
118

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 118�126, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Testing with Guarantees and the Failure
of Regression Testing in eXtreme Programming

Anthony J.H. Simons

Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK

A.Simons@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/~ajhs/

Abstract. The eXtreme Programming (XP) method eschews all formal design,
but compensates for this by rigorous unit testing. Test-sets, which constitute the
only enduring specification, are intuitively developed and so may not be com-
plete. This paper presents a method for generating complete unit test-sets for
objects, based on simple finite state machines. Using this method, it is possible
to prove that saved regression test-sets do not provide the expected guarantees
of correctness when applied to modified or extended objects. Such objects,
which pass the saved tests, may yet contain introduced faults. This puts the
whole practice of regression testing in XP into question. To obtain the same
level of guarantee, tests must be regenerated from scratch for the extended ob-
ject. A notion of guaranteed, repeatable quality after testing is defined.

1 Introduction
The popular eXtreme Programming (XP) method throws away the formal analysis
and design stages of conventional software engineering [1, 2, 3] in reaction to the
high overhead of standard development processes and the extra documentation that
these require [4, 5]. However, the lack of formal design in XP has received some
constructive criticism [6]: its �extremeness� may be characterized by this and the fact
that the software base is subject to constant modification during the lifetime of the
project, with all developers granted the freedom to change any part of the software.

To guard against inadvertently damaging the code base, a great emphasis is placed
upon testing. Unit tests are developed, sometimes directly from the requirements
(test-first design), but mostly in parallel with the code (test-driven development).
Tools supporting the unit testing approach have been developed, such as JUnit, a
popular tool for unit testing single classes [7, 8]. Every time the object under test
(OUT) is changed, the software must be exercised again with all the existing test-sets,
to ensure that no faults have been introduced (known as regression testing). This,
with the emphasis on regular builds in small increments, is intended to guard against
the effects of entropy. (XP also advocates acceptance testing, whereby the system is
evaluated against user requirements prior to delivery; this aspect is not under investi-
gation in the current paper).

1.1 Parallel Design and Test

Practical object-oriented unit testing has been influenced considerably by the non-
intrusive testing philosophy of McGregor et al [9, 10]. In this approach, every OUT

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [1200 1200] dpi
 Paper Size: [439 666.2] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [1200 1200]
>> setpagedevice

Testing with Guarantees and the Failure of Regression Testing in eXtreme Programming 119

has a corresponding test-harness object (THO), which encapsulates all the test-sets
separately, but may have privileged access to observe the internal states of the OUT
(e.g. via friend declarations in C++). The OUT is therefore uncluttered by test code
and may be delivered as-is, after testing. This separation of concerns lies behind the
parallel design and test architecture (see figure 1), in which an isomorphic inheri-
tance graph of test harness classes shadows the graph of production classes [10].

OUT
Parent

OUT
Child

THO
Parent

THO
Child

Fig. 1. McGregor�s software architecture for parallel design and test abstractions. Motivated by
the separation of concerns between production and test code, this leads to the notion of inherit-
able test-sets, which are reused when testing refined classes

From this arises a beguiling notion: since a child class is an extension of its parent,
so the test-sets for the child must be simple extensions of the test-sets for the parent.
The presumed advantage is that most test-sets can be inherited from the parent THO
and reapplied, as a suite, to the child OUT, in a kind of regression test. The child
THO is understood to supply additional test-sets to exercise the new methods intro-
duced in the child OUT [9, 10]. Below, we show just how unreliable this intuition is.

1.2 Recycling Unit Test Sets in XP

The JUnit tool fosters a similar strategy for re-testing classes that are subject to con-
tinuous refactoring (internal reorganization yielding the same external behaviour) and
subclassing (extension without invalidating old behaviour) [7, 8]. JUnit allows pro-
grammers to develop and save test suites, which may be executed repeatedly. One of
the key benefits of JUnit is that it makes the re-testing of refactored and subclassed
objects semi-automatic, so it is widely used in the XP community, in which the recy-
cling of old test-sets has become a major part of the quality assurance strategy.

