Issues in implementing a model checker for Z

John Derrick, Siobhan North and Tony Simons

Department of Computing, University of Sheffield, Sheffield, S1 4DP, UK
J.Derrick@dcs.shef.ac.uk

Abstract. In this paper we discuss some issues in implementing a model
checker for the Z specification language. In particular, the language de-
sign of Z and its semantics, raises some challenges for efficient model
checking, and we discuss some of these issues here. Our approach to
model checking Z specifications involves implementing a translation from
Z into the SAL input language, upon which the SAL toolset can be
applied. In this paper we discuss issues in the implementation of this
translation algorithm and illustrate them by looking at how the math-
ematical toolkit is encoded in SAL and the resultant efficiency of the
model checking tools.

Keywords: Z, model-checking, SAL.

1 Introduction

Computing is a tool-based activity, and this applies to design and specification
as much as to programming. Furthermore, all design and development methods
which have ultimately gained acceptance have been supported, if not based on,
toolsets for integral parts of their activity, and this is true for both formal as
well as informal methods.

For example, it is inconceivable to imagine UML without tool support, and sim-
ilarly the use of, say, B or SDL depend on their associated toolsets. Indeed,
many notations have been designed with tool support in mind, resulting in effi-
cient type-checkers, simulators, proof assistants etc. for these languages.

However, this is not the case for the specification language Z [14, 1], where the
notation and needs of abstraction have been the driver behind the language
and its development rather than tool support. The language itself has been
very successful and the challenge now is to develop usable tool support for it.
The CZT (Community Z Tools) project (see http://czt.sourceforge.net/ or [10])
aims to tackle some of these issues, and is building a range of tools around a
common exchange format. In this paper we discuss some issues in implementing a
model checker for Z which is being developed by the Universities of Queensland,
Australia, and Sheffield, England. In particular, the language design of Z and its

semantics raises some challenges for efficient model checking and we illustrate
some of these issues here.

Model checking [4], which aims to determine whether a specified system satisfies
a given property, works by exhaustively checking the state space of a specification
to determine whether or not the property holds. Model checkers will also provide
a counter-example when the property does not hold, thus giving some insight
into the failure of the property on the current specification. There has been a
considerable amount of success in applying model checking to real large-scale
systems, and the technique is now applied routinely in some industrial sectors.

Originally model checking technology was only feasible for small, finite state
spaces, and this meant that their application was restricted to notations suited
to modelling systems where the complexity lay in the control structure, rather
than the data, e.g., hardware systems and communication protocols. However,
these factors have become less of an issue due to the maturity of the tech-
nology. For example, it is now feasible to model check systems involving very
large state-spaces (e.g., systems with 102° states), and the restriction to spec-
ification notations with control rather than data has now gone. In addition,
automatic techniques for property-preserving abstraction [7,12, 3] and bounded
model checking allow systems with infinite state spaces to be checked. Further-
more, powerful automatic decision procedures allow model-checker languages to
support high-level specification constructs such as lambda expressions, set com-
prehensions and universal and existential quantifiers [5].

Instead of implementing a model-checker from scratch we have been investigat-
ing using an intermediate format into which we translate a Z specification. In
particular, we have been using the SAL input format as our intermediate for-
mat. SAL [5] is a tool-suite for the analysis and verification of systems specified
as state-transition systems. Its aim is to allow different verification tools to be
combined, all working on an input language designed as a format into which
programming and specification languages can be translated. The input language
provides a range of features to support this aim, such as guarded commands,
modules, definitions etc., and can, in fact, be used as a specification language
in its own right. The tool-suite currently comprises a simulator and four model
checkers including those for LTL and CTL.

The basis of the translation algorithm of Z into SAL was defined by Smith and
Wildman in [13], and in this paper we discuss the implementation of these ideas.
The advantage of using SAL is that many aspects of Z, such as structuring via
schemas, use of primes for after-state etc., can have a similar representation in
SAL. The focus of the translation thus comes down to how the mathematical
toolkit (i.e., sets, relations, sequences etc) is encoded. We illustrate this point
by discussing the approach, and problems, of representing sets in SAL.

The structure of the paper is as follows. In Section 2 we introduce our running
example. The basic approach to translation is discussed in Section 3 which briefly

explains how a Z specification is translated into a SAL module. Subsequent sec-
tions discuss the implementation of types (Section 4) and axiomatic definitions
(Section 5) before we focus on the issues surrounding the implementations of
sets in Section 6. Section 7 discusses the use of the tool, and Sections 8 and 9
provide a discussion and some conclusions respectively.

