ResearchGate

See discussions, stats, and author profiles for this publication at:

The OPEN Software Engineering
Process Architecture: From
Activities to Techniques.

ARTICLE /7 AUSTRALIAN COMPUTER JOURNAL - JANUARY 2000

Source: DBLP

CITATIONS READS
2 17

2 AUTHORS, INCLUDING:

3 University of Technology Sydney
395 PUBLICATIONS 4,729 CITATIONS

SEE PROFILE

Available from: Brian Henderson-Sellers
Retrieved on: 11 January 2016

https://www.researchgate.net/publication/220536376_The_OPEN_Software_Engineering_Process_Architecture_From_Activities_to_Techniques?enrichId=rgreq-ce5a71fd-af13-442e-ab6d-251c935edbd7&enrichSource=Y292ZXJQYWdlOzIyMDUzNjM3NjtBUzoxMzI4NzM2NTQ5MDI4MDVAMTQwODY5MDk1NjkzNw%3D%3D&el=1_x_2
https://www.researchgate.net/publication/220536376_The_OPEN_Software_Engineering_Process_Architecture_From_Activities_to_Techniques?enrichId=rgreq-ce5a71fd-af13-442e-ab6d-251c935edbd7&enrichSource=Y292ZXJQYWdlOzIyMDUzNjM3NjtBUzoxMzI4NzM2NTQ5MDI4MDVAMTQwODY5MDk1NjkzNw%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-ce5a71fd-af13-442e-ab6d-251c935edbd7&enrichSource=Y292ZXJQYWdlOzIyMDUzNjM3NjtBUzoxMzI4NzM2NTQ5MDI4MDVAMTQwODY5MDk1NjkzNw%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Brian_Henderson-Sellers2?enrichId=rgreq-ce5a71fd-af13-442e-ab6d-251c935edbd7&enrichSource=Y292ZXJQYWdlOzIyMDUzNjM3NjtBUzoxMzI4NzM2NTQ5MDI4MDVAMTQwODY5MDk1NjkzNw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Brian_Henderson-Sellers2?enrichId=rgreq-ce5a71fd-af13-442e-ab6d-251c935edbd7&enrichSource=Y292ZXJQYWdlOzIyMDUzNjM3NjtBUzoxMzI4NzM2NTQ5MDI4MDVAMTQwODY5MDk1NjkzNw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Technology_Sydney2?enrichId=rgreq-ce5a71fd-af13-442e-ab6d-251c935edbd7&enrichSource=Y292ZXJQYWdlOzIyMDUzNjM3NjtBUzoxMzI4NzM2NTQ5MDI4MDVAMTQwODY5MDk1NjkzNw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Brian_Henderson-Sellers2?enrichId=rgreq-ce5a71fd-af13-442e-ab6d-251c935edbd7&enrichSource=Y292ZXJQYWdlOzIyMDUzNjM3NjtBUzoxMzI4NzM2NTQ5MDI4MDVAMTQwODY5MDk1NjkzNw%3D%3D&el=1_x_7

INFORMATION SYSTEMS

The OPEN Software Engineering Process Architecture:
From Activities to Techniques

B. Henderson-Sellers

School of Computing Sciences, University of Technology, Sydney
Broadway, NSW, Australia

A.J.H. Simons
Department of Computer Science, University of Sheffield, Sheffield, Yorks, UK

The 1997 OPEN process metamodel was the first fully documented software engineer-
ing process architecture for object-oriented projects, predating the Catalysis method,
Select Perspective and the still emerging Rational Unified Process by a number of
years. The OPEN process metamodel is based on a three-tier architecture, in which
process Activities are broken down into a number of distinct Tasks; and each Task may
be achieved through the application of a number of approved Techniques. This paper
describes the relationships between the three layers of the OPEN process metamodel
and shows how OPEN's Techniques contribute to a particular tailored process. As an
exemplar, we describe Techniques relevant to late design and coding.

Keywords: process, software lifecycles, object-oriented methods, object-oriented
techniques

1. INTRODUCTION
Software engineering requires the underpinning of a flexible and reliable, process-focussed
methodology. A process tells you how to do things and how to manage and monitor the software
development. In most of the second generation object-oriented (OO) software development
methods (i.e. those published around 1994), there was, with a couple of exceptions OOSE (Jacobso
et al, 1992 and MOSES (Henderson-Sellers and Edwards, 1994), little substantive support for
process to the degree required by professional software engineers. Methods such as Coad an
Yourdon (1991) and OMT (Rumbaugdt al, 1991) concentrated mainly on developing sets of
diagrams rather than identifying the underpinning for their development in terms of project
management issues such as timeboxing and version control. Booch (1991) focussed on notation the
was applied by intuition, using a “round trip gestalt design” approach and, later (Booch, 1994), with
macro- and micro-lifecycles. Some sequencing is implicit in OMT, although the general flavour is
still that of a waterfall design approach. More recently, it has been shown (Simons and Graham,
1999) that an over-emphasis on design diagrams can give rise to cognitive misdirection.

From these two early, process-focussed methods (MOSES and OOSE) have grown two third
generation OO methods: OPEN published in 1997 (Gragaml, 1997) and, more recently,

Copyright© 2000, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

Manuscript received: August 1999
Associate Editor: Graham Low

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 47

The OPEN Software Engineering Process Architecture: From Activities to Techniques

Jacobsoret al, (1999) Unified Process which underpins the commercial RR#ional Unified
Process) product. In this papere focus on the oldemore established OPEN methodological
framework and explain how this framework is used for software development environments tailored
to specific industry domains, individualgamizations and indeed distinct projects.

OPEN stands for Object-oriented Process, Environment and Notation. OPEN is the first full
lifecycle object-oriented methodology to address all the process issues. Its main focus is in
providing an architecturdtamework,which is evident in its process metamodel (Figure 1), which
can then be tailored by the ustus creating a useful and usable software engineering process (or
SEP). Although each individually created/tailored OPEN SisPdifferent in its detail, each
conforms to the overall OPEN metalevel architecture (Henderson-Sellers, 1999a). OPEN thus
provides a standard method architecture a common process language across the OPEN
community of worldwide users.

BOTELL ISG
BATILL PG o Ll aSE
PRLCESS
ke
an s
e
ML
s
RCTRATTY »| BEL IVERARLES
Assertlons
¥
prodosce *
HE
sequencing ol v
r
Ia
ASEOATEIM | e | E i P
=n

Figure 1: The OPEN process consists dctivities which in turn
consist ofTasks.Tasks useTechniques fortheir realization
(Graham et al,1997).

OPEN has an underpinning lifecycle model based on the contract-driven model of Graham
(1995b) which has been objectified (Section 2). In this model, process lifecycle objects, called
Activities, monitor the progress of development which is accomplished through the carrying out of
Tasks associated with tAetivity. A Task is the smallest objectified unit of work which is managed
directly in the OPEN procesBhe tools which a developer deploys to accomplithsk are known
as TechniquesThere are manyechniques, both traditional and novel, available in the OPEN
Toolbox (Henderson-Sellerst al, 1998). Previouslywe have elaborated on the relationships
betweerActivities andTasks (Henderson-Sellezsal,1997; Grahanet al,1997). In this papewe
reiterate the reasoning behind the whole three-level process architecture, but focus more on the
relationships betweerasks andechniquesTo inform the reader about the spread and coverage of
process-orientedechniques now available in the OPEbblbox, we give an overview in Section
3.We go on to show in Section 4 how particular sets of compdaialeniques can be selected and
grouped to fulfil therasks associated with model building and implementation (including “Code”,

“Construct the object model”, “Design user interface”, “Optimize the design”). In so doing, we

1Interestingly it is at this metalevel that the OMG Software Process Engineering group are likely to issue their first RFP
in late 1999.

48 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

The OPEN Software Engineering Process Architecture: From Activities to Techniques

illustrate the integrative capability of the OPEN metalevel process architecture for both old and new
Techniques.

1.1 The need forprocess

Some software development seems to occur in a very ad hoc faBhémajority of industries

would appear to work at CMM level 1 (see review in Henderson-Sellers, 1996, Chapter 8). In these
situations, when successes o¢the underlying reason is not obvious and there is no means to
identify how to repeat the success. Conversehen failures occur (as they inevitably will), in an

ad hoc, CMM level 1, development shop, there is no way of identifying how to fix the process and
learn from the failure and avoid a repeat failure in the futBuprocess of any sort lays down some
guidelines to help developers set their own (personal and team) standards that they cdhifollow
then possible for other personnel to temporarily or even permanently take over a role and for
managers to control, monitor and evaluate how well the development is progressing towards
completion A process thus identifies activities that need to be done, recommends means by which
to achieve these goals and, most importaotlyates a sequence which allows temporal planning.
Indeed, the adoption of processes are commensurate with mature or maturing software developmer
groups of CMM level 2 or probably 3 (or above).

