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Abstract. The eXtreme Programming (XP) method eschews all formal design, 
but compensates for this by rigorous unit testing. Test-sets, which constitute the 
only enduring specification, are intuitively developed and so may not be com-
plete. This paper presents a method for generating complete unit test-sets for 
objects, based on simple finite state machines. Using this method, it is possible 
to prove that saved regression test-sets do not provide the expected guarantees 
of correctness when applied to modified or extended objects. Such objects, 
which pass the saved tests, may yet contain introduced faults. This puts the 
whole practice of regression testing in XP into question. To obtain the same 
level of guarantee, tests must be regenerated from scratch for the extended ob-
ject. A notion of guaranteed, repeatable quality after testing is defined. 

1   Introduction 
The popular eXtreme Programming (XP) method throws away the formal analysis 
and design stages of conventional software engineering [1, 2, 3] in reaction to the 
high overhead of standard development processes and the extra documentation that 
these require [4, 5]. However, the lack of formal design in XP has received some 
constructive criticism [6]: its �extremeness� may be characterized by this and the fact 
that the software base is subject to constant modification during the lifetime of the 
project, with all developers granted the freedom to change any part of the software. 

To guard against inadvertently damaging the code base, a great emphasis is placed 
upon testing. Unit tests are developed, sometimes directly from the requirements 
(test-first design), but mostly in parallel with the code (test-driven development). 
Tools supporting the unit testing approach have been developed, such as JUnit, a 
popular tool for unit testing single classes [7, 8]. Every time the object under test 
(OUT) is changed, the software must be exercised again with all the existing test-sets, 
to ensure that no faults have been introduced (known as regression testing). This, 
with the emphasis on regular builds in small increments, is intended to guard against 
the effects of entropy. (XP also advocates acceptance testing, whereby the system is 
evaluated against user requirements prior to delivery; this aspect is not under investi-
gation in the current paper). 

1.1   Parallel Design and Test 

Practical object-oriented unit testing has been influenced considerably by the non-
intrusive testing philosophy of McGregor et al [9, 10]. In this approach, every OUT 
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has a corresponding test-harness object (THO), which encapsulates all the test-sets 
separately, but may have privileged access to observe the internal states of the OUT 
(e.g. via friend declarations in C++). The OUT is therefore uncluttered by test code 
and may be delivered as-is, after testing. This separation of concerns lies behind the 
parallel design and test architecture (see figure 1), in which an isomorphic inheri-
tance graph of test harness classes shadows the graph of production classes [10].  

OUT 
Parent 

OUT 
Child 

THO 
Parent 

THO 
Child  

Fig. 1. McGregor�s software architecture for parallel design and test abstractions. Motivated by 
the separation of concerns between production and test code, this leads to the notion of inherit-
able test-sets, which are reused when testing refined classes 

From this arises a beguiling notion: since a child class is an extension of its parent, 
so the test-sets for the child must be simple extensions of the test-sets for the parent. 
The presumed advantage is that most test-sets can be inherited from the parent THO 
and reapplied, as a suite, to the child OUT, in a kind of regression test. The child 
THO is understood to supply additional test-sets to exercise the new methods intro-
duced in the child OUT [9, 10]. Below, we show just how unreliable this intuition is. 

1.2   Recycling Unit Test Sets in XP 

The JUnit tool fosters a similar strategy for re-testing classes that are subject to con-
tinuous refactoring (internal reorganization yielding the same external behaviour) and 
subclassing (extension without invalidating old behaviour) [7, 8]. JUnit allows pro-
grammers to develop and save test suites, which may be executed repeatedly. One of 
the key benefits of JUnit is that it makes the re-testing of refactored and subclassed 
objects semi-automatic, so it is widely used in the XP community, in which the recy-
cling of old test-sets has become a major part of the quality assurance strategy. 

XP claims that a programmer may incrementally modify code in iterative cycles, 
so long as each modification passes all the original unit tests: �Unit tests enable refac-
toring as well. After each small change, the unit tests can verify that a change in 
structure did not introduce a change in functionality� [11]. There are two sides to this 
claim. Firstly, if the modified code fails any tests, it is clear that faults have been 
introduced (tests as diagnostics). Secondly, there is the assumption that modified code 
which passes all the tests is still as secure as the original code (tests as guarantees). 
This assumption is unsound and unsafe. After passing the recycled tests, objects may 
yet contain faults introduced by the refinement. The guarantee provided by passing 
the recycled tests is strictly weaker than the original guarantee that the same test-set 
provided in its original context. Using simple state-based models of objects, it is pos-
sible to show why recycled test-sets provide incommensurate, and therefore inade-
quate, test coverage in the new context. 
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2   Generating Complete Unit Test-Sets 

