
A Multi-level Transformation from Conceptual Data

Models to Database Scripts using Java Agents

 Ahmad F Subahi and Anthony J H Simons

Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello,

Sheffield S1 4DP, United Kingdom

{A.Subahi, A.Simons}@dcs.shef.ac.uk

Abstract. This paper presents a framework for model transformation, organ-

ised around Java agents. Internally, the agents are hierarchically composed to

build each translation step, offering a fine-grained control over the transfor-

mation. Externally, a linear composition of translation steps is used to create a

multi-level, forwards transformation from high-level models to executable

code, in which intermediate representations reduce multi-language dependency.

The approach is illustrated with a database generation example.

Keywords. Model-driven engineering, model transformation, composition of

model transformations, automatic code generation, ReMoDeL

1 Introduction

Model transformation plays a significant role in supporting Model-Driven Engi-

neering (MDE) tasks, such as refactoring and refining models (transformation, trans-

lation), and in synchronizing and weaving together different views of a system (merg-

ing) [1, 2]. Model transformation is defined as a process of converting one model into

another using transformation rules acting on models at different levels of abstraction

[3, 4]. A goal is to identify modular and reusable transformation components, which

generalise some of the transformation tasks, but which can be deployed in different

contexts, such that effort is not wastefully duplicated [2]. This will lead to more com-

prehensible and maintainable transformation modules [5].

The composition of model transformations has emerged as an important research

topic in its own right. Tasks include designing a suitable orchestrating mechanism for

controlling the execution of the decomposed transformations, in order to produce a

single consistent result [6]. This paper reviews different approaches to composing

model transformations in section 2, contrasting these with our own approach, which

embodies two kinds of composition. Firstly, our transformations are executed by

collaborating Java agents, each with a focus on a different level of detail in the input

models. Secondly, we demonstrate a linear composition of transformation stages, in a

two-phase forward model transformation approach. Our architecture is described in

section 3 and illustrated in section 4 with examples from a case study.

2 Ahmad F Subahi and Anthony J H Simons

2 Composition of Model Transformations

The composition task is influenced by the diversity of models and transformations

to be composed. For instance, one approach to composition simply links several pre-

designed model transformations, whether they are expressed using one, or several,

languages/metamodels; and executed by one or several tools [7, 8]. This is a hetero-

geneous approach. In contrast, Hidaka et al. [2] develop a homogeneous composi-

tional framework for graph-based model transformations, by extending the graph

query language UnQL, which operates on graphs encoded in the JSON format.

Transformation steps consist of extending, replacing or deleting subgraphs. Larger

transformations integrate several steps via intermediate graph representations.

Composition is also influenced by what designers perceive to be the basic units of

modularity. Typically, whole rules are the units of modularity, converting source to

target elements in a single step; however more complex problems require finer-

grained units [9], breaking each rule down into atomic CRUD actions upon target

models [10]. Bespoke compositions of these actions can be maintained in a single

translation module, which helps to maintain consistency and modifiability, which is

not possible in the whole-rule approach, which splits a single complex mapping over

several rules. At the other extreme, Wagelaar [11, 12] proposes a technique for com-

posing rule transformations, called module superimposition. This internally compos-

es the rules from two or more model transformations into a new, single transfor-

mation. Module superimposition has been implemented for the Atlas Transformation

Language (ATL) [7] and the QVT Relations [13] language.

Our work adopts the direct-manipulation approach [3, 6] to model transformation,

using Java for the rules and XML for the models. It employs two composition strate-

gies. The first (internal) strategy deploys a hierarchy of Java agents, each concentrat-

ing on a particular level of detail in the source model and delegating to collaborators

for the next level of detail. The second (external) strategy involves a linear composi-

tion of transformations, whereby we perform a multi-level translation, with interme-

diate representations.

3 ReMoDeL Database Generation Framework

The ReMoDeL project [14] aims to develop a proof-of-concept for MDE using

simple, available technologies such as Java and XML. The approach is based on a

layered, forwards-transformation methodology leading from multiple abstract views,

via intermediate representations, to concrete models and generated code. XML-based

modelling languages express different aspects of the system, such as the high-level

Work Flow Graphs (WFG), and Database and Query (DBQ) models [15, 16], or the

low-level Structured Programming Language (SPL) or Object-Oriented Programming

(OOP) models [14, 16].

We believe that forcing model transformation via intermediate representations im-

proves the quality of a translation, by making each step explicit and controllable. It

reduces the number of different source-to-target mappings that will eventually be

A Multi-level Transformation from Conceptual Data Models to Database Scripts 3

required (c.f. the EU language translation problem). It reveals intermediate levels at

which new constraints may usefully be applied (c.f. the work of Marr in computer

vision [18]). In general, a multi-layered approach provides better support for folding

together different abstract views of a system, as translations progress towards the

concrete. The lowest-level models contain complete, generic implementation details,

ready for automatic code generation on different platforms [14, 16].

