Chapter 1

Multi-level Transformation

from Conceptual Models to
Databases in ReMoDeL

Ahmad F. Subahi, Anthony J. H. Simons

Dept. Computer Science, University of Sheffield
{a.subahi, a.simons}@dcs.shef.ac.uk

This chapter presents a framework for model transformation, organised around
Java agents. Internally, the agents are hierarchically composed to build each
translation step, offering a fine-grained control over the transformation. Exter-
nally, a linear composition of translation steps is used to create a multi-level,
forwards transformation from high-level models to executable code, in which
intermediate representations reduce multi-language dependency. The approach
is illustrated with a database generation example.

1.1 Introduction

Model transformation plays a significant role in supporting Model-Driven Engi-
neering (MDE) tasks, such as refactoring and refining models (transformation,
translation), and in synchronizing and weaving together different views of a sys-
tem (merging) [1, 2]. Model transformation is defined as a process of converting
one model into another using transformation rules acting on models at different
levels of abstraction [3, 4]. A goal is to identify modular and reusable trans-
formation components, which generalise some of the transformation tasks, but
which can be deployed in different contexts, such that effort is not wastefully du-
plicated [2]. This is intended to lead to more comprehensible and maintainable
transformation modules [5].

The composition of model transformations has emerged as an important re-
search topic in its own right. Tasks include designing a suitable orchestrating
mechanism for controlling the execution of the decomposed transformations, in
order to produce a single consistent result [6]. This paper reviews different ap-
proaches to composing model transformations in section 1.2 contrasting these
with our own approach, which embodies two kinds of composition. Firstly, our
transformations are executed by collaborating Java agents, each with a focus
on a different level of detail in the input models. Secondly, we demonstrate
a linear composition of transformation stages, in a two-phase forward model
transformation approach. Our general architecture for model transformation
is described in section 1.3. To exemplify this architecture, a particular frame-
work for generating databases from conceptual models is presented in 1.4 and
is illustrated in section 1.5 with examples from a case study.

1.2 Composition of Model Transformations

The composition task is influenced by the diversity of models and transfor-
mations to be composed. For instance, one approach to composition simply
chains together several predesigned model transformations, whether they are
expressed in one, or several, languages and metamodels, as found in the ATL
framework [7]; or whether they are executed by one, or several transformation
tools, as in the UniTT unifying architecture [9]. These are heterogeneous ap-
proaches, which benefit chiefly by building on existing work, but may impose
a high learning curve to master the different languages [7], or may introduce
significant overheads in the lifting and grounding of bespoke models into, and
from, the common translation framework [9].

In contrast, homogeneous compositional frameworks chain together several
transformations within the same representational scheme. Hidaka et al. [2]
develop a homogeneous compositional framework for graph-based model trans-
formations, by extending the graph query language UnQL, which operates on
graphs encoded in the JSON format. Transformation steps consist of extending,
replacing or deleting subgraphs. Larger transformations integrate several trans-
formation steps via intermediate graph representations. Our own approach is
similar, to the extent that all models are built in a family of XML languages,
developed according to different XML schemas. While the processing tasks are
technically homogeneous, the different XML schemas may also express different
metamodels, supporting endogeneous and exogeneous model transformations.

Composition is also influenced by what designers perceive to be the basic
units of modularity. Typically, whole rules are chosen as the units of modularity,
converting source to target elements in a single step. This is one of the perceived
benefits of the declarative rule-based approach, in which a transformation may
be codified in some universally valid and transparent way. However, when more
complex problems are addressed, it has been found that single rules are not
ideal units of modularity.

In situations where the transformation task is subtle, based on aspects that

may be decomposed in multiple dimensions, the same conceptual transformation
must be split over several rules [10], each one triggered by different aspects
of the transformation task. This then increases the burden of rule ordering
and synchronisation. Instead, it might be preferred to break transformation
rules down into atomic CRUD actions that incrementally create, read, update
or delete parts of the target model [11]. This is a fine-grained approach to
modularity. Bespoke combinations of these atomic actions can be maintained
in a single translation module, which helps to maintain the consistency and
modifiability of the transformation as a whole, which is not easily accomplished
in the whole-rule approach, since this splits a single complex mapping over many
rules.