XP claims that a programmer may incrementally modify code in iterative cycles,
so long as each modification passes all the original unit tests: �Unit tests enable refac-
toring as well. After each small change, the unit tests can verify that a change in
structure did not introduce a change in functionality� [11]. There are two sides to this
claim. Firstly, if the modified code fails any tests, it is clear that faults have been
introduced (tests as diagnostics). Secondly, there is the assumption that modified code
which passes all the tests is still as secure as the original code (tests as guarantees).
This assumption is unsound and unsafe. After passing the recycled tests, objects may
yet contain faults introduced by the refinement. The guarantee provided by passing
the recycled tests is strictly weaker than the original guarantee that the same test-set
provided in its original context. Using simple state-based models of objects, it is pos-
sible to show why recycled test-sets provide incommensurate, and therefore inade-
quate, test coverage in the new context.

120 Anthony J.H. Simons

2 Generating Complete Unit Test-Sets

State machines have frequently been used as models of objects, both to articulate
their design [12, 5], and more formally as part of a testing method [13, 14, 15, 16]. In
the more rigorous approaches, it is possible to develop a notion of complete test cov-
erage, based on the exhaustive exploration of the object�s states and transitions. The
following is an adaptation of the X-Machine testing method [16, 17], which offers
stronger guarantees than other methods, in that its testing assumptions are clear and it
tests negatively for the absence of all undesired behaviour as well as positively for the
presence of all desired behaviour. It is well known that programmers fail to consider
the former, since it is hard to think of all the unintended ways in which a system
might possibly be abused, when the focus is on positive outcomes. No matter how
simple and direct the hand-crafted tests might appear, if they don�t cover the object�s
state space, they are incomplete, and only offer a false sense of security.

Earlier companion work showed how easy and practical it is to generate simple
state machines directly from XP story cards [18] and UML use cases [19]. This sup-
ported the automatic generation of complete user-acceptance tests. In [20] the auto-
matic generation of complete unit tests from state machines was shown to outperform
ad-hoc test scripting. The focus of the current paper is regression testing and com-
plete test regeneration in the context of object evolution.

2.1 State-Based Design

An object exists in a series of states, which are chosen by the designer to reflect
modes in which its methods react differently to the same messages. The number of
states an object can have depends on the independently-varying values of all of its
attributes. The theoretical maximum is the Cartesian product of its attribute domains.
Typically, this fine-grained attribute space is partitioned into coarser states, in which
behaviour is qualitatively �the same� in each partition [15, 21]. We define states more
abstractly, as partitions of the product of the ranges of an object�s access methods
[22]. This permits the design of state machines for fully abstract classes and inter-
faces, which by definition have no concrete attributes.

Figure 2 illustrates a simple state machine, describing the modal behaviour of a
Stack. This could represent the design of a concrete class, or an abstract interface.
Transitions for the state-modifying methods {push, pop} are shown explicitly. For
completeness, a finite state machine must define a transition for every method in
every state. We assume by convention that the access methods {top, empty, size},
which are not shown, all have implicit transitions looping from each state back to
itself.

The state machine is developed by considering the modes in which certain meth-
ods behave differently. Here, pop and top are legal in the Normal state, but undefined
in the Empty state. There is a single transition to the initial state (representing object
construction). Transitions are then added for every method in every state. If an object
is no longer useable, it may enter a final state (such as the error state after the illegal
pop from Empty). If multiple transitions could fire for the same message request, the
designer should resolve this nondeterminism by placing guards, mutually exclusive
and exhaustive conditions, on the conflicting transitions (such as on the two pop tran-

Testing with Guarantees and the Failure of Regression Testing in eXtreme Programming 121

sitions from Normal). Certain design-for-test conditions may apply, to ensure that the
machine can be driven deterministically through all of its states and transitions [16].
For example, in order to know when the final pop transition from Normal to Empty is
reached, the accessor size is required as one of Stack�s methods, so that suitable
guards may be constructed. The above design is logically complete, in the sense that
the modal behaviour of every method from every state is known.