Fig. 1. Composition of schema translation and database generation

The database generation framework reported in this paper is one example of this

approach, which transforms a high-level conceptual data schema into executable da-

tabase scripts. The framework outwardly consists of a linear composition of two

transformations (fig. 1). The first step is a model-to-model translation from a concep-

tual data model, consisting of records and semantic relationships, into a low-level

logical model, consisting of tables, both expressed in the DBQ language. This stage

performs data normalisation and is common to all schema translations, being totally

independent of any target language. The second step generates code in the particular

idioms of any database scripting language, using MySQL for illustration, but we also

remark on differences where the target for generation is the Oracle database.

Composition also plays a role internally. The initial translation step is performed

by a hierarchical composition of Java agents, each concerned with a different level of

detail in the source models (fig. 2). Each class obeys a translate (source, target) pro-

tocol, acting on a pair of input and output models, and delegates to sub-translators that

follow the same protocol, when the appropriate level of model detail is reached. The

compositional hierarchy of the translators follows the structure of the high-level DBQ

concepts, namely, PackageTranslator, SchemaTranslator, RecordTranslator, and

FieldTranslator. This decomposition improves the maintainability and modularity of

the translation code. Translation rules are Java methods that explore the structure of

the source model and perform surgery upon the target model (both expressed as

graphs, encoded as XML trees). The orchestration is controlled by determining a

suitable order for handling the high-level DBQ model concepts.

4 Ahmad F Subahi and Anthony J H Simons

Fig. 2. The internal composition of agents for the schema translation step

The architecture for the second database generation phase (not illustrated) is simi-

lar, consisting of a compositional hierarchy of PackageGenerator, SchemaGenerator,

TableGenerator and FieldGenerator agents. These classes are an abstract layer in a

framework that is specialised for the different flavours of SQL required for different

database engines. In this example, four specialised generators MySQLPackageGen-

erator, MySQLSchemaGenerator, MySQLTableGenerator and MySQLFieldGenera-

tor are used to produce specific code for the MySQL database engine. These classes

follow the protocol generate (source), acting on a single input model and generating

database scripts in the MySQL language. The layer of abstract classes captures what

is common in the synthesis of generic SQL, common to all database vendors. A dif-

ferent specialisation layer may be used to generate Oracle SQL. Further specialised

layers may be provided for each new target database vendor [16].

4 Case Study: Online Ordering System

This section presents a case study for model transformation, the “Online Ordering

System”. The initial model is a fairly complex conceptual data schema, encoded in

DBQ and visualised as the UML class diagram in (fig. 3). This model contains rec-

ords, associations, generalisations and aggregation relationships, with the illustrated

semantic refinements. The first model translation step maps from this to the logical

data model illustrated in (fig. 4). This contains selectively normalised tables and

fields, some of which are marked as primary keys.

In general terms, the translation rules map records in the source to tables in the tar-

get having similar sets of fields. The mapping is not strictly one-to-one, since tables

may be merged; and extra linker tables may be created. Semantic relationships in the

source are rendered implicitly in the target as linked pairs of primary key and foreign

key fields. Specific patterns are handled as follows.

Associations: Where records are in 1:1 association (Person, Address in fig. 3), the-

se are merged to satisfy 3NF; the retained concept acquires the renamed fields of the

deleted concept. Where records are in 1:M association (Customer, Order in fig. 3),

A Multi-level Transformation from Conceptual Data Models to Database Scripts 5

this is translated into a foreign key (FK) on the many-side (Order.customerID in fig.

4) relating to the primary key (PK) on the one-side (Customer.personID in fig. 4).

Where records are in M:M association (Supplier, Item in fig. 3), a linker table is cre-

ated for the whole association (Supply in fig. 4), storing FKs for each related table

(Supply.dealer, Supply.item). The linker table is named after the association, which is

named in the source model. Where associations have their own fields (c.f. a UML

association class), these are also promoted to tables in the target model.

Fig. 3. The conceptual schema for the Online Ordering System

Generalisations: Where subclasses are disjoint (Supplier, Customer in fig. 3), ta-

bles are created only for the concrete subclasses; the fields of the abstract parent (Per-

son) are replicated in each table and the parent is deleted. Where subclasses are over-

lapping (Product, Service in fig. 3), tables are created for all records, preserving 3NF.

Note how the rules make an intelligent decision about selective de-normalisation, for

increased speed of retrieval (eliminating the need to join tables). So far, we have not

yet explored a third “fat superclass” strategy for the overlapping case. The translation

does not currently handle multiple inheritance.