At the coarser end of the scale, it is sometimes desired to adapt complete sets
of rules maintained in a module. A technique called module superimposition
allows sets of rules to be merged, extended, or adapted [12, 13]. The merger
of rules from a base and an extension set is conducted according to union with
override, whereby named rules in the extension set replace those rules in the
base set that have the same names. The resulting rule set is constructed dy-
namically, at load time. Changes to the behaviour of the rule set may be subtle,
or quite far-reaching, since not only may the extra rules fire under different pre-
conditions, and achieve different transformations, but they may assert different
postconditions that affect the ordering of all other rules. Module superimpo-
sition has been implemented for the Atlas Transformation Language (ATL) [7]
and the QVT Relations language [14].

The benefit of declarative rules is sometimes challenged by the indeterminacy
of the rule-ordering. For this reason, our work adopts the direct manipulation
approach [6, 3] to model transformation, using imperative Java programs to
navigate and construct XML models. While Java could in general support any
kind of imperative style, ranging from the clean to the highly obfuscated, we
have found it useful to modularise transformations around hierarchies of Java
agents, each concentrating on a particular level of detail in the source or target
model. Agents delegate to collaborators to handle the next level of detail.
Agents also extend and specialise the behaviour of abstract super-agents, which
capture common aspects of each transformation. Transformations are modular
in the individual methods of each agent, which are designed according to a
regular and predictable scheme.

Generally speaking, our approach employs two strategies for composing
transformations. Internally, transformation modules are built from agents,
whose methods may perform fine-grained graph surgery on either source or tar-
get models, or both. This gives sufficient flexibility for complex transformations
with in-place modification and rule-ordering issues. Composition and overriding
of behaviours occurs naturally via inheritance in the object-oriented model, but
with less risk of nondeterminism in the result, compared to module superim-
position with rules. Externally, it is possible to compose transformations in a
linear fashion, where the target model output by one transformation is the in-
put source model for the next transformation. In general, we expect to perform
multi-level translations, with possibly many intermediate representations.

1.3 ReMoDeL Project Architecture

The ReMoDeL project [15] aims to develop a working proof-of-concept for
Model-Driven Engineering using simple, available technologies such as Java and
XML. The acronym stands for Reusable Model Design Languages, reflecting
the project’s emphasis on developing families of related models for MDE. The
expectation is that many different kinds of model will eventually be needed to
achieve complete, automatic generation of software systems from models, includ-
ing novel, intermediate kinds of model that fold together traditional software
models, such as the views supported by UML diagrams.

Since the focus elsewhere in MDE research is more geared towards making
the transformation rules explicit, our adoption of Java and XML may seem un-
usual. The reasons for choosing Java for the transformation technology are both
practical and theoretical. They include that the language is well-known and
does not impose any additional conceptual burden on developers. By contrast,
a moderate to steep learning-curve is faced by users of bespoke rule-based trans-
formation languages [7] or hybrid imperative-declarative languages [8]. There
is a ready pool of trained developers who may immediately take on ReMoDeL
projects. The other modular and decidable advantages of Java over production
rule-based architectures were discussed in section 1.2.

The reasons for choosing XML for the model technology are more involved.
Originally, we had expected to work in a uniform object-oriented framework,
similar to Kermeta [8], in which the models were graphs, built in the same
programming language. In practice, we found that metamodels and their Java
code infrastructure underwent frequent evolution, as the real information needs
for particular transformations became more apparent. So, the effort invested in
developing early metamodel APIs in Java was often wasted. For this reason, we
adopted XML as the lingua franca for expressing models, since the toolset for
reading, writing and manipulating XML models could then remain constant,
and changes only impacted the transformation algorithms, whose development
had forced the need for change in the first place. Nonetheless, the style of XML
chosen to express each model follows a conceptual metamodel, which evolves in
step with changes made to models and eventually stabilises.

The ReMoDeL approach is based on a multi-layered, forwards-transformation
methodology [6] leading from multiple abstract views, via intermediate represen-
tations, to concrete models and generated code. Various XML-based modelling
languages are used to express different aspects of information systems, such
as the high-level Work Flow Graphs (WFG) and Database and Query (DBQ)
models [16, 17], or the low-level Functional Programming (FUN), Structured
Programming Language (SPL) and Object-Oriented Programming (OOP) mod-
els [19, 16, 18].