2.2 Elements of the State Model

In formal approaches to state-based test generation, test-sets are constructed from
languages, sequences of symbols drawn from the total alphabet of transition labels.
The alphabet is the set of methods m ∈ M that can be called on the interface of the
object (including any inherited methods). For the Stack shown in figure 2, the alpha-
bet M = {push, pop, top, empty, size}. Note that new is not technically in the method-
interface of Stack, but rather constructs the Stack instance. The object responds to all
m ∈ M, and to no other methods (which are ruled out by compile-time syntax check-
ing). This puts a useful upper bound on the scope of negative testing.

The state-transition diagram defines a number states s ∈ S. The states of the Stack
in figure 2 are S = {Empty, Normal}. The �final state� is not treated as a first-class
state, but as an exception raised by pop from the Empty state. It is assumed that the
test harness can construct a predicate p : Stack → Boolean for each state s ∈ S, to
detect whether the OUT is in that state. Predicates may freely use public access meth-
ods internally: for example, isEmpty(s) ≡ s.size() = 0. Our earlier definition of state
(see 2.1) ensures that such predicates may always be defined.

Sequences of methods, denoted <m1, m2, �>, m ∈ M, may be constructed. Lan-
guages M0, M1, M2, � are sets of sequences of specific lengths; that is, M0 is the set
of zero-length sequences: {<>} and M1 is the set of all unit-length sequences: {<m1>,
<m2>, �}, etc. The infinite language M* is the union M0 ∪ M1 ∪ M2 ∪ � contain-
ing all arbitrary-length sequences. A predicate language P = {<p1>, <p2>, �} is a set
of unit-length predicate sequences, testing exhaustively for each state s ∈ S.

2.3 Complete Unit-Test Generation

When testing from a state-based design, the tester drives the OUT into all of its states
and then attempts every possible transition (both expected and unwanted) from each

Em pty

s ize() = 0

Norm al

s ize() > 0

push(e)
push(e)

pop() [s ize() > 1] pop() [s ize() = 1] pop()

new

Fig. 2. State machine for a Stack. The two states (Empty, Normal) are defined on a partition of
the range of the size access method. Only state-modifying transitions are shown explicitly

122 Anthony J.H. Simons

state, checking afterwards which destination states were reached. The OUT should
exhibit indistinguishable behaviour from the design, to pass the tests. It is assumed
that the design is a minimal state machine (with no duplicate, or redundant states), but
the tested implementation may be non-minimal, with more than the expected states.
Testing must therefore take this into account, exercising more than the minimal state
machine. These notions are formalised below.

The state cover is a set C ⊆ M* consisting of the shortest sequences that will drive
the OUT into all of its states. C is chosen by inspection, or by automatic exploration
of the model. For the Stack shown in figure 2 above, C = {<>, <push>} is the small-
est state cover, which will enter the Empty and Normal states. An initial test-set T0
aims to reach and then verify every state. Verification is accomplished by invoking
each predicate in the predicate language P after exploring each path in the state cover
C, a test set denoted by: C ⊗ P, the concatenated product that appends every se-
quence in P to every sequence in C. Exactly one predicate in each sequence should
return true, and all the others false, as determined from the model.

T0 = C ⊗ P (1)

A more sophisticated test-set T1 aims to reach every state and also exercise every
single method in every state. This is constructed from the transition cover, a set of
sequences K1 = C ∪ C ⊗ M1, which includes the state cover C and the concatenated
product term C ⊗ M1, denoting the attempted firing of every single transition from
every state. The states reached by the transition cover are validated again using all
singleton predicate sequences <p> ∈ P.

