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1. Introduction

The vast majority of object-oriented analysis and design methods agree that the identification

of subsystems is an important task.  Subsystems are the building blocks that allow a system to

be decoupled for various reasons, such as (i) to run on different processors;  (ii) to be

developed by different teams;  (iii) to compile as a separate module;  (iv) to facilitate

substitution and extension;  or (v) simply because the subsystem is itself an important domain

abstraction.  However, not many object-oriented methods offer any kind of systematic process,

in the form of axiomatised steps, for developing subsystems that are optimally partitioned

according to some design criteria.  Indeed, not many methods offer any systematic criteria for

evaluating subsystems.  We interpret this vagueness as part of a general problem in object-

oriented design:  there is a singular lack of attention spent on system-level modelling in object-

oriented design, such that object-oriented implementations tend to reflect more the initial

analysis model, or "business object" model.
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1.1 Naïve "Methods" and the Seamless Transition

Largely, this stems from a naïve1 "think of an object" approach, and the rush into notations

which fix lasting design abstractions during the initial concept identification phase.  Coad and

Yourdon [CoYo91a; CoYo91b] offer a five-stage development approach, based on directly

implementing the first-cut domain abstractions.  A subsystem in this approach is called a

subject, defined retrospectively as the root class of an aggregation or generalisation hierarchy

(see also section 3.3).  In the rush to engage in "intuitive" object modelling, systems can be

produced with cross-linked couplings, complex creation and deletion dependencies, call-back

messaging arrangements and so forth.  The appeal of new standardised design notations

[Rati97, FHG97] will tend to promote these "instant designs", based on a misapprehension that

simply using a standard notation equates with following a systematic design process.

Elsewhere, a renewed emphasis on the so-called seamless transition [WaNe95, HeEd96] has

reinforced a belief that object-orientation promotes the direct transfer of domain analysis

models into design.  (Meyer's original weaker claim [Meye88] was that domain object

concepts survive across development stages and during system evolution).  Instead, we should

expect a system to alter, sometimes radically, during the design phase in order to establish a

proper modular structure which exhibits loose coupling between modules and encapsulates

highly cohesive components inside modules.  The seamlessness argument has been challenged

from the opposite perspective:  that analysis models are unnatural when motivated a priori by

object-oriented design concerns [HoSi93].

1.2 Intuitive Methods - Layers and Partitions

OMT [RBPE91] and Booch [Booc94] identify subsystems according to an informal

appreciation of layers and partitions in a system.  A partition is part of a system handling a

distinct operational concern, such as the database back-end, the domain model, or the user

interface.   A layer is a horizontal substrate which communicates with the layer below, such as

the BIOS, the operating system, or the application layer.  Booch [Booc94] also has the

concept of the package, or module, fairly coarse-grained units of compilation and distribution;

and various medium-scale snapshots of groups of collaborating classes, which we shall call

clusters.2  However, the reader is hard-pressed to establish what systematic process should be

followed to identify these subsystems; and how to evaluate different possible partitions and

                                               

1 In the sense of primitive, ingenuous, rather than in the sense foolish (necessarily).

2 Note that UML is now, confusingly, adopting the term "package" to refer to this concept.
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boundaries.  Where classes are grouped by layer or partition, these categories are usually

imposed externally, determined according to intuitive semantic properties, rather than because

of any proven internal coupling characteristics.

Where high-quality, optimised modular designs are given, the means of their discovery often

remains a mystery.  A fine example is in [Booc94], chapter 9, where the architecture of the

Booch Components [Rati93] is presented.  These have been factored along five orthogonal

dimensions:  collection semantics, element type, storage policy, concurrency control and

exception handling.  A footnote explains that the given architecture was the fourth revision,

begging the question:  exactly how was this architecture reached?   How was it judged better

than the previous three?  If the solution was developed intuitively, by trial and error, how can

the process be made systematic and repeatable [Hump95]?

