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Abstract. The emergence of cloud computing is changing the way in which 

software services are delivered and consumed. In a complex ecosystem of 
virtualised, interlinked applications and services, there is a greatly increased need 

for cloud platform operators to control the quality and standards of software 

offered on their platforms by enforcing different kinds of policy. Existing tools for 
policy-driven governance in service delivery platforms suffer from important 

limitations. Such tools do not allow policies to be expressed abstractly and to be 

maintained separately from the low-level code that is written to enforce them, nor 
allow the relationships among policies or between policies and their subjects to be 

captured explicitly. We introduce an alternative approach to governance which 

aims to address those limitations by allowing policies to be represented on the 
basis of ontologies, and then enforced by a generic and reusable mechanism that 

employs off-the-shelf logical reasoning engines. The approach extends to different 

kinds of governance policy and has the advantage of being formal, declarative and 
fully standards-based, such that cloud platform operators can automate several 

policy engineering tasks and easily implement changes in the way software 

lifecycles and artefacts are governed. 

Keywords. Cloud application platform, PaaS, governance, policy, ontology, 

OWL2 DL, data validation  

1. Introduction 

Cloud computing offers the prospect of a future market, in which software is created 

and distributed upon various cloud application platforms by communities of third-party 

developers. This trend is already seen in the huge popularity of third-party “apps” 

developed for mobile computing platforms. Cloud platform operators will bear an 

increased responsibility to control the quality and standards of software offered through 

their platforms, not only in terms of its correctness and robustness, but also in relation 

to legal norms and business practices. This gives rise to the notion of governance, in 

which software artefacts and production processes are regulated by rules, expressed as 

policies, which may change over time, or vary according to the locale in which the 

software is deployed.  
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One of the greatest challenges in operating a cloud platform which allows third-

party extensions is to ensure proper governance by enforcing policies on the software 

contributed by different parties. Addressing this challenge was one of the main goals in 

the recently completed research project CAST
2
. The project was set up to create a 

cloud application platform that enables the development and deployment of on-demand 

business applications by third parties [1]. The governance tooling in CAST was mainly 

concerned with two kinds of policy: lifecycle governance, i.e. controlling how third-

party extensions evolve on the platform, and artefact governance, i.e. controlling the 

structure and contents of software artefacts associated with these extensions.  

During the CAST project we defined 40 different policies on lifecycle and artefact 

governance, and developed custom software components which enforce them within an 

open source registry and repository system. Through this exercise we gained some 

valuable insights into the limitations of current approaches to policy management, as 

implemented by today’s governance tooling. This paper reports on our ongoing work 

towards addressing those limitations through an ontology-based approach to policy-

driven governance. We are working towards the development of a framework which 

leverages ontologies as both design-time artefacts for policy modelling (policy 

definition), as well as run-time artefacts for policy checking (policy enforcement).  

In the rest of this paper we explain the motivation for policy-driven governance in 

cloud application platforms, briefly discuss the limitations of today’s governance 

tooling with regards to the definition and enforcement of policies, provide an overview 

of our proposed approach, and discuss related work. To the best of our knowledge, this 

work represents the first attempt to investigate an ontology-based approach to the 

definition and enforcement of governance policies in open service delivery platforms.  

2. The need for policy-driven governance in cloud application platforms 

An important trend within the emerging domain of cloud computing is the adoption of 

cloud application platforms — a particular subclass of Platform-as-a-Service (PaaS) 

offerings supporting the development and delivery of software applications. Cloud 

application platforms offer a combination of managed computing infrastructure that is 

made accessible over the internet, with a set of tools and services allowing developers 

to create applications and have them deployed and executed over that infrastructure. 

Force.com, LongJump, Engine Yard, and Zoho are some of the currently established 

service providers in this space.  

By design, a cloud application platform is an open environment that is expected to 

continuously expand through the addition of new applications and/or services by third-

party developers. Given this inherent dynamism and tendency for expansion, one of the 

most challenging objectives for a platform provider is ensuring that the introduction or 

modification of third-party extensions will not have a negative impact on the platform’s 

stability and reliability. Meeting this objective presents challenges to platform design at 

many different levels, but is also, fundamentally, a problem of platform governance [2]. 