One of the hallmarks of the ReMoDeL approach is the use of intermediate
representations. We believe that constructing multi-layered transformations via
intermediate models is critical to the success of the whole MDE enterprise. Forc-
ing model transformation via intermediate representations improves the quality
of a translation, by making each step explicit and controllable. It is easier to val-

idate a small transformation step than a large one. It also reduces the number
of different source-to-target mappings that will eventually be required (c.f. the
EU language translation problem, where having a common interlingua would
reduce the number of language-pairs). More importantly, it actively promotes
the development of novel transformation algorithms, by revealing intermediate
levels at which new constraints may usefully be brought to bear (c.f. the work
of Marr in computer vision [21]). In general, a multi-layered approach pro-
vides better support for folding together different abstract views of a system, as
translations progress towards the concrete. The translation rules must also fill
in the missing design and implementation detail, using boilerplate coding strate-
gies, which apply at later stages in a forwards-transformation architecture. The
lowest-level models eventually contain complete, generic implementation detail,
ready for automatic code generation on different platforms [15, 17].

The Java transformation architecture developed for ReMoDeL is simple and
flexible. Every model manipulation is classified either as a kind of in-place trans-
formation (endogeneous transformation), or as a kind of translation mapping
from one metamodel to another (exogeneous transformation), or as the gener-
ation of executable code from a model. All ReMoDeL translation frameworks
are derived from the three abstract base classes AbstractTransformer, Abstract-
Translator and AbstractGenerator. Descendants of these classes are styled as
agents, with the responsibility for handling a particular level of detail in a source
model. Agents may delegate to further subcontractor agents, which deal with
the next finer level of detail. Whereas transformers and generators act on a
single model, translators act on a source and target model. Agents are con-
structed with their supplied models, and a back-reference to the parent agent
which spawned them. A translation framework consists of a dynamically con-
structed tree of agents, which execute according to a common protocol (c.f. the
Command pattern, [22]). Agents traverse XML models and dispatch internally
to different methods according to the type of model-element visited (c.f. the
Visitor pattern [22]). These private methods are obviously named according to
the translation rule they implement.

1.4 Database Generation Framework

The database generation framework reported in this paper is one example of this
approach, which transforms a high-level conceptual data schema into executable
database scripts. The framework outwardly consists of a linear composition of
two transformations (figure 1.1). The first step is a model-to-model translation
from a conceptual data model, consisting of records and semantic relationships,
into a low-level logical model, consisting of tables, both expressed in the DBQ
language. This stage performs data normalisation and is common to all schema
translations, being totally independent of any target language. The second step
generates code in the particular idioms of any database scripting language, using
MySQL for illustration, but we also remark on differences where the target for
generation is the Oracle database.

Package Package || MySQLPackage
Generator Generator

Schema N MysQLSchema MysaL
Generator Generator > 1
Script

Table MySQLTable

Translator

Schema N\
Translator > Logical
Model
Record

Translator

Conceptual
Model

Generator Generator

o ¥ N
o ¥ N

Field Field iy MysQLField

Translator Generator Generator

MysQL Schema Generator

Schema Translator

Schema Generator

Figure 1.1: Composition of schema translation and database generation

Composition also plays a role internally. The initial translation step is per-
formed by a hierarchical composition of Java agents, each concerned with a
different level of detail in the source models (figure 1.2). Each translator class is
constructed with source and target models and obeys a translate() protocol, act-
ing on the pair of input and output models, and delegates to sub-translators that
follow the same protocol, when the appropriate level of model detail is reached.
The compositional hierarchy of the translators here follows the structure of
the high-level DBQ concepts, namely, PackageTranslator, SchemaTranslator,
RecordTranslator, and Field Translator. This decomposition improves the main-
tainability and modularity of the translation code. Translation rules are Java
methods that explore the structure of the source model and perform surgery
upon the target model (both expressed as graphs, encoded as XML trees). In
this framework, the orchestration is controlled by SchemaTranslator, which de-
termines a suitable order for handling the high-level DBQ model concepts.

