationship,
between a master and one or more dependent entities. For example, a library may
acquire a new'itle andseveralCopiesof thatbook. The existence ofhe Copies

is directly dependent atmat of theTitle; without theTitle first being created, no
Copies can exist; and if the Title is everwithdrawn, then allCopies must
necessarily cease to existhe EDG starts as a set of nodesly some of which

may initially depend on each othend so beconnected. Eventually, the EDG
becomes an acycligraph (transitive antisymmetric, non-reflexive) as further
nodes and connections are added.

The system elaboration phase extends the OET and EDG by considering groups of
entities which must synchronise to participate in events. If #heynotalready
linked by dependency irthe EDG, thensome new entitymust be invented to
represent théme-bounded association betweadie participating entities. This is
added to the ED@nd appropriatereationanddeletion eventarelogged in the
OET for thenew entity. An example ighe borrow andreturn events, in which a
Copy of a bookand aBorrower participate. Sinc€opyandBorrower are so far
unrelated in the EDG, mew associative entityjamedLoan, is introduced. The
borrow eventmarks the creation of theoan entity, which is deleted when a
correspondingeturn event signals the return of the book to the library. Oden
encapsulates the keys (pointers, IDs) of its participants.

In the system consolidatiophase, polymorphic families of methodee devised
corresponding to one method ssistem evenhandled in each entity. THiew

of control is initiated from the dependesdsociative entity tahe participating
master entities, each of which must have a version of the method to react to the
event. Thepolymorphicborrow method constructs laoan, dispatching thesame
borrow-message tthe participants, where {variously) decrements Borrowers

book allowance and marksGopyas unavailable to other library users.

3.1 The Rules of EDD

Once more, ware interested in the potential of EDD asystematic design
process. In table 2, we have distilled 10 rules (coincidentally, the same number as
for RDD) fromthe principalsourceq8, 24, 25], by ignoring the morgubjective
aspects ofthe design processes describethere. Rules 1-4 govern the
identification of entities and events; rules 5-8 govern the elaboration phase which
layers the system according to the principle of existence dependandyyles 9-

10 govern the consolidation phase whidmverts events intchains of methods.
There is a pleasing simplicitgboutthe EDG, sinceall relationshipshave the
same semanticand arealready normalisedin ERM terms) when they are
constructed. Alsothe mutual influence of the OEand EDG allowsthe two
principles ofevent participatiorandexistence dependenty drive the invention

of associative entity-abstractions.

EDD rule 1: Entities are data or associatmmcepts, existing for 41

period of time, bounded by one or more creatioddeletion events and

involved in possibly many other events.

EDD rule 2: Primary data entities group atomic, hon-overlapgetg of
attributes, which they are responsible for maintaining.

EDD rule 3: Associative (dependent) entities grotige keys of the
master entities on whiclthey depend; and may manage further
relationship attributes.

EDD rule 4: Events ardefined as atomic, non-decomposable actipns
which (C)reate, (I)nvolve or (D)elete entities; an atomic event must

impact on a finite, known number of entities.

EDD rule 5: Anobject-event tablarranges entities (x-axis) again
events (y-axis); C, |, [re entered at appropriate intersectioesery

entity should have at least onea@d D; everyevent should have at least

one C, or |, or D.

EDD rule 6: An existencelependencygraph connects 1:land M:1
simultaneous dependents tbeir master(s); thdifetime of each
dependent is strictly contained within that of its masters.

EDD rule 7: Anew associative entity is created for each distinct se
entities participating in 2 or more common everttg C, |, Devents for
this new dependent entity must correspaoadpectively to: [C of], |,
[D or I] events for its masters.

EDD rule 8: Continue therocessuntil all nodes inthe EDG are
connected;and alljoint participations in events ithe OET havebeen
encapsulated in dependent associative entitieall daut one, since twg
events are needed to bound the lifetime of a dependent entity.

EDD rule 9: All eventsbecomemethods invoked ornhe dependen
entities, delegating to the participating master entities; depen
handle the intersection of their masters' events.

EDD rule 10: Branches in method-trees are renamed according
réles played by eacparticipating entity; similaréles are clustered;
degenerate methods are eliminated.

Table 2: Ten Rules of Event-Driven Design

ot of

[
dents

o the

3.2 Transformations in EDD

Most of the systemlayering activity is performediuring the elaboration phase
(rules 5-8), in which new entitieare devised according tdhe principle of
existence dependencylLessstructural re-design is required, since tneent-
participation model deliberatelyeaves the initial messagepattern plastic;
however, transformationsre made to the OET. Figuresafd 7 illustrate the
lending library system before and aftdRaservatiorentity has been added.

