
A Theory of Regression Testing for Behaviourally
Compatible Object Types

Anthony J H Simons

Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello Street, Sheffield S1 4DP, United Kingdom

A.Simons@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/~ajhs/

Abstract. This paper presents a behavioural theory of object compatibility,
based on the refinement of object states. The theory predicts that only certain
models of state refinement yield compatible types, dictating the legitimate de-
sign styles to be adopted in object statecharts. The theory also predicts that
standard practices in regression testing are inadequate. Functionally complete
test-sets that are applied as regression tests to subtype objects are usually ex-
pected to cover the state-space of the original type, even if they do not cover
transitions and states introduced in the subtype. However, such regression test-
ing is proven to cover strictly less than this in the new context and so provides
much weaker guarantees than was previously expected. Instead, a retesting
model based on automatic test regeneration is required to guarantee equivalent
levels of correctness.

Keywords: Object-oriented, behavioural subtyping, state refinement, state-
based testing, regression testing, test generation, testing adequacy.

1 Introduction

Practical object-oriented unit testing is influenced considerably by the non-intrusive
testing philosophy of McGregor et al [1, 2]. In this approach, every object under test
(OUT) has a corresponding test-harness object (THO), which encapsulates all the test-
sets separately. This separation of concerns is the main motivation for McGregor’s
parallel design and test architecture in which an isomorphic inheritance graph of test
harness classes shadows the graph of production classes [2]. This embodies the be-
guiling intuition that, since a child class is an extension of its parent, so the test-sets
for the child are extensions of the test-sets for the parent. The presumed advantage is
that test-sets can be inherited from the parent THO and applied, as a suite, to the child
OUT, in a kind of regression test. The purpose of such retesting is to ensure that the
child class still delivers all the functionality of the parent. The child THO will supply
additional test-sets to exercise methods introduced in the child OUT [1, 2].

More recently, the JUnit tool has fostered a similar strategy for re-testing classes
that are subject to continuous modification and extension [3, 4]. JUnit allows pro-
grammers to develop test scripts, which are converted into suites of methods behind

the scenes. These are executed on demand, to test objects and to re-test modified or
extended versions of those objects. One of the key benefits of JUnit is that it makes
the re-testing of refined objects semi-automatic, so it is widely used in the XP com-
munity, in which the recycling of old test-sets has become a major part of the quality
assurance strategy. XP makes a strong claim that a programmer may incrementally
modify code in iterative cycles, so long as each modification passes all the original
unit tests: “Unit tests enable refactoring as well. After each small change the unit tests
can verify that a change in structure did not introduce a change in functionality” [5].
There are two sides to this claim. Firstly, if the modified code fails any tests, it is
clear that faults have been introduced, so there is some benefit in reusing old tests as
diagnostics. Secondly, there is the implicit assumption that modified code which
passes all the tests is still as secure as the original code. Tests are implicitly being
used as guarantees of a certain level of correctness.

In this paper, we prove that the second assumption is unsound and unsafe. In sec-
tion 2, a state-based theory of object refinement is presented, which encompasses
object extension with subtyping, the concrete satisfaction of abstract interfaces and
refactoring of implementations with unchanged behaviour. The theory predicts that
only certain models of state refinement yield compatible types, dictating the legitimate
design styles to be adopted in object statecharts. In sections 3 and 4, the theory also
predicts that standard practices in regression testing are inadequate. Functionally
complete test-sets that are applied as regression tests to subtype objects are usually
expected to cover the state-space of the original object, even if they do not cover tran-
sitions and states introduced in the refinement. However, such regression testing is
proven to cover strictly less of the original object’s state space in the new context and
so provides much weaker guarantees than expected. After passing the recycled tests,
objects may yet contain introduced faults, which are undetected.

In place of the unsafe kinds of regression testing, we propose a new approach,
which is based on automatically generating the tests from the refined object’s state
machine. The theory predicts that simply adding new test suites to the existing encap-
sulated suites does not achieve coverage. It is necessary to generate new test-sets
from scratch, in which methods are interleaved in different orders than before, to ob-
tain the same level of guarantee.

2 A Theory of Compatible Object Refinement

In classical automata theory, the notion of machine compatibility is judged by compar-
ing sets of traces, sequences of labels taken from transition paths computed through
the machines in question. Two machines are deemed equivalent if their trace-sets are
equivalent. A machine is behaviourally compatible with another if its trace-set in-
cludes all the traces of the other, that is, for every trace in the protocol of the reference
machine, such a trace also exists in the protocol of the modified machine. Object-
oriented design methods [6, 7] include object statecharts, which are influenced by
Harel’s statecharts [8] and SDL [9]. These notations are more complex than simple
finite state automata. Equivalence and compatibility between statecharts are judged

by considering syntactic relations between the transformed state spaces, from which
the trace behaviour follows.

2.1 McGregor ’s Statechar t Refinements

S1

S3

S2

M0

S1

S3

S2

M1

S1

S3

M2

S1

S3

S2

M3

S2.1

S2.2

S4

S5

a

b

a

b

d

e

a

b c

a

b

d

e

S2

Fig. 1. McGregor’s structural statechart refinements. The basic state machine M0 is refined
by the compatible machines M1, M2, M3. M1 refines M0 by adding an extra transition. M2
refines M0 by introducing substates. M3 refines M0 by introducing concurrent states.

McGregor et al. proposed one of the early theories of object statechart refinement [10,
11]. In McGregor’s model, object states derive from the object’s stored variable val-
ues, as seen through observer methods. The machines have Mealy-semantics, with
quiescent states and actions on the transitions, representing the invoking of methods.
Figure 1 illustrates a contemporary reworking of McGregor’s three main structural
refinements, to allow comparison with trace models. These kinds of refinement were
deemed compatible because they observed the rules:

• all states in the base object are preserved in the refined object;
• all introduced states are wholly contained in existing states;
• all transitions in the base object are preserved in the refined object.

