
PLUG AND PLAY SAFELY: RULES FOR BEHAVIOURAL COMPATIBILITY

A. J. H. Simons, M. P. Stannett, K. E. Bogdanov and W. M. L. Holcombe
Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello Street, Sheffield S1 4DP
United Kingdom.

Abstract

The state of the art in component-based software
development depends on the notion of interfaces and
interface matching. This only partly solves the problem of
safe component usage and substitution, dealing with
syntactic compatibility. We present a specification
method that describes under what conditions a component
is behaviourally compatible with the expectations of an
interface.

The method is based on the UML class and statechart
diagrams, expressed as a set of rules for statechart
refinement. Both refinement (UML realisation) and
subtyping (UML specialisation) can be captured, allowing
a designer to determine when a component matches the
requirements of an interface, or when one component may
safely be substituted for another. The rules are
behaviourally safe under polymorphism with dynamic
binding, up to the abstraction captured by the statecharts,
and improve on previously published rules for behavioural
compatibility.

Key Words

Components, behavioural compatibility, statecharts,
subtyping, refinement.

1. Introduction

The eventual economic success of component-based
software development will depend crucially on the
willingness of developers to accept and trust third-party
software components. Although the notion of interface
matching is well-understood, no guarantees currently exist
regarding the behaviour of third-party components and
this represents a serious obstacle to component reuse. The
"not invented here" syndrome is one aspect of developer
mistrust. Experiences of component misbehaviour, such
as the spectacular Ariane 5 disaster [1], seem to bear this
out.

To improve the level of trust, an agreed specification
method must be adopted by developers that not only

describes when a component is type-compatible with a
given interface, but which is capable of expressing when
the component is behaviourally compatible with the
expectations of an interface, at some suitable level of
abstraction. Secondly, a testing method must be capable
of guaranteeing that implemented components conform to
the agreed specification.

MOTIVE (Method for Object Testing, Integration and
Verification, EPSRC GR/M56777) is a combined state
machine and algebraic approach to specifying and testing
object-oriented and component-based systems. MOTIVE
is based on the successful X-Machine specification and
testing method [2, 3, 4, 5] and is further influenced by
algebraic specification and testing methods [6, 7]. The
fundamental goals of MOTIVE are:

• to preserve the scalability of the verification and
testing obligations; and

• to provide guarantees of component and system
correctness once testing is over.

This goal is reached through a novel combination of
formal reasoning, design restrictions and a proven method
for complete functional testing [3, 4].

In this paper, we concentrate specifically on the
refinement [3] of statechart specifications. This can be
used to support the UML [8] notion of realisation
whereby abstract interfaces are realised by concrete
components whose behaviour conforms to the interface.
Object extension with subtyping is explained in the same
formal framework, supporting the UML notion of
specialisation and the matching of more specific
components to more general interfaces.

2. Object Machines

In MOTIVE, the designer develops an Object Machine, a
state machine describing the gross behaviour of an object
or component in response to message requests, and later
fills out a table of axioms in the associated Object
Algebra, an imperative-flavoured algebra in the object-
oriented style. For reasons of space, a discussion of the

push(a)

pop()

push(b)
Normal

size() > 0

pop() Error

size() < 0

Stack

<<create>>
Stack()
push(e:T)

<<modify>>

T :: TYPE

pop()

<<access>>
top() : T
size() : Integer

EmptyStack()

size() == 0
top() / => error

top() / => v

size() / => i

Valid

pop()

size() >= 0

Figure 1: Object Machine Specification for a Stack

algebra is not possible in the current paper. Instead, we
focus on the behavioural properties of component
interfaces that can be captured solely using Object
Machines.

Figure 1 ill ustrates a simple Object Machine specification
for a Stack, which consists of a UML class diagram and a
statechart diagram [8]. The class diagram partitions the
public methods of Stack into algebraic constructors,
transformers and observers, respectively labelled with the
<<create>>, <<modify>> and <<access>> stereotypes.
The statechart has control states chosen by the designer,
corresponding to modes in which the Stack is perceived to
react differently to messages. The Empty state encodes
the limiting behaviour of pop and top (when they are
undefined) and the Normal state is the regular state in
which all methods are well -defined. The Error state is a
halting state, representing an invalid object (in algebraic
terms undefined). To avoid clutter, the diagram may
group states into regions in which common reactions
occur. The Valid region is shown by a dashed outline and
transitions from the region boundary are considered
replicated for every enclosed state [9].