2 Example

A 7 specification defines a number of components, including types, constants,
abbreviations and schemas. The schemas define the state space of the system
under consideration, its initial configuration and the operations which define the
transitions of the system.

For example, the following defines the process of joining an organisation which
has a set of members and a set of people waiting to join.

[NAME]
Report ::= yes ‘ N0

total : Ny
total = 4096

capacity : Ny

1 < capacity < 4096
| #NAME > capacity

__State
member, waiting : P NAME

member N waiting = &
#member < 4096
H#waiting < total

__Init
State'

member’ = @&
waiting' = &

__Join
AState
n?: NAME

n? € waiting N\ #waiting < capacity
member' = member U {n?}
waiting' = waiting \ {n?}

__Join@)
AState
n? : NAME

n? & (waiting U member)
F#waiting < total

waiting' = waiting U {n?}
member’ = member

__ Remove
AState
n?: NAME

n? € member
waiting' = waiting
member' = member \ {n?}

__ Query
= State
n?: NAME

ans! : Report

n? € member = ans! = yes
n? & member = ans! = no

3 Basic translation

Our approach to model checking Z involves implementing a translation from Z
into the SAL input language upon which the SAL toolset can be applied.

The translation scheme is based upon that presented in [13], whose aim was
to preserve the Z-style of specification including predicates where primed and
unprimed variables are mixed, and the approach of the Z mathematical toolkit
to the modelling of relations, functions etc., as sets of tuples. No claim is made

about how optimised the translation is; the aim of [13] was simply to show how
much of the Z style could be preserved within SAL. Here we consider some of
the implementation issues.

A 7 specification is translated to a SAL module, which groups together a number
of definitions which include types, constants and modules for describing the state
transition system. In general a SAL module will have the following form (where
elided parts are written ...):

State : MODULE =
BEGIN
INPUT ...
LOCAL ...
OUTPUT ...
INITIALIZATION [...]
TRANSITION [

]
END

3.1 State and initialisation schemas

As seen in the example above, in a states plus operations style schemas form
one of the basic building blocks of a Z specification. Different schemas take
on different roles, and the translation into SAL needs to take account of the
intended role of each schema in the specification. In our current implementation,
we assume that there is a single state and initialisation schema, and that the first
schema in the Z input is the state schema, and that the second is the initialisation
schema. All other schemas are taken as operation schemas.

In general, schema references are allowed within a schema, and are used in ini-
tialisation and operation schemas, e.g., =State in the operation Query above.
However, the schema references can be expanded, and then there is no need for
a predicate in the state schema, since it will be included in the initial and oper-
ation schemas, and for the latter in both primed and unprimed form. Our tool
does this expansion of schema references in the declaration part of any schema
automatically. Once this has been done, the (single) state schema contains only
a list of declarations. These declarations will be translated to local variables of
the SAL module.

In translating the initialisation schema we note that all schema references to the
state will have been expanded out, and the translation of the state schema will
have produced local variables. Currently we do not allow new declarations (e.g.,
of inputs) in the initialisation schema, it thus remains to translate the predicate
of the initialisation which becomes a guard of the initialisation section of the

module. The guard is followed by a list of assignments, one for each declaration
in the state schema. We allow both styles of specification where the initialisation
can contain either primed or unprimed components in the Z specification, but
are unprimed in the resultant SAL output. In the translation these assignments
allow any value of the appropriate type to be assigned.

Thus the state and initialisation schemas in our example above produce the
following SAL fragment.

State : MODULE =
BEGIN

INPUT ...

LOCAL member : set{NAME;}!Set

LOCAL waiting : set{NAME;}!Set

QUTPUT ...

INITIALIZATION [
member = set{NAME;}!empty_set AND
waiting = set{NAME;}!empty_set

-—>

3.2 Operation schemas

For the operation schemas, all schema references to the state will have been
expanded out. The translation of the state schema will have produced local
variables as above. It thus remains to translate the predicate (which will include
the predicate of the expanded state schema reference) and the input and output
of the schema.

Variables of the state schema, (e.g., member, waiting but not the primed versions)
have become local variables of the module. Inputs and outputs of the operations
are translated to input and output variables of the module, respectively. Output
variables need to be renamed since ! is not allowed as part of the variable name in
SAL. We choose to translate an output variable outputl!in Z to output_in SAL
prefixed by the schema name and two underscores to avoid ambiguity. This is
possible because the translator ensures unique names are used by restricting the
acceptable Z input to having names involving a single consecutive _ character
so we can safely use double underlining for system generated names.