AbstractTranslator

A

[1
PackageTranslator

Q SchemaTranslator
1
Q RecordTranslator
1
Q FieldTranslator
1

Figure 1.2: Internal composition of agents for the schema translation step

The architecture for the second database generation phase is similar, consist-
ing of a compositional hierarchy of PackageGenerator, SchemaGenerator, Table-
Generator and FieldGenerator agents. These classes are an abstract layer in a
framework that is specialised for the different flavours of SQL required for differ-
ent database engines. In this example, four specialised generators MySQLPack-
ageGenerator, MySQLSchemaGenerator, MySQLTableGenerator and MySQL-
FieldGenerator are used to produce specific code for the MySQL database en-
gine. These classes are constructed with a single source model and follow the
protocol generate() and output database scripts in the MySQL language. The
layer of abstract classes captures what is common in the synthesis of generic
SQL, common to all database vendors. A different specialisation layer may be
used to generate Oracle SQL. Further specialised layers may be provided for
each new target database vendor [17].

1.5 Case Study: Online Ordering System

Person Livesp| Address
1

1

_________________ Product Service
{disjoint}

Supplier Customer

{overlapping}
1.n 1
I
Order 5 OrderLine |pescribesp Item 4Contains | SpecialOffer
P 1 PN
0..n 1.n
Supplyp> I |

1.n

Figure 1.3: Conceptual schema for the Online Ordering System

This section presents a case study for model transformation, the Online Or-
dering System. The initial model is a fairly complex conceptual data schema,
encoded in DBQ and visualised as the UML class diagram in figure 1.3. This
model contains records, associations, generalisations and aggregation relation-
ships, with the illustrated semantic refinements. The first model translation
step maps from this to the logical data model illustrated in figure 1.4. This
contains selectively normalised tables and fields, some of which are marked as
primary keys.

In general terms, the translation rules map records in the source to tables in
the tar-get having similar sets of fields. The mapping is not strictly one-to-one,
since tables may be merged; and extra linker tables may be created. Semantic

relationships in the source are rendered implicitly in the target as linked pairs
of primary key and foreign key fields. Specific patterns are handled as follows.

Associations: Where records are in 1:1 association (Person, Address in fig-
ure 1.3), these are merged to satisfy 3NF; the retained concept acquires the
renamed fields of the deleted concept. Where records are in 1:M association
(Customer, Order in figure 1.3), this is translated into a foreign key (FK) on
the many-side (Order.customerID in figure 1.4) relating to the primary key
(PK) on the one-side (Customer.personID in figure 1.4). Where records are
in M:M association (Supplier, Item in figure 1.3), a linker table is created for
the whole association (Supply in figure 1.4), storing FKs for each related table
(Supply.dealer, Supply.item). The linker table is named after the association,
which is named in the source model. Where associations have their own fields
(c.f. a UML association class), these are also promoted to tables in the target
model.

Product Service Ordor
_code code Customer T
-itemld -itemld -personld -rautoNumber
— 1 0..n |-customerld
-lineNo_1
1.n 1.n 1 -quantity_1
-totalPrice_1
1 1 -itemld_1
i tem Supply - ineNo_5
SpecialOffer Supplier 0_
d 1J-id 0..n [dealer -quantity 5
rcode 0.n ~|-specialofferCode | 1 -item 1 |-personid -totalPrice_5
o.n on 2 -itemld_5

Figure 1.4: Logical schema for the Online Ordering System

Generalisations: Where subclasses are disjoint (Supplier, Customer in figure
1.3), tables are created only for the concrete subclasses; the fields of the abstract
parent (Person) are replicated in each table and the parent is deleted. Where
subclasses are overlapping (Product, Service in figure 1.3), tables are created
for all records, preserving 3NF. Note how the rules make an intelligent decision
about selective de-normalisation, for increased speed of retrieval (eliminating the
need to join tables). So far, we have not yet explored a third ”fat superclass”
strategy for the overlapping case. The translation does not currently handle
multiple inheritance.

Aggregations: A weak aggregation relationship (SpecialOffer, Item in figure
1.3) is treated like a 1:M association, inserting a FK in the component part
(Item.specialOfferCode in figure 1.4) relating to a PK in the aggregate whole
(SpecialOffer.code). Where a stronger composition relationship is indicated (Or-
der, OrderLine in figure 1.3), the repeated fields of the part are indexed and
merged with the whole (Order, in figure 1.4). This is another optimisation,
to speed the retrieval of whole orders. Selective de-normalisation plays a key
role in the automated transformation decision to achieve a reasonable balance
between query complexity, system performance and disk space [17].