In the context of this work, we take governance to mean the implementation of policies 

for controlling the lifecycle of third-party extensions that are added to the platform, as 

well as controlling the quality of their associated artefacts.  
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2.1. Lifecycle governance  

Lifecycle governance is concerned with ensuring a structured and disciplined approach 

to introducing third-party extensions, deploying them to the platform’s execution 

environment, modifying them, or removing them. Central to lifecycle governance is the 

notion of a lifecycle model defining the phases that every different managed software 

entity is obliged to proceed through, as well as the preconditions associated with the 

transition from one lifecycle phase to the next. For example, one of the lifecycle 

governance policies defined for the CAST platform states that a precondition for 

allowing an app to proceed from the review phase to the beta testing phase, is for the 

app to be associated with a quality review report that contains a positive evaluation. In 

addition to this precondition, the app must continue to satisfy all preconditions defined 

for previous transitions (i.e. the transition from local development to sandboxed testing 

and from sandboxed testing to review).  

2.2. Artefact governance  

Artefact governance is concerned with ensuring that all artefacts associated with 

managed entities are conformant to a set of technical, business or legal constraints 

defined by the platform provider. Central to artefact governance is the notion of artefact 

specifications which place constraints on the structure and contents that different kinds 

of configuration, specification or code artefacts are allowed to have. For example, one 

of the artefact governance policies defined for the CAST platform states that the 

interface specification (WSDL) of every external web service used by one or more apps, 

should contain exactly two non-identical endpoint URLs, which point to different 

servers on which the service is deployed (primary and backup endpoints). The rationale 

is to provide a failover alternative in case the primary server that hosts the service 

becomes unavailable. 

3. Limitations of policy management in state of the art governance tooling  

Many policies, like the above examples from the CAST project, are amenable to 

automated checking. Other policy checks may not be feasible to automate, or, in some 

cases, may explicitly be required to be carried out in a manual fashion. In this work we 

focus on policies whose enforcement can, and should be, fully automated.  

Software tools supporting governance in open service delivery platforms have 

been commercially available for several years now. Typically, such tools come in the 

form of an integrated registry and repository system. Their most common usage 

scenario is to support the management of service-oriented enterprise infrastructures [3]. 

A feature that is central in such governance tools is providing users with some way of 

checking whether the data in the registry/repository system conforms to relevant 

policies. Each governance tool achieves this through a different approach to policy 

definition and enforcement.  

In the scope of the CAST project, we analysed and compared two open source 

registry and repository systems in order to understand how they allow policies to be 

defined and enforced. Namely, we analysed Mule Galaxy [4] and WSO2 Governance 

Registry [5]. We found many similarities among the two systems, as well as similarities 

with other commercial governance tools from vendors like IBM [6] and Oracle [7]. 



Their main limitations with regards to the definition and enforcement of policies, as 

observed though our study, can be summarised in the following.  

Lack of separation of concerns between definition and enforcement of policy: 

Policy definition and policy checking are entangled within the same software unit. 

Policy authors write custom code that interfaces with the registry/repository system 

through an API, and checks if some data of interest conforms to certain constraints. 

Those constraints are defined implicitly as part of the same code that checks for data 

conformance. Except for the case where such constraints are defined in an explicit way 

(e.g. in a separate XML schema document) there is no differentiation between what a 

policy is about, and how data can be checked for conformance to that policy. Typically, 

the only machine-readable representation of a policy is the code that enforces it.  

Lack of abstraction in policy representation: Because of the above, policy logic is 

represented at the same level of abstraction as the implementation of the registry and 

repository system. The rules or constraints that a policy comprises are encoded in an 

imperative style, as part of the same low-level logic that queries databases and parses 

files to check instance data for violations. The encoding of a policy is therefore 

disconnected from the high-level domain concepts that one would use to communicate 

its purpose and the policy author’s intent.  

Lack of formal representation of policy constraints and relationships. The 

relationships among policies, as well as between policies and their subjects (i.e. the 

logical entities in the governance domain) are not captured explicitly. Tracing the 

association of an operational-level policy to other policies at the same level or a higher 

(strategic) level is not possible. The same holds for tracing the relationships between a 

particular platform resource and all policies directly or indirectly related to it. Last but 

not least, the absence of any formal encoding of policies makes it difficult to analyse 

them, to reason how policies may affect other policies and to perform automated 

verification and validation. 

The above limitations have negative implications with respect to policy 

maintainability, comprehensibility, verifiability, traceability, interoperability, and with 

respect to the overall agility of platform governance.  