Each operation is translated into one branch of a guarded choice in the tran-
sitions of the SAL module. We choose to label each choice by the name of the
operation in the Z specification, although, strictly speaking this is optional for
SAL.

In addition, it is necessary to ensure that the transition relation is total (for
soundness of the model checking). This is achieved in the translation by a final

guarded command which is an else branch to provide a catch-all, and will
evaluate to true only when all other guards evaluate to false.

Each choice in the transition (e.g., Join : ...) consists of a guarded assignment
as in the initialisation. The predicate in the operation schema becomes a guard
of the particular choice. The guard is followed by a list of assignments, one for
each output and primed declaration in the operation schema. In the translation
these assignments allow any compatible value to be assigned.

For example, the translation of our example will result in input and output
declarations and a transition as follows:

INPUT Join__n7? : NAME
INPUT JoinQ__n?7 : NAME
INPUT Remove__n? : NAME
INPUT Query__n? : NAME
OUTPUT Query__ans_ : Report

TRANSITION [

Join :
-—>
member’ IN { x : set{NAME;}!Set | TRUE};
waiting’ IN { x : set{NAME;}!Set | TRUE}
1
JoinQ :
member’ = member
-—>
member’ IN { x : set{NAME;}!Set | TRUE};
waiting’ IN { x : set{NAME;}!Set | TRUE}
]
1
Query :
member’ = member AND
waiting = waiting’
-
member’ IN { x : set{NAME;}!Set | TRUE};
waiting’ IN { x : set{NAME;}!Set | TRUE};
Query__ans_’ IN { x : Report | TRUE}
(1
ELSE -->

where we have elided parts of the translation we have not yet defined. In partic-
ular, the assigment of after-state values occurs before the —-> in the transitions
in this style of encoding.

Any local declarations, i.e., those not arising from a state schema but declared
locally in the operationare translated with the Op__ prefix as in the inputs and
outputs (where Op is the name of the schema).

4 Implementing types

The above fragment already includes translations of some types defined in the
specification, and Z includes a limited number of built in types. In particular,
arithmos is defined which provides ‘a supply of values to be used in specifying
number systems’. In practice it is assumed that N and Z are available.

In contrast SAL supports the basic types NATURAL of natural numbers, and
INTEGER of integers. These types can only be used with some of the SAL
model-checkers, thus we will translate them into finite subranges. We translate
the Z types Z and N into bounded SAL types INT and NAT respectively. We also
translate the nonzero Z type N; into the SAL type NZNAT. SAL definitions for
these bounded types are included if the Z specification requires them.

The default finite subrange for NAT contains 4 elements in our implementation.
Thus if N occurs in the ITEX input, then NAT: TYPE = [0..3] will be gener-
ated at the start of the SAL specification. Likewise, the NZNAT type has a default
subrange of 3 elements starting at 1 and the INT type has a default subrange of
5 elements starting at -1. This is to ensure that every type has at least three ele-
ments, while preserving the Z inclusion relationships: N; C N C Z. However, the
user can supply different bounds as parameters to the translator if desired, and a
larger subrange will automatically be used if the specification contains a constant
which is out of range. Our example uses the type N; and a constant value 4096
occurs of this type. The translator therefore defines NZNAT: TYPE = [1..4097]
automatically.

A given type, as in [NAME] above, represents a user defined unstructured type.
Although SAL supports a range of types, in general, the model checkers work
with finite types. Thus we need to provide a finite enumeration of the given set
NAME, and we translate it to:

NAME: TYPE = {NAME__1,NAME__2,NAME__3};

The number of elements in a given set enumeration is whatever the user has
supplied as a parameter as the upper bound - or 3 by default.

Free types in Z define types whose values are either constants or constructors.
The latter construct values of the free type from other values (see [13] for how

these free types are dealt with). In the example above, we translate Report
directly as

Report: TYPE = DATATYPE

yes,
no
END;

5 Axiomatic descriptions

After the type declarations, a Z specification continues with the declaration of
uninterpreted constants, which may or may not be constrained. A basic constant
declaration has the form capacity : N; and a constrained constant is declared
using an axiomatic definition, given in standard schema format:

‘ capacity : Ny

‘ capacity < 4096

In the SAL language definition [5] it is clear that the intention is to support
uninterpreted constants, eventually. The obvious translation of an uninterpreted
constant would be capacity : NZNAT;, and the translation of a constrained
constant would rely on SAL’s definition by set comprehension:

capacity : { x : NZNAT | x <= 4096 };

However, the current SAL toolset does not support uninterpreted constants,
which are rejected by the semantic analyser. This means that the translation
from Z into SAL has the choice of initialising all such uninterpreted constants
with suitable sentinel values, or treating them like SAL local variables. The
tradeoff is that the precise sentinel values to choose may be difficult to find;
whereas SAL variables range over many values, causing a state explosion in the
checking tools.