1.3 More Systematic Approaches - Clustering and Layering

Many of the now-famous design patterns [GHJV95] operate at the level of clusters.  Each

pattern is a solution to a small-scale design problem, created according to the single principle:

"Encapsulate the part that changes".  Patterns as diverse as Abstract Factory (creational),

Composite (structural) and Command (behavioural) all rely directly on this principle, by

reorganising designs around polymorphic plug-in points, which may subsequently be filled by

specialised concrete components.  This is the kind of quality design activity which is lacking

elsewhere in object-oriented methods, although here it is still presented intuitively, on a case-

by-case basis.

In the rest of this paper, we describe and evaluate two systematic techniques for identifying,

reorganising and developing high-quality subsystems.  The focus is on uncovering the system

modularisation principles used in each approach and making these explicit.  Section 2 presents

the Responsibility-Driven Design method from a more systematic viewpoint, especially the

much-neglected system design stage, which elevates contract minimisation as its modularising

principle.  Section 3 presents an original Event-Driven approach developed by the second

author and her colleagues, which elevates existence dependency as its guiding principle for

modular decomposition.  Each method is applied to a different case study which best brings

out some of the modularising and transformational principles particular to that method.  In our

assessment of these two contrasting methods, we use Design Patterns in an unusual way:  to

evaluate the quality of the system-level designs generated by the methods.  Normally, Design

Patterns are applied intuitively to particular problem/solution spaces [GHJV95].  Here, we

allow the rigorous application of the methods themselves to generate the Patterns which they

naturally support.  We regard the emergence of Design Patterns as evidence of the quality of
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the methods, and the generation of different Design Patterns as an indication of the particular

bias of the methods.  This linkage has not been made before.

2. Responsibility-Driven Design:  Contract Minimisation

Responsibility-Driven Design (RDD) regards objects as behavioural abstractions, characterised

at a coarse scale by the "responsibilities" that they bear, which translate 1:M at a finer scale

into the services they provide [WiWi89].  Data attributes are assigned later, on a need-to-know

basis [Budd91].  The design method [WWW90] operates in two phases:  the first generative

phase produces new object abstractions using the CRC-card modelling technique [BeCu89];

and the second transformational phase identifies tightly-coupled regions and layers the system

using a coupling metric called "minimisation of contracts".   RDD is especially good for

decentralising control, distributing system behaviour throughout a society of objects [Wirf96].

Most second-hand treatments of RDD [Budd91, Booc94, HeEd96] mistakenly focus only on

the informal aspects of the first phase;  and then sometimes misunderstand its purpose.  It is

true that RDD and CRC-card modelling are helpful to promote more active (viz behavioural)

object concepts, such as manager or controller abstractions [Booc94].  However, the

generative phase of RDD is best applied ab initio, not after the prior construction of "object

models" (extended Entity-Relationship Diagrams) of some kind.  It is important to keep entity

boundaries plastic while responsibilities are being elicited and redistributed - prior object

modelling tends to fix these boundaries too early.  RDD is compatible with other behaviour-

centred approaches [Gibs90, RuGo92, Grah95] which use scripts/scenarios/use-cases

[JCJO92] to explore system requirements before assigning behaviours to objects.  However,

very few authors have picked up on the systematic layering offered by the second

transformational phase of RDD, which we believe has been unfairly neglected.

2.1 The Rules of RDD

We are chiefly interested in RDD for its power to transform system designs, especially the

much-neglected and often misunderstood second phase.  However, for completeness' sake, the

whole RDD process has been codified in the following 10 rules, shown in Table 1, distilled

mainly from [WWW90, Budd91].  We have made certain aspects of the process more explicit

(rules 3, 4) and introduced a decision function (rules 5, 6) and a coupling weighting (rule 8) of

our own, which we have found useful in the Discovery method [Simo98].  In the rules, "entity"

is used where the original treatment had "class", because technically classes are identified later,

when the basic concepts have solidified.
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RDD rule 1:  Identify entities on the basis that they fulfil a small (2-7) cohesive set of

responsibilities, each a coarse-grained statement of (part of) the purpose of the entity;

concepts which bear no responsibility are either simple attributes, or vacuous.