Aggregations: A weak aggregation relationship (SpecialOffer, Item in fig. 3) is

treated like a 1:M association, inserting a FK in the part (Item.specialOfferCode in

fig. 4) relating to a PK in the whole (SpecialOffer.code). Where a stronger composi-

tion relationship is indicated (Order, OrderLine in fig. 3), the repeated fields of the

part are indexed and merged with the whole (Order, in fig. 4). This is another optimi-

sation, to speed the retrieval of whole orders. Selective de-normalisation plays a key

role in the automated transformation decision to achieve a reasonable balance be-

tween query complexity, system performance and disk space [16].

Key fields: Records may suggest candidate key fields using a tagged value from:

key = {total, partial, auto}. A total field is used as the PK. The set of all partial

fields is used as a compound PK. If no key field is marked, an auto PK is generated.

PKs may be demoted to dependent unique fields by other rules; for example, when

merging 1:1 associations, one PK is retained, the other demoted. Likewise, when

flattening a disjoint generalisation, the parent’s PK is retained, and the subclasses’

6 Ahmad F Subahi and Anthony J H Simons

keys are demoted. Again, in a composite aggregation, the key for the whole is re-

tained and the keys of the enclosed parts are demoted. If an auto PK is ever demoted,

it may be safely deleted. FKs are synthesised from the names of the association end-

roles (elided in fig. 3), or the associated records, or both. FK fields refer to their cor-

responding PKs in the target model (Order and Item have FKs in fig. 4). A size

threshold rule controls a further intelligent decision about when to replace a large

compound FK by a simple FK, for the sake of optimising table join operations. In the

related table, the compound PK is demoted, replaced by an auto PK.

Fig. 4. The selectively normalised logical schema for the Online Ordering System

The database generation step translates the logical model (fig. 4) into database

scripts, here in the MySQL data definition language (DDL). Part of the output file

defining the Customer and Order tables is shown in (listing 1). Much of the target

code follows directly from the logical model. The generic rules applied during gener-

ation seek to preserve semantic constraints, for example producing an ON DELETE

CASCADE statement to maintain referential integrity (Order, in listing 1).

Listing 1. A fragment of the generated MySQL DDL showing flattened tables for the subclass

Customer and the aggregate class Order (partly elided)

CREATE TABLE Customer (

 personId INT(7) NOT NULL, personForeName VARCHAR(10),

 personSurName VARCHAR(10), personAge INT DEFAULT 1,
 personAddressPostCode VARCHAR(7) UNIQUE,

 personAddressUnitNo INT(5) UNIQUE,

 personAddressStreet VARCHAR(30) UNIQUE,

 personAddressCity VARCHAR(20), id INT(7) UNIQUE,

 details VARCHAR(250), PRIMARY KEY(personId));

CREATE TABLE Order (

 autoNumber INT NOT NULL AUTO_INCREMENT, date Date,

 details VARCHAR(250), cusId INT(7) NOT NULL,

 lineNo_1 INT(10), quantity_1 INT DEFAULT 1,

 totalPrice_1 DOUBLE, itemId_1 INT(12) NOT NULL, ...

 PRIMARY KEY(autoNumber), FOREIGN KEY(custId) REFERENCES

 Customer(personId) ON DELETE CASCADE, FOREIGN KEY(itemId_1)

 REFERENCES Item(id) ON DELETE CASCADE);

A Multi-level Transformation from Conceptual Data Models to Database Scripts 7

However, certain aspects must be handled specially by MySQL-specific genera-

tors. ReMoDeL DBQ supports fields with range constraints on their values. Where-

as these may be translated directly into CHECK constraints in some flavours of SQL

(such as the Oracle DDL), the target MySQL DDL did not support these. Instead, the

generator emits BEFORE INSERT trigger procedures (from MySQL version 5) as an

alternative way to perform critical data validation [17]. A range check for a Custom-

er’s age is shown in (listing 2). If validation fails, this field takes on a default value,

defined in the DBQ model.

Lisitng 2. A fragment of the generated MySQL DDL showing a trigger procedure for enforcing

a range constraint on the age of each customer in the database

CREATE TRIGGER customerCheck BEFORE INSERT ON Customer

FOR EACH ROW

 IF (NEW.personAge < 1 OR NEW.personAge > 99) THEN

 SET NEW.personAge = DEFAULT;

 END IF;

5 Discussion and Conclusion

Unlike the declarative approaches of e.g. [2, 10, 13], all transformation rules in Re-

MoDeL are encoded as imperative methods of the agents in the transformation

framework. This avoids problems of rule-ordering and non-deterministic firing [9],

by performing an ordered set of transformations on XML trees. The private methods

of each agent have access to a local portion of the source and target models, and, via

their dominating parent agents, to more widely-scattered information. This solves

some of the tangling/scattering issues [9] by providing agent protocols to access non-

local information, c.f. the Law of Demeter, where this is required.