The SAL variable translation treats all uninterpreted constants as LOCAL vari-
ables. If they are constrained, this translation is identical to the translation of
state schemas (see Section 3). Because of the state explosion this approach may
cause, the preferred translation is to choose suitable precise values for constants.
The heuristic chosen is to initialise constants by default to some value within
the range of the type concerned. For example, where NZNAT: TYPE = [1..2] it
would make sense to define:

capacity : NZNAT = 2;

for both of the above cases (constrained and unconstrained). The main concern
is to find a suitable value which satisfies all the predicates in which the constants
appear, otherwise the specification would, as a whole, be false. The assignment of
values to constants is relatively simple for predicates which consist of an identifier
compared to a literal. These straightforward predicates are used to determine
the set of possible values each constant could be given and an initial value is
chosen from these at random. If the predicates are unsatisfiable, our translation
tool displays an error message and halts.

Predicates which compare constants with each other, such as z < y, or, worse
still, (u+v) < (y — 2) are dealt with when the limits on each constant have been
determined from the simple predicates. Currently, our tool uses a naive algorithm
which cycles through the remaining possible initial values until a combination is
found that satisfies all of the predicates. After 20 iterations the translator gives
up with a message that the initial constraints cannot be resolved. Clearly, a more
sophisticated constraint solving approach might be used; however the need to
solve large systems of constraints rarely arises in typical Z specifications.

In our particular example we have the following pair of constraints:
‘ capacity : Np
‘ 1 < capacity < 4096

| #NAME > capacity

In the SAL translation, a value for capacity is chosen (at random) which satisfies
all the constraints, e.g., one possible value it will be instantiated to is:

capacity : NZNAT = 2;

This simplification is possible because the tool knows the size of the given type
NAME and so # NAME is replaced by a constant 3. The largest capacity that is
smaller than 3 is 2. The predicate capacity < 4096 is redundant and is eliminated
by the tool.

6 Implementing sets

A basic translation scheme for sets is given in the set.sal context, provided with
the SAL distribution, and this represents a set as a function from elements to
Booleans. All of the set operations can be expressed in a logically succinct way,
for example the set membership function contains? simply applies the set to
the element. In [13] the set.sal context was extended to include a means of
determining the cardinality of nonempty sets. We have adapted this encoding to
work with all sets as follows:

set{T : TYPE; } : CONTEXT =
BEGIN

Set : TYPE = [T -> BOOLEAN];
empty_set : Set = LAMBDA (e : T) : FALSE;
full_set : Set = LAMBDA (e : T) : TRUE;

insert (aset : Set, e : T) : Set =
LAMBDA (el : T) : e = el OR aset(el);

remove (aset : Set, e : T) : Set =
LAMBDA (el : T) : e /= el AND aset(el);

contains? (aset : Set, e : T) : BOOLEAN =
aset(e);

empty? (aset : Set) : BOOLEAN =
(FORALL (e : T) : aset(e) = FALSE);

union(asetl : Set, aset2 : Set) : Set =
LAMBDA (e : T) : asetl(e) OR aset2(e);

intersection(asetl : Set, aset2 : Set) : Set =
LAMBDA (e : T) : asetl(e) AND aset2(e);

difference(asetl : Set, aset2 : Set) : Set =
LAMBDA (e : T) : asetl(e) AND NOT aset2(e);

size?(aset:Set, n:NATURAL) : BOOLEAN =
(n = 0 AND empty? (aset)) OR
(n > 0 AND
(EXISTS (f:[[1..n] -> TI1)
(FORALL (x1,x2:[1..n]) : £(x1)=f(x2) => x1=x2) AND
(FORALL (y:T) : aset(y) <=> (EXISTS (x:[1..n]) : £(x) =y))));
END