1.2 An object-oriented process

Many of the traditional techniques for process and project management may be applied in an
object-oriented project. Howevethere is a universal recognition by OO developers, consultants
and mentors that three properties distinguish the best OO methods apart from traditional linear anc
single-pass lifecycles. Object-oriented development naturally lends itself to, and is most successful
when coupled with, a process lifecycle that is:

(i) iterative — allowing revisions to rework existing deliverables;
(ii) incremental — producing a steady stream of deliverables in stages; and
(i) parallel — working towards multiple modular deliverables simultaneously

An iterative lifecycle is one in which its various development stages may be revisited (fully or
partially) in cyclic orderlterative development should not be used as an excuse for undisciplined
design modification and code hacking; rather it should be properly tracked and the impact of
changes managed appropriately

Incremental delivery is linked with the iterative approach to some degree in that an OO
development should deliver products to the users incremenisilglly at the end of each iteration,
possibly every few weeks. Incremental delivery keeps the customer in the loop, ensuring that they
always have in their possession a delivered and running version which contains progressively more of
the required functionalityDistinction may be made between an evolving prototype and a production
delivery — although this distinction is becoming increasingly blurred. Nevertheless, the availability of
incrementally delivered software every few weeks or few months facilitates rapid feedback from users
who, in a traditional waterfall development, might not have been able to do so for several years.

Finally, OO supports a parallel lifecycle in that the full software system awaiting development
can be easily broken down into packages or subsystems. Because of the high degree of modularit
supportable in an OO development, it is relatively easy to ensure that these several packages can t
developed essentially independently of each other

Using OPEN on a project requires access not only to the process specification (Eraham
1997) but also to a modelling language and a set of “how to” techniques (HendersoneSallers

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 49

The OPEN Software Engineering Process Architecture: From Activities to Techniques

1998). In this papewe first summarize the basic architectural elements of OPEN and its contract-
driven lifecycle (the process element) before exploring in more deptFetttmiques which are
required as an integral part of the tailorable methodological framework of OPEN.

2. THE OPEN PROCESS-FOCUSSED DEVELOPMENT METHOD

The OPEN methodological framework is described in terms of interacting objects, each of which
represents awctivity (Grahamet al, 1997). TheseActivity objects have responsibilities and
associated contracts such that they can be configured in a variety of ways contingent upon the basi
rule that the pre-condition of eadtctivity object must be met before this neetivity can
commence. Secondlpefore you leave th&ctivity to transfer to yet another one, you must meet

its post-condition, which includes testing critekiith its emphasis on contracts, this underpinning
lifecycle model is thus known as the contract-driven lifecycle (Graham, 1995b).

Activities consist ofTasks (Figure 1) which are lik&ctivities in the sense that they describe
things that have to be done (but not how to do théwet)vities are heterogeneous collections of
goals wherea%$asks represent the smallest unit of work (that can be project-managed) that results
in a Deliverable and which can be readily evaluated for completeness.

The Activities andTasks, discussed in detail in Grahatal, (1997), describe what is to be
done.They do not suggest any ways of accomplishing these gdads.is the role of the OPEN
Techniques (Figure 1The OPEN methodological framework provides this underpinning skeleton
into which can be slotted, sygstically, selected and compatiblasks andechniques from those
available. Many of these OPENechniques are in fact very well-known, others lessVébile
OPEN supports these well-established techniques, it also documents others ignored or poorly
represented in the OO literature — particularly those associated with project management, busines:
decision making, requirements engineering, metrics and usalMétgiscuss some of these briefly
in Section 3 of this papefFinally, although early OOAD methods tended to eschew coding
concerns, OPEN provides some interesting support, as discussed here in Section 4 — as our mai
illustrative example of how OPEN provides a “$olfing” for the successful integration and
tailoring of both existing and new OO techniques.

OPEN specifies a number of deliverables which can be documented (Figure 1) using any one
of a number of modelling languages (a modelling language is defined to be a metamodel plus a
notation). One that is well-known is the Unified Modeling Language (UML) which was endorsed
by the Object Management Group in late 199%econd is the OPEN Modelling Language (OML)
(Firesmithet al, 1997) which has many elements of the OBI®ML but provides additional
benefits (Henderson-Sellers, 1998; Henderson-Selteak 1999b). OMLis more compatible with
the OPEN process since both have a strong responsibility-driven focus emphasizing the
identification of both objects and process activities according to their behaviours; and specify both
of these using a similar contracting metaphor

2.1Tailoring OPEN

There are currently 3Tasks (Bble 1) identified within the OPEN framework, of which ten have
subtasks. Eachiask represents a single managed unit of work which is relevant to the completion
of one or more proceggctivities. Most frequentlythe goal of ar\ctivity is achieved through the
completion of severalasks. For example, the Buikttivity is accomplished by selectinbask

units such as “Construct the object model”, “Design user interface”, “Map roles on to classes” and
“Code”. In general, though, the relationship between OP&dks and\ctivities is many-to-many

50 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

The OPEN Software Engineering Process Architecture: From Activities to Techniques

Analyze user requirements Maintain trace between requirements and desigh
Code Manage library of reusable components
Construct the object model Map logical database schema
Create and/or identify reusable components (“foMap roles on to classes
reuse”) Model and re-engineer business process(es)
Deliver product to customer Obtain business approval
Design and implement physical database Optimise reuse (“with reuse”)
Design user interface Optimise the design
Develop and implement resource allocation planTest
Develop business object model (BOM) Undertake architectural design
Develop software development context plans Undertake feasibility study
and strategies Undertake in-process review
Evaluate quality Undertake post-implementation review
Identify CIRTs Undertake usability design
Identify context Write manual(s) and prepare other
Identify source(s) of requirements documentation
Identify user requirements

Table 1: OPENTasks in alphabetical order

For example, th@ask: “Wkite manual(s) and prepare other documentation” is applicable to just
about everyActivity. Naturally everyTask will be highly relevant to somietivities and irrelevant
to othersThis leads to the OPEN ideaA€tivity-Task linkages.

While soméActivity-Task pairs can be identified as of zero value and thus labelled as forbidden,
other pairs may be identified as being mandateoy example, in undertaking Project planning, one
must use th@ask: “Develop software development context plans and strategies”. Howrever
are many other pairings that are more fuZyr instance, sometimes you might want to face the
Task: “Evaluating quality” during the Buililctivity and in other cases you might prefer to defer it
to User Review or Evaluatioithe link has a diérent possibility value than either a certainty or a
zero chance.

Based on this observation of a “fuzzy” link between (at least some) pa#tiaty-Task, the
notion of a possibility (or deontic) matrix can be introduced to formalize these two-dimensional
pairings. Figure 2 exemplifies this approathe values in this matrix, for all possible pairs, are
categorized into one of five categories:

* Mandatory (M)

* Recommended (R)

* Optional (O)

* Discouraged (D)

 Forbidden (F)

The actual values in this matrix will vary depending upon a number of things - such as project
size, oganizational culture, domain of the application to be developed, skills and likes/dislikes of
the development team. Indeed, at the smaller granularity of application, such as a single project,
most of these values will be either M ofTfis tailoring is in fact the aim of one of the subtasks of
Task: “Develop software development context plans and strategies”, a subtask calledtti€
lifecycle process”.

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 51

The OPEN Software Engineering Process Architecture: From Activities to Techniques

Activities
A B C b E
i [] ¥ (] [}
P T T T B
A S R T
2] " h i - " i
= CRE. 3. 3 ¥ 8
3 lewals ol pnuﬂE
For aach Activity/ Task i = mandatary
combination, one of the Mve B = recommended
leveds of probability (from Abvays 0 = optional
0 = isc gt
lo Hever) & chosen a8 | F= formicgen
appropriale

Figure 2:The lifecycle process consists of severAttivities.

We noted above that OPEN establishes a linkage bethammities andTasks; and that this is
a many-to-many mappingd.here is a second linkage between OPESks and thdechniques
which are deployed to accomplish thaWhereas dask is a unit of managed workTachnique is
a concrete method or approach that is selected to accomplisstheOPEN brings together all the
tried-and-tested (and some new) OO techniques that have been used worldwide for the past decade
EachTechnique is a tool to be applied by the users of the OPEN process, selected according to its
fithess of purpose in completingTask.