T1 = (C ∪ C ⊗ M1) ⊗ P (2)

An even more sophisticated test-set T2 aims to reach every state, fire every single
transition and also fire every possible pair of transitions from each state (sometimes
known as the switch cover). This is constructed from the augmented set of sequences
K2 = C ∪ C ⊗ M1 ∪ C ⊗ M2 and the reached states are again verified using the predi-
cates. The product term C ⊗ M2 denotes the attempted firing of all pairs of transitions
from every state.

T2 = (C ∪ C ⊗ M1 ∪ C ⊗ M2) ⊗ P (3)

In a similar fashion, further test-sets are constructed from the state cover C and low-
order languages Mk ⊆ M*. Each test-set subsumes the smaller test-sets of lesser so-
phistication in the series. In general, the series can be factorised and expressed for
test-sets of arbitrary sophistication as:

Tk = C ⊗ (M0 ∪ M1 ∪ M2 ... Mk) ⊗ P (4)

The general formula describes all test-sequences starting with a state cover, aug-
mented by firing all single, pairs, triples etc. of transitions and then verifying the
reached states using state predicates.

3 Test Completeness and Guarantees

The test-sets produced by this algorithm have important completeness properties. For
each value of k, specific guarantees are obtained about the implementation, once
testing is over. Below, we show how regression testing in XP does not provide the

Testing with Guarantees and the Failure of Regression Testing in eXtreme Programming 123

same guarantees after retesting. However, for simple extensions to a state-based de-
sign, tests may be re-generated by this algorithm and all the same guarantees upheld.

3.1 Guarantees After Testing

The set T0 guarantees that the implementation has at least all the states in the specifi-
cation. The set T1 guarantees this, and that a minimal implementation provides ex-
actly the desired state-transition behaviour. The remaining test-sets Tk provide the
same guarantees for non-minimal implementations, under weakening assumptions
about the level of duplication in the states and transitions.

A non-minimal, or redundant implementation is one where a programmer has in-
advertently introduced extra �ghost� states, which may or may not be faithful copies
of states desired in the design. Test sequences may lead into these �ghost� states, if
they exist, and the OUT may then behave in subtle unexpected ways, exhibiting extra,
or missing transitions, or reaching unexpected destination states. Each test-set Tk
provides complete confidence for systems in which chains of duplicated states do not
exceed length k-1. For small values of k, such as k=3, it is possible to have a very
high level of confidence in the correct state-transition behaviour of even quite per-
versely-structured implementations.

Both positive and negative testing are achieved; for example, it is confirmed that
access methods do not inadvertently modify object states. Testing avoids any uni-
formity assumption [23], since no conformity to type need be assumed in order for the
OUT to be tested. Likewise, testing avoids any regularity assumption that cycles in
the specification necessarily correspond to implementation cycles. When the OUT
�behaves correctly� with respect to the specification, this means that it has all the
same states and transitions, or, if it has extra, redundant states and transitions, then
these are semantically identical duplicates of the intended states in the specification.

3.2 Refactoring, Subclassing and Test Coverage

Figure 3 illustrates the state machine for a DynamicStack, an array-based implemen-
tation of a Stack. We may think of this either as a subclass design for a concrete class
that implements an abstract Stack interface [22], or as a refactored design for a Stack,
after the decision is taken to switch to an array-based implementation. The main dif-
ference between this and the earlier machine in figure 2 is that the old Normal state,
now only shown as a dashed region, has been partitioned into the states {Loaded,
Full}, in order to capture the distinct behaviour of push in the Full state, where this
triggers a memory reallocation. Though this design appears more complex, it is easily
generated by following the simple rule: show the behaviour of every method in every
state (self-transitions for the access methods are inferred, as above).

Increasing the state-space has important implications for test guarantees. Consider
the sufficiency of the T2 test-set, generated from the abstract Stack specification in
figure 2. This robustly guarantees the correct behaviour of a simple LinkedStack im-
plementation with S = {Empty, Normal}, even in the presence of �ghost� states. T2
will generate one sequence <push, push, push, isNormal>, which robustly exercises
<push, push> from the Normal state and will even detect a �ghost� copy of the Nor-
mal state.