This allows a succinct translation of declarations and predicates involving sets.
A declaration member : P NAME is translated to member : set{NAME;}!Set.
Predicates involving set operators are also translated in the obvious way. For
example, member = @ becomes

member = set{NAME;}!empty_set

Similarly, n? € waiting in the operation Join becomes
set{NAME; }!contains?(waiting, Join__n?)

and member’ = member U {n?} becomes
member’ = set{NAME;}!insert (member, Join__n?7)

Set cardinality (the most troublesome operator) cannot be expressed directly
as a function returning the element count in SAL, since nowhere does SAL
store a representation of the set as a whole, but only as a distributed collection
of function-valued variables. Instead, the size function computes the relation
between sets and natural numbers, returning true when a set is of a given size.
7Z predicates involving the cardinality of sets, such as #waiting < total, can be
translated to the following existentially quantified SAL predicate:

EXISTS(n: NAT) : set{NAME;}!size?(waiting,n) AND n < total.

Although this implementation of the translation algorithm is correct, a number of
issues arose, some of which were to do with representation, others with efficiency,
and we deal with each in turn.

6.1 Literals

The translation of literal sets causes particular problems as they can only occur
in type declarations in SAL, but can be used in variable declarations or predicates
in Z. The translation process addresses the problem of set literals in declarations
by introducing a named type. Thus a state variable

s:P{1,2,3}

becomes

LOCAL s : set{Set__1__2__3;}!Set

module. Any other use of the same or an equivalent (e.g., {3, 2, 1}) set literal in
a declaration will be translated to the type name. Literal sets in predicates can
be dealt with more simply: z € {1,2} becomes (x=1 OR x=2).

and Set__1__2__3: TYPE = { x : NAT | x < 4 }; appears before the state

6.2 Re-implementing set cardinality

It was soon discovered that Z specifications that made reference to the cardinality
of sets generated SAL translations which did not execute in any sensible amount
of time. Simulations did not terminate in half a day, whilst some model checks
terminated, depending on how the checked LTL theorem further constrained the
state space search. We therefore experimented with alternative set encodings
that might have a more efficient implementation of size?.

Attempt I - A recursive definition of sets According to the SAL language
manual it should be possible to define inductive data types, similar to the il-
lustrated definition of lists, which have recursive operations. In this case, size?
could be provided as an efficient recursive function on sets. Thus one would
define:

cset{T : TYPE; } : CONTEXT =
BEGIN
Set : TYPE = DATATYPE
add(elem : T, rest : Set),
empty
END;

insert (set : Set, e : T) : Set =
IF empty?(set)
THEN add(e, set)
ELSIF e = elem(set)
THEN set
ELSE
add (elem(set), insert(rest(set), e))
ENDIF;

size?(set : Set) : NATURAL =
IF empty?(set)

THEN 0O
ELSE

1 + size?(rest(set))
ENDIF;

END

In this, empty and add are the primitive type constructors and elem and rest
are the implicitly defined deconstructors that break apart a set. Set operations
like insert are defined recursively by always adding a new element to an empty
set, otherwise deconstructing the head elem to see if this is equal to the new
element, returning the set unchanged if so, otherwise inserting the new element
into the rest of the set and adding the deconstructed head back onto this. The
size? function recursively counts the number of adds wrapping the empty? set.

Unfortunately, it was discovered afterwards that the current release of the SAL
toolset does not yet support simulation or model checking with inductively de-
fined datatypes. Even a simple recursive definition of size? fails to load into the
simulator, because SAL attempts to expand all possible recursive trees and runs
out of memory. A future release of the toolset is planned to handle recursively
defined functions and inductive types.

Attempt II - countable finite sets After experimenting with other encodings,
a workable SAL translation was found for encoding counted finite sets. This is
a brute-force encoding that is specific to the maximum expected set cardinality.
Various set contexts setN were designed for different N, corresponding to the
maximum expected cardinality. This is reasonable in SAL, since every scalar
type must have a known lower and upper bound. Our translation fixes the range
of scalar types for small N. The following excerpt is from the set5 context, which
holds a maximum of five elements.

setb{T : TYPE; el, e2, e3, e4, e5 : T} : CONTEXT =
BEGIN

%% A countable set over a domain of 5 elements. The context
%/ parameters are: the element type T, and an exhaustive
%% enumeration of all the elements el..eb5 of the domain.