The diagram has transitions describing the state-modifying
behaviour of the <<create>> and <<modify>> methods.
The nondeterminism of pop from Normal is resolved
through postcondition guards, here the state-predicates
governing entry to the next state. The self-transitions for
<<access>> methods are also shown in the diagram, since
they may yield state-contingent results (such as top) and
so reveal the existence of interesting states.

There is a synergy between the Object Machine's state
space and the algebraic category assigned to each method:
<<create>> methods are the only ones that can reach new
valid states; <<modify>> methods only ever reach
previously visited states (the invalid Error state is
discounted in this determination); and <<access>>

methods never cause a state change. In an algebraic
specification, axioms must be supplied to define precisely
the meaning of each <<access>> and <<modify>> method
in paired combination with every <<create>> method.

The control states chosen for an object are at a level of
abstraction chosen by the developer, but they must always
form a complete partition of its underlying memory states.
In MOTIVE, the memory states of an object are defined
abstractly as the Cartesian product of the ranges of its
<<access>> methods under inductive construction, rather
than concretely as the product of its attribute domains [10,
11], to facilitate the definition of abstract types.

3. Interface Realisation

The Stack specification developed in figure 1 captures the
abstract behaviour of a Stack interface, describing not
only the type signatures, but also the state-related
behaviour that any implementation's methods must
provide. A linked list could implement this state-space
exactly, with an Empty state for the empty list and a
Normal state for a chain of links.

By contrast, a self-resizing vector could implement the
behaviour of the abstract Stack, but its state space would
be different, since it would react differently when it was
full and about to be resized in response to the next push.
Realisation of an abstract interface frequently exposes
further states in a more concrete Object Machine. This
should always be in accordance with the designer's
knowledge about the implementation strategy: the guiding
principle is to model, as explicit states, those modes in
which the object reacts differently to events.

Figure 2 shows the specification for a DynamicStack,
which realises the abstract Stack interface. The statechart
exposes new Loaded and Full states inside a Normal

pop()

Error

pop()

size() < 0

DynamicStack

<<create>>
DynamicStack()
push(e:T)

<<modify>>

T :: TYPE

pop()

<<access>>
top() : T
size() : Integer

top() / => v

size() / => i

Normal

Full

Loaded

push(b)pop()

size() < n

size() == n

push(c)

pop()
DynamicStack()

top() / => error

Empty

size() == 0 push(d) / resize(n)

push(a)

Valid

size() >= 0
size() > 0
size() <= n

 / initial(n)

T :: TYPE

Stack
<<interface>>

Figure 2: Object Machine Specification for a DynamicStack Realisation

region, which corresponds to the unrefined Normal state
in figure 1. The states are motivated by the different
resizing behaviour of the DynamicStack, when it reaches
its Full state. The statechart observes several important
rules of refinement:

1. newly-exposed states must completely partition a
region corresponding to an unrefined state, up to any
new assumptions made by the refinement;

2. entry and exit transitions crossing over the region
boundary must similarly partition the entry and exit
transitions to the old state;

3. transitions within the region must similarly partition
the self-transitions of the old state, otherwise the
refinement may deadlock;

4. and there may be no other transitions to or from states
outside the region, otherwise the refinement may
behave unexpectedly.

The three partitioning rules express more succinctly Cook
and Daniels' state- and transition splitti ng rules for
statechart refinement [12], but the extra prohibition rule 4
is a necessary addition. For example, if push from Full
were to overflow and lead to the Error state, there would
be some sequence of operations that would work correctly
for a Stack but which would cause a DynamicStack to fail.

4. Component Substitution

In general, an interface may accept a component with
more than the required methods. Compatibilit y is
conventionally judged only in terms of providing methods
matching the required signatures. However, now we must

also consider extensions to behaviour and whether this
violates the expectations of the interface. This is similar
to the case in object-oriented programming where a
variable of one type receives an object of some subclass
type, and through which redefined methods are invoked by
dynamic binding.

MOTIVE's underlying refinement model is a calculus of
object types and subtyping. A subtype object should be
usable in contexts where a supertype was expected [13].
An extended specification for a subtype must conform to
the original type, both syntactically and behaviourally. In
particular:

• the subtype may add methods to the original type, or
replace these with methods having subtype (but
typically, unchanged) signatures;

• the statechart of the subtype may expose new states
and add extra transitions following the rules for
statechart refinement.

A lending library example is developed in figure 3 as a
counter-example to ill ustrate how breaking the rules of
refinement from section 3 leads to extended types which
are sytactically, but not behaviourally, compatible with
their base types.