Tasks
& B C E .
8: 7§ § & @
F: | [T :
it ¢ ¥ B 3
N ¥ ¥ H & 4
- - ¥ i - s
Seseid 3 ol posdbel by
For each TaskTechnigue M = mandatery
combination, ome of the five 0 = recammended
levels of probability (from Always | 0= otional
to Mever) is chosen as ot
ml! | biddan

Figure 3: A core element of OPEN is a two-dimensional
relationship between tasks and techniques. Each task may
require one orseveral techniques in ordeto accomplish the
stated goal of the task; and techniques may be applicable to
several tasks. Foreach combination of task and technique, an
assessment can be made of the likelihood of the ocoemnce of
that combination. Some combinations can be identified as
mandatory (M), others as ecommended (R), some as being
optional (O), some ae discouraged (D) but may be used with
care and othercombinations that are strictly verboten (F=
forbidden). (Adapted from Graham et al, 1997)

52 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

The OPEN Software Engineering Process Architecture: From Activities to Techniques

Lodw
{arutruct the abippct madel
Oesrioz ard implement reaourte allccation plan
davelop lleraSan plan
deelnp Hmehnsplan
pet g e bl o8 collectian programme
el ity gt
Evaluale guality L n
Hanhhk CIRs Ed
Fdap rales on o cleaass = (301
Teat N E N
Wrile il and atier docisentation E & 8 i
Ky
I-From: glasrirg
2 eide ey dred Erglene plalaem SO0LTF
A NEY
A Ui revine
3. Carwbda
 Evalied s

Task 2 34356
L]
L]

Figure 4: Binary values in theActivity-T ask matrix appropriate
for a small project using a esponsibility-driven approach within
OPEN and for which the requirements ae prespecified.

The link betweerTechnigue andask follows the same gument as for the links betwe&ask
andActivity. OPEN represents these links by a many-to-many fuzzy relationship represented again
as a two dimensional matrix (Figure B8gain, this matrix must be tailored to your requirements.
Indeed, this matrix is much more likely to reflect the individualistic needs of your developers and
your project than the first matrix of FigureThis is because there are, in fact, many “duplicates”
in OPENS toolbox. For example, there are several techniques for finding objects. Some OO
software developers start by a textual analysis, some use simulation, some use CRC cards and y:
others prefer a use-case driven beginning to a software project. For example, if we had a small
project with pre-defined requirements, a small team and short project timelines, we might identify
theActivities andTasks (and their connections) in Figure 4 as releVdetse would correspond to
lifecycle Activity objects as shown in Figure 5.

Figure 4 has identified, for this small example, six activities and eight main ta&lksh
Techniques might be useful to accomplish thessks? Figure 6 lists those that may be identified,
based on a teampredisposition to the use of a responsibility-driven OPEN apptoach

Evdlualion : | -

Figure 5 :Activity objects appropriate to small project and to
matrix values of Figure 4.

2 As opposed to a use-case-driven OPEN approach which is an alternative, feasible option.

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 53

The OPEN Software Engineering Process Architecture: From Activities to Techniques

Fschinnl i 1 23 4367

b bract chas i den Hicabion
Abstracion wil Bt on

Dl iefprnal dwsgn =
DL naming

Colaberaliom onafyss

Compd padiy meeawrsmasni B
Corvirec | ageed Fic ol oy n
Lo lng mie aars mend B

OAC cord irodelirmg Ll L]
Fanieral d inheotiancw kent x x
i pla Bos oF eiies L]

impiera ebrion of drehes x Ed
Evigep s | wpm

nipracticn medeling =

g wd el i el g

Fralctmng X

Anbalbarsbi el el g K

Temoomh lidy ide e ofon k] L | n
Al e rimndEilnng 0 W
Sorrare deer laprmem| = E R L]
S A o | it 1P b [

Hale madwilng o

T ladl Auws s (]
LISt]

ard ekl e N

MMM

=
-

Pk TG = =
Oy

| il 3 bt i m
[T S p— -
b s r s, ke)
% ibap esbry mmin s beery T lew

Figure 6: Technique-Task linkages suggested for
small exemplarproject (Figures 4 and 5).

Thus a successful tailoring of OPEN results in the selection of approfidates and
TechniquesThis matrix tailoring is one of the strengths of OPEN which makes it suitable for a wide
range of project typésThis is why OPEN can be called a methodolodiGaheworkrather than a
methodology

3. THE SCOPE AND COVERAGE OF OPEN TECHNIQUES

In discussing the three layer OPEN process architecture, we wish to highlight in particular the little
explored relationships betwediasks andTechniquesA fairly complete encyclopaedia of OO
development techniques has recently been compiled by the OPEN Consortium (Henderson-Sellers
et al, 1998).This work listsTechniques alphabetically in five catalogues (the appenditgds To

give the reader some idea of the breadth of scope and coverage of that work, we provide a brief
survey of some of th@echniques relating to some quite disparBasks, ranging from project
management to interface design. For more detailed definitions and context of applichieility
reader should then refer to Henderson-Sebdém, (1998). In Section 4, we then discuss in more
detail, as an exemplathe linkage between modelling and codifasks (“Identify CIR'S”,
“Construct the object model”, “Map roles on to classes” and “Code”) antetttmiques deployed

to accomplish them.

3.1 Project Management and QualityAssuranceTechniques
OPEN has a significant focus (and therefore gelasumber of techniques) on project management
and quality (testing and metrics). Project management (PM) is, in many ways, an overlay to the

3 Specific tailorings are explored in a recent paper by Henderson-Sellers et al, (1999a).

54 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

The OPEN Software Engineering Process Architecture: From Activities to Techniques

whole process of building software, addressing also many business (as opposed to technical
concerns. In the business context, before any software is even contemplated, there are a number ¢
business decisions that have to be mageassessment of the business problem and its likely
feasible solutions (OPENask: “Undertake feasibility study”) will ustechniques such as cost-
benefit analysis, simulations, critical success factors, impact analysis, business process modelling
and so on.

Once approval has been given for the construction of a software solution to the business domain
problem, PM techniques begin to focus on planning techniques such as package identification anc
coordination together with traditional planning tools such as CPM and Gantt charts, perhaps as
implemented in one of the shrink-wrapped project management software tools.

At the personal level, there are a numberTethniques that have been found to enhance
personal productivity in certain cases. For many software developers, an awareness of their owr
work strategies for success has been engendered by the application of Trezi8due, perhaps
linked to SMAR goals (McGibbon, 1995Y.his may also be enhanced if thgamisation supports
the goals of an ganisational quality scheme suchT&3M.

PM also extends to the deployment of the software at the customer site. Here techniques suct
as customer (on-site) training and standard cut-over strategies need to be planned and actioned.

Under the PM umbrella are also placed testing and metrics. In OPEN, testing is seen as an
integral part of théActivity objects, being part of the post-conditiofhis means that not only
software artefacts but also process elements are evaluated en route rathestlfiacio.Testing
can, however still be implemented at several levels: including unit (class) testing, sub
system/package testing, integration testing. It can be done internally (alpha tests) or externally (bete
tests) or on-site (acceptance tests). Increasiitgs/important to include specific testing strategies
to address usability (OPERechnique: “Usability testing”).

Object-oriented metrics (Henderson-Sellers, 1996) are fully supported in OPEN although we
fully realise that the industry understanding of metrics and their utility is often limited. For example,
one approach seeks to measure readily available surface properties of source code without ther
being any sound understanding of whether high or low scores in these metrics correspond to
underlying quality (Chidamber and Kemerg®94). By contrast, the Goal-Question-Metric (GQM)
approach identifies qualitative software properties that are desirable and then seeks to discovel
ways of measuring factors that contribute to these qualitiger{@hd Jdéry, 1997; Henderson-
Sellers, 1999b). Other quality-focussed techniques in OPEN include class naming standards,
exception handling techniques, the use of formal methods and standards compliance.

3.2 Techniques Relating to UseRequirements
The general area of requirements engineering is a nexus between social science and (compute
technology It bridges between the user(s) and their requirements and the ability of the software
engineer to construct a design that is both implementable in a language suitable for computation anc
also understandable (and therefore endorsable) by the end-user

The first steps in requirements engineering are identification of the source or sources of the
requirements (e.g. people, pajpased files, electronic databases) and then the elicitation of the
particular requirements (for a particular project) from those sourbésis perhaps most digult
when the source is human since there is much sociological understanding necessary for (and oftel
foreign to) the requirements engineaho is often science/technology-focussed in their mindset.
Many of the OPENTlechniques involve traditional people interaction/problem solving techniques

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 55

The OPEN Software Engineering Process Architecture: From Activities to Techniques

such as brainstorming sessions, active listening, interviewing and questionnaires. Indeed, there is ¢
myriad of techniques that can be used to elicit requirements and it is certainly not the intention that
you should use all of them on each particular project. Choose the one that suits the skills of the
requirements engineer and the culture of the end-Bsemany aganizations, a well-structured
approach will be appreciated; perhaps a highly structured questionnaire. For more creative
environments or ones in which the requirements are perhaps not well understood by the potential
users, roleplaystoryboarding and rich pictures may prove helpful.