Set : TYPE = [T -> BOOLEAN];

empty_set : Set =
LAMBDA (e : T) : FALSE;

full_set : Set =
LAMBDA (e : T) : TRUE;

size? (set : Set) : NATURAL =
IF set(el) THEN ELSE 0 ENDIF
IF set(e2) THEN ELSE 0 ENDIF
IF set(e3) THEN ELSE 0 ENDIF
IF set(e4) THEN ELSE 0 ENDIF
IF set(e5) THEN ELSE 0 ENDIF;

e
+ + + +

... %k the rest as per the set.sal context
END

The main difference between this and the standard set.sal context is that
the context accepts value-parameters for all possible elements of the set, as
well as the usual element type-parameter. This allows a brute-force encoding of
the size? function, which tests for the presence of each element in turn. This
encoding executes very efficiently, since it builds a shallow symbolic execution
tree, in contrast with a recursively-defined function. The rest of the context is
defined exactly as per the original set.sal context, using the encoding of sets
as Boolean-valued functions over its elements, since this is the optimal encoding
for translation to BDDs in the SAL tools.

A number of contexts may be pre-generated, for different N. We have also suc-
cessfully generated different setN.sal on demand, to cater for unknown ranges.
The only changes are the number of value parameters required and the num-
ber of subexpressions in the size? function. To use these bounded contexts, it
is preferred to instantiate all parameters once in a new named context, in the
following style:

PersonSet : CONTEXT =
set3{PERSON; PERSON__1, PERSON__1, PERSON__3};

LOCAL set : PersonSet!Set
INITIALIZE set = PersonSet!empty_set

Then, all types and operations are accessed from the new named context. This
makes the rest of the generated code easier to read than if the contexts were
instantiated at every point of usage.

Attempt III - Direct enumeration Our current approach to problems in
SAL with cardinality are to limit the state space explosion possibilities in SAL
during the translation process. In general the structure of a predicate in Z is
much the same as its translation in SAL, but not where size? is involved.
When the cardinality of a set is tested for equality (or inequality) the test can
be transformed fairly simply because the SAL size? function is designed to test
for a particular cardinality. Thus #waiting = capacity becomes

set{NAME; }!size?(waiting, capacity).

Our initial approach to translating comparisons like #waiting < 3 was to use
an existential quantifier in the translated expression. However, since the stan-
dard translation of size? already used nested quantification, this merely exac-
erbated the state space explosion. Our current solution is to exploit the trans-
lator’s knowledge of the maximum cardinality of the sets we are using to pro-
duce an expression which does not involve an existential quantifier. So if the
maximum cardinality of waiting was 3 the translation of #waiting < 3 is
NOT set{NAME;}!size?(waiting, 3), whereas if the the set waiting could have
up to 5 elements the translation is

(set{NAME;}!size?(waiting, 0) OR set{NAME;}!size?(waiting, 1) OR
set{NAME; }!size?(waiting, 2))

Where the comparison is with a variable the expression is slightly more complex.
So #waiting < capacity, where the maximum cardinality of the sets is 3 and the

variable’s upper bound is 3, becomes

(((O<capacity) AND set{NAME;}!size?(waiting,0)) OR ((1<capacity)

AND set{NAME;}!size?(waiting, 1)) OR ((2<capacity) AND
set{NAME;}!size?(waiting, 2)) OR ((3<capacity) AND
set{NAME; }!size?(waiting, 3)))

This assumes that SAL does a lazy evaluation of the expression but experimental
results seem to confirm this. Evaluating #member > #waiting is possible by this
technique too although the resulting expression does get rather long:

((set{NAME;}!size? (member,0) AND NOT set{NAME;}!size?(waiting,0))
OR
(set{NAME;}!size? (member, 1) AND (set{NAME;}!size?(waiting, 2)
OR set{NAME;}!size?(waiting, 3)))
OR
(set{NAME;}!size?(member, 2) AND (set{NAME;}!size?(waiting, 3))))

7 Using the translation tool

Currently we use a command line interface. As input format we use the IATEX
markup as given in the Z standard, and the output a plain SAL file. Since
XML markups exist for both Z and SAL, these might eventually be the ultimate
exchange format.

The components of the SAL toolset can now be applied to the output. For
example, we can simulate the specification or use one of the model checkers on
it. As we alluded to above, experiments revealed substantial efficiency problems
with the naive version of size?.

Labelling the three implementations as Original (the first in Section 6), Canon-
ical (Attempt IIT) and Alternate (Attempt IT) we can compare the efficiency of
the different size implementations.