Borrower |Title (Copy | Loan
Title
join C A a title must be
leave 5 created with a A
single copy

catalog C co 1+
delete D o-|~ -~~~ "~ -
acquire | C Copy Borrower
dispose | D A
borrow | | | C
renew | | | | 0.1
overdue | | | | o+
lose | | D D Loan
return | | | D
reserve [[A cascading

,,,,,,,,,,, deletions are
cancel ! ! not represented
fetch | | | C

Figure 6: OET and EDG after addition of Loan

In figure 6,Loanis the latesassociative entity introduced, accordingtite 7, to
manage theommon eventsdorrow, renew, overduand return}, in which the
unique set of entitiesGopy, Borrower} participate. Loan hasalso been attached
as the latest child in the ED@ndmade dependent ddopyandBorrower. The
multiplicity figures state how manyoansmay exist for eaciCopy or Borrower.
Note how, in accordanoeith rule 7, the OET containlsevents forall the the
master entities, viz. Borrower, Copy, Title impacted byLoan C-, I- or D-
events, such agnew Thisallows renews consequences to propagateliothe
master entitieseg the Borrower may havecertain privileges restored by renewing
an overdue book;the Copy may haveits time-to-inspection reduced); but it is
difficult to imagine what impaatenewmight have onTitle - it is possible for an
event to have a null effect; we show how this is handled below.

In figure 6, theexistence of at leastvo events feserve cance} which involve
two participants Jitle, Borrowel} not already covered bythe existingLoan
association motivatethe separate creation of tiReservationassociative entity
(by rule 7). This isshown added to the OEAnd EDG in figure 7. Note how
there are no longeany l-entries in the OET whichre notcovered by some

existing association, indicatirtgat theelaboration phase r®w complete.Every
time a new entity is introduced, existing eveats examinedor their impact on
this entity (rule 1). For example, thietch event is identified as a (D)elete-event
for a Reservatiorand asimultaneous (C)reate-event fot@aan This is theonly
event to involve both &oan and aReservation No new associative entity need
be created (according to rule 8), sincpaar of time-separated events ddways
necessary to (C)reatand (D)elete each new associative entity introduced.
Furthermore, there are no unconnected entities in the EDG (rule 8).

Borrower |Title [Copy | Loan | Reservation
Title

join C
leave D A
catalog C C 1+
delete D
acquire | C Copy Borrower
dispose | D
borrow | | | C A
renew | | | | 0.1 o+ o+ o+
overdue | | | |
lose | | D D Loan Reservation
return | | | D
reserve | | C
cancel | | D
fetch | | | C D

Figure 7: OET and EDG after addition of Reservation

Rule 9 is applied to conveatl event-participations into methods (one method per
entity-event). A large number of methaate generatedEvery associative entity
automaticallybecomeghe root of a call-graplfior each event it manages. For
example, theenewevent is translated intoLoan::renew()- update the due date
of the loan, which dispatches ta&€opy::renew()- reducethe time to inspection;
and also to Borrower::renew() - restore borrowing privileges.Copy::renew()
dispatches tdlitle::renew(), which eventually is awll operation, adegenerate
method. Noticghe similaritiesbetweerthe method interfaces of eaahsociative
entity and the participatingntities it manageseverydependent entity manages
the intersection of its masters' events. Just likeoenpositepattern [10], p163,
associations encapsulate part-whole hierarchies which respond to theetaroe
messages. Just litke Chain of Responsibilitpattern [10], p223, thevents are
handed on to the next component in the hierarahtil componentsare reached
which perform significant parts of the computation. EDD wiWaysgenerate
thesetwo patterns in abundance. Finally, rule 10 is applied to eliminate
degenerate methods, suchTatte::renew(). Groups of methods may benamed,

to increase their mnemonic salience, for exampinsactmay convert intduy()
andsell() for objects playing these complementary roles.

3.3 Subsystems and Coupling in EDD

Dependent entities in EDD have sometbé characteristics dERM's linker
entities (they represent associatioasd store foreignkeys) but also have
characteristics of RDDWNlediator patterngtheyaredevised in response to a need

to communicate events their participants).However,data aggregationsay be
handleddifferently in EDDthan inotherobjectmodelling approaches [22, 20, 5,

19, 9]. Aggregations representiagistence dependenciaseemodelledthe same

way: eg the Lines of an order are dependent on tBeder. However, new
associative entities mustiways be devised teelate anassembly toits non-
existence-dependeparts, such as the components of a Pfere, an associative
entity manages the collaboratidetweenthe whole and each part, which is
presumed to have a separate existence (it may be exchanged, substituted into other
PCs). This tends tpromote a distributegattern of control: théogic of the PC

is handled by asociety of existence-dependent controllers governing the
throughput between the PC and each of its hardware components. EDD optimises
the construction ordeiof a system. It is easy thraw entity life historydiagrams
(ELHSs) [1] for each entitandderivethe life-history ofthe system fronthis. The

logic handling otheeventsduring thelife of an entity is either pure selectigall

events equally likely), or some sequencing of events is required.