These structural refinements may be compared with trace models. The traces of
M0 are the set {<>, <a>, <a, b>}, where <a, b> is a sequence of method invocations
in the protocol of M0. M1 adds an extra method c to the interface of M0. This is a
derived method, analogous to function composition [12], that computes a more direct
route to the destination state S3. The traces of M1 are {<>, <a>, <a, b>, <c>} so it
is clear that this includes the traces of M0.

M2 adds two extra methods d and e, which examine state S2 at a finer granularity.
S2 is completely partitioned into substates S2.1 and S2.2. Since states are abstractions
over variable products [10], this is equivalent to dependence on disjoint subsets of

variable values. The usual statechart semantics of M2 is that entry to S2 implies entry
to the default initial substate S2.1; and the exit transition b from S2 preempts other
substate events. The statechart may therefore be flattened to a simple state machine,
with transition a leading directly from state S1 to S2.1 and an exit transition b from
both substates S1.1 and S1.2 to state S3. The traces of M2 are infinite (due to the
infinite alternation of d, e), but include {<>, <a>, <a, b>, <a, d>, <a, d, b>, <a, d,
e>, <a, d, e, b>, …} and so include all the traces of M0.

M3 introduces concurrent states S4, S5 and extra methods d and e which depend on
the new states. This represents the definition of new variables in the object subtype,
together with new methods whose behaviour is orthogonal to existing behaviour. The
usual statechart semantics is that both machines execute concurrently. Formally, this
is equivalent to a flat state machine containing the product of the states of the two
concurrent machines, which we denote as: {S1/4, S2/4, S3/4, S1/5, S2/5, S3/5}. The
traces of M3 are infinite, but include {<>, <a>, <d>, <a, d>, <d, a>, <a, b>, <d,
e>, <a, d, e>, <d, e, a>, <a, d, b>,…} and so include all the traces of M0.

2.2 Cook and Daniels’ Statechar t Refinements

S1

S3

S2

M0

S1

S3

S2

M4

S1

S3

M5

S2.1

S2.2

a

b

a

b

a

b c

S2

S4

b

d

S1

S3

M6

S2.1

S2.2

a

b

S2 d

Fig. 2. Cook and Daniels’ additional statechart refinements. As before, M0 is the reference
machine. M4 refines M0 by adding a transition to a new state. M5 refines M0 by transition
splitting. M6 refines M0 by retargeting a transition.

In their Syntropy method [13], Cook and Daniels permit further extensions to state-
charts. Their full set of refinements includes (p207-8): adding new transitions, add-
ing new states, partitioning a state into substates, splitting transitions either at source
or destination substates, retargeting transitions onto destination substates and
composition with concurrent machines. Figure 2 illustrates the three main kinds of
transformational refinement not already covered above.

These refinements may also be compared with trace models. M4 refines M0 by
adding a new method c leading to a new state S4. This new state represents the addi-
tion of object variables, but unlike the case M3, the associated behaviour is not or-
thogonal, but tightly coupled to state S1. We sometimes refer to S4 as a new external
state, to distinguish this from a new substate, of the kind in M2. The traces of M4 are
the set {<>, <a>, <a, b>, <c>} and so include the traces of M0. However, this re-
finement breaks the second of McGregor’s rules about new states being introduced as
wholly contained substates.

M5 refines M0 by splitting the exit transition b, which no longer proceeds from the
S2 state boundary, but from the individual substates S2.1 and S2.2. This represents
the redefinition of the method b in the refinement, to depend disjointly on the intro-
duced substates. The overall response is equivalent to the original b. The traces of
M5 are {<>, <a>, <a, b>, <a, d>, <a, d, b>} and so include the traces of M0. By
the usual semantics of object statecharts, an exit transition from a superstate boundary
is equivalent to exit transitions from every substate. It is therefore inevitable that state
partitioning will split exit transitions.

Cook and Daniels [13] also allow the symmetrical case, splitting entry transitions to
target different destination substates. Mutually exclusive and exhaustive guards are
introduced to distinguish which of the substates should be reached by each partial
transition. However, fairness in partitioning incoming transitions to all substates is
later shown to be irrelevant in the retargeting rule. M6 refines M0 by retargeting the
transition a onto an arbitrary substate of S2. We choose to target S2.2 simply to illus-
trate how this is different from the default initial substate S2.1, even though the model
now cannot enter S2.1. The traces of M6 are {<>, <a>, <a, b>} and so are exactly
the traces of M0.

According to the classical theory of trace inclusion, all of the refinements M1-M6
may be substituted in place of M0 and will exhibit identical trace behaviour in re-
sponse to M0’s events. However, we argue below that this is an insufficient guarantee
of behavioural compatibility in object-oriented programming, where objects are ali-
ased by handles of multiple types. For this, a stronger theory is required.

2.3 Behaviourally Compatible Statechar t Refinement

The fundamental philosophical problem to decide in the theory is how to treat the
introduction of new variables in subtype objects. Do these variables correspond to
missing pieces of the object’s earlier state, and so their concatenation in the subtype
gives rise to brand-new external states (like M4 above)? Do these variables already
exist in virtuo at the abstract level, in which case their concrete exposure in the sub-
type creates new substates (like M2 above)? Are these variables orthogonal and so
give rise to concurrent states in the subtype, equivalent to state products (like M3
above)? These different views may be in conflict.