For example, if we run the SAL simulator on the above example using the Canon-
ical set representation, we find that it takes 2 seconds to create the initial state(s)
of the system. Then invoking

(display-curr-states)
reports that 162 possible initial states were generated.
(display-curr-trace)

gives a single trace (one of the sets of initialisations leading to one of the initial
states):

sal > (display-curr-trace)

Step O:

--- Input Variables (assignments) ---
(= Join__n? NAME__3);

(= JoinQ__n? NAME__3);

(= Remove__n? NAME__3);

(= Query__n? NAME__3);

--- System Variables (assignments) ---
(= (member NAME__1) false);

(= (member NAME__2) false);

(= (member NAME__3) false);

(= (waiting NAME__1) false);

(= (waiting NAME__2) false);

(= (waiting NAME__3) false);

(= Query__ans_ yes);

The next stage is to try to step through the simulation.
(step!)

advances by a single step.
(display-curr-states)

reports that 648 states were created in this first step. This is consistent with
attempting 4 transitions for each of the 162 states in the initialisation (4 * 162
= 648). The simulation can then be continued by exploring subsequent traces,
working our way through the specification.

The performance of the Alternate representation was similar, however, the Orig-
inal representation failed to create an initial state of the system in the simulator
in over 12 hours. Experiments with the model checker produced similar results.
We formalised the following three theorems:

thl : the size of the member set can never reach 3 (expected false)
th2 : the size of the waiting set can never reach 3 (expected false)
th3 : the combined sizes of both sets is always < 3 (expected true)

For the Canonical example, the theorems are expressed:

thl : THEOREM State |- NOT F(set{NAME;}'!'size?(member’, 3));
th2 : THEOREM State |- NOT F(set{NAME;}!size?(waiting’, 3));
th3 : THEOREM State |- G((FORALL(x,y:NZNAT) :
(set{NAME;}'size?(member’, x) AND
set{NAME; }!size?(waiting’, y)) => x+y <= 3));

For the Alternate example, the same theorems were supplied slightly differently,
reflecting the simpler size? function:

th1l : THEOREM State |- NOT F(FSet!size?(member’) = 3);
th2 : THEOREM State |- NOT F(FSet!size?7(waiting’) = 3);
th3 : THEOREM State |- G((FSet!size?(member) +

FSet!size?(waiting)) <= 3);

The following table gives the approximate timings for the simulation and proof
or refutation of the theorems. The entries marked ”> 12 hours” mean that, for
example, the Canonical representation took over 12 hours for the third theorem
without terminating.

Original| Canonical|Alternate
Simulation|> 12 hours 2 sec| 1.5sec
thl > 12 hours 4 sec 3 sec
th2 > 12 hours 4 sec 3 sec
th3 > 12 hours|> 12 hours 3 sec

Where the model checking was feasible, for theorems th1l and th2, both examples
discovered the path of 3% Join() to fill the waiting set, and the path of 3% Join@Q) +
3 x Join to fill the member set.

As can be seen, the original encoding does not model check in a feasible time.
The Canonical encoding is feasible for some properties (and some specifications),
and we have yet to find an example where the Alternate encoding is infeasible.

8 Discussion

Although, it is feasible in general to model check specifications with very large
state spaces, model checking Z specifications poses some serious challenges. The
inclusion of non-trivial data types is well known to cause state-space explosions,
and even the use of small sets in the above example pushed the model checker
to its limits in its memory and time capabilities in some of the encodings. The
restriction to small set sizes and the fact that generic parameters (e.g., capacity
in the example above) have to be instantiated mean that we are really using
model checking to explore the specification rather than to perform the complete
verification of a property. The use of data abstraction to alleviate this problem
is a topic for further investigation.

However, in addition to the inclusion of data, the approach to the semantics in Z
adds to the overhead. Specifically, everything in Z is modelled in the semantics
as a set, thus relations are sets of pairs, functions are relations with a constraint,
sequences are partial functions with a constraint, and so on. If this approach is

preserved in the translation to SAL, as we have done so far, then this results
in a computational overhead for the model checker which is likely to become
prohibitive for any non-trivial specification.

The alternative would be to code the data structures in the mathematical toolkit
directly. For example, SAL has total relations as one of the built in data-types,
but does not have partial relations, however, the latter could be encoded as
total functions with an undefined element to represent elements outside the
precondition (i.e., one would model a partial relation as its totalisation). This
is likely to give a better efficiency than the existing approach but there are
complications in the translation. For example, in Z it is acceptable to write (for
a function f : N + N):

fl ZfU{(1,3)}

This is translated easily at present, but if functions are coded directly then a
version of set union needs to be defined on the function space, which also has to
be able to mix total and partial functions freely.