Figure 1.5: A fragment of the generated MySQL DDL, showing tables optimised
by flattening generalisation and aggregation; and a trigger procedure enforcing
a range constraint on the age of Customer

CREATE TABLE Customer (
personId INT(7) NOT NULL,
personForeName VARCHAR(10),
personSurName VARCHAR(10),
personAge INT DEFAULT 1,
personAddressPostCode VARCHAR(7) UNIQUE,
personAddressUnitNo INT(5) UNIQUE,
personAddressStreet VARCHAR(30) UNIQUE,
personAddressCity VARCHAR(20),
id INT(7) UNIQUE,
details VARCHAR(250),
PRIMARY KEY(personId));

CREATE TABLE Order (
autoNumber INT NOT NULL AUTO_INCREMENT,
date Date,
details VARCHAR(250),
cusId INT(7) NOT NULL,
lineNo_1 INT(10),
quantity_1 INT DEFAULT 1,
totalPrice_1 DOUBLE,
itemId_1 INT(12) NOT NULL,

PRIMARY KEY(autoNumber),
FOREIGN KEY(custId) REFERENCES Customer (personId) ON DELETE CASCADE,
FOREIGN KEY(itemId_1) REFERENCES Item(id) ON DELETE CASCADE);

CREATE TRIGGER customerCheck BEFORE INSERT ON Customer
FOR EACH ROW
IF (NEW.personAge < 1 OR NEW.personAge > 99) THEN
SET NEW.personAge = DEFAULT;
END IF;

Key fields: Records may suggest candidate key fields using a tagged value
from: key = {total, partial, auto}. A total field is used as the PK. The set
of all partial fields is used as a compound PK. If no key field is marked, an
auto PK is generated. PKs may be demoted to dependent unique fields by
other rules; for example, when merging 1:1 associations, one PK is retained, the
other demoted. Likewise, when flattening a disjoint generalisation, the parent’s
PK is retained, and the subclasses’ keys are demoted. Again, in a composite
aggregation, the key for the whole is retained and the keys of the enclosed parts
are demoted. If an auto PK is ever demoted, it may be safely deleted. FKs are
synthesised from the names of the association end-roles (elided in figure 1.3), or
the associated records, or both. FK fields refer to their corresponding PKs in
the target model (Order and Item have FKs in figure 1.4). A size threshold rule
controls a further intelligent decision about when to replace a large compound
FK by a simple FK, for the sake of optimising table join operations. In the
related table, the compound PK is demoted, replaced by an auto PK.

The database generation step translates the logical model (figure 1.4) into
database scripts, here into the MySQL data definition language (DDL). Part of
the output file defining the Customer and Order tables is shown in (figure 1.5).
Much of the target code follows directly from the logical model. The generic
rules applied during generation seek to preserve semantic constraints, for exam-
ple producing an ON DELETE CASCADE statement to maintain referential
integrity (Order, in figure 1.5).

However, certain aspects must be handled specially by MySQL-specific gen-
erators. ReMoDeL. DBQ supports fields with range constraints on their values.
Whereas these may be translated directly into CHECK constraints in some
flavours of SQL (such as the Oracle DDL), the target MySQL DDL did not
support these. Instead, the generator emits BEFORE INSERT trigger proce-
dures (from MySQL version 5) as an alternative way to perform data validation
[20]. A range check for a Customer’s age is shown in figure 1.5. If validation
fails, this field takes on a default value, defined in the DBQ model.

1.6 Implementation Details

Some examples of the DBQ models and transformations upon them are pre-
sented below. Initially, there are separate Record models for Person and Ad-
dress, as illustrated in figure 1.6. However, these are later merged as a single
Table by the rule that merges records that are in a 1:1 association.

The translation rule which performs this action is one of the methods of
the SchemaTranslator agent, which is in charge of ordering the various trans-
formations (figure 1.7). The task of merging 1:1 associations comes early in
the ordering, before associations are mapped onto PKs and related FKs. The
SchemaTranslator delegates to a RecordTranslator for each Record and Asso-
ciation found in the source model. The RecordTranslator is able to review
all the associations in the original source model, to see if any tables need to
be merged. The merging action is performed by one of its private translation

Figure 1.6: Examples of DBQ models used in the transformation step. This
includes an intermediate Person table, which is eventually removed when its
fields are flattened with Customer and Supplier