The M3 refinement can be shown to be more general than M2. By flattening M2, a
statechart is obtained in which all a-transitions target the default initial substate, S2.1.
The product machine obtained by flattening the M3 refinement is more sophisticated,
since the a-transitions go from S1/4 and S1/5 to S2/4 and S2/5 respectively. M3 is

more sensitive to orthogonal behaviour than M2. It is reasonable to assume that we
must expect subtype objects to exhibit orthogonal behaviour at least some of the time,
so the M3 refinement is chosen over M2.

Both M3 and M2 assume that introduced state variables are exposed as substates of
existing states. This contrasts with M4, which assumes that entirely new states may be
introduced. In M4, the c-transition takes an object entirely out of the S1 state, whereas
in M3, the d-transition still leaves the object in its S1 state (going from S1/4 to S1/5).
This means that in all contexts and under all firings of d- and e-transitions, the M3
object can be abstracted to a M0 object, whereas this cannot be done for a M4 object.
Abstracting away from M4 in state S4 leaves an object in no recognizable M0 state,
and furthermore the object will deadlock in this state for any attempt to fire a-
transitions. In terms of the π-calculus process algebra [14], M3 strongly simulates
M0, whereas M4 only weakly simulates M0. This is discussed in section 5.4 below.

S1

S2

L0

a

b

L2

a

d

S2
c

S1/3

S1/4 d S1

c b

a

b

S3

S4

L1

c

d

S3

S4

e

S2/3

S2/4

e

e

Fig. 3. The model of behaviourally-compatible refinement. L2 is the refined statechart result-
ing from the concurrent composition of L0 and L1, without respect to order. The states of L0
and L1 become intersecting regions in the refinement, which contains the product of states.

Since in general we must expect to support refinements like M3, in which full state
products are computed, the notion of hierarchical superstates encapsulating substates,
in the style of M2, becomes moot. It is more sensible to think of the old states as
being completely partitioned into new states. Figure 3 illustrates this in a more com-
pelling way. Here, L2 is the refinement resulting from the concurrent composition of
L0 and L1. However, it is irrelevant whether L0 is the basis and L1 is the supplement,
or vice-versa. Whereas in figure 1 we were tempted to view composition as ordered,
here we cannot. Accordingly, we cannot say that any particular superstate hierarchy is

more valid. So, we dispense with superstates and think instead of regions, intersecting
areas enclosing states that share some common transition behaviour. In figure 3, re-
gions are shown as dashed outlines. Four intersecting regions can be identified in L2
that correspond to the pairs of simple states in L0 and L1.

The process of refining a state machine then becomes a matter of turning states into
regions, whose enclosed states completely partition the original unrefined state. After
this, the main obligation is to ensure that all the transition behaviour of the base object
is preserved in the refined object. Partitioning a state will always split outgoing transi-
tions, for example, the a-transition from S1 is turned into a pair of partial a-transitions
from S1/3 and S1/4. Because we are assuming orthogonal behaviour, these also target
separate partitions of S2, the states S2/3 and S2/4. However, what if the behaviours of
c, d are not entirely independent of a, b? In this case, incoming transitions might be
retargeted onto different states.

Let a region correspond to a state that is being refined. Retargeting has no adverse
effect on the validity of the refinement, so long as the transition retargets a state within
the same region. Suppose the a-transitions were retargeted onto different states within
S2. No matter which destination states within region S2 we retarget, we should still be
able to abstract away to S2. In all cases, the partial a-transitions would be merged in a
single transition from S1 to S2. Retargeting may select an arbitrary state, or combina-
tion of states within the destination region. Supposing now that the c-transition from
S1/3 were retargeted outside the S1 region, to S2/4, within the different region S2.
The c message now interacts unfavourably with the alternating behaviour of a, b. This
means that a sequence <c, a> will deadlock from S1/3. While this modification is not
compatible with L0, it is compatible with L1. Retargeting must therefore be consid-
ered with respect to the compatibility relation desired between specific machines.

From these considerations, we obtain the statechart refinement rules for behav-
ioural compatibility. With respect to the statechart for a given object type, the state-
chart for a compatible object may introduce additional states, corresponding to the
exposure of extra variable products, and additional transitions, corresponding to the
introduction of new methods, so long as:

• Rule 1: new states are always introduced as complete partitions of existing
states, which become enclosing regions;

• Rule 2: new transitions for additional methods do not cross region bounda-
ries, but only connect states within regions;

• Rule 3: refined transitions crossing a region boundary completely partition
the old entry/exit transitions of the original unrefined state;

• Rule 4: refined transitions within a region completely partition the old self-
transitions of the original unrefined state.

Rule 1 is the fundamental rule, which preserves the hierarchy of state abstractions.
It confirms McGregor’s second rule of statechart refinement [11]. It disallows the
introduction of new external states, so rules out Cook and Daniels’ refinement by
extension (such as M4) [13]. Rule 2 defines limits on state retargeting for new meth-
ods, with respect to the chosen compabitility relationship. In section 5.4 we show how
these two rules relate to strong simulation. Rule 3 captures all of Cook and Daniels’
rules about transition splitting and retargeting within a superstate (a region, in our
approach). The important generalisation is the complete partitioning of transitions,

which ensures that the set of new transitions behaves exactly like the old single transi-
tion. Rule 4 is a similar rule to ensure that self-transitions are preserved explicitly in
the refinement. These two rules essentially describe the faithful replication of transi-
tions for states that have been partitioned. They ensure that the refined machine is a
non-minimal equivalent to the original machine.