State machines have frequently been used as models of objects, both to articulate 
their design [12, 5], and more formally as part of a testing method [13, 14, 15, 16]. In 
the more rigorous approaches, it is possible to develop a notion of complete test cov-
erage, based on the exhaustive exploration of the object�s states and transitions. The 
following is an adaptation of the X-Machine testing method [16, 17], which offers 
stronger guarantees than other methods, in that its testing assumptions are clear and it 
tests negatively for the absence of all undesired behaviour as well as positively for the 
presence of all desired behaviour. It is well known that programmers fail to consider 
the former, since it is hard to think of all the unintended ways in which a system 
might possibly be abused, when the focus is on positive outcomes. No matter how 
simple and direct the hand-crafted tests might appear, if they don�t cover the object�s 
state space, they are incomplete, and only offer a false sense of security. 

Earlier companion work showed how easy and practical it is to generate simple 
state machines directly from XP story cards [18] and UML use cases [19]. This sup-
ported the automatic generation of complete user-acceptance tests. In [20] the auto-
matic generation of complete unit tests from state machines was shown to outperform 
ad-hoc test scripting. The focus of the current paper is regression testing and com-
plete test regeneration in the context of object evolution. 

2.1   State-Based Design 

An object exists in a series of states, which are chosen by the designer to reflect 
modes in which its methods react differently to the same messages. The number of 
states an object can have depends on the independently-varying values of all of its 
attributes. The theoretical maximum is the Cartesian product of its attribute domains. 
Typically, this fine-grained attribute space is partitioned into coarser states, in which 
behaviour is qualitatively �the same� in each partition [15, 21]. We define states more 
abstractly, as partitions of the product of the ranges of an object�s access methods 
[22]. This permits the design of state machines for fully abstract classes and inter-
faces, which by definition have no concrete attributes. 

Figure 2 illustrates a simple state machine, describing the modal behaviour of a 
Stack. This could represent the design of a concrete class, or an abstract interface. 
Transitions for the state-modifying methods {push, pop} are shown explicitly. For 
completeness, a finite state machine must define a transition for every method in 
every state. We assume by convention that the access methods {top, empty, size}, 
which are not shown, all have implicit transitions looping from each state back to 
itself. 

The state machine is developed by considering the modes in which certain meth-
ods behave differently. Here, pop and top are legal in the Normal state, but undefined 
in the Empty state. There is a single transition to the initial state (representing object 
construction). Transitions are then added for every method in every state. If an object 
is no longer useable, it may enter a final state (such as the error state after the illegal 
pop from Empty). If multiple transitions could fire for the same message request, the 
designer should resolve this nondeterminism by placing guards, mutually exclusive 
and exhaustive conditions, on the conflicting transitions (such as on the two pop tran-
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sitions from Normal). Certain design-for-test conditions may apply, to ensure that the 
machine can be driven deterministically through all of its states and transitions [16]. 
For example, in order to know when the final pop transition from Normal to Empty is 
reached, the accessor size is required as one of Stack�s methods, so that suitable 
guards may be constructed. The above design is logically complete, in the sense that 
the modal behaviour of every method from every state is known. 

2.2   Elements of the State Model 

In formal approaches to state-based test generation, test-sets are constructed from 
languages, sequences of symbols drawn from the total alphabet of transition labels. 
The alphabet is the set of methods m ∈ M that can be called on the interface of the 
object (including any inherited methods). For the Stack shown in figure 2, the alpha-
bet M = {push, pop, top, empty, size}. Note that new is not technically in the method-
interface of Stack, but rather constructs the Stack instance. The object responds to all 
m ∈ M, and to no other methods (which are ruled out by compile-time syntax check-
ing). This puts a useful upper bound on the scope of negative testing. 

The state-transition diagram defines a number states s ∈ S. The states of the Stack 
in figure 2 are S = {Empty, Normal}. The �final state� is not treated as a first-class 
state, but as an exception raised by pop from the Empty state. It is assumed that the 
test harness can construct a predicate p : Stack → Boolean for each state s ∈ S, to 
detect whether the OUT is in that state. Predicates may freely use public access meth-
ods internally: for example, isEmpty(s) ≡ s.size() = 0. Our earlier definition of state 
(see 2.1) ensures that such predicates may always be defined. 

Sequences of methods, denoted <m1, m2, �>, m ∈ M, may be constructed. Lan-
guages M0, M1, M2, � are sets of sequences of specific lengths; that is, M0 is the set 
of zero-length sequences: {<>} and M1 is the set of all unit-length sequences: {<m1>, 
<m2>, �}, etc. The infinite language M* is the union M0 ∪ M1 ∪ M2 ∪ � contain-
ing all arbitrary-length sequences. A predicate language P = {<p1>, <p2>, �} is a set 
of unit-length predicate sequences, testing exhaustively for each state s ∈ S. 