When more than a single user is involved (as is usual), more extensive techniques are required
Here, RAD and JAD, and their associated workshops, have been found most beWdiitsait is
important to ensure that the adoption of RAD/JAD is N€8&n as a permissible reason/excuse to
prototype rapidly (“hack”), such RAD workshops can bring together in a highly productive
environment system analysts and users. Good sources of reference here are Graham (1995a; 1996l

Following elicitation is a process of understanding, in conjunction with users, exactly what are
the implications (in terms of software) for the satisfaction of those requirements. Here problem
solving skills are to the for@echniques such as simulation to undertake what-if scenario evaluation
and CRC cards (Beck and Cunningham, 1989) can be most useful.

Many of the techniques included in OPENMéquirements engineering grouplethniques are
relatively new to OT<hough well-known in other domains of computing and information systems.
What is needed is an interviewer/requirements engineer who has an OO mindset and can tailor
guestions and lines of enquiries that will permit the discovery oT€IRith the greatest facility
Discussions should focus on responsibilities, some scenarios and concepts in the business domair
It may be dangerous to focus on data particularly if the interviewees have been educated/trained in
entity relationship modelling and since this can lead to the development of a data rather than an
object model. Similarlyoverdependence on use cases (Jacobsah1992) may lead to top-down
functional decomposition (Firesmith, 1995; Korson, 1998).

3.3 Techniques forUser Interface Design

Designing for usability (including user interface design) together with usability testing is critical to
the development of high quality software. Before an OO method can be regarded as complete, it mus
include advice on these HCI issues, drawing on the wealth of established information from the HCI
community In OPEN, we choose to draw the devel&pattention to sources of HCI advice rather

than “reinvent the wheel” (Preee al, 1994). It is clear that these issues are at the same time
(a) important and (b) often ignored for expedier@y is a technology that can bring benefits of
quality to the software industi& major component of qualitat least as far as the user is concerned,

is the GUI. For a successful software indystrys thus crucial to focus on the quality of the user
interface.The goals of dialogue design were highlighted by Dowaiea, (1991) and elaborated

upon by Cox andlValker (1993) into a series of dialogue design steps involving visualization of the
interface, abstraction into objects and their interactions, adding detail to the objects and their
representation, prototyping the Ul design and detailed program construttinare detailed set of
heuristics for good Ul design, especially concerning the content of messages, is discussed by Grahan
(1995a).The constraints on human short-term memory (Mill866) have for long been appreciated,
leading to restrictions on the number of menu items and depth of menu trees. Issues concerning
hierarchical versus random navigation must be addre¥bedstate-based modality of older user
interfaces was one of the originalgats of the Smalltalk project (Goldiger1985).

4 CIRT = Class, Instance, Role dype.

56 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

The OPEN Software Engineering Process Architecture: From Activities to Techniques

More recently 4GL-style screen painting techniques have given way to interface building
toolkits (Valaer and Babb, 1997), such as NexXTriterface BuilderVisual Basic and the recent
Java Beans technologgll of which allow the programmer to assemble visual prototypes of the Ul
and wire the visual controls to application obje€tsese tools alleviate much of the programming
effort involved and help to impose a common look-and-feel; but they do not obviate the need for
careful design. Usability testing is therefore an extremely important technique: some fourteen
checks are specified in Graham (1995a).

3.4 Reuse Strategies and Suppting Techniques

Reuse is an integral part of OPERhere are issues of technical concern and issues of management
concern. It has beengared that many of the technical issues are solved and it is really ttfe NIH
syndrome that prevents reuse.

CIRTs designed for a single project tend not to represent the totality of the concept they are
modelling.The characteristics included will be those pertinent to the current project rather than to
the broader domain. For reuse, classes (and other artefacts) need to be “complete”, highly tested an
robust (among other thinggjechniques such as “Completion of abstractions” and “Refinement of
inheritance hierarchies” are relevant heFaese focus on, firstlycreating a full and complete
specification of the concept and secondly on the likely modifications to the inheritance hierarchy to
permit a more flexible representation of concepts in the problem doAddition of genericity
(OPENTechnique: “Genericity specification”) can also be useful here at the detailed design stage.

Reuse is not merely at the class level; there is currently much enthusiasm in engendering reuse
via patterns, mechanisms, components and frameworks (Szyperski, 1998, Chapter 9). Indeed
OPEN describes a process for the initial identification, development and maturation of frameworks
(Henderson-Sellerst al, 1998), evolving from the whitebox framework stage to the blackbox
framework stage as described by Pree (1997).

Creation of reusable artefacts is one thing (OPENk: “Create and/or identify reusable
components (“for reuse”)”; finding existing components requires a totalfgrelift set of
Techniques (OPENask: “Optimize reuse (“with reuse”)” arihsk: “Manage library of reusable
components”). If developers cannot identify an appropriate artefaiclly, then they will not reuse
it but will redevelop it from scratcA.hus it is important that artefacts are not only well catalogued
(OPENTechnique: “CIH indexing”) but that tools exist to locate these stored artefacts (Freeman
and Henderson-Sellers, 1991).

On the PM side of reuse, we need to consider how the quality of reusable artefacts destined for stor
age in the company library can be assessed. Quality metrics (coupling, cohesion, complexity etc.) are
available and new reuse metrics have been proposed (HendersoreSal|&898) Another important
element is a person responsible for the quality of the libFéig important role necessitates both a
reactive and a proactive response: accepting and checking artefacts proposed for inclusion in the librar
together with the active encouragement of the provision of such classes and encouragement to (re)us
them in later project3.his approach is supported, in part, by OPIEeshniqueApplication Scavenging.

It should be practised in the context of well-defined roles of the development team (Application
Developer Reuse Managekibrarian,Application Scavenger) in order to avoid conflicts of interest.

The hardest part seems to be how to implement a “rewards” strategy that will encourage a reuse
mindset. Many obvious such strategies are open to abuse. For instance, “royalty” payments to
developers may be made on the basis of how often a class they have contributed is used by othel

5 NIH = Not Invented Here

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 57

The OPEN Software Engineering Process Architecture: From Activities to Techniques

or on the extent to which the classes in the current project have been extracted from the library
(friends can easily be cajoled/entreated to use these “as a favour”). Some newer ideas are currentl
being investigated as a subproject of the OPEN project.

4, MODELLING TECHNIQUES FOR SEAMLESS ANALYSIS AND DESIGN
Modelling techniques form the st grouping of OPENechniquesThey also provide the most
object-oriented flavour — many were newly invented within the object-oriented paradigm in
comparison with PM or Ul techniques, for instance, which have an obvious heredity outside of OT
In this section, we “weave together” a number of these modelling-focussed tools from the OPEN
“toolbox” of techniques.

To illustrate how a wise choice may be made of a set of OREKs andrechnigques, we will
use the small (toy) example of Figure 4 and concentrate on issues regarding thA@REBN
“Modelling and Implementation: OOAD/D/P” (labelled 2 in Figure 4). For thidivity, the
appropriateTasks are seen to be

* Identify CIRTs

* Construct the object model

» Map roles on to classes

» Code

In the following subsections, we explore the implications for approfateniques for these four
Tasks. Some of the relevafgchniques (a subset extracted from Figure 6) to be discussed here are

Task: “Identify CIRTS”
* Textual analysis
* CRC card modelling
* Abstraction utilisation
* Responsibility identification
« Contract specification
Task: “Constuct the object model”
* Service identification
* Relationship modelling
* Collaborations analysis
* Interaction modelling
* Generalisation and inheritance identification
« State modelling
« Scenario development
Task: “Map roles on to classes”
* Role modelling
Task: “Code”
* Class internal design
 Implementation of services
* Implementation of structure

4.1 CIRT identification
CIRT identification may rely on any one (or in fact more than one) of several techniques including
textual analysis, task analysis and use case evaluatiofs @I&y be identified from state transition

58 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

The OPEN Software Engineering Process Architecture: From Activities to Techniques

diagrams or from CRC roleplay exercises. It is rare for anyone to be able to identify relevant
concepts just by considering a static view of the domain. Our view of the world is interactive and
dynamic; our design of the software system is also implicitly dynamicT<CdiRe only of value if

they interactThus in identifying concepts it is almost inevitable that we concurrently think about
how they interact (see Section 4.2.2).