Together, the four rules enforce a strict behavioural consistency between the re-
fined and original state machines, analagous to strong simulation (see 5.4). This is
stronger than some other trace-based models of consistency, which only look at model
executions in the absence of a theory of state and state generalisation. The invoca-
tional consistency of Ebert and Engels [15] requires the subtype to contain all the
traces of the supertype. This is equivalent to Cook, Daniels and McGregor’s position,
described above [11, 13]. Ebert and Engels’ observational consistency is weaker still,
since it merely requires all the supertype’s traces to be derivable by censoring the
subtype’s traces to remove methods that were introduced in the subtype [15].

3 The Generation of Complete Unit Test-Sets

In state-based testing approaches [16, 17, 11, 18], it is possible to develop a notion of
complete test coverage, based on the exhaustive exploration of the object’s states and
transitions. However, the nature of the guarantee obtained after testing varies from
approach to approach. The following is an adaptation of the X-Machine testing
method [18, 19], which offers stronger guarantees than other methods, in that its test-
ing assumptions are clear and it tests negatively for the absence of all undesired be-
haviour as well as positively for the presence of all desired behaviour.

3.1 State-Based Specification

Em pty

s ize() = 0

Normal

s ize() > 0

push(e)
push(e)

pop() [s ize() > 1] pop() [s ize() = 1]
pop()

new

Fig. 4. Abstract state machine for a Stack interface. The two states (Empty, Normal) are de-
fined on a partition of the range of the size access method. No self-transitions for access meth-
ods are notated, by convention, but all other transitions must be shown

We assume that the object under test (OUT) exists in a series of states, which are
chosen by the designer to reflect modes in which its methods react differently to the
same message stimuli (formally, the notion of state derives from state-contingent re-

sponse and has nothing to do with whether the object has quiesecent periods). The
OUT is assumed to have a unique transition to its initial state and may or may not
have a final state, a mode in which it is no longer useable, for example, an error state
(representing a corrupted representation – see figure 4), or a terminated state (repre-
senting the end of the object’s life history).

The states of an object derive ultimately from the product of its attribute variables,
but can be characterised more abstractly as the product of the ranges of its access
methods. Formally, we assume that states are a complete partition of this product.
For completeness, a finite state model must define a transition for each method in
every state. However, suitable conventions may be adopted to simplify the drawing of
the state transition diagram, in particular, to establish the meaning of missing transi-
tions. Figure 4 shows a simplified state machine for an abstract Stack interface, in
which the omitted transitions for all the access methods size, empty and top may be
inferred implicitly as self-transitions in every state.

It must be possible to determine the desired behaviour of the object, in every state,
and for each method. If more than one transition with the same method label exits
from a given state, the machine is nondeterministic. Qualifying the indistinguishable
transitions with mutually exclusive, exhaustive guards will restore determinism (in
figure 4, ambiguous pop transitions exiting the Normal state are guarded). Certain
design-for-test conditions may apply, to ensure that the OUT can be driven determin-
istically through all of its states and transitions [18]. For example, in order to know
when the final pop transition from Normal to Empty is reached, the accessor size is
required as one of Stack’s methods.

3.2 State-Based Test Generation

The basic idea, when testing from a state-based specification, is to drive the OUT into
all of its states and then attempt every possible transition (both expected and un-
wanted) from each state, checking afterwards which destination states were reached.
The OUT should exhibit indistinguishable behaviour from the specification, to pass
the tests. It is assumed that the specification is a minimal state machine (with no du-
plicate, or redundant states), but the tested implementation may be non-minimal, with
more than the expected states. These notions are formalised below.

The alphabet is the set of methods m ∈ M that can be called on the interface of the
OUT (including all inherited methods). The OUT responds to all m ∈ M, and to no
other methods (which are ruled out by the syntactic checking phase of the compiler).
This puts a useful upper bound on the scope of negative testing.

The OUT has a number of control states s ∈ S, which partition its observable
memory states. A control state is defined as an equivalence class on the product of the
ranges of the OUT’s access methods. If a subset A ⊆ M of access methods exists,
then each observable state of the OUT is a tuple of length |A|. Formally, tuples fall
into equivalence classes under exhaustive, disjoint predicates p : Tuple → Boolean,
where each predicate p corresponds to a unique state s ∈ S. In practice, these predi-
cates are implemented as external functions p : Object → Boolean invoked by the test

harness upon the OUT : Object, which detect whether the OUT is in the given state
using some combination of its public access methods.

Sequences of methods, denoted <m1, m2, …>, m ∈ M, may be constructed. Lan-
guages M0, M1, M2, … are sets of sequences of specific lengths; that is, M0 is the set
of zero-length sequences: { <>} and M1 is the set of all unit-length sequences: { <m1>,
<m2>, …} , etc. The infinite language M* is the union M0 ∪ M1 ∪ M2 ∪ … contain-
ing all arbitrary-length sequences. A predicate language P = { <p1>, <p2>, …} is a set
of predicate calls, testing exhaustively for each state s ∈ S.

In common with other state-based testing approaches, the state cover is determined
as the set C ⊆ M* consisting of the shortest sequences that will drive the OUT into all
of its states. C is chosen by inspection, or by automatic exploration of the model. An
initial test-set T0 aims to reach and then verify every state. Verification is accom-
plished by concatenating every sequence in the state cover C with every predicate in
the predicate language P, denoted: C ⊗ P, where ⊗ is the concatenated product which
appends every sequence in P to every sequence in C.

T0 = C ⊗ P (1)

A more sophisticated test-set T1 aims to reach every state and also exercise every
single method in every state. This is constructed from the transition cover, a set of
sequences K1 = C ∪ C ⊗ M1, which includes the state cover C and the concatenated
product term C ⊗ M1, denoting the attempted firing of every single transition from
every state. The states reached by the transition cover are validated again using all
singleton predicate sequences <p> ∈ P.