RDD rule 2:  Consider how each entity fulfils its responsibilities, establishing

collaborations with subcontractor entities, to which it delegates some parts of its

responsibilities.

RDD rule 3:  Add data attributes, on a need-to-know basis, to those entities bearing a

primary responsibility for managing the data;  convert passive concepts into attributes.

RDD rule 4:  Continue subcontracting until the coarse-grained statements of

responsibility reach the fine granularity of single services (methods).

RDD rule 5:  If an entity acquires too many responsibilities, and these are cohesive,

restate the responsibilities more generally and delegate the detail to new (invented)

subcontractors.

RDD rule 6:  If an entity acquires too many responsibilities, and these are not cohesive,

partition the entity into two or more peer entities according to grouped responsibilities.

RDD rule 7:  For each entity, group its services into contracts, one contract per set of

services invoked by a distinct set of clients;  index the services in each contract.

RDD rule 8:  Draw a collaboration graph, linking clients via directed arcs to contracts

indexed in each server entity;  log the per-service weighted strength of each

collaboration.

RDD rule 9:  Aggregate tightly-coupled subsystems inside new mediator entities;

uncouple the components and have their contracts migrate outwards to the aggregate

entity.

RDD rule 10:  Generalise groups of entities that offer, or that invoke the same, or

similar contracts;  merge communication paths to and from the general entity;  add

dynamic binding.

Table 1:  Ten Rules of Responsibility-Driven Design

Rules 1-3 govern the initial conceptualisation of domain entities.  Rules 4-6 generate more

esoteric entities to decentralise computation;  and determine their final granularity by the size

constraint and single-purpose requirement.  Rules 7-10 govern the systematic restructuring of

the system, generating design-level entities needed to reduce system coupling ("minimise
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contracts", in [WWW90]).   RDD is therefore a responsibility-driven approach, which

optimises the communication pattern among entities, by transferring the responsibility for

handling message requests around the system.  The cleverness in RDD lies in its ability to

merge communication paths, thereby reducing the degree of static inter-entity coupling

required.  This is consonant with Parnas' dictum on modularity [Parn72].

The terms used in RDD are often misconstrued, in particular:  responsibility, collaboration

and contract.  A responsibility is not necessarily the same thing as a service or method, but

may be (rules 1 and 4);  keeping a coarser-grained view affects the operation of rules 5-6.  A

collaboration is best thought of as a connection, or coupling, between a client and a server,

rather than the messages sent between them;  the coupling view is needed for rule 9 to operate

correctly.  The transformational stage depends crucially on identifying contracts, sets of

protocols in a server class's interface that are used by common sets of clients.  Meyer's use of

the term "contract" is different and more specific [Meye88], standing for the reciprocal

agreement between a client and a server governing correct invocation and exception-handling

in a single method.  Henderson-Sellers and Edwards distinguish such "method contracts" from

"class contracts", understood to be the set of method contracts used by each client [HeEd96].

Each client-server collaboration (viz coupling) would then be governed by a single contract.

RDD is slightly more subtle than this, grouping services into contracts according to each

distinct set of clients which invoke them.  This means that a given client-server collaboration

may eventually be governed by one or more contracts, depending on whether the server has

other clients which invoke intersecting groups of services.  This distinction affects the

operation of rule 10 above.

2.2 Transformations in RDD

A version of the well-known ATM banking machine example is presented at different stages of

the RDD process in Figures 1 and 2.  In Figure 1, the initial communication pattern has been

established between the first-cut domain entities (rule 8 has been applied prematurely, for

illustrative purposes).  Nouns from the original problem description have been retained only if

they can be conceived as bearing some kind of responsibility (rule 1), so concepts like Money

do not survive, except as attributes of an Account entity (rule 3).  Early generalisation of

Account interfaces (rule 10) establishes the inheritance structure as illustrated.  In Figure 2, the

design process is more advanced, but not yet complete.  The CardReader has delegated

responsibility for verifying the PIN against the Account number and secret PIN to a new

Verifier entity mainly because CardReader has no responsibility for retaining the PIN number

(rule 3) once it has read the card and PIN number [Budd91];  and because that task of

communicating via the datalink is a cohesive part of "read and validate customer a/c number
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and PIN" (rule 5) but sufficiently complex (rule 2) for this responsibility to be hived off.