2.3   Complete Unit-Test Generation 

When testing from a state-based design, the tester drives the OUT into all of its states 
and then attempts every possible transition (both expected and unwanted) from each 

Em pty 
 

s ize() = 0 
 

Norm al 
 

s ize() > 0 
 

push(e) 
push(e) 

pop() [s ize() > 1] pop() [s ize() = 1] pop() 

new 

 
Fig. 2. State machine for a Stack. The two states (Empty, Normal) are defined on a partition of 
the range of the size access method. Only state-modifying transitions are shown explicitly 
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state, checking afterwards which destination states were reached. The OUT should 
exhibit indistinguishable behaviour from the design, to pass the tests. It is assumed 
that the design is a minimal state machine (with no duplicate, or redundant states), but 
the tested implementation may be non-minimal, with more than the expected states. 
Testing must therefore take this into account, exercising more than the minimal state 
machine. These notions are formalised below. 

The state cover is a set C ⊆ M* consisting of the shortest sequences that will drive 
the OUT into all of its states. C is chosen by inspection, or by automatic exploration 
of the model. For the Stack shown in figure 2 above, C = {<>, <push>} is the small-
est state cover, which will enter the Empty and Normal states. An initial test-set T0 
aims to reach and then verify every state. Verification is accomplished by invoking 
each predicate in the predicate language P after exploring each path in the state cover 
C, a test set denoted by: C ⊗ P, the concatenated product that appends every se-
quence in P to every sequence in C. Exactly one predicate in each sequence should 
return true, and all the others false, as determined from the model. 

T0 = C ⊗ P (1) 

A more sophisticated test-set T1 aims to reach every state and also exercise every 
single method in every state. This is constructed from the transition cover, a set of 
sequences K1 = C ∪ C ⊗ M1, which includes the state cover C and the concatenated 
product term C ⊗ M1, denoting the attempted firing of every single transition from 
every state. The states reached by the transition cover are validated again using all 
singleton predicate sequences <p> ∈ P. 

T1 = (C ∪ C ⊗ M1) ⊗ P (2) 

An even more sophisticated test-set T2 aims to reach every state, fire every single 
transition and also fire every possible pair of transitions from each state (sometimes 
known as the switch cover). This is constructed from the augmented set of sequences 
K2 = C ∪ C ⊗ M1 ∪ C ⊗ M2 and the reached states are again verified using the predi-
cates. The product term C ⊗ M2 denotes the attempted firing of all pairs of transitions 
from every state. 

T2 = (C ∪ C ⊗ M1 ∪ C ⊗ M2) ⊗ P (3) 

In a similar fashion, further test-sets are constructed from the state cover C and low-
order languages Mk ⊆ M*. Each test-set subsumes the smaller test-sets of lesser so-
phistication in the series. In general, the series can be factorised and expressed for 
test-sets of arbitrary sophistication as: 

Tk = C ⊗ (M0 ∪ M1 ∪ M2 ... Mk) ⊗ P (4) 

The general formula describes all test-sequences starting with a state cover, aug-
mented by firing all single, pairs, triples etc. of transitions and then verifying the 
reached states using state predicates. 

3   Test Completeness and Guarantees 

The test-sets produced by this algorithm have important completeness properties. For 
each value of k, specific guarantees are obtained about the implementation, once 
testing is over. Below, we show how regression testing in XP does not provide the 
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same guarantees after retesting. However, for simple extensions to a state-based de-
sign, tests may be re-generated by this algorithm and all the same guarantees upheld. 

3.1   Guarantees After Testing 

The set T0 guarantees that the implementation has at least all the states in the specifi-
cation. The set T1 guarantees this, and that a minimal implementation provides ex-
actly the desired state-transition behaviour. The remaining test-sets Tk provide the 
same guarantees for non-minimal implementations, under weakening assumptions 
about the level of duplication in the states and transitions. 

A non-minimal, or redundant implementation is one where a programmer has in-
advertently introduced extra �ghost� states, which may or may not be faithful copies 
of states desired in the design. Test sequences may lead into these �ghost� states, if 
they exist, and the OUT may then behave in subtle unexpected ways, exhibiting extra, 
or missing transitions, or reaching unexpected destination states. Each test-set Tk 
provides complete confidence for systems in which chains of duplicated states do not 
exceed length k-1. For small values of k, such as k=3, it is possible to have a very 
high level of confidence in the correct state-transition behaviour of even quite per-
versely-structured implementations. 