One good way of identifying concepts is to select key nouns in the requirements specification
(candidate CIRs) and then to look for the responsibilities (Apperfixheld by each such CIR
Responsibilities can be identified from requirements, elicited by techniques such as CRC or
roleplays and can be categorized as either (i) responsibilities for knowing; (ii) responsibilities for
doing; and (iii) responsibilities for enforcinhese are then implemented by one or more epera
tions in the CIR interface. Operations in the interface then link smoothly across to one or more
(often only one) methods in the code.

The responsibility is a high-level statement of the service(s) to be provided by edcH Ig#R
must be supplemented by a set of rules which govern that service proVisisris known as
“software contracting” (Meyerl988; 1992b)The objective is to clearly document the meaning of
services and/or responsibilities. Contracts and responsibilities are thus not synonyms — although
they are often confused (Rational, 1997). Contracting is so important that not only is it used in
Modelling but it is also an integral part of the lifecycle process model.

Good OO design is also highly modul&IRTs have restricted interfaces detailed by their
responsibilities (see above) — data (attributes) and methods are detailed design or coding decision:
Each CIR thus identifies, encapsulates and fully represents a single concept in the dbthain
current abstraction levelAppendix B).As abstraction levels change during the OPEN process as
more and more detail is added, more TRuvill be identified, some CI® will be found to be
aggregates and thus decomposable into their parts.

By focussing on the interface, as should all good application developers, we are also focussing
on another key element of object technology: encapsulation/information hiding. Encapsulation is a
boundary — it may be transparent, translucent or opaque. Information hiding requires an opaque
encapsulation in which only those details of the coded class which are reflected in the externally
available services (operations and (logical) attributesta higher level, external responsibilities
can be seen from outside the claBsese details, together with the class name, constitute the
interface.They should be supplemented by responsibilities for enforcing linked to internal rulesets.

4.2 Constructing the Object Model

OPENTask: “Identify CIRs” focusses on autonomous concepts.build an “object model” (a

model describing classes, objects, use cases etc.), consideration needs to be given to how the:
CIRTs connect togetheboth statically and dynamicallin the early stages of building the object
model, the emphasis will be on mappings/associations some of which may be usefully modelled as
aggregations (composition structures) or containment. Lagdmowledge is gained regarding the
static view of the object model and refined, generalisation/specialisation will be used increasingly
to create inheritance structur@éso, usage structures are elaborated as-ofiggct communication
patterns (the dynamic view) unfold. In this subsection, we explore a subset of theT@¢rimiues
relevant to th@ask: “Construct the object model”.

4.2.1 Service identification
Once some of the candidate THR have been identified, together with their high-level
responsibilities, we need to transform these into the servitereafby the CIR. Services are the

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 59

The OPEN Software Engineering Process Architecture: From Activities to Techniques

properties (logical attributes) and operations seen in the interface of the class. Each responsibility
may lead to the identification of one or more properties and operations, the latter being related to
behaviour and the former to knowledge. Operations may also be found by examining other classes
and seeing what operations they are likely to send out requests for — operations arec$ameides

not required.

4.2.2 Relationship modelling

In OOAD, relationships are usually established between classes or types although these
relationships (except for generalisation/inheritance) in fact represent instance-instance links. OPEN
makes the usual primary modelling distinction between simple-valued attributes and associations.
However OPEN prefers the majority of its associations to have the semantics of mappings, or one-
way dependencies. Later during implementation, mappings may be encoded directly as pointer
valued attributes, or as access functions returning the desired élgjgitgations are mappings
which have the semantics of whole-part relationships — although the definition is still not agreed
(Henderson-Sellers and Barhi&®99).

4.2.3 Collaboration and interactions

In OPEN, interaction analysis and collaborations analysis are two distinct techniques, although there
is significant closeness in the two technigéesollaboration is, in OPEN and OOram (Reenskaug

et al,1996), a sub-contracting relationship between two roles, eventually to be embodied in classes.
It represents the client-supplier relationship between roles that supports one or more messages the
the client delegates to the supplier in order to help the client fulfil its own responsibilities (see Section
4.2.1). Collaboration diagrams are used for documentation. Interactions, on the other hand, represen
the enactment of collaborations (i.e. its dynamic counterpart). In UML, there are two types of
interaction diagrams: collaboration diagrams and sequence diagrams which fgirendifisual
emphases on these interactions: the sequence diagram emphasizes the time-ordering of interactior
and the collaboration diagram emphasises a network of static connections between instances tha
form a subsystem, along which messages may flowdML, a collaboration is therefore more like

a network of static associations between instances, rather than a client-server relationship betweel
types. Choice between using either Ulliagram is often a matter of taste.

4.2.4 “Inheritance”
Conceptual generalisation is the most productive technique to apply during classification, since it
leads to inheritance graphs that support both reuse of conceptual designs and polymorphism
(dynamic type substitution). On the other hand, ‘implementation inheritaeéer’s to the
opportunistic reuse of code, considered irrespective of any considerations of subtyping or the
relatedness of the two concepts. It should only be used in the context of optimisation of design/code
since it mitigates strongly against reuse at the application develtgeis’

Inheritance structures may also include multiple specialisafitnsnetwork structure is harder
to maintain and understand and multipleinheritance should only be used when néckstsay,
we would go even further and suggest that inheritance itself (as single inheritance), whilst being a
“trademark” of an OO system, should be used sparifigigre are many cases when it is the first,
unthinking modelling option. In realityreuse is better served in many of these cases hy

6 The analogy we like to use is that of a chainsaw — great for sawing down treesfi¢tbk jdib) but highly dangerous
for more mundane tasks such as pencil sharpening.

60 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

The OPEN Software Engineering Process Architecture: From Activities to Techniques

delegation/subcontracting/collaborations. Some useful reminders of this necessary balance in using
different techniques for dérent jobs are given in texts by Page-Jones (1995) and Riel (1996).

4.2.5 Dynamic Modelling
The dynamic side of OO modelling may be seen in user interactions with the system (use cases), ir
the state-transition descriptions of how a single class (or more strictly interfaces belonging to a
single class) handles events or in the way that a small group &6 @GiRy collaborate together to
fulfil a single service request by delegation, subcontracting andG@i8r collaborations. Indeed,
many such designs could be regarded as underpinned by patterns (€aahhf95), a topic of
immense value to realise a component software industry

While collaborations (Section 4.2.3) are usually documented in collaboration diagrams, the same
kinds of diagram can also be used to document use cases, scenarios and task scrifJsq@iRNs:
“Scenario development”’Although no unique definition of use cases exists (Cockburn, 1997), they
can be understood as describing how a system functions from the (externslyieseyoint.

Use cases (and their variants) have many Usesy may be useful in eliciting and describing
user requirements; they may help in the identification ofTEI& converselybe identified from
the CIRTs and the semantic net and collaboration diagrams; they may be useful in directing the
testing program.

Whilst many authors have embraced use cases as part of their methods, it must be remembere
that

1) They show functionalityDecomposition could too easily lead, not to objects, but to detailed

DFDs (Firesmith, 1995). Decomposition of task scripts geied (e.g. Graham, 1995a; 1996a)

to lead to an identifiable end-point in théomic task scriptthus providing a more reliable

modelling technique.

2) There is no obvious way to “find the object” directly from a use dassniques for converting

the information found in use cases to a set of interacting classes (as depicted, for instance, in ¢

class diagram) are little d#rent from those aimed at finding objects directly from the

requirements documentd/hilst this is not surprising, care is required. Indeed, Korson (1998)

recommends that you “do not derive your design directly from your use cases”.

3) There are still many “dialects” (Cockburn, 1997) which foil irdemmunication between

development groups (Simons, 1999).

Some methodologists advocate that their methods should be totally use-case driven (Jacobson
1996).We beg to diier. Use cases (and their alternatives) need to be an integral part of a method —
their primary use in some situations may in fact be for driving the testing, rather than for eliciting
requirements descriptions.

4.3 Roles

One frequent error is the use of inheritance to represent an apparent is-a-kind-of knowledge
structure (specialisation inheritance) when a more appropriate modelling technique would be that
of roles.The importance of roles as a complete modelling technique, distinct from the labels on
associations in OMTWwhich have the same name, has been recognised in the publication of the
OOram method (Reenskawg al, 1996) and in their incorporation into the UMind OML
metamodels. Essentiallgt role is a temporary object classification in the sense of an instance, say
of type PERSON,temporarily adding an additional classification, saPLOYEE and
COMMUTER.Consider an instance of tyl@#ERSON: Magaret. Between 8 and 9 a.m., she is a

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 61

The OPEN Software Engineering Process Architecture: From Activities to Techniques

commutey between 9 and 5 an employee and between 5 and 5.45 a commuteYetgairthe day
she remains a person. Using subtypes to model this would be inappropriate since it would lead to
an instance of subtyg@OMMUTER(the instance Maaret in fact) moving, at 9 o’clock, to become
an instance of subtyp&EMPLOYEE. Such temporary migration between subclasses can be
indicative of the need for role modelling.