4. An ontology-based approach to policy-driven governance  

The ongoing research reported in this paper aims to investigate how to overcome the 

above limitations by a new approach to the definition and enforcement of governance 

policies, where ontology-based knowledge representation and reasoning will be central.  

The benefits of applying ontologies and related Semantic Web technologies to 

policy engineering have already been explored in earlier work [8, 9, 10]. Tonti et al [9] 

have reported reduced human error, simplified policy analysis, reduced policy conflicts, 

and increased interoperability. Uszok et al [11] have emphasised the benefits of 

reusability, extensibility, verifiability, safety, and “reasonability”.  

Past research on this topic has focused mostly on policies relating to security, 

privacy, trust management, quality of service, or business norms [12]. In our work, we 

are concerned primarily with policies for lifecycle governance (regulating the evolution 

of software on a platform) and artefact governance (regulating the configuration of 

deployed software and associated artefacts). Notwithstanding these differences, we 

believe that an ontology-based approach to policy-driven governance can result in 

many analogous improvements.  



4.1. Overview of the proposed approach  

In abstract terms, the approach we put forward comprises three major components. 

Firstly, a platform governance ontology to provide the basic vocabulary and modelling 

constructs for describing platform resources and governance policies. Secondly, a set of 

mechanisms to generate abstract, ontology-based descriptions of different kinds of 

platform resources by means of transformation from their native representation into 

Linked Data [13]. Thirdly, a methodology to encode all of the different kinds of 

platform policies in some appropriate logic-based form, based on the same ontology, 

and a generic and reusable infrastructure to check if the abstract descriptions of 

platform resources are conformant to those policies. Figure 1 illustrates the concept.  

 

Figure 1. Overview of approach for ontology-based definition and enforcement of governance policies. 

In the following subsections we discuss some interesting aspects of those 

components in greater detail, placing more emphasis on the third one. 

4.2. Platform governance ontology  

The foundation for policy representation is our platform governance ontology, which 

defines modelling constructs corresponding to the different types of logical entities 

found on the CAST platform, such as different kinds of software units (solutions, apps 

and services), different kinds of software artefacts (e.g. deployment descriptors, 

interface definitions, pricing specifications, localisation files, images), artefact 

collections, lifecycle states (development, testing, review, beta, production, deprecation, 

end-of-life), and many more. In addition, it defines concepts corresponding to the 

various attributes of platform resources as well as the ways those resources are 

interrelated. For reasons of interoperability and tool support, the language we have 

adopted for developing the platform governance ontology is OWL2 [14].  

4.3. Ontology-based platform resource description 

For policy conformance checking to be feasible through a generic and universal method, 

the heterogeneous platform resources that are subject to governance must be described 

in an abstract and homogeneous manner. Descriptions are extracted from the multiple 

forms in which platform resources are natively represented to create Linked Data, using 

the platform governance ontology as the main reference vocabulary.  



The term Linked Data refers to a set of best practices for publishing and 

connecting structured data using key Web technologies: URI, HTTP, and RDF [15]. 

The way in which Linked Data are represented is not determined by how policies are 

encoded or how policy conformance checking algorithms operate. In fact, the usage 

scenarios for the Linked Data produced by this process can include much more than 

just policy enforcement.  

4.4. Ontology-based policy definition and conformance checking  

Checking the above ontology-based descriptions of platform resources against policies 

is a task which can generally be viewed as (at least) two different kinds of 

computational problem: a problem of integrity constraint validation on ontology 

objects, or a problem of ontology object classification. Depending on the adopted 

approach one must implement the appropriate strategy for defining policies and 

checking data against these policies.  

When policy checking is cast as an integrity constraint validation problem, the 

strategy is to define governance policies in the form of first-order logic queries using 

an ontology-based query language such as SPARQL [16] or SQWRL [17]. 

Conformance checking can thus be reduced to query answering. If a query returns a 

non-empty result set, it means that the returned ontology objects violate the integrity 

constraints specified in the query, i.e. they do not conform to the respective policy.  

When policy checking is cast as an object classification problem, the strategy is to 

define governance policies as Description Logic (DL) class axioms, so as to reduce the 

task of conformance checking to instance checking with an OWL DL reasoner. 

Instance checking is a basic service provided by every DL reasoner to answer if a given 

individual is an instance of a specified class [18]. As we discuss next, due to certain 

characteristics of the OWL language this strategy requires an additional pre-processing 

step before instance checking is actually applied on any particular ontology object.  