Both positive and negative testing are achieved; for example, it is confirmed that 
access methods do not inadvertently modify object states. Testing avoids any uni-
formity assumption [23], since no conformity to type need be assumed in order for the 
OUT to be tested. Likewise, testing avoids any regularity assumption that cycles in 
the specification necessarily correspond to implementation cycles. When the OUT 
�behaves correctly� with respect to the specification, this means that it has all the 
same states and transitions, or, if it has extra, redundant states and transitions, then 
these are semantically identical duplicates of the intended states in the specification. 

3.2   Refactoring, Subclassing and Test Coverage 

Figure 3 illustrates the state machine for a DynamicStack, an array-based implemen-
tation of a Stack. We may think of this either as a subclass design for a concrete class 
that implements an abstract Stack interface [22], or as a refactored design for a Stack, 
after the decision is taken to switch to an array-based implementation. The main dif-
ference between this and the earlier machine in figure 2 is that the old Normal state, 
now only shown as a dashed region, has been partitioned into the states {Loaded, 
Full}, in order to capture the distinct behaviour of push in the Full state, where this 
triggers a memory reallocation. Though this design appears more complex, it is easily 
generated by following the simple rule: show the behaviour of every method in every 
state (self-transitions for the access methods are inferred, as above). 

Increasing the state-space has important implications for test guarantees. Consider 
the sufficiency of the T2 test-set, generated from the abstract Stack specification in 
figure 2. This robustly guarantees the correct behaviour of a simple LinkedStack im-
plementation with S = {Empty, Normal}, even in the presence of �ghost� states. T2 
will generate one sequence <push, push, push, isNormal>, which robustly exercises 
<push, push> from the Normal state and will even detect a �ghost� copy of the Nor-
mal state.  
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Em pty 
 

s ize() = 0 
 

Loaded  
 

s ize() < n 
 

push(e) 

push(e)  
[s ize() < n-1] 

pop() [s ize() > 1] 

pop() [s ize() = 1] 

pop() 

new 
Full  

 
s ize() = n 

 

push(e)  
[s ize() = n-1] 

pop() 

push(e) / 
res ize() 

 

Fig. 3. State machine for a DynamicStack, which conforms to the behaviour of the Stack in fig. 
2. The two states (Loaded, Full) partition the old Normal state in fig. 2, resulting in the replica-
tion of its transitions. The behaviour of push in the Full state must be tested 

In XP regression testing, saved test-sets are reapplied to modified or extended ob-
jects in the expectation that passing all the saved tests will guarantee the same level of 
correctness. If the Stack�s T2 test-set were reused to test the DynamicStack in figure 3, 
with S = {Empty, Loaded, Full}, the resizing push transition would never be reached, 
since this requires a sequence of four push methods. To the tester, it would appear 
that the DynamicStack had passed all the saved T2 tests, even if a fault existed in the 
resizing push transition. This fault would be undetected by the saved test-set. 

In general, subclasses have a larger state-space than superclasses, due to their in-
troduction of more methods affecting object states. In Cook, Daniels [24] and 
McGregor�s [15, 21] state models, subclasses could introduce new states. In Simons� 
more careful model of state refinement [22, 25], subclassing was shown always to 
result in the subdivision of existing states (as in figure 3). The current paper shows 
that saved tests not only miss the new states formed in the child, but also fail to test 
all of the transitions that were tested in the parent, due to the splitting [22] of these 
transitions. This is important for regression testing, since it means that saved tests 
exercise significantly less of the same behaviour in the child as they did in the parent. 

To achieve the same level of coverage, it is not sufficient to supply extra tests for 
the new methods, but rather it is vital to test all the interleavings of new methods with 
the inherited methods, so exploring the state-transition diagram completely. This 
simply cannot be done reliably by human intuition and manual test-script creation. 
However, it could be done reliably if the test-sets were regenerated for the modified 
state machine designs, using the algorithm from section 2.3 above. 

4   Conclusions 
The strength of the guarantee obtained after regression testing is overestimated in XP. 
Recycled test-sets always exercise significantly less of the refined object than the 
original, such that re-tested objects may be considerably less secure, for the same 
testing effort. As the state-space of the modified or extended object increases, the 
guarantee offered by retesting is progressively weakened. This undermines the valid-
ity of popular regression testing approaches, such as parallel design-and-test, test set 
inheritance and reuse of saved test scripts in JUnit. 
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By comparison, if complete test-sets are always generated from simple state ma-
chine designs, it is possible to provide specific guarantees, for example up to the k=2 
or k=3 confidence level, in the OUT. After retesting a subclassed or refactored OUT, 
the same guarantees may be upheld by generating from the revised state machine to 
the same confidence level. Not only this, but all the objects in a software project may 
be unit-tested to a given confidence level. This notion of guaranteed, repeatable 
quality is a new and important concept in object-oriented testing. 

This research was undertaken as part of the MOTIVE project, supported by UK 
EPSRC GR/M56777. 
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