In figure 3, a Reservable type specialises a Loanable type
by adding extra <<create>> methods and thereby
introducing new states (cf the synergy between algebraic
constructors and new object states noted in section 2).
Assume that the original Loanable had two states, Issued
and Discharged, which are now shown as regions
partitioned exhaustively in the subclass Reservable.

Reservable

Discharged

PutAside

reserved()

Loanable()

issued() / => true

Loanable

¬ issued()

¬ issued()

<<create>>

<<create>>

<<modify>>

<<access>>

issue(a : Borrower)

discharge()

issued() : Boolean

Reservable()

<<modify>>

<<access>>

reserve(b : Borrower)

cancel()

reserved() : Boolean

Issued

Recalled

reserved()

issued() / => false

issued()

issued()
issue(a)

discharge()

discharge()
reserve(b)

reserve(b)

cancel()
cancel()

Reservable()

issue(a : Borrower)

reserved() / => true

holder() / => error
holder() / => a

OnLoan

issued()
¬ reserved()

OnShelf

¬ issued()
¬ reserved()

holder() : Borrower

keepFor() / => b
keepFor() : Borrower

reserved() / => false keepFor() / => error

issue(a) [a == b]

Figure 3: Object Machine for a Reservable Specialisation

We focus on the refinement of the issue and discharge
transitions. In Loanable, these ran between the Issued and
Discharged states. In the refined Reservable, these
methods must now take into account the consequences of
reservation.

Discharge is split into two transitions, running from
distinct source to distinct target substates. These form a
complete partition of the original transition, so are
semantically equivalent (in fact, the splitting is a
consequence of partitioning the source state space).
However, the issue method is redefined to ensure that after
a reservation, the item is only issued to the intended
Borrower. Two transitions are explicitly given, but they
do not completely partition the unrefined issue transition:
there is an implicit self-transition: issue(a) [a != b] in
PutAside, which is a null operation. So, in this one case a
Reservable instance does not behave exactly like a
Loanable instance.

It is important for subtyping that an instance of Reservable
should appear as an instance of Loanable, when accessed
through a Loanable reference variable. Syntactically, this
is not a problem since Reservable merely adds extra
methods to the base Loanable type and otherwise respects
its interface [13]. Semantically, it must be possible to
show that all sequences of method invocations to the
Reservable instance leave it in states expected by the
Loanable handle. So long as access is granted only
through a base Loanable handle, there is no opportunity
for issue and discharge to interact with reserve and
cancel. However, if access is also granted through a

Reservable handle, an interleaved reserve message may
place the object in a state where issue is a null operation
and, when dispatched through a Loanable handle, behaves
unexpectedly.

The view of a Reservable object through a Loanable
handle is obtained by collapsing the Issued and
Discharged regions back to atomic states. Split
transitions are lifted and recombined, but if they do not
completely partition the original transition, then its
behaviour has been altered. Lifting the implicit self-
transition for issue(a) [a != b] in PutAside introduces a
self-transition in the Discharged region which was not
previously there. For this reason, we cannot consider a
Reservable instance to be semantically a subtype of
Loanable.

5. Conclusions

The basic premise of component substitutability is "no
surprises", yet these examples show how difficult it can be
to avoid unexpected behaviour or even failure. The
syntactic rules for matching interfaces are well known: a
component must provide at least as many methods as
expected, and the signatures of those it provides must
match (be subtypes of, with covariant results and
contravariant arguments [13]) the expected signatures.
However, previously published semantic rules for
matching behaviour have ranged from the cautious to the
liberal. We can compare some of these within our
framework.

Liskov and Wing's 1993 revised notion of subtyping [14]
highlighted the inadequacy of syntactic matching alone. It
proposed one conservative form of subtyping in which all
additional methods of subtypes were strictly definable in
terms of existing methods. This ensured that properties
proved for supertypes would also hold for subtypes. In
our framework, it is clear why this works, since the
restriction is equivalent to providing only <<modify>>
and <<access>> methods in subclasses. No new states are
reachable in the subclass that could not already be reached
in the superclass. We allow more flexibilit y than this, by
permitting extra <<create>> methods in subclasses, if
these only generate exposed substates that are wholly-
contained in existing states.

Cook and Daniels' rules for state- and transition splitti ng
[12] and McGregor's rules for state machine refinement
[15, 10] are close to our rules. They allow state
partitioning, transition splitti ng, the addition of extra
transitions and the addition of extra states in subclasses.
The first two correspond exactly to our partitioning rules
for statechart refinement. The third corresponds to the
Liskov-style extension above. The fourth is too liberal
and is not safe if subtype objects are aliased through both
base and subtype handles. According to our rule 1, the
new states introduced in a subtype must always be
substates of some atomic state in the original type;
according to our rule 4 there can be no further transitions
over the region boundary to new, external states.

