
Model Transformation by Refinement
in Constructive Logic

Simon Foster1, Ondřej Rypáček2,
Anthony Simons1, and Georg Struth1

1Department of Computer Science, University of Sheffield
{s.foster,a.simons,g.struth}@dcs.shef.ac.uk

2Department of Informatics, King’s College London
ondrej.rypacek@kcl.ac.uk

Abstract. We present first steps of a formalisation of meta modelling
in a constructively typed programming language, explaining its potential
for specifying model transformations. We describe our meta-model en-
coding and outline our automated theorem prover integration. Our aim
is to provide an environment for formally developing software transfor-
mations, which are correct by construction and machine-checked proof.

1 Introduction

Model transformations define functions between meta-models, for instance, the
mapping of class diagrams to corresponding relational databases. Such transfor-
mations are usually described through a programming task in a model trans-
formation language. Our desire is to develop a more formal approach, in which
model transformations are constructed by refinement from a logical specifica-
tion. Traditional logical specification languages experience what can be called a
“formalisation gap”, in that the declarative logic specifying the program is differ-
ent from the implementation language. However, in constructive logic (or type
theory) specification, program and correctness proofs can be obtained in one and
the same language, because proofs are programs.

In particular, the language Agda is both a theorem prover and a functional
programming language, such that program development and correctness proofs
become one and the same activity. This is of particular interest in the Model
Driven Architecture where heterogeneous formalisms from MOF and UML can
be used to describe a system. Once a formal semantics of MOF has been imple-
mented, it becomes to possible to view a model transformation as a function

M1 × C1
D−→M2 × C2

whereMn is a meta-model, Cn a set of constraints on the meta-model and D a
set of constraints which specifies the transformation.

Furthermore, since program construction in Agda is performed principally
through meta-variable refinement where a program is built in a “divide and



2 Simon Foster1, Ondřej Rypáček2, Anthony Simons1, and Georg Struth1

conquer” approach, it is clear to see what the remaining proof obligations of a
partially constructed transformation are. This allows a form of semi-automated
incremental programming where Agda aids in gradually zeroing-in on suitable
values to fill holes in a transformation.

However, Agda currently provides only limited automation of proof search.
This process can drastically be improved by the use of automated theorem provers
(ATPs). An ATP is a program for proving first-order logic problems and we have
provided a prototypical integration of such a prover into Agda.

The main benefit of our approach is the clean integration of logical/declarative
and procedural aspects of model transformations and a systematic incremental
approach to their construction and optimisation. In practical applications the
Agda language and its proof facilities will, to a large extent, be hidden behind an
interface. ATPs also free the users from manually satisfying trivial constraints
and allows them to focus on the more conceptual aspects.

In this paper we outline our current work on meta-modelling and ATP in-
tegration in Agda. While this illustrates the main features of the approach, its
applications and further development are left for future work.

2 Agda

The Agda tool [1] is a constructively typed functional programming language
and at the same time a proof-assistant. This section yields a brief introduction.
The following inductive data-type declaration introduces the natural numbers.

data N : Set where
zero : N
suc : (n : N) → N

Data-types can also be used to define logical propositions and specifications.

data _6_ : N → N → Set where
z6n : ∀ {n} → zero 6 n
s6s : ∀ {m n} (m6n : m 6 n) → suc m 6 suc n

The elements of this data-type are inductive proofs of6. For instance, s6s z6n
is a proof of 1 6 2. One can also define n < m as suc n 6 m. Functions, such as
addition or multiplication in N, can be defined as usual. In addition, functions
can also represent proofs of propositions. For instance, one can write

greater : ∀ (n : N) → ∃ (λ (m : N) → n < m)
greater n = ?

This is a “specification” that for every natural number there exists a greater
natural number. The question mark informs Agda that we wish to construct
the proof by meta-variable refinement. Agda provides tactics for decomposing a
proof goal into proof templates in which meta-variables indicate the holes that
need to be filled by the programmer. Proving this fact amounts to constructing a
function, a program which implements the specification. In this case, we perform
a case-split on parameter n with respect to the constructors. This yields the proof



Model Transformation by Refinement in Constructive Logic 3

goals greater zero = { }0 and greater (suc n) = { }1. The first requires a value
of type ∃(λ m // 0 < m) and the second a value of type ∃(λ m→ suc n < m),
assuming ∃(λ m→ n < m). Further refinements allow the programmer to fill in
both holes and complete the proof:

greater zero = 1, s6s z6n
greater (suc n) = (suc (proj1 (greater n)), s6s (proj2 (greater n))

The syntactic details should not concern us at this point. This proof style
lends itself naturally to incremental program construction, where writing a pro-
gram and proving its correctness are one and the same activity.

3 Meta-modelling in Agda

A meta-model in Agda is defined as the following record type.

record MetaModel : Set1 where
field

Cls : Set
Attrs Assocs : Cls → Set
AttrTys : { i : Cls} → Attrs i → PrimTypes
AssocTys : { i : Cls} → Assocs i → Cls
multis : { i : Cls} → Assocs i → N x Maybe N

Records in Agda are dependent – each line can depend on those defined be-
fore. Here Cls is a set of class names, which is equipped with a partial order
defining the subclass relationship (not shown). The type PrimTypes is a prede-
fined set of primitive type names, e.g. {Str, Bool}. Attrs assigns to each class
the set of its attribute names. Similarly Assocs assigns to each class the set of
its association names, AttrTys assigns a primitive type to each attribute name
of each class and AssocTys assigns a class to each association name which is to
be thought of as the target class. Finally multis assigns a lower and an optional
upper bound to each association, representing its multiplicity specification.