9 Conclusions

In this paper, we have discussed our current approach to building a model checker
for Z specifications. This is work in progress, and there is much to be done.
For example, we need to explore the use of constraint solvers in resolving the
instantiation of constants introduced by axiomatic definitions. Similarly we need
to investigate alternative representations for the mathematical toolkit which
are not just their set-based expansion, and to compare the efficiency of such
an approach. Finally, the current prototype is stand-alone, and a re-engineered
version would involve integration with the CZT platform of tools.

Of course, this is not the first attempt to provide model checking facilities for
Z. For example, there have been a number of encoding of subsets of Z-based
languages in FDR [6,11, 8]. However, FDR is not a temporal logic model checker,
but rather is designed to check whether a refinement relation holds between two
specifications. Additionally, FDR was developed for a process algebra, rather
than a state-based notation, thus encoding a language such as Z is non-trivial,
and to date there is no full encoding of Z in FDR.

Other relevant work directly concerned with state-based languages includes that
on the ProB model checker [9] which provides model checking capabilities for
B. Bolton has recently experimented with using Alloy to verify data refinements
in Z [2]. The Alloy Analyzer is a SAT-based verification tool that automatically
determines whether a model exists for a specification within given set bounds
for the basic types. Bolton translates a Z specification into Alloy by encoding
its relational semantics in Alloy and using the latter to see if a simulation can

be found. However, the encoding of the relational semantics is not automatic in
contrast to the implemented Z to SAL translation discussed above.

Acknowledgements: This work was done as part of collaborative work with the
University of Queensland, and in particular, Graeme Smith and Luke Wildman.
Tim Miller also gave valuable advice on the current CZT tools. Thanks is also
due to the financial support of the EPSRC via the RefineNet grant.

References

10.

11.

12.

13.

14.

. ISO/IEC 13568:2002. Information technology—Z formal specification notation—

syntax, type system and semantics. International Standard.

. C. Bolton. Using the Alloy Analyzer to Verify Data Refinement in Z. Electronic

Notes in Theoretical Computer Science, 137(2):23-44, 2005.

. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-

straction refinement. In E.A. Emerson and A.P. Sistla, editors, International Con-
ference on Computer Aided Verification (CAV’00), volume 1855 of LNCS, pages
154-169. Springer-Verlag, 2000.

. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
. L. de Moura, S. Owre, and N. Shankar. The SAL language manual. Technical

Report SRI-CSL-01-02 (Rev.2), SRI International, 2003.

. C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with FDR.

In K. Araki, A. Galloway, and K. Taguchi, editors, International Conference on
Integrated Formal Methods (IFM’99), pages 315-334. Springer-Verlag, 1999.

. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Inter-

national Conference on Computer Aided Verification (CAV’97), volume 1254 of
LNCS, pages 72-83. Springer-Verlag, 1997.

. G. Kassel and G. Smith. Model checking Object-Z classes: Some experiments with

FDR. In Asia-Pacific Software Engineering Conference (APSEC 2001). IEEE
Computer Society Press, 2001.

. M. Leuschel and M. Butler. Automatic refinement checking for B. In K. Lau

and R. Banach, editors, International Conference on Formal Engineering Methods,
ICFEM 2005, volume 3785 of LNCS, pages 345—359. Springer-Verlag, 2005.

Tim Miller, Leo Freitas, Petra Malik, and Mark Utting. CZT Support for Z Ex-
tensions. In Judi Romijn, Graeme Smith, and Jaco Pol, editors, Integrated Formal
Methods, IFM 2005, volume 3771 of LNCS, pages 227-245. Springer-Verlag, 2005.
A. Mota and A. Sampaio. Model-checking CSP-Z: strategy, tool support and
industrial application. Science of Computer Programming, 40:59-96, 2001.

H. Saidi and N. Shankar. Abstract and model check while you prove. In N. Halb-
wachs and D. Peled, editors, International Conference on Computer Aided Verifi-
cation (CAV’99), volume 1633 of LNCS, pages 443-453. Springer-Verlag, 1999.
G. Smith and L. Wildman. Model checking Z specifications using SAL. In H. Tre-
harne, S. King, M. Henson, and S. Schneider, editors, International Conference of
Z and B Users (ZB 2005), volume 3455 of LNCS, pages 87-105. Springer-Verlag,
2005.

J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
1992.