Why can we not introduce new external states, as allowed
by McGregor, Cook and Daniels [10, 12, 15] ? Imagine if
Reservable had added the states PutAside and Recalled
externally to Issued and Discharged. Then, a message
sequence: r = new Reservable(); r.issue(); r.reserve();
r.discharge(); will put this object in the PutAside state
(here, considered disjoint from Discharged). A Loanable
handle aliasing a Reservable object always expects this to
be in the Discharged state after a discharge; however, if
an interleaved reserve message is sent through a
Reservable handle, the next discharge sent through the
Loanable handle will l eave the object in the unexpected
PutAside state. Not only is this unrelated to the
Discharged state, but subsequent issue messages might
not work as intended.

It should always be possible to view a refined message
sequence as a base sequence, by forgetting the extra
transitions introduced in the subclass. This cannot be
done if the subclass introduces new external states, rather
than exposing nested substates. Consider now that the
situation is restored, as in figure 3, in which all new states
are exposed substates. Here, the putAside state is wholly
contained by Discharged. The significance of this is that
an object will always be left in (some substate of) the
Discharged state after a discharge message is received,
even if the object receives an interleaved reserve message.

The rules given here for state machine refinement are
therefore superior to previously-published rules. They
allow the development of semantic specifications for
components and capture the notions of interface
realisation and also component specialisation (through
subtyping). The specification rules ensure the semantic
safety of systems in which components of more specific
types are plugged into interfaces of more general types. In
particular, they preserve the behavioural expectations of
interfaces in the context of multiple handles of different
types referring to the same component.

Acknowldegement

This research was sponsored by EPSRC GR/M56777
"MOTIVE".

References

[1] J. L. Lions, Ariane 5 Flight 501 Failure, Report of
the Inquiry Board, http://sunnyday.mit.edu/accidents/
Ariane5accidentreport.html, July 1996.

[2] G. Laycock, The theory and practice of
specification based software testing, PhD Thesis,
University of Sheffield, 1992.

[3] F. Ipate and W. M. L. Holcombe, An integration
testing method that is proved to find all faults, Int. J.
Comp. Math., 63, 1997, 159-178.

[4] W. M. L. Holcombe and F. Ipate, Correct systems:
building a business process solution, Applied Computing
Series (London: Springer Verlag, 1998).

[5] K. E. Bogdanov, Automated testing of Harel's
statecharts, PhD Thesis, University of Sheffield, 2000.

[6] R. K. Doong and P. Frankl, The ASTOOT
approach to testing object-oriented programs, ACM Trans.
Softw. Eng. Meth., 3(4), 1994, 101-130.

[7] H. Y. Chen, T. H. Tse, F. T. Chan and T. Y. Chen,
In black and white: an integrated approach to class-level
testing of object-oriented programs, ACM Trans. Software
Eng. and Methodol., 7(3), 1998, 250-295.

[8] Object Management Group, The UML 1.4
Specification, http://www.omg.org/uml/, 2002.

[9] A. J. H. Simons, On the compositional properties
of UML statechart diagrams, Electronic Workshops in
Computing: Rigorous Object-Oriented Methods 2000,
series ed. C J van Rijsbergen, British Computer Society,
2000, 8.1-8.12.

[10] J. D. McGregor, Constructing functional test cases
using incrementally-derived state machines, Proc. 11th
Int. Conf. Testing Computer Software, Washington,
USPDI, 1994.

[11] C. D. Turner and D. J. Robson, A state-based
approach to the testing of class-based programs, Software
Concepts and Tools, 16(3), 1995, 106-112.

[12] S. Cook and J. Daniels, Designing object-oriented
systems: object-oriented modelli ng with Syntropy,
(Englewood Cliffs, NJ: Prentice Hall, 1994).

[13] L. Cardelli and P. Wegner, On understanding
types, data abstraction and polymorphism, ACM
Computing Surveys, 17(4), 1985, 471-521.

[14] B. Liskov and J. M. Wing. A new definition of the
subtype relation, Proc. ECOOP '93, LNCS 707, Springer-
Verlag, 1993, 118-141.

[15] J. D. McGregor and D. M. Dyer, A note on
inheritance and state machines, Software Engineering
Notes, 18(4), 1993, 61-69.