The relevant literature on OWL and RDF data validation provides examples of 

both approaches in use, such as [19] and [20], which discuss the first and the second 

approach, respectively. Naturally, each of the two approaches has its own advantages 

and disadvantages for particular application domains, discussing which is beyond the 

scope of this paper. In our work so far we have primarily been investigating the second 

approach; however, we aim to eventually incorporate both strategies in our framework 

for cloud platform governance.  

One of the questions that surfaced on the outset of this work was whether the 

expressivity of OWL2 DL (i.e. SROIQ(D)) would prove sufficient for representing all 

of the policies in the CAST project dataset as OWL class axioms, or whether it would 

be necessary to step outside OWL2 DL boundaries. Indeed, the representation of some 

CAST policies proved to be demanding in terms of expressivity, and required the use 

of some SWRL rules [21]. For the rest of the policies the less expressive DL 

ALCOIQ(D) has been sufficient. The need to step outside DL and include Horn-

clauses in SWRL was mitigated by the easy integration of SWRL with OWL. SWRL 

rules and OWL ontologies share a common semantics, and can be serialised together. 

Furthermore, SWRL is a de facto standard supported by many reasoning engines (such 

as Pellet and HermiT), so combining OWL DL axioms and SWRL rules does not 

present any serious practical or theoretical obstacles.  



A more serious challenge was posed by OWL's Open World Assumption (OWA) 

and the lack of any Unique Name Assumption (UNA) in its standard semantics, since 

these features militate against using a standard OWL reasoner to perform data 

validation. Consistently with the OWA, a standard OWL reasoner will never infer that 

some statement is false, simply because there is no evidence to support the truth of that 

statement. By contrast, data validation requires reasoning under a Closed World 

Assumption (CWA), whereby a reasoner would conclude that a statement is false when 

there is no evidence to support it. The absence of a UNA allows an OWL reasoner to 

infer that two differently-named objects may in fact be identical, which may have 

unexpected consequences where distinctness is desired. As a result, employing a 

standard OWL reasoner “out of the box” to perform policy conformance checking is 

not feasible. These issues are well known to the Semantic Web community and have 

been recognised as obstacles to using OWL for data validation purposes [22, 23, 24].  

A solution is to enable some form of local closed world (LCW) reasoning, i.e. to 

close the world relative only to the descriptions of platform resources we are interested 

in checking, while leaving the rest of the KB to be processed under the standard OWA. 

As mentioned in [25], this can be accomplished by adding extra assertions on an object 

of interest, to state that all the information relevant to that object is known.  

To illustrate how we approximate local closed world reasoning to overcome the 

absence of CWA and UNA in OWL, let us consider the example policy mentioned in 

section 2 of this paper: the artefact governance policy stating that the interface 

description document of every external web service (i.e. its WSDL file) should contain 

exactly two non-identical endpoints. Let this policy be represented by an equivalence 

class axiom as in (1): 

                                                               (1) 

Let us further assume a Knowledge Base K containing ontology instance data 

assertions as in (2):  

K = {                 (s), Endpoint(e1), Endpoint(e2),  

contains(s, e1), contains(s, e2)} 
(2) 

We would like to have the reasoner infer ValidServiceInterface(s), which is a way 

of saying that individual s belongs to the class of valid WSDL documents. However, 

without any UNA, the combination of (1) and (2) does not entail this. Despite the fact 

that s is known to contain the endpoints e1 and e2, there is nothing to preclude that e1 
and e2 is the same individual. To compensate for OWL’s lack of a Unique Name 

Assumption, we need to extend K by asserting explicitly that e1 and e2 are different 

individuals (3):  

e1     e2 (3) 

Even with this addition, it is still not yet possible to have s classified under the 

anonymous class of things that contain exactly two endpoints 
                       . Under OWL’s Open World Assumption, the cardinality 

restriction in the class expression can be matched only if we have explicit knowledge 

that e1 and e2 are in fact the only objects related to s along the contains property 

(otherwise, s could be related to more, as yet unseen objects). The way to achieve this 

is by extending K with an anonymous type assertion as in (4): 



                (s) (4) 

The addition of (3) and (4) to the KB is a way of closing the world relative to part 

of the KB (i.e. relative to s only) and in isolation from other ontology individuals. The 

addition of such special-purpose assertions does not need to be permanent — they can 

be discarded as soon as conformance checking for s has been completed. Moreover, the 

assertions do not need to be custom-coded or predefined in templates. They can be 

dynamically generated, as a pre-processing step within the policy checking engine. 