For example, the classes pictured above are defined by the ordering ≤ on
Cls = {NE,C,A} where NE ≤ C and NE ≤ A; Attrs(NE) = {n}, Attrs(C) =
{a}, Attrs(A) = {m}; Assocs(NE) = ∅, Assocs(C) = {attr}, Assocs(A) = {o};
the definition of AttrTys into PrimTypes is the obvious one; AssocTys(attr) =
A and AssocTys(owner) = C. Similarly for multiplications by multis(attr) =
(0, nothing) and multis(owner) = (1, just 1).

To interpret a meta-model, i.e. to provide the set of all its models, we first
translate the above high-level specification into a more primitive form: a so-called



4 Simon Foster1, Ondřej Rypáček2, Anthony Simons1, and Georg Struth1

dependent polynomial [3]. The so-called extension of a polynomial (I, A,B, s) – a
dependent polynomial functor – is defined as an assignment of type (I → Set)→
(I → Set) defined as λ (X : I → Set).λ (i : I). Σa∈Ai

Πb∈Bi,a
Xs b. Meta-models

are interpreted as coalgebras for a dependent polynomial functor obtained from
a translation of a meta-model specification into a dependent polynomial. In
rough terms, an interpretation of a meta-model is a set of memory locations,
P , together with an assignment, to each location p ∈ P , of a pair whose first
component gathers all data related to the class stored at location p and its second
component is a product of memory locations from P . See [5] for the details.

This setup naturally leads to the development of a modal logic for models of
meta-modelM where one would have, for all pointers p of type Class

M |=Class �att♦ownerself = self

as the proposition that some owner of all p’s attributes is p. In this fashion
a meta model M defines a logic L(M) of constraints over its models. For the
meta-modelM1⊗M2, for a suitable notion ⊗ of tensor product of meta-models,
L(M1 ⊗ M2) allows one to express transformations by means of constraints
binding all source and target models. A solution to such constraints yields a
valid model-to-model transformation.

4 Automated theorem prover integration

When forming a model transformation by constraint satisfaction a large number
of proofs are required. Agda provides a useful environment in which the various
elements of a transformation can be constructed independently through meta-
variable refinement. However, satisfying the many constraints is an enormous
burden. It is therefore highly desirable to allow some proof automation.

An automated theorem prover (or ATP) is a program for solving problems in
first-order logic. They are very fast, often providing solutions in a few seconds
and are therefore very useful for quickly forming proof terms. When taken with
the fact that within the domain of constructive logic proofs and programs are the
same, it follows that an ATP can be used as an aid in semi-automated program
construction. Nevertheless, it is necessary to first overcome the problem that
most ATPs are classical and their proofs may be invalid in constructive logic.

As a first step we have integrated the Waldmeister [4] equational ATP into
Agda. We therefore avoid the problem of Waldmeister being classical, because
equational proofs do not use the principle of excluded middle. Furthermore, since
many OCL constraints are equational this seems a reasonable compromise.

Our integration is achieved by means of a reflection layer which allows ATP
problems and proofs to be manipulated in Agda. A proof goal is specified in Agda
and, rather than proving it manually, the problem is reflected and serialised to
Waldmeister input. Waldmeister is then executed (with a timeout), which will
hopefully result in a proof which is parsed and converted back into the reflection
layer by proof reconstruction. Proof reconstruction converts each step of the
Waldmeister proof into an equivalent step at the reflection layer within Agda.



Model Transformation by Refinement in Constructive Logic 5

We have proven that each step of a reflection layer proof is sound with respect
to Agda’s native equality, and therefore the reflected proof can be realised as an
Agda proof, completing the proof cycle. Further details can be found in [2].

As such our integration has only been applied to small examples, such as basic
data-types like lists. Nevertheless, we have proven that such ATP integrations are
both possible and useful. Future work will involve using our integration together
with our meta-modelling environment to implement semi-automated derivations
of model transformations.

5 Conclusion

We have briefly summarised our implementation of meta-models in Agda and
the integration of an automated theorem prover to support the formal construc-
tion and anaysis of model transformations. Extending the meta-model with a
full query logic as outlined will allow formal specification of model transforma-
tions as functions, with their construction aided by step-wise refinement and
constraint satisfaction. Agda already provides a great number of tools to sup-
port program development, and we have further augmented these by a prototype
ATP integration. This, we believe, makes Agda worthwhile considering as a tool
for formally defining the logic of meta-models and object-oriented systems.

The next steps of this project consist in the implementation of model trans-
formations in Agda, the improvement and extension of the theorem proving
facilities, the development of refinement and optimisation techniques for trans-
formations, and the development of case studies within our framework.

Agda promises a smooth approach for constructing transformations from
declarative specifications while proving their correctness, but may not be the
tool of choice for software engineers. It therefore needs to be hidden to a large
extent as a backend for an Eclipse interface that provides the user with a simple
declarative specification and development language. Our proof automation is a
crucial ingredient for making that interface possible.

References

1. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda - a functional language
with dependent types. In: TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer
(2009)

2. Foster, S., Struth, G.: Integrating an automated theorem prover into Agda. In:
Bobaru, M., Havelund, K., Holzmann, G., Joshi, R. (eds.) NASA Formal Methods
2011. LNCS, vol. 6617, pp. 116–130. Springer (2011)

3. Gambino, N., Hyland, M.: Wellfounded trees and dependent polynomial functors.
In: Berardi, S., Coppo, M., Damiani, F. (eds.) Types for Proofs and Programs,
LNCS, vol. 3085, pp. 210–225. Springer (2004)

4. Hillenbrand, T., Buch, A., Vogt, R., Löchner, B.: Waldmeister: High performance
equational deduction. Journal of Automated Reasoning 18(2), 265–270 (1997)

5. Poernomo, I., Rypacek, O.: A coalgebraic model of object systems stored on the
heap (2011), under submission