124 Anthony J.H. Simons

Em pty

s ize() = 0

Loaded

s ize() < n

push(e)

push(e)
[s ize() < n-1]

pop() [s ize() > 1]

pop() [s ize() = 1]

pop()

new
Full

s ize() = n

push(e)
[s ize() = n-1]

pop()

push(e) /
res ize()

Fig. 3. State machine for a DynamicStack, which conforms to the behaviour of the Stack in fig.
2. The two states (Loaded, Full) partition the old Normal state in fig. 2, resulting in the replica-
tion of its transitions. The behaviour of push in the Full state must be tested

In XP regression testing, saved test-sets are reapplied to modified or extended ob-
jects in the expectation that passing all the saved tests will guarantee the same level of
correctness. If the Stack�s T2 test-set were reused to test the DynamicStack in figure 3,
with S = {Empty, Loaded, Full}, the resizing push transition would never be reached,
since this requires a sequence of four push methods. To the tester, it would appear
that the DynamicStack had passed all the saved T2 tests, even if a fault existed in the
resizing push transition. This fault would be undetected by the saved test-set.

In general, subclasses have a larger state-space than superclasses, due to their in-
troduction of more methods affecting object states. In Cook, Daniels [24] and
McGregor�s [15, 21] state models, subclasses could introduce new states. In Simons�
more careful model of state refinement [22, 25], subclassing was shown always to
result in the subdivision of existing states (as in figure 3). The current paper shows
that saved tests not only miss the new states formed in the child, but also fail to test
all of the transitions that were tested in the parent, due to the splitting [22] of these
transitions. This is important for regression testing, since it means that saved tests
exercise significantly less of the same behaviour in the child as they did in the parent.

To achieve the same level of coverage, it is not sufficient to supply extra tests for
the new methods, but rather it is vital to test all the interleavings of new methods with
the inherited methods, so exploring the state-transition diagram completely. This
simply cannot be done reliably by human intuition and manual test-script creation.
However, it could be done reliably if the test-sets were regenerated for the modified
state machine designs, using the algorithm from section 2.3 above.

4 Conclusions
The strength of the guarantee obtained after regression testing is overestimated in XP.
Recycled test-sets always exercise significantly less of the refined object than the
original, such that re-tested objects may be considerably less secure, for the same
testing effort. As the state-space of the modified or extended object increases, the
guarantee offered by retesting is progressively weakened. This undermines the valid-
ity of popular regression testing approaches, such as parallel design-and-test, test set
inheritance and reuse of saved test scripts in JUnit.

Testing with Guarantees and the Failure of Regression Testing in eXtreme Programming 125

By comparison, if complete test-sets are always generated from simple state ma-
chine designs, it is possible to provide specific guarantees, for example up to the k=2
or k=3 confidence level, in the OUT. After retesting a subclassed or refactored OUT,
the same guarantees may be upheld by generating from the revised state machine to
the same confidence level. Not only this, but all the objects in a software project may
be unit-tested to a given confidence level. This notion of guaranteed, repeatable
quality is a new and important concept in object-oriented testing.

This research was undertaken as part of the MOTIVE project, supported by UK
EPSRC GR/M56777.

References

1. Wells, D.: The Rules and Practices of Extreme Programming. Website and hypertext arti-
cle http://www.extremeprogramming.org/rules.html (1999)

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, New
York (2000)

3. Beck, K. and Fowler, M.: Planning Extreme Programming. Addison-Wesley, New York
(2000)

4. Kruchten, P.: The Rational Unified Process: an Introduction. 3rd edn. Addison-Wesley,
Reading (2003)

5. Object Management Group, UML Resource Page. Website
http://www.omg.org/uml/ (2004)

6. Stephens, M. and Rosenberg D.: Extreme Programming Refactored: The Case Against XP.
Apress, Berkley (2003)

7. Beck, K. Gamma E. et al.: The JUnit Project. Website http://www.junit.org/ (2003)
8. Stotts, D., Lindsey, M. and Antley, A.: An Informal Method for Systematic JUnit Test