EDD layersthe composition structure similarly to RDD; but it suggests a quite
different generalisation structure. Consideat Borrower and Copy satisfy the
interface ofLoan (because they respond &l Loans eventsand also to other
events). It is tempting, but wrong, think of Loan as a generalisation of
Borrower and Copy, sinceLoan implements theommon events differently from
either class. Instead]l threeclasses shoulthherit from an abstract class which
definesthe Loan interface (but not the implementation)his abstractlass is an
instance of theComposite pattern base class[10], p163, whose concrete
descendants respond to each messagkthendelegate these messagegheir
own components. EDD inevitably produdasge numbers afompositepatterns,
because of the emphasis on shared patrticipation in events. More important master
entities will participate in morthanoneCompositepattern, suggesting these of
multiple inheritance from several abstrdwdse classes. Where one ather
master entity ichiefly accountable itmandling anevent,this isalso an instance

of Chain of Responsibilitj10], p223, which allows events to be dispatched to one
starting point, therforwarded downthe line tosome objectwhich eventually
executes the major part of the response.

4 Conclusions

This paper has examinédo different approaches to object-oriented design, each
of which elevates a differembodularising principle: contract minimisatiorand

existence dependencyifferentDesign Patterne@mergediuring the application
of the methods, showindiow they take different design decisions when
structuring asystem. We showed above hdheseDesign Patternsemerged
naturally and are ifiact an inevitablepart of the layeringand transformational
rules of each method. We characterised each method in a semifcaynalothat
the readercould see more easithe link betweerthe "rules" of the methods and
the particulaDesign Patterngenerated.

4.1 Emergent Patterns and Coupling Characteristics

The kinds ofsubsystemand layering suggested by each approacé different.
EDD promotes unidirectionatlata coupling in its modelling, so is unable to
handle inverseffects,such as a cascading deletion (see note in Figurevhich

is formally forbidden. ArObserverpattern [10], p293¢ould be used to register
master entities with their dependents, although wusld significantly worsen
the coupling characteristicSRDD is most successful ialiminating mutual and
closed-loop couplings because thfe perspective offered byhe collaboration
graph. In thesame circumstances, where EDD requiresCdiserver pattern,
RDD will generate aMediator pattern. RDD is unique in its generalisation
strategy, because it merges communicatjaths at both thesource and
destination endsRDD and EDD contrast strongly in theiay they generalise -
whereas RDD willgenerataCommandand Template Methogbatterns, EDDwill
generateCompositeand Chain of Responsibilitpatterns. It is no accidetttat
RDD generates albehaviouralpatterns ediator, Command, Template Method,
Chain of Responsibilijy since itsfocus is onresponsibilitiesand behaviour.
EDD, on the othethand, isdominated by thestructural pattern, Composite
determined by the EDG structure. The event-participatiodel leads directly
from this to the emerge&hain of Responsibilitpattern.

Both approaches redudke number ofsubsystemsvhich interact directly. In
some cases, they will suggebke same structures, bigr different reasons. A
Purchaser Vendor and Product will end up encapsulated in $ale using both
approaches. In RDBalewill be invented at a later stage to aggregater the
closed ring of collaborations involved intransferring money, goods and
ownership; whereas in EDZalewill necessarily exist fronthe beginning, by
virtue of the existence dependency rules, butly for the duration of the
agreement to purchase until the final transaction is complete.

4.2 Pattern Metrics for System Design

There is far more twbject-oriented systendesignthan elaborating analysis
models tathe point whergheycan be implemented. This is not truly appreciated
by seamless approaches [6, 7, 26, 13, 1Systempartitioning hasonly been

treated informally in many other presentations [20, 15, 3, 13]. Initially, we had
set out to identifycodify and thencomparetwo design approaches whidifered
some leverage in the system design stage. When we applied our semi-formal rules
to example designs, we foulagain and again thaecognisable Design Patterns
emerged. In particular, wgave examples of instancesMé&diator, Command,
Chain of ResponsibilityTemplate Methodand Compositethat were generated
automatically. Theséve patterns allhave thepropertythat they reduce cross-
coupling in systendesign. TheFacade pattern [10], p185also exhibitsthis
property, but whereas the othfisre may be derived fronthe internalcoupling
characteristics of systemfacadeis always imposed externally, isituations
where componentare being bundlefor convenience. Sompatterns, such as
Adapter [10], p139and Bridge [10], p151, are neutral withespect to cross-
coupling: they introduce aextra layer of composition to redutee number of
specialised variants of a classOther patterns, such aBroxy [10], p207,
Flyweight[10], p195andespeciallyObserver[10], p293, actually increasgoss-
coupling and mutualdependency. This reinforces our confidence ithe five
emergent patterns as indicators of high-quadiggtemdesigns. We not¢hat
Design Patterns have nbeen used irthis mannerefore - aditmus paper for
testing the strengths, weaknesses and preferences of design methods.