Roles can thus be thought of as temporary reclassification. Perhaps more impaneytye
additional classifications rather than changes of classification - for instance b&WeOYEE
and RETIREE.Roles occur frequently in real life. Role modelling is a software technique of
representing that reality in the software design.

If UML is used as the notation with OPEN, roles can be shown in collaboration diagrams
directly or in class diagrams using the <<role>> stereotype (AppendiXVilf). OML as the
notation, a separate and distinctive icon is used on both diagrams.

4.4 Coding Styles and ImplementationTechniques

OOAD produces a system-level design in which classes, the attributes they managigsmter
connections and the numbers and semantics of methods have been deteFmmeésl. lage
programming language independent; although it is recognized that the presence of particular program
ming language constructs may profitably influence the choice of design architdatenreample of

this is shown in the C++ Standardmplate Library (Stepanov and Lee, 1994), where considerable
responsibility for copying, inserting and appending elements in containers is transferred to generic
template functions acting on iterators, rather than supplied as methods of the containers themselves

There are a number of OPEN techniques which give advice on coding 8$wescoding, the
focus of the development team switches from consideration of the interface (the “type” aspect of
the CIRY) to the internal viewpoint (the class implementation). Operations in the interface are now
implemented or realised by a method (member function in C++, for example) in the code. Firstly
it may be necessary to design the way that a particular method is to be constructed. Since C++
Eiffel and Java (and less so, Smalltalk) are essentially object-oripriteeldural programming
languages, then the way in which the code is structured internally to a method is indeed procedural
in nature. Consequentlit is generally believed that designing such methods simply requires the
application of traditional structured design technidugisat a much smaller scalban occurs in a
traditional, structured programming development environmiénts, one might anticipate seeing
structures such as loops, if/then/else, case/switch statements and linear series of assignmer
statementsHoweverwhilst conventional wisdom suggests that in C++ (for instance) such a piece
of procedural code to implement a single method may be 20-30 lines long, more recent evidence
(Haynes and Henderson-Sellers, 1997) shows thait @OPLs, the typical method size in well-
written OO code is 2-3 lines long only other words, good C++ style should be not procedural
style but “Smalltalk style”. If this observation is repeated and upheld, then the D#iENique:

“Class internal design” will fade into insignificance.

Implementation (coding) of services (or characteristics) and structure is in terms of methods,
properties (exceptions, links, parts and attributes) and assertions (pre-conditions, post-conditions
and invariants). Some of these are truly hidden or private; while others cross the boundary and are
in fact public operations (ifs-Brock andwilkerson, 1989). It is important to note that the public
section of a class should include only those methods which provide its interface — and this should
be minimal, according to the purpose of the abstraction. In C++ and Java, there is a third category
of visibility: protected.Whether to mark attributes as private or protected isfeudif decision.

62 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

The OPEN Software Engineering Process Architecture: From Activities to Techniques

There are two common coding practices:

() in systems that rely more on composition than inheritance, make all data attributes private;
(ii) in systems that rely heavily on inheritance, make all data attributes protected, so that descen
dants may easily access them.

In the first style, data are strongly encapsulated, so that only the declaring class may access ther
directly. This means that any descendant, although it inherits the data attribute, cannot access it. If
the descendant needs access, it is common to define protected access methods in the original clas
If systems make heavy use of inheritance, this can lead to code-bloat, with many internal access
methods. In this case, it is more sensible to decide to make all data protected (the second style).

The notion of visibility relates both to what features are seen as part of the class interface i.e.
what are external responsibilities or external services; and also the extent to which other classes ar
permitted to see, and hence have access rights to, this particular class. Objects are visible to eac
other when they are in the same scope i.e. within the same Namespace. Fusion (EblEman
1994) contains a richer family of visibility relationships (reference lifetime, server visilsgityer
binding and reference mutability) which may also be useful.

Finally, it is sometimes the case that several public methods rely on a common algorithm — for
example, insertion, removal and membership testing BE@ class may involve a common
searching operatio.his may be made into a private (or protected) internal method, reducing the
size of the code overall. Howeyer review should be conducted of classes that acquire too many
internal methods of this kind. Often this indicates a class hiding a functional abstraction, which
should really be conceived t#fently, with the behaviour distributed over several objects.

Related to the same encapsulation theme are the notions of “friends” in C++ (Stroustrup, 1991)
and selective exporting in B (Meyer 1992a). C++ originally provided the “friend” mechanism to
allow a class to break its own encapsulation selectifelyhe sake of &tiency. A class may declare
another class, a method, or a global function to be a friend, meaning that this program component is
trusted and has privileged access rights to the internals of the declaring class. In principle, friend
declarations should only be used as a last resort. Howemr&in language limitations in C++ have
led to “friend” declarations being commonly used in three identifiable situations:

(i) To circumvent bounds-checks in operations involving twdediht class abstractions, e.g.
multiplication of aVector and a Matrix;

(i) To extend the interface of library classes not available to the develpgeroverloading
operator >> and operator <<, conceptually members of the iostream classes, to read and write
new userdefined classes;

(iif) To enable automatic type conversion, by replacing binary methods, which normally block type
conversion, with global friend functions, e.g. global overloads of operator +, operator -, which
access insid¥ector and Matrix.

Eiffel provides a flexible export mechanism which is the dual of friends — instead of breaking
encapsulation, it éérs selective interfaces to fdifent clients. By default, every feature is public;
howevey feature {NONE} makes the following declarations secret (equivalent to protected), and
feature {CLASSA, CLASSB} makes the following declarations accessible only to the named
classes.

Stylistic guidelines for dferent languages are ergerg. These are often referred to as the
“idioms” of that particular language. Some more general guidelines for “good coding” are to be
found in the Law of Demeter which is aimed at the preservation of encapsulation. It was formulated
by Lieberherret al, (1988) and later revised by Lieberherr and Holland (1989) and is a form of

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 63

The OPEN Software Engineering Process Architecture: From Activities to Techniques

voluntary design restriction, which prohibits the sending of messages to certain categories of objects
from within methodsThe need for such a law arises mostly in languages which pass objects by
reference, such as Smalltalk, félfor Java. In these languages, it is possible, by some combination

of message expressions, for an object to obtain access to part of another object (a sub-object) an
cause this to be altered, without the permission of the owning obfecintent of the law is to force

all messages to sub-objects to pass through the interface of the owning object first, which delegates
the request to the sub-object (OPE&Ehnique: “Delegation”).

Other design/coding decisions include whether to store information or to recalculate it on each
method invocationAs an example, consider the characteristic/property of a class which gives an
enquirer the current balance of a bank accolim. value of thdalanceobject to be returned to
the client object could be stored as an attribute oB#rekAccounbbject.Alternatively, what is
stored may be a transaction histqrgobably since the last bank statement was is3ueicurrent
balance is thus calculated anew each timeb#ianceoperation/service is requestedmsvious
balance +X recent transactions.

The use of a distributed system also forces certain coding decisions. For instance, using an ORB
focusses attention closely on the interface and possibly orcdDsiderations — inheritance is no
longer as important since what is important is the interface and services provided byThe CIR
guestion. Design decisions regarding virtual and actual nodes need to be implemented, as does cod
to implement asynchronous or synchronous message passing sequences. It is likely that concurrer
threads will be created and coded.

5. SUMMARY

In developing the third generation OO methodology OPEN, thoroughbred OO ideas have been
embodied in both the lifecycle process and the tasks and techniques which are tsettstaceéssful

OO software development. Linkages betwAetivities andTasks and betweérasks andechniques

are the focus of the OPETdsk: “Tailor the lifecycle process”, in which the project manager (typically)
creates a specific OO process for the current software development and/or garitsatiorns own
standard OO proceskechniques then provide the practical advice on how to build the software system
and have been discussed here in clusters, with more detail on those focussing on model building anc
coding.Thus OPEN provides a comprehensive methodological framework (as outlined in Figure 1) for
the application and utilisation of object technology in a true software engineering context.

6. ACKNOWLEDGEMENTS
This is contribution number 98/7 of the Centre for ObjeathnologyApplications and Research.

REFERENCES

BECK, K., and CUNNINGHAM, W. (1989):A laboratory for teaching object-oriented thinkir8) GPLANNOotices, 24
(10), 1-6.

BERNER,S.,BLINZ, M. andJOOS,S. (1999)A classification of stereotypes for object-oriented modeling languages, in
Procs. <<UML>>'99, SpringefVerlag (in press).