Case generation. Lecture Notes in Computer Science, Vol. 2418. Springer Verlag, Berlin
Heidelberg New York (2002) 131-143

9. McGregor, J. D. and Korson, T.: Integrating Object-Oriented Testing and Development
Processes. Communications of the ACM, Vol. 37, No. 9 (1994) 59-77

10. McGregor, J. D. and Kare, A.: Parallel Architecture for Component Testing of Object-
oriented Software. Proc. 9th Annual Software Quality Week, Software Research, Inc. San
Francisco, May (1996)

11. Wells, D.: Unit Tests: Lessons Learned, in: The Rules and Practices of Extreme Program-
ming. Hypertext article
http://www.extremeprogramming.org/rules/unittests2.html (1999)

12. Schuman, S. A. and Pitt, D. H.: Object-oriented Subsystem Specification. In: Program
Specification and Transformation. Elsevier Science, North Holland (1987)

13. Chow, T.: Testing Software Design Modeled by Finite State Machines. IEEE Transactions
on Software Engineering, Vol. 4 No. 3 (1978) 178-187

14. Binder, R. V.: Testing Object-Oriented Systems: a Status Report. 3rd edn. Hypertext article
http://www.rbsc.com/pages/oostat.html (2001)

15. McGregor, J. D.: Constructing Functional Test Cases Using Incrementally-Derived State
Machines. Proc. 11th International Conference on Testing Computer Software. USPDI,
Washington (1994)

16. Holcombe, W. M. L. and Ipate, F.: Correct Systems: Building a Business Process Solution.
Applied Computing Series. Springer Verlag, Berlin Heidelberg New York (1998)

17. Ipate, F. and Holcombe, W. M. L.: An Integration Testing Method that is Proved to Find
All Faults. International Journal of Computational Mathematics, Vol. 63 (1997) 159-178

126 Anthony J.H. Simons

18. Holcombe, M., Bogdanov, K. and Gheorghe, M.: Functional Test Generation for Extreme
Programming. Proc. 2nd International Conference on Extreme Programming and Flexible
Processes in Software Engineering. XP 2001, Sardinia, Italy (2001) 109-113

19. Dranidis, D., Tigka, K. and Kefalas, P.: Formal Modelling of Use Cases with X-machines.
Proc. 1st South-East European Workshop on Formal Methods. South-Eeast European Re-
search Centre, Thessaloniki (2004)

20. Holcombe, M.: Where Do Unit Tests Come From? Proc. 4th. International Conference on
Extreme Programming and Flexible Processes in Software Engineering. XP 2003, Genova,
Italy, Lecture Notes in Computer Science, Vol. 2675. Springer Verlag, Berlin Heidelberg
New York (2003) 161-169

21. McGregor, J. D. and Dyer, D. M.: A Note on Inheritance and State Machines. Software
Engineering Notes, Vol. 18, No. 4 (1993) 61-69

22. Simons, A. J. H., Stannett, M. P., Bogdanov, K. E. and Holcombe, W. M. L.: Plug and Play
Safely: Behavioural Rules for Compatibility. Proc. 6th IASTED International Conference
on Software Engineering and Applications. SEA-2002, Cambridge (2002) 263-268

23. Bernot, B., Gaudel, M.-C. and Marre, B.: Software Testing Based on Formal Specifica-
tions: a Theory and a Tool. Software Engineering Journal, Vol. 6, No. 6 (1991) 387-405

24. Cook, S. and Daniels, J.: Designing Object-Oriented Systems: Object-Oriented Modelling
with Syntropy. Prentice Hall, London (1994)

25. Simons, A. J. H.: Letter to the Editor, Journal of Object Technology. Received December
5, 2003. Hypertext article http://www.jot.fm/general/letters/comment_simons_html (2003)