Internally, the methods of each agent dispatch on the names of XML elements in

the source, mimicking the type-dispatching in the Visitor pattern. The imperative

approach supports construction of fine-grained transformations that modify models

in-place, where required, with similar benefits to the composed CRUD actions in [10].

Method naming conventions ensure that all translation steps are easily identified for

maintenance purposes: this is the main unit of modularity.

While we share the minimalist goals of SiTra [19], which is also Java-based, we do

not construct explicit rule-objects to mimic the pattern-driven approach, but use inter-

nal dispatching on nodes. While SiTra uses pure Java for its models, we use XML,

since this facilitates more rapid modifications to the design of models, when prototyp-

ing new transformations. XML is also the lingua franca for input and output.

The two-phase linear composition of translation and generation steps illustrates the

benefits of intermediate layers. Here, we can support generation of optimal code in

different target DDLs from the intermediate model. Similarly, translation from flow

diagrams to object-oriented code might need to go via intermediate structured pro-

grams [15]. In other respects, our external composition approach is homogeneous,

c.f. [2], acting on uniform families of XML-based models, and does not require lifting

and grounding to and from an abstract rule layer, as in UniTI [8].

8 Ahmad F Subahi and Anthony J H Simons

6 References

1. Biehl, M.: Literature Study on Model Transformations. Technical Report, ISSN

1400-1179, Royal Institute of Technology, Stockholm, Sweden (2010)

2. Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Towards a Compositional Approach to

Model Transformation for Software Development. Proc. 24
th

 ACM Symp. Ap-

plied Computing. pp. 468-475. ACM, Honolulu, Hawaii, USA, (2009)

3. Mens, T.: Model Transformation: A Survey of the State-of-the-Art. In: Gerard, S.,

Babau, J.P., Champeau, J. (eds.): Model Driven Engineering for Distributed Real-

Time Embedded Systems. Wiley (2010)

4. Kaliappan, P.S.: State of the Art - Model Driven Architecture. Technical Report,

Brandenburg Technical University, Cottbus, Germany (2007)

5. Mens, T., van Gorp, P.: A Taxonomy of Model Transformation and its Applica-

tion to Graph Transformation Technology. Proc. Int. Workshop Graph and Model

Transformation. pp. 1-17, Tallinn, Estonia (2005)

6. Mens, T., van Gorp, P.: A Taxonomy of Model Transformation. Electronic Notes

in Theoretical Computer Science, 152, 125-142 (2006)

7. ATL: A Model Transformation Technology, http://eclipse.org/atl/

8. Vanhooff, B., Ayed, D., Baelen, S.V., Joosen, W., Berbers, Y.: UniTI: A unified

transformation infrastructure. In Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.,

eds.: MoDELS-07. LNCS, vol. 4735, pp. 31–45, Springer, Heidelberg (2007)

9. Kurtev, I., van den Berg, K., Jouault, F.: Evaluation of rule-based modularization

in model transformation languages illustrated with ATL. In: Proc. 21
st
 ACM

Symp. Applied Computing, pp. 1202–1209. ACM, Dijon, France (2006)

10. Goknil, A., Topaloglu, N.Y., van den Berg, K.G.: Operation Composition in Mod-

el Transformations with Complex Source Patterns. Technical Report, University

of Twente, Netherlands (2008)

11. Wagelaar, D.: Composition Techniques for Rule-Based Model Transformation

Languages. Theory and Practice of Model Transformations (2008), 152-167

12. Wagelaar, D., van der Straeten, R. and Derrider, D.: Module Superimposition: a

Composition Technique for Rule-based Transformation Languages, Softw. Sys.

Modelling, 9(3), 285-309 (2010)

13. QVT Relations, http://www.alloy.mit.edu/community/node/373

14. ReMoDeL, http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/

15. Dojki, U.: ReMoDeL Activity Workflow Models. MSc Dissertation, Department

of Computer Science, University of Sheffield (2011)

16. Subahi, A.F.: ReMoDeL Database Generator. MSc Dissertation, Department of

Computer Science, University of Sheffield (2010)

17. MySQL, http://www.mysql.com/

18. Marr, D.: Vision. W. H. Freeman (1982)

19. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.J.G., McDonald-Maier,

K.D.: SiTra: Simple Transformations in Java. In: Nierstrasz, O., Whittle, J.,

Harel, D., Reggio, G. eds: MoDELS-06. LNCS, vol. 4199, pp. 351-364, Spring-

er, Heidelberg (2006)