BOOCH,G. (1991):Object Oriented Design witApplications Menlo Park, CA, USA: Benjamin/Cummings.

BOOCH, G. (1994):Object-OrientedAnalysis and Design withpplications,(2nd edition), Menlo Park, CA, USA:
Benjamin/Cummings.

BUDD, T. (1991):An Introduction to Object-Oriented BgrammingWokingham, UK:Addison-Wesley

CHIDAMBER, S. andKkEMERER, C. (1994)A metrics sulite for object oriented desitfaBEE Tans. Softwae Eng.,20(6),
476-493.

COAD, P, andYOURDON, E. (1991):0Object-OrientedAnalysis(2nd edition), Newyork, USA: Yourdon Press/Prentice
Hall.

COCKBURN,A. (1997): Goals and use casd®0R 10(5): 35-40.

64 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

The OPEN Software Engineering Process Architecture: From Activities to Techniques

COLEMAN, D., ARNOLD, P, BODOFF, S.,DOLLIN, C., GILCHRIST, H., HAYES, F. andJEREMAES,P. (1994):
Object-Oriented Development: the Fusion Metherglewood Clifs, NJ:Yourdon Press/Prentice Hall.

COX, K. andWALKER, D. (1993):User Interface Desigr2nd edition, Prentice Hall.

DOWNES,E., CLARE, P. andCOE, I. (1991): Structured Systeménalysis and Design Methodologipplication and
Context,(2nd edition), Prentice Hall.

FIRESMITH, D.G. (1995): Use cases: the pros and cons, Report on @bjagsis and Design, 2(2), 2-6.

FIRESMITH, D., HENDERSON-SELLERSB. andGRAHAM, I. (1997): OPEN Modeling Language (OML) Redace
Manual,New York, USA, 271, SIGS Books.

FREEMAN, C. andHENDERSON-SELLERSB. (1991): OLMS: the Object Library Management Syste@TTER,J.,
TOKOROM. andMEYER B. (ed.), inTOOLS 6 Prentice Hall, 175-180.

GAMMA, E., HELM, R., JOHNSON,R. andVLISSIDES J. (1995):Design Patterns. Elements of Reusable Object
Oriented Softwae, Reading, MA, USA: 395Addison-W\esley

GOLDBERG,A. (1985):Smalltalk 80: the Interactive Bgramming EnviosnmentAddison-Wesley

GRAHAM, I.M. (1995a):Migrating to Object €&hnologyWokingham:Addison-W\esley

GRAHAM, |.M. (1995b):A non-procedural process model for object-oriented software developRepuf on Object
Analysis and Desigri,(5): 10-1L.

GRAHAM, I. (1996a): Linking a system and its requireme®tsject Expet; 1(3): 62-64.

GRAHAM, I. (1996b):The oganization of workshop€)bject Expet; 1(6): 52-54.

GRAHAM, |., HENDERSON-SELLERSB. andYOUNESSI,H. (1997):The OPEN Rucess Specificatiot,ondon, UK:
Addison-W\ésley 314.

HAYNES, P andHENDERSON-SELLERSB. (1997): Bringing OO projects under quantitative control: an output, cash
and time driven approacAmerican Pogrammer10(11): 23-31.

HENDERSON-SELLERSB. (1996):Object-Oriented Metrics. Meases of ComplexityNJ, USA: Prentice Hall, 234.

HENDERSON-SELLERSB. (1998): OML: proposals to enhance UML, Procs. <<UML>>'98. Beyond the Notation,
Universite de Haute-Alsace, Mulhouse, France: 319-329.

HENDERSON-SELLERSB. (1999a)A methodological metamodel of proce3®0OP/ROAD11(9): 56-58, 63.

HENDERSON-SELLERSB. (1999b): OO software process improvement with metrics, Keynote presentation at Procs.
METRICS99|EEE Computer Society Press: 2-8.

HENDERSON-SELLERSB. andBARBIER, F. (1999):What is this thing called aggregation?,T@OLS29 MITCHELL,
R.,WILLS, A.C.,BOSCHJ. andMEYER B. (eds.), IEEE Computer Society Press, 216-230.

HENDERSON-SELLERSB. andEDWARDS, J.M. (1994):BOOKTWO of Object-Oriented Knowledge: Therkihg
Object,Sydney: Prentice Hall, 616.

HENDERSON-SELLERSB., GRAHAM, .M., SWATMAN, P, WINDER, R. andREENSKAUG, T. (1997): Using
object-oriented techniques to model the lifecycle for OO software development, Patel, ¥, 8&uhPatel, S. (eds.),
in Procs. OOIS ‘96l.ondon: Springeiverlag, 21-220.

HENDERSON-SELLERSB., SIMONS, A.J.H. andYOUNESSI,H. (1998):The OPEN ®olbox of &chniquesUK:
Addison-Wesley 426 + CD.

HENDERSON-SELLERSB., FIRESMITH, D.G., GRAHAM, |. andSIMONS,A.J.H. (1999a): Instantiating the process
metamodelJOOP(ROAD),12(3): 51-57.

HENDERSON-SELLERSB., ATKINSON, C. andFIRESMITH, D.G. (1999b):Viewing the OMLas a variant of the
UML, Procs. <<UML>>'99, Fort Collins, CO, October 1999, Springer LNCS 1723, 49-66.

JACOBSONJl. (1996): Public communication, ObjectExpo, Sydney

JACOBSON, I, CHRISTERSON, M., JONSSON,P. and OVERGAARD, G. (1992):0bject-Oriented Softwar
Engineering:A Use Case DriveApproach,New York, NY, USA: 524 Addison-W\ésley

JACOBSON,I.,, BOOCH, G. andRUMBAUGH, J. (1999):The Unified Softwa Development PressReading, MA,
USA: Addison-Wesley Longman Inc.

KORSON,T. (1998):The misuse of use cases (managing requireméi@ct Magazineg(3): 18-20.

LIEBERHERR,K. J. andHOLLAND, I. (1989): Formulations and benefits of the Law of Dem&igplan Notices24(3):
67-78.

LIEBERHERR,K.J., HOLLAND, I. andRIEL, A. (1988): Object-oriented programming: an objective sense of style,
Procs. OOPSLA88, ACM Press, 323-334.

MCGIBBON, B. (1995):Managing 6ur Move to Objectd&chnology Guidelines and Strategies for a SmootanEition,
New York: SIGS Books, 268.

McGREGOR,J.D. andKkORSON,T. (1993): Supporting dimensions of classification in object-oriented dekigdbj.-
Oriented Pogramming5(9): 25-30.

MEYER, B. (1988):Object-Oriented SoftwarConstuction, Hemel Hempstead, United Kingdom: Prentice Hall, 534.

MEYER, B. (1992a)Eiffel: The Languagd\ew York: Prentice Hall, 594.

MEYER, B. (1992b)Applying “design by contractlEEE Computer25(10): 40-52.

MILLER, G. (1956):The magical number seven, plus or minus two: some limits on our capacity for processing infor
mation, The Psychological Revie®3(2): 81-97.

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 65

The OPEN Software Engineering Process Architecture: From Activities to Techniques

OFFEN,R.J. andJEFFER, R. (1997): Establishing software measurement progréaisE Softwae, 14(2): 45-53.

OMG. (1997a): UMLSemanticsVersion 1.1, 15 September 1997, OMG document ad/97-08-04.

OMG (1997b): UMLNotation.Version 1.1, 15 September 1997, OMG document ad/97-08-05.

PAGE-JONES,M. (1995): What Evey Programmer Should Knowbout Object-Oriented DesigiNew York: Dorset
House Publishing, 370.

PREE,W. (1997): Essential framework design pattefsject Magazine7(1): 34-37.

PREECE,J., ROGERS,Y., SHARR H., BENYON, D., HOLLAND, S. andCAREY, T. (1994): Human Computer
Interaction,Addison-W\esley

RATIONAL. (1997): UML Semantics, version 1.0, 13 January 1997 (unpubl), available from http:fatiewal.com

REENSKAUG, T., WOLD, P. andLEHNE, O.A. (1996): Working with Objects. The OOram SoftwaEngineering
Manual,Greenwich, CTUSA: Manning, 366.

RIEL, A.J. (1996):Object-Oriented Design HeuristicReading, MA, USAAddison-Wésley 379.

RUMBAUGH, J.,BLAHA, M., PREMERLANI, W., EDDY, F., andLORENSEN,W. (1991):Object-Oriented Modeling
and DesignNew JerseyUSA: Prentice Hall.

SHARBLE, R.C. andCOHEN, S.S. (1993):The object-oriented brewery: a comparison of two object-oriented
development method8CM SIGSOFBoftwae Engineering Note4d,8(2): 60-73.