T1 = (C ∪ C ⊗ M1) ⊗ P (2)

An even more sophisticated test-set T2 aims to reach every state, fire every single
transition and also fire every possible pair of transitions from each state. This is con-
structed from the augmented set of sequences K2 = C ∪ C ⊗ M1 ∪ C ⊗ M2 and the
reached states are again verified using the predicate. The product term C ⊗ M2 de-
notes the attempted firing of all pairs of transitions from every state.

T2 = (C ∪ C ⊗ M1 ∪ C ⊗ M2) ⊗ P (3)

In a similar fashion, further test-sets are constructed from the state cover C and
low-order languages Mk ⊆ M*. The reached states are always verified using <p> ∈ P,
for which exactly one should return true, and all the others false. The desired Boolean
outcome is determined from the model. Each test-set subsumes the smaller test-sets of
lesser sophistication in the series. In general, the series can be factorised and ex-
pressed for test-sets of arbitrary sophistication as:

Tk = C ⊗ (M0 ∪ M1 ∪ M2 ... Mk) ⊗ P (4)

For the Stack shown in figure 2, the alphabet M = { push, pop, top, empty, size} .
Note that new is not technically in the method-interface of Stack. It represents the
default initial transition, executed when an object is first constructed, which in the
formula is represented by the empty method sequence <>. The smallest state cover C
= { <>, <push>} , since the “ final state” is really an exception raised by pop from the

Empty state. Other sequences are calculated as above. Test-sets generated from this
model may be used to test any Stack implementation that has identical states and tran-
sitions, for example, a LinkedStack, which uses a linked list to store its elements.

3.3 Test Completeness and Guarantees

The test-sets produced by this algorithm have important completeness properties. For
each value of k, specific guarantees are obtained about the implementation, once test-
ing is over. The set T0 guarantees that the implementation has at least all the states in
the specification. The set T1 guarantees this, and that a minimal implementation pro-
vides exactly the desired state-transition behaviour. The remaining test-sets Tk pro-
vide the same guarantees for non-minimal implementations, under weakening assump-
tions about the level of duplication in the states and transitions.

A redundant implementation is one where a programmer has inadvertently intro-
duced extra “ghost” states, which may or may not be faithful copies of states desired
in the specification. Test sequences may lead into these “ghost” states, if they exist,
and the OUT may then behave in subtle unexpected ways, exhibiting extra, or missing
transitions, or reaching unexpected destination states. Each test-set Tk provides com-
plete confidence for systems in which chains of duplicated states do not exceed length
k-1. For small values of k, such as k=3, it is possible to have a very high level of
confidence in the correct state-transition behaviour of even quite perversely-structured
implementations.

Both positive and negative testing are achieved, for example, it is confirmed that
access methods do not inadvertently modify object states. Testing avoids any uni-
formity assumption [20], since no conformity to type need be assumed in order for the
OUT to be tested. Likewise, testing avoids any regularity assumption that cycles in
the specification necessarily correspond to implementation cycles. When the OUT
“behaves correctly” with respect to the specification, this means that it has all the
same states and transitions, or, if it has extra, redundant states and transitions, then
these are semantically identical duplicates of the intended states in the specification.
Testing demonstrates full conformity up to the level of abstraction described by the
control states.

The state-based testing approach described here is an adaptation of the X-Machine
approach for complete functional testing [18, 19], replacing input/output pairs with
method invocations. The need for “witness values” in the output is eliminated by the
guaranteed binding of messages to the intended methods in the compiler. The test
generation algorithm adapts Chow’s W-method for testing finite state automata [16].
In Chow’s method, states are not directly inspectable. Instead, reached states are
verified by attempting to drive the implementation through further diagnostic se-
quences chosen from a characterisation set W ⊆ M*, each state uniquely identified by
a particular combination of diagnostic outcomes. Here, we know that the OUT’s state
is inspectable, since it must be characterised by some partition of the ranges of its
access methods.

4. Object Refinement and Test Coverage

The notion of behaviourally-compatible refinement introduced in section 2 applies
equally to the realisation of interfaces (in the UML sense that a concrete class imple-
ments an abstract interface [7]) and also to the specialisation of object subtypes. In
both cases, the notion of refinement is explained in terms of deriving a more elaborate
state transition diagram by subdividing states and adding transitions to a basic dia-
gram. In this paper, we also consider that the need to re-implement an object, in the
sense of XP’s refactoring [5, 21], constitutes a refinement in the same sense. This is
because modification typically replaces simple solutions with more complex ones, in
response to new requirements. At the unit-testing level, individual OUTs tend to
become more complex. (It is also possible, when refactoring an entire subsystem
[21], for certain objects to become simplified, at the expense of introducing new ob-
jects, or shifting the complexity onto other objects, or by deleting unnecessary code –
we do not consider this here).

4.1 Test Coverage of a Modified or Refactored Object

Figure 5 illustrates a refined object statechart for a DynamicStack, an array-based
implementation of a Stack. We may either consider this to be a concrete realisation of
the Stack interface of figure 4, or else a change in implementation policy, a refactoring
of an old linked Stack. Firstly, we wish to confirm that the DynamicStack specifica-
tion conforms to the abstract Stack specification in figure 4.