<Record name="Person">

<Field name="id" type="Natural" size="7" key="total"/>

<Field name="foreName" type="String" size="10"/>

<Field name="surName" type="String" size="10"/>

<Field name="age" type="Natural" range="{0-120}" default="0"/>
</Record>

<Record name="Address">

<Field name="postCode" type="String" size="7" key="partial"/>
<Field name="unitNo" type="Natural" size="5" key="partial"/>
<Field name="street" type="String" size="30" key="partial"/>
<Field name="city" type="String" size="20"/>

</Record>

<Association name="Lives">

<Role name="owner" type="Person" multiple="mandatory"/>
<Role name="home" type="Address" multiple="mandatory"/>
</Association>

<!-- Person Table after merging 1:1 association -->

<Table name="Person">
<Field name="id" type="Natural" size="7" key="total"/>
<Field name="foreName" type="String" size="10"/>
<Field name="surName" type="String" size="10"/>
<Field name="age" type="Natural" range="{0-120}" default="0"/>
<Field name="addressPostCode" type="String" size="7"unique="true"/>
<Field name="addressUnitNo" type="Natural" size="5" unique="true"/>
<Field name="addressStreet" type="String" size="30" unique="true"/>
<Field name="addressCity" type="String" size="20"/>

</Table>

Figure 1.7: Fragments of the Java code for SchemaTranslator and Record Trans-
lator

public class SchemaTranslator extends AbstractTranslator {
private Element target;

public SchemaTranslator (Element source, PackageTranslator parent) {
super (source, parent);
target = new Element(source.getName());

}

public Element translate() throws TreeException {
target.setValue("normal", "true");
translateOneToOneAssoc();
translateOnetoManyAssoc() ;
translateFlattenRecord();
translateManyToManyAssoc() ;
return target;

public class RecordTranslator extends AbstractTranslator {

private void translateOneToOneAssoc() throws TreeException {

Element major = getRoleType(getMajorRole(model));

Element minor = getRoleType(getMinorRole (model));

target = new Table(major.getName());

for (Element field : major.getChildren("Field")) {
target.addContent (field.clone());

}

for (Element field : minor.getChildren("Field")) {
Element renamed = field.clone();
renamed.setValue ("name",

mergeName (minor.getName() , renamed.getValue("name"));

target.addContent (renamed) ;

}

getParent () .addTable(target);

methods (see figure 1.7). This makes a decision about the major and minor
roles, then proceeds to create a new Table for the major role, merging the fields
of the minor role, after renaming them, to avoid potential name clashes. The
renaming algorithm uses the lower-cased name of the minor record as a prefix
to the capitalised old field names. The method then removes both records from
the source model, so that they are not visited again when translating Records
to Tables at a later stage in the algorithm.

1.7 Discussion and Conclusions

Unlike the declarative approaches of e.g. [2, 11, 14], all transformation rules
in ReMoDeL are encoded as imperative methods of the agents in the transfor-
mation framework. This avoids problems of rule-ordering and non-deterministic
firing [10], by performing an ordered sequence of transformations on XML trees.
The private methods of each agent have access to a local portion of the source
and target models, and, via their dominating parent agents, to more widely-
scattered information. This solves some of the tangling/scattering issues dis-
cussed in [10] by providing explicit agent protocols to access non-local informa-
tion (c.f. the Law of Demeter, [24]), where this is required.

Internally, the methods of each agent dispatch on the names of XML ele-
ments in the source, mimicking the type-dispatching in the Visitor pattern [22].
The imperative approach also supports construction of fine-grained transforma-
tions that modify models in-place, where required, with similar benefits to the
composed CRUD actions in [11]. Method naming conventions ensure that all
translation steps are modular and easily identified for maintenance purposes.

While we share the minimalist goals of SiTra [23], which is also Java-based,
we do not construct explicit rule-objects to mimic the pattern-driven approach,
but use internal dispatching on nodes, as described above. While SiTra uses pure
Java for both its transformations and its models, we use XML for the models,
since this allows models to evolve more rapidly, in step with the transformation
algorithms, whose information requirements may frequently change, as they are
being developed. XML is also the obvious lingua franca for input and output.

The two-phase linear composition of translation and generation steps illus-
trates the benefits of intermediate layers. Here, we can support generation of
optimal code in different target DDLs from the intermediate model. Similarly,
translation from flow diagrams to object-oriented code might need to go via
intermediate structured programs [16]. In other respects, our external composi-
tion approach is homogeneous, c.f. [2], acting on uniform families of XML-based
models, and does not require lifting and grounding to and from an abstract rule
layer, as in UniTI [9].