SIMONS,A.J.H. (1999): Use cases considered harnMu,CHELL, R., WILLS, A., BOSCHJ. andMEYER B. (eds.), in
Procs. OOLS29)EEE Computer Society Press, 194-203.

SIMONS, A.J.H. andGRAHAM, I. (1999):30 things that go wrong in object modelling with UML3, Chapter 16,
KILOV, H., RUMPE B. andSIMMONDS I. (eds.), inBehavioural Specifications of Businesses and Syst€mser
Academic Publishers, 221-242.

STEFRANOQOV, A. andLEE, M. (1994):The Standat Template Libray, Hewlett Packard Labs.

STROUSTRURPB. (1991):The C++ Piogramming Languagé€2nd edition), Reading, MAAddison-Wésley 328.

SZYPERSKI,C. (1998):Component Softwar Beyond Object-Oriented &grammingHarlow, EnglandAddison-Wesley 411.

VALAER, L. andBABB, R. (1997): Choosing a user interface development BBIE Softwae, 14(4): 29-39.

WIRFS-BROCK,A., andWILKERSON, B. (1989):Variables limit reusabilityd. Obj.-Oriented Rsgramming2(1): 3440.

WIRFS-BROCK,R. (1994):Adding to your conceptual toolkit: whatimportant about responsibility-driven design?,
Repot on ObjectAnalysis and Desigri,(2): 39-41.

APPENDIX A: RESPONSIBILITIES

Concepts and abstractions focus on the external view — how an object is seen, what it is responsible
for knowing and how it behaves. Responsibilities, introducedMrys-Brock andWilkerson

(1989), represent high level abstractions of integrated state and behasidlustration, consider

the CIRT to represent a hors€his can be done either using:

» Thedata-drivenapproach describes a horse in terms of its parts: head, tail,|bg@)).

» Theprocedural(functional interface) approach describes a horse in terms of operations it can
perform: walk, run, trot, bite, eat, neigh.

» The responsibility-drivenapproach describes a horse interms of its responsibilities:
communicate, carry things, maintain its living systems.

A data-driven approach harks back to earlier structured methods, such as the entity-relationship
modelling adopted in Shlaer/Mello®MT and Fusion, in which the emphasis was more on pure
storage entitiedVhilst OMT does not prevent the developer from identifying “behaviour” during
analysis, all examples are data-focus3éek Coad andfourdon methodology has a similar data-
driven focus. Fusion, on the other haddesmandate that only data are considered during analysis.
The use of a data-driven (“O0”) methodology such as thesgifusgd by an unskilled developer
lead to traditional entity-relationship models rather than true object models. In a true object model,
behaviour (as exemplified by responsibilities) tends to be more equally distributed amdsg CIR
this was amply demonstrated in a metrics study by Sharble and Cohen (1993) in which the data-
driven design (DDD) was of a lower quality (as measured by their set of metrics) than the
responsibility-driven design (RDD).

Whilst both a DDD and a RDD approach can work, particularly in the hands of a skilled
developerwe have generally found that novices prefer a RDD. Indeed, it has been found that a

66 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

The OPEN Software Engineering Process Architecture: From Activities to Techniques

responsibility-driven approach is more than useful in teaching gradkrate students the OO
paradigm.Whilst permitting DDD, we strongly recommend a RDD focus to your development
strategy Whilst a responsibility driven design focusses on an holistic approach at the model
building level, a contract-driven approach takes that one level higher and applies those ideas to the
life-cycle process itseliThe objects representidgtivities have both responsibilities and contracts:

pre- and post-conditions controlling the overall development process.

APPENDIX B: ABSTRACTION AND CLASSIFICATION
Modelling is representing a system, here first a business system and then a software system, at a give
level of abstractionThe use of abstraction is not only one of the most central tenets dUOdlso
for many one of the most @iult. Abstraction requires the capturing of the essence of a problem and
its elements — in terms of types, objects, relationships etc. — at a given level of detail or granularity
An abstraction mindset leads to the successful introduction and use of classification. It is natural
for people to group together common items in their everyday world in order to impose a cognitive
or mental model of the external of “real world” in which we all exist. Indeed, some philosophers
argue that since the only reality is our own cognitive perception of the world around us — and each
of us constructs our cognitive map independently an@rdiitly — then the real world has no
meaning or existence!
This skill of classification to a higher abstraction level leads to the notion of generalisation —
identifying a superclass or supertype, which may often be an abstract class ig@Q(ijar one
with no instances), but which captures the essence of a shared concept.

APPENDIX C: STEREOTYPES
Stereotypes are widely used in TIRodelling.The word stereotype, in a linguistic sense, suggests
something representative — sometimes pejorati\el@T, its meaning has been changed to mean a
temporary metalevel subclassification. In OOSE (Jacolesaa, 1992), CIR's could be either
controller objects, entity objects or interface objects — a similar grouping technique was used by
Budd (1991).These stereotype labels indicate the superset to which the object bdlbigys.
approach is merely a convenient way of dividing up objects following a “divide and conquer” style.
There is nothing sacrosanct in these classification categories and no impact on the semantics o
implementation styles implied. Followingirfs-Brock’s (1994) discussion on OO stereotypes, the
concept has been embodied in the Udfiproach to modelling. Stereotypes are applied liberally as
means of extending the concepts as portrayed in the bietlamodel Whilst providing much-
vaunted extensibility (an important aim of the metamodel), excessive use of stereotyping runs the
risk of different developers producing overlapping or ill-defined classifications (Betar1999).
For example, airlineA may stereotype their frequent flyers as bronze, silver or gold based on
thresholds of annual miles flown of 100,000 and 200,000 whereas airline B uses the same stereotype
based on annual expenditurgfus the <<gold>> stereotype is ambiguous and third (and fourth)
parties adopting it will find no agreed semantics. In fact, this leads to the identical problem observed
by McGregor and Korson (1993) in their introduction of the discriminant — used later in MOSES
(Henderson-Sellers and Edwards, 1994), QMicesmithet al, 1997) and UML(OMG, 1997a;b).

As well as classes, some relationships are suggested as ripe for stereotyping. OMG (1997a]
encourages the use of the <<uses>> and <<extends>> steréaiyphe dependency relationship

7 Recently (OMG, 1999), these were replaced by <<include>> and <<extend>> stereotypes.

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 67

The OPEN Software Engineering Process Architecture: From Activities to Techniques

between use cases (the subset approach to stereotyping). Simnildréyclass diagram, there are a
large number of predefined stereotypes on the Dependency relationship and its subtypes. However
it should be noted that, while a stereotype is defined to be, esseatiadigrdefined partition at the

model rather than the metamodel level, there are several stereotypes predefined emguUML
<<access>>, <<friend>> and <<import>> as stereotypes of the Permission relationship (Figure 7).
Furthermore, in the UMktandard, severatetatypesge.g. Include, Extend, Binding, Uses in Figure

7 — but there are many others) are depicted using a stereotype notation.

ndude
......
3 |
Torw Frisdiaadnp
IIII - I
I - Enlend
1wy T il
Y r
s sy | Az ol
e
A L}

Figure 7: The Relationship metalevel hierachy of UMLV1.3.
Some of the metatypes in the metamodel arshown using
stereotypes while others have steotypes which epresent
partitions of the metatype.

BIOGRAPHICAL NOTES

Brian Henderson-Sellers is [@ictor of the Centr for Object &chnologyApplications and Resezr

and Piofessor of Information Systems at Universityemhhology Sydney (UTS). He is author of eight
books on object technology and is well-known for his work in OO methodologies (MOSES, COMMA
and OPEN) and in OO metrics.

Brian has been Regional Editor of Object-Oriented Systems, a member of the editodabboar
Object Magazine/Component Strategies and Object Efgremany years. He was the Founder of the
Object-Oriented Special Intest Goup of theAustralian Computer Society (NSW Branch) and
Chairman of the Computeorld Object Developer®wards committee for Objectffd 94 and 95
(Sydney). He is adguent, invited speaker at international €@nfeences.

Tony Simons is a Lectr in the Depament of Computer Science at the University of Sheffield in
the UK. His eseach inteests span object-oriented models of speech events and low-level phonetic
decoding, object-oriented type thgaand language design as well as object-oriented analysis and
design methods, verification and testingnyl' is a egular pesenter at international object-oriented
confeences such as ECOOBOPSLAand TOOLS. Bny is also a member of the OPEN Cotisan
and the pUMLgroup.

He is the chief ahitect behind the DiscoweMethod for developing object-oriented systems and co-
author (with Pofessor Henderson-Sellers) of The OPEdIGox of €chniques (Addisoné8ey
1998).

68 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