Em pty

s ize() = 0

Loaded

s ize() < n

push(e)

push(e)
[s ize() < n-1]

pop() [s ize() > 1]

pop() [s ize() = 1]

pop()

new
Full

s ize() = n

push(e)
[s ize() = n-1]

pop()

push(e) /
res ize()

Fig. 5. Concrete machine for a DynamicStack, which realizes the Stack interface. The two
states (Loaded, Full) partition the old Normal state in fig. 4, resulting in the replication of its
transitions. The behaviour of push in the Full state must be tested

The main difference between the DynamicStack and the earlier Stack machine is
that the old Normal state, now only shown as a dashed region, has been partitioned
into the states { Loaded, Full} , in order to model the dynamic resizing of the Dynam-
icStack (push will behave differently in the Full state, triggering a memory realloca-
tion). This is a complete partition (no other substate of Normal exists), so rule 1 is
satisfied. No new methods are introduced, so rule 2 is not applicable. The Normal

state’s old entry and exit transitions now cross over the region boundary, reaching the
exposed Loaded state. The new pair of push, pop transitions exactly replaces the old
pair (without splitting), so rule 3 is satisfied. The Normal state’s old self-transitions
are now replicated inside the region, as a consequence of splitting the state. The for-
mer push transition is first split in two (one replication for each new state) and then
the transition from Loaded is split again, with exclusive guards on size. Similarly, the
former pop transition is replicated for each new state and its former guard: size() > 1 is
preserved in both states; however, the guard need not be notated in the Full state, as
there is no other conflicting pop transition. So, rule 4 is also satisfied. The refined
DynamicStack implementation (in figure 5) is therefore compatible with the original
Stack interface’s behaviour (in figure 4).

Next, we consider the issue of test coverage. Increasing the state-space has impor-
tant implications for test guarantees. Consider the sufficiency of the T2 test-set, gen-
erated from the abstract Stack specification in figure 4. This robustly guarantees the
correct behaviour of a simple LinkedStack implementation with S = { Empty, Normal} ,
even in the presence of “ghost” states. T2 will include one sequence <push, push,
push, isNormal>, which robustly exercises <push, push> from the Normal state and
will even detect a “ghost” copy of the Normal state. A strong guarantee of correctness
after testing may therefore be given for a LinkedStack implementation.

In classical regression testing, saved test-sets are reapplied to modified or extended
objects in the expectation that passing all the saved tests will guarantee the same level
of correctness. If the Stack’s T2 test-set were reused to test a DynamicStack con-
structed with n ≥ 3, so having all the states { Empty, Loaded, Full} and all the transi-
tions shown in figure 5, the resizing push transition would never be reached, since this
requires a sequence of four push methods. To the tester, it would appear that the
DynamicStack had passed all the saved T2 tests, even if a fault existed in the resizing
push transition. This fault would be undetected by the saved test-set.

4.2 Test Coverage of a Subclassed or Extended Object

In more complex examples of subclassing, the refinement introduces new behaviour,
which partitions all existing states. Figure 6 illustrates the development of an abstract
class hierarchy leading to concepts like the loan items in a library. The upper state
machine describes the abstract behaviour of a Loanable entity, which oscillates be-
tween its Available and OnLoan states. The lower state machine describes a LoanItem
entity that extends the Loanable entity. This is a product machine with four states,
resulting from the concurrent composition of the Loanable machine with a supplemen-
tary Reservable machine (not illustrated), which, we may infer, oscillates between
Unreserved and Reserved states. The resulting four states are named { OnShelf, PutA-
side, NormalLoan, Recalled} . The behaviours of loaning and reserving are dependent
on each other in interesting ways.

First, we check the refinement for compatibility. The four states completely parti-
tion the two states of Loanable, so rule 1 is satisfied. The new methods { reserve,
cancel} introduced in LoanItem stay within the prescribed region boundaries, so rule
2 is satisfied. Looking now at the splitting of transitions required by rule 3, while

return has been split by the partitioning of OnLoan into two states { NormalLoan,
Recalled} , the borrow transition is more interesting. One partial transition from On-
Shelf allows the loan to go ahead. The other partial transition from the PutAside state
is guarded, and only succeeds if the LoanItem is borrowed by the same person who
reserved it previously. While such behaviour is reasonable, it makes LoanItem in-
compatible with Loanable. The refinement of the borrow transition breaks rule 3,
since the partials are not a complete partition of the original. From Loanable’s per-
spective, borrow always succeeds from the Available state, whereas it sometimes fails
for a LoanItem. This illustrates the practical effect of breaking refinement rules.
However, compabitility may be restored by adding a borrow transition from the
Available state to itself, in the Loanable abstract class, indicating the anticipated null
operation. The abstract state machine is then nondeterministic, since the choice of the
successful or failing borrow transition cannot yet be decided.

new Available

loaned() = false

OnLoan

loaned() = true

borrow(b)

return()

OnShelf

reserved() = false

PutAside

reserved() = true

new
reserve(a)

cancel()

NormalLoan

reserved() = false

Recalled

reserved() = true

reserve(a)

cancel()

borrow(b)

borrow(b)
[a ≠b]

borrow(b)
[a = b]

return()

return()

Fig. 6. The upper state machine captures the behaviour of a Loanable entity, with the methods
{borrow, return}. The lower LoanItem machine extends this with reservations, combining the
behaviour of {borrow, return, reserve, cancel}. The refined machine is not yet wholly com-
patible with the base machine, but this can be addressed

Next, we consider the issue of test coverage. Assuming that a T2 test-set is gener-
ated from the Loanable specification in figure 6, this will robustly confirm that bor-
row and return succeed and fail correctly (for a Loanable instance), even in the pres-
ence of “ghost” versions of the OnLoan and Available states. However, when the
same tests are reapplied to the extended LoanItem, they will only cover half of the
partitioned states. The saved T2 test-set includes the sequences: { <isAvailable>,
<borrow, isOnLoan>, <return, exception>, <borrow, return, isAvailable>, …} and no

sequence will contain reserve or cancel, which are first introduced in the subclass’s
protocol. The test-set will therefore oscillate between the states { OnShelf, Normal-
Loan} and will not reach the states { PutAside, Recalled} . Because of this, only half
of the borrow and return transitions will be exercised in the refinement, compared to
all of them in the original. Partitioning states always results in splitting transitions.
Consider now that every pair of methods like { borrow, return} and { reserve, cancel}
introduces further partitions in every existing state. The proportion of the original
transitions still covered falls off as a geometrically decreasing fraction in each succes-
sive refinement. Contrary to popular expectations that recycled regression tests con-
firm the base object’s behaviour in the refined object, regression tests actually cover
significantly less of the base object’s state space in each successive refinement.