Bibliography

(1]
2]

3]

[10]

[11]

[12]

[13]

[14]

M. Biehl, Literature Study on Model Transformations, Technical Report, ISSN
1400-1179, Royal Institute of Technology, Sweden, 2010.

S. Hidaka, Z. Hu, H. Kato, K. Nakano, Towards a compositional approach to
model transformation for software development, Proceedings 24th ACM Sympo-
stum on Applied Computing (SAC 09), Honolulu, Hawaii, USA, ACM Press, pp.
468-475, 2009.

T. Mens, Model transformation: a survey of the state-of-the-art, in: S. Gerard,
J.-P. Babau, J. Champeau (eds.), Model Driven Engineering for Distributed Real-
Time Embedded Systems, Wiley, 2010.

P. S. Kaliappan, State of the Art - Model Driven Architecture, Technical Report,
Brandenburg Technical University, Cottbus, Germany, 2007.

T. Mens, P. van Gorp, A taxonomy of model transformation and its application to
graph transformation technology, Proceedings International Workshop on Graph
and Model Transformation, Tallinn, Estonia, pp. 1-17, 2005.

T. Mens, P. van Gorp, A taxonomy of model transformation, FElectronic Notes in
Theoretical Computer Science, 152, Elsevier, pp. 125-142, 2006.

ATL Home Page, hitp://eclipse.org/atl/

Kermeta Home Page, http://www.kermeta.org/

B. Vanhoof, D. Ayed, S. V. Baelen, W. Joosen, W. Berbers, UniTI: a unified
transformation infrastructure, in: G. Engels, B. Opdyke, D. C. Schmidt, F. Weil
(eds.), MoDELS 2007, LNCS wvol. 4785, Springer Verlag, pp. 31-45, 2007.

I. Kurtev, K. Van den Berg, F. Joualt, Rule-based modularisation in model trans-

formation languages illustrated with ATL, Proceedings 21st ACM Symposium on
Applied Computing (SAC 06), Dijon, France, ACM Press, pp. 1202-1209, 2006.

A. Goknil, N. Y. Topaloglu, G. G. van den Berg, Operation composition in model
transformations with complex source patterns, Technical Report, No. 65119, Cen-
tre for Telematics and Information Technology, University of Twente, Nether-
lands, 2008.

D. Wagelaar, Composition techniques for rule-based model transformation lan-
guages, Theory and Practice of Model Transformations, pp. 152167, 2008.

D. Wagelaar, R. van der Straeten and D. Derrider, Module superimposition: a
composition technique for rule-based transformation languages, Software and Sys-
tems Modelling, 9 (3), Springer Verlag, pp. 285-309, 2010.

QVT Relations in Alloy, http://www.alloy.mit.edu/community/node/373/

15

[15]
[16]

[17]

[18]

[19]

[20]
21]
22]

[23]

24]

ReMoDeL Home Page, http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/

U. Dojki, ReMoDeL. Activity Workflow Models, MSc Dissertation, Department
of Computer Science, University of Sheffield, 2011.

A. F. Subahi, ReMoDeL Database Generator, MSc Dissertation, Department of
Computer Science, University of Sheffield, 2010.

A. J. H. Simons, ReMoDeL. Object-Oriented Programming Model, Version 0.3,
Technical Report, 26 March, Department of Computer Science, University of
Sheffield, 2010.

A. J. H. Simons, ReMoDeL Functional Programming Model, Version 0.4, Techni-
cal Report, 31 March, Department of Computer Science, University of Sheffield,
2011.

MySQL Home Page, http://www.mysql.com/

D. Marr, Vision, W. H. Freeman, 1982.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented software, Addison Wesley, 1995.

D. H. Akehurst, B. Bordbar, M. J. Evans, W. G. J. Howells, K. D. McDonald-
Maier, SiTra: simple transformations in Java, in: O. Nierstrasz, J. Whittle, D.
Harel, G. Reggio (eds.), MoDELS 2006, LNCS wvol. 4199, Springer Verlag, pp.
351-364, 2006.

K. Lieberherr, I. Holland, Assuring good style for object-oriented programs, IEEE
Software, September, pp. 3848, 1989.