References

1. Ashworth, C. and Goodlanty)., SSADM: A Practical ApproactMcGraw-Hill,
1990.

2. Beck, K. and Cunningham, W., "A laboratofgr teaching object-oriented

thinking", Proc. 4th ACM Conf. Object-Oriented Prog. Sys., Lang. and. Apyob.
Sigplan Notices, 25(10),989, 1-6.

3. Booch, G., Object-Oriented Analysis and Design with Applications, 2nd edn.
Benjamin-Cummings, 1994.

4. Budd, T., Introduction to Object-Oriented Programmingddison-Wesley,
Reading MA, 1991.

5. Coleman, D.Arnold, P., Bodoff, S., et al., Object-Oriented Development: The
Fusion MethodPrentice Hall, 1994.

6. Coad, P. and Yourdon, EQbject-Oriented Analysis’ourdon Press, 1991.
7. Coad, P. and Yourdon, EQbject-Oriented DesigrYourdon Press, 1991.

8. Dedene, G. and Snoed,, "Formal deadlock elimination in an object-oriented
conceptual schemaData and Knowledge Engineering, 1895, 1-30.

9. Firesmith, D., Henderson-Sellers, B. and GrahamQPEN Modelling Language
(OML) Reference ManuaSIGS Books, 1997.

10. Gamma, E., Helm, R., Johnson, R. and Vlissidefdsjgn Patterns: Elements of
Reusable Object-Oriented Softwakeldison-Wesley, 1995.

11.
12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

Gibson, E. A., "Objects born and breBY, TE magazine, 15(10)990, 255-264.
Graham, I. M. Migrating to Object Technologyddison-Wesley, 1995.

Henderson-Sellers, B. and Edwardls,Book Two of Object-Oriented Knowledge:
The Working ObjectPrentice Hall, 1996.

Hoare, C. A. R.Communicating Sequential Procesdeeentice-Hall, 1985.

Jacobson, |., Christersonl., Jonsson P. and Overgaa@, Object-Oriented
Software Engineering: a Use-Case Driven Approakdidison-Wesley, 1992.

Meyer, B., Object-Oriented Software Construction, 2nd. edn. rev. and enl.,
Prentice-Hal| 1997.

Milner, R., "A calculus otommunicating systemsl,ecture Notes in Computer
Science Springer, 1980.

Parnas, D.,"On the criteria to be used idecomposing systems into modules",
Comm. ACM, 15(12)1972, 1053-1058; reprinteth: Classics in Software
Engineering ed. E Yourdon, Yourdon Press, 1979.

RationalUML 1.1 ReferenceManual Rational Software Corp., September, 1997;
also available throughhttp://www.rational.com/uml/

RumbaughJ., Blaha, M., Premerlani, WEddy, F.and Lorensen, W.,Object-
Oriented Modeling and DesigRrentice-Hall, 1991.

Rubin, K. and Goldberg, A. "Object-behaviour analys&dmm. ACM,35(9)
1992.

Shlaer, S. and Mellor, S.Object-Oriented Analysis: Modelling the World in
Data, Yourdon Press, 1988.

Simons, A. J. H., "ObjedDiscovery: aprocess for developing medium-sized
object-oriented applicationsTutorial 14, European ConfObject-Oriented Prog.
Brussels (1998); see alddtp://www.dcs.shef.ac.uk/~ajhs/discovery

Snoeck, M. and Deden€,., "Generalisation/specialisation and réleoinect-
oriented conceptual modellingdata and Knowledge Engineering, 19(2R96.

SnoeckM., "On a process algebra approachthe construction and analysis of
MERODE-based conceptual model®hD thesis, Katholieke Universitdteuven
1995.

Waldén, K. and Nerson, J.-MSeamless Object-Oriented ArchitectuRrentice-
Hall, 1995

Wirfs-Brock, R., "Responsibility-Driven Design'Tutorial Notes, ACM Conf.
Object-Oriented Prog. Sys., Lang. and AppR96.

Wirfs-Brock, R.and Wiener, L., "Responsibility-drivetiesign: a responsibility-
driven approach"Proc. 4th ACM ConfObject-Oriented ProgSys., Lang. and
Appl., pub.Sigplan Notices, 25(101989, 71-76.

Wirfs-Brock, R., Wilkerson, B. and Wiener, L., Designing Object-Oriented
Software Prentice Hall, 1990.