5. Conclusions: Regression versus Regeneration

The weakness in conventional regression testing comes from recycling saved test-sets
as a whole, rather than reconstructing test-sequences from scratch. This culture goes
back to the parallel design and test architecture [1, 2] (see section 1), in which test
suites are saved as methods of the THO and are inherited as a whole. The prospect of
reusing whole test suites is so beguiling, that it is hard to refuse, especially after the
effort invested in developing the tests in the first place. Likewise, in JUnit [3, 4], test
scripts are saved and recycled as a whole, in the expectation that this provides a guar-
antee against the effects of entropy in the modified code.

5.1 Overestimation of Regression Test Coverage

Programmers do not expect regression tests to exercise the new features introduced in
the refinement. For this, they develop additional tests, sometimes exercising the new
features in combination with old features. However, they do expect the regression
tests to exercise all of the original features completely. This corresponds to an impov-
erished view of refinement, as illustrated by the model M4 (see section 2.2 above).
The state space of a valid refinement is actually much greater, more like the model L2
(see section 2.3 above).

Unfortunately, recycled test-sets always exercise significantly less of the refined
object than the original. As the state-space of the modified or extended object in-
creases, the guarantee offered by retesting is progressively weakened. This under-
mines the validity of popular regression testing approaches, such as parallel design-
and-test, test set inheritance and reuse of saved test scripts in JUnit. To achieve the
same level of coverage, it is vital to test all the interleavings of new methods with the
inherited methods, so exploring the state-transition diagram completely. This simply
cannot be done reliably by human intuition and manual test-script creation.

5.2 Completeness of Regenerated Test Sets

In the proposed approach, the test-sets for refined object types, such as the Dynamic-
Stack or the LoanItem introduced in section 4, should be regenerated entirely from
scratch, using the algorithm from section 3. With even very simple object state ma-
chine specifications, this process can be automated, generating test-sets to the desired
T1, T2, T3… confidence levels.

The regenerated tests are not regression tests in the normal sense, but all-new tests
in which the state-space of the refined OUT is fully explored. Regenerating the test-
set works equally well, whether or not the OUT is a behaviourally compatible refine-
ment of some original object, since the test-set is derived directly from the refined
specification, not the original one. For this reason, the proposed re-testing approach is
robust under all kinds of software evolution, whether this is by subclassing, by refac-
toring or by simple textual editing of the OUT, and works independently of behav-
ioural compatibility. However, regenerated tests do satisfy the expectations of regres-
sion testing, in that they test up to the same confidence-levels as the original tests.

In common with all test-sets generated from object state machines, regenerated
tests provide specific guarantees for specific amounts of testing. Because the test-sets
are generated systematically, the tester may choose whether to test using T1, T2, T3…
etc. up to the desired level of k in the algorithm. The significance of this is that the
same levels of guarantee may be provided for both the original and retested objects,
something that is not possible with conventional regression testing using recycled test-
sets, for which the guarantees are progressively weakened in each new context.

5.3 Testing to a Repeatable Level of Quality

This paper turns a number of regression-testing concepts on their head. Conventional
regression testing assumes that a refined object is compatible with its unrefined pre-
cursor, if it passes the same tests [2, 3, 5, 21]. This was shown to be false, in section 4
above. Compatibility cannot be assured directly through re-testing, but it can be
proved indirectly by verification in a formal model. Figure 7 shows the different phi-
losophies.

Compatibility is redefined as a verifiable refinement relationship between two ob-
ject specifications. Each OUT may only be proven to conform to its own specifica-
tion, by a specific test-set generated from that specification (the B-test and R-test sets
in figure 7). The refined OUT is then only provably compatible with the basic speci-
fication by virtue of the transitive composition of the R-test conforms and refines
relationships.

The strength of the guarantee obtained in conventional regression testing is badly
overestimated. Recycled test-sets exercise significantly less of the refined object than
the original, such that re-tested objects may be considerably less secure, for the same
testing effort. By comparison, in the test regeneration approach, it is possible to pro-
vide specific guarantees for levels of confidence in the OUT. After the OUT has been
refined, the same levels of confidence may be retained after re-testing using fully

regenerated test-sets. This notion of guaranteed, repeatable quality is a new and
important concept in object-oriented testing.

OSpec
Basic

OUT
Basic

OUT
Refined

B-test conforms

B-test conforms

OSpec
Basic

OSpec
Refined

OUT
Basic

OUT
Refined R-test

conforms

B-test conforms

transitively conforms

Regression

Regeneration

Fig. 7. The new philosophy for testing. The Refined OUT does not conform to the Basic
OSpec because it B-test conforms to that specification, but rather because it R-test conforms to
the Refined OSpec, which is a provably correct refinement of the Basic OSpec.

5.4 L inks with Simulation in Process Calculi

As demonstrated in section 2.2, Cook and Daniels’ [13] examples of statechart re-
finement are all equivalent to the classical refinement of automata, which judges com-
patibility by trace inclusion [15]. This works so long as the subtype object aliased
through the supertype handle is only manipulated through the protocol of that super-
type. In more realistic execution contexts, objects may be aliased simultaneously by
handles of many types. This is in fact quite common in object-oriented design, where
generic algorithms are factored into parts introduced at different levels in the inheri-
tance hierarchy (see the Template Method design pattern [24, p325]). In this context,
an object may be manipulated by more than one protocol, and messages from the
different protocols may be interleaved, which may cause deadlocks [22, 23].