This is achieved by an algorithm which examines the equivalence class axiom 

representing a policy of interest, determines which (asserted or inferred) properties are 

relevant for classification, constructs anonymous type assertions with the exact known 

cardinality per each property of importance, and adds those to the object to be checked.  

5. Related work  

The term “policy” appears to be rather overloaded in computer science literature [12]. 

It has been used in connection with several different notions, such as security, trust 

management, action languages, business rules, and quality of service. Despite the 

amount of existing work in the general area, there seems to be no previous research on 

ontology-based approaches for lifecycle and artefact governance policy.  

Closely related work has been carried out on theory and applications for OWL and 

RDF data validation. Motik, Horrocks and Sattler [24] have proposed an extension of 

OWL with Integrity Constraints (IC) similar to those found in relational databases. 

Their approach allows a subset of TBox axioms to be designated as ICs, which are 

interpreted in the spirit of relational database constraints during ABox reasoning. Tao, 

Sirin, Bao, and McGuinness [19] also describe an alternative IC semantics for OWL, 

based on CWA and weak UNA. Their approach allows developers to augment OWL 

ontologies with IC axioms and combine open world reasoning with closed world 

constraint validation. They also show that, under certain conditions, IC validation can 

be reduced to query answering through SPARQL queries which are automatically 

generated from OWL DL class axioms. SPARQL Inferencing Notation (SPIN) [26] has 

similar objectives. It allows ontology class definitions to be linked to SPARQL queries 

in order to capture constraints and rules that formalize the expected behaviour of 

objects belonging to those classes.  

A related tool implementation is presented by Rieckhof, Dibowski and Kabitzsch 

[27], who are interested in formal validation techniques for ontology-based electronic 

device descriptions. They describe the implementation of a validator that checks for 

consistency, completeness and correctness in device descriptions using SPARQL 

queries. Miksa, Sabina and Kasztelnik [20] present a prototype system for ontology-

based modelling of network devices. Their motivation is to detect configuration errors 

and to propose combinations of compatible devices by means of instance checking and 

other DL reasoning services. They achieve this by implementing a method similar to 

our own in order to “close” the world and thus be able to detect configuration errors, 

while keeping the rest of the KB “open” in order to properly reason about combinations 

of compatible network devices [28].  

Another stream of research which is relevant to this work has been looking into 

applications of Linked Data and semantic technologies in general for improving 

systems management in cloud environments. Haase et al [29] describe the challenges 



related to intelligent information management in enterprise clouds and discuss how 

semantic technologies have been leveraged to address those challenges in the 

commercial eCloudManager system developed by fluidOps. In [30], Feridun and 

Tanner from IBM describe an approach and architecture for the transformation of 

diverse network and server management data into Linked Data, which allows data 

centre operators to easily browse, search and query data across multiple sources. Lastly, 

Joshi [31] describes some initial work towards a policy-based framework facilitating 

the automation of the lifecycle of virtualized services, using ontologies and Semantic 

Web technologies like OWL, RDF and SPARQL.  

6. Conclusions  

Through our work on the cloud application platform developed by the CAST project 

we gained some valuable insights into the limitations of state of the art governance 

tools in relation to policy engineering. We particularly note the lack of separation of 

concerns between policy definition and policy enforcement, the lack of domain-level 

abstraction in the encoding of policies, and the lack of formal representation of policy 

constraints and relationships.    

This paper reports on our ongoing work towards a new approach to policy-driven 

governance in cloud application platforms, which aims to improve lifecycle governance 

and artefact governance through ontology-based policy definition and enforcement. We 

presented an overview of our approach and focused on the policy modelling 

methodology which allows us to reduce the problem of policy conformance checking 

to instance checking with an OWL2 DL reasoner. We also discussed ontology language 

expressivity requirements and explained the interplay of OWL’s Open World 

Assumption and lack of Unique Name Assumption with respect to the goal of policy 

conformance checking.  

Based on our results to date, the proposed approach appears to be a viable 

methodology for the definition and enforcement of policies, and promises to provide 

significant improvements with respect to governance in open service delivery platforms. 

As future work we plan to elaborate on our method for automated closure axiom 

generation, and to extend the policy checking engine so that instance data can also be 

checked by way of closed world query answering.  
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