We showed in section 2.2 above how an M4 object could be manipulated through
the protocol of M0, until it receives <c> through another M4 protocol, at which point
the M0 protocol deadlocks. M4 is not strongly compatible with M0, although it
clearly includes the traces of M0. We therefore draw an analogy with Milner’s π-
calculus [14], which contrasts trace inclusion with the stronger simulation relation-
ship. From the viewpoint of the M0 protocol, unseen events that affect the aliased

object through the simultaneous M4 protocol are “ invisible actions” , rather like τ-
actions in π-calculus. Weak simulation is where one process behaves like another up
to null assumptions about invisible τ-actions (ie that they do not affect behaviour).
The contrasting strong simulation is where one process behaves like another in all
contexts, irrespective of the τ-actions’ unseen behaviour. Our behavioural compatibil-
ity is like strong simulation, because the protocol of the supertype is preserved, no
matter what invisible actions may be interleaved by the protocols of subtype handles.
This is achieved by making sure, in rules 1 and 2, that invisible actions cannot force a
refined object into a state that is unrecognised by its supertype’s protocol. The rules
are therefore normative, since simulation follows from this.

5.5 Acknowledgement

This research was undertaken as part of the MOTIVE project, supported by UK
EPSRC GR/M56777.

References

1. McGregor, J. D. and Korson, T.: Integrating Object-Oriented Testing and Development
Processes. Communications of the ACM, Vol. 37, No. 9 (1994) 59-77

2. McGregor, J. D. and Kare, A.: Parallel Architecture for Component Testing of Object-
oriented Software. Proc. 9th Annual Software Quality Week, Software Research, Inc. San
Francisco, May (1996)

3. Beck, K. Gamma E. et al.: The JUnit Project. Website http://www.junit.org/ (2003)
4. Stotts, D., Lindsey, M. and Antley, A.: An Informal Method for Systematic JUnit Test

Case generation. Lecture Notes in Computer Science, Vol. 2418. Springer Verlag, Berlin
Heidelberg New York (2002) 131-143

5. Wells, D.: Unit Tests: Lessons Learned, in: The Rules and Practices of Extreme Program-
ming. Hypertext article http://www.extremeprogramming.org/rules/unittests2.html (1999)

6. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W.: Object-Oriented
Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991

7. Object Management Group, UML Resource Page. Website http://www.omg.org/uml/
(2004)

8. Harel, D. and Naamad, A: The STATEMATE Semantics of Statecharts. ACM Trans. Softw.
Eng. and Meth., Vol. 5, No 4 (1996), 293-333

9. Bjorkander, M: Real-Time Systems in UML (and SDL), Embedded Systems Engineering,
October/November, 2000, http://www.telelogic.com/download/paper/realtimerev2.pdf

10. McGregor, J. D. and Dyer, D. M.: A Note on Inheritance and State Machines. Software
Engineering Notes, Vol. 18, No. 4 (1993) 61-69

11. McGregor, J. D.: Constructing Functional Test Cases Using Incrementally-Derived State
Machines. Proc. 11th International Conference on Testing Computer Software. USPDI,
Washington (1994)

12. Liskov, B., and Wing, J. M.: A New Definition of the Subtype Relation, Proc. ECOOP
’93, LNCS 707, Springer Verlag, 1993, 118-141

13. Cook, S. and Daniels, J.: Designing Object-Oriented Systems: Object-Oriented Modelling
with Syntropy. Prentice Hall, London (1994)

14. Milner, R.: Communicating and Mobile Systems: the π-Calculus, Cambridge University
Press, 1999.

15. Ebert, J. and Engels, G.: Dynamic Models and Behavioural Views. International Sympo-
sium on Object-oriented Methods and Systems. Lecture Notes in Computer Science, Vol.
858. Springer Verlag, Berlin Heidelberg New York (1994)

16. Chow, T.: Testing Software Design Modeled by Finite State Machines. IEEE Transactions
on Software Engineering, Vol. 4 No. 3 (1978) 178-187

17. Binder, R. V.: Testing Object-Oriented Systems: a Status Report. 3rd edn. Hypertext article
http://www.rbsc.com/pages/oostat.html (2001)

18. Holcombe, W. M. L. and Ipate, F.: Correct Systems: Building a Business Process Solution.
Applied Computing Series. Springer Verlag, Berlin Heidelberg New York (1998)

19. Ipate, F. and Holcombe, W. M. L.: An Integration Testing Method that is Proved to Find
All Faults. International Journal of Computational Mathematics, Vol. 63 (1997) 159-178

20. Bernot, B., Gaudel, M.-C. and Marre, B.: Software Testing Based on Formal Specifica-
tions: a Theory and a Tool. Software Engineering Journal, Vol. 6, No. 6 (1991) 387-405

21. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, New York
(2000)

22. Simons, A. J. H., Stannett, M. P., Bogdanov, K. E. and Holcombe, W. M. L.: Plug and Play
Safely: Behavioural Rules for Compatibility. Proc. 6th IASTED International Conference
on Software Engineering and Applications. SEA-2002, Cambridge (2002) 263-268

23. Simons, A. J. H.: Letter to the Editor, Journal of Object Technology. Received December
5, 2003. Hypertext article http://www.jot.fm/general/letters/comment_simons_html (2003)

24. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns: Elements of Reus-
able Object-Oriented Software, Addison Wesley (1995)