Notice how this is an instance of the Chain of Responsibility pattern [GHJV95].

Teller

Terminal Nightsafe

Checking
Account

Account

Savings
Account

Card
Reader

Dispenser

Figure 1:  Pre-transformed RDD collaborations

Withdrawal

Checking
Account

Account

Savings
Account

Card
Reader

Balance

Verifier

Deposit

Nightsafe

DispenserTerminal

Figure 2:  Partially-elaborated RDD collaborations

The part of the system which undergoes greatest change is the Teller.  Initially, it has the

responsibility to "handle banking transactions", but when these are refined into individual

services (rule 4), the Teller entity must be partitioned.  The too-many responsibilities are not

cohesive (rule 6) because "deposit money" requires collaborating with the NightSafe and

Account, whereas "withdraw money" requires collaborating with the Dispenser and Account

and lastly, "inspect balance" only requires collaborating with the Account.  So, three peer

"manager" entities (rule 6) are devised to handle each type of transaction.  Initially, these are
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presumed to be quite different in their behaviour (consider:  "deposit", versus "withdraw") and

so unrelated.

Withdrawal

Deposit

Terminal Withdrawal

Deposit

Terminal

Transferundesired
linkage

(a) (b)

Figure 3:  Aggregating over a closed subsystem

If one of the kinds of withdrawal to be supported is really a transfer of funds, this may lead to

the undesired cross-coupling shown in Figure 3 (a) which is subsequently resolved, in Figure 3

(b) by aggregating (rule 9) over the Deposit and Withdrawal entities using a Transfer entity.

Notice how this is an instance of the Mediator pattern [GHJV95]:  the Transfer entity

coordinates the sequence of interactions between the Deposit and Withdrawal entities, such

that these no longer need to maintain references to each other;  the contract, renamed "transfer

money", migrates outwards to Transfer.

The last group of transformations involves considering the contracts of Account.  We assume

this entity has acquired a number of different services (rule 4), invoked directly by the

following clients:

Balance:  "inspect balance";

Deposit:  "inspect balance", "deposit amount", "commit changes";

Withdraw:  "inspect balance", "request withdrawal", "withdraw amount", "commit

changes";

Transfer:  "inspect balance";  (other requests are indirect, via Withdraw and Deposit);

Verifier:  "valid a/c?", "valid PIN?", "frozen?".

According to rule 7, Account offers five contracts:  (1) "inspect balance" is offered to all clients

except Verifier;  (2) "make deposits" is offered to Deposit;  (3) "make withdrawals" is offered

to Withdrawal,  grouping together the services "request withdrawal" and "withdraw amount";

(4) "commit changes" is offered (directly) to Deposit and Withdraw;  and finally (5) "a/c

open?" is offered to Verifier, grouping together the services "valid a/c?", "valid PIN?" and

"frozen?".
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Transfer

Account

Deposit

Terminal

Withdrawal

2

3

4

Transfer

Account

Deposit

Transaction

2+3

4

Terminal

Withdrawal

2 = deposit
3 = withdraw
4 = commit

use same
contract

merged
paths

single
path

(a) (b)

Figure 4:  Generalising on commonly-invoked contracts

By drawing the collaboration graph (rule 8) after the proper determination of contracts (rule

7), we see in a more visual way how individual clients enter multiple contracts with Account

and how different groups of clients use some of the same contracts.  A fragment of this system

in Figure 4 (a) shows how Deposit and Withdrawal invoke contract (4) in common, but

otherwise invoke apparently separate contracts (2) and (3) each.  This is strongly suggestive

(rule 10) that some generalisation of Withdraw and Deposit should handle the communication

with Account.  Calling this new entity a Transaction manager, the responsibility for invoking

Account contracts migrates upwards.  Contract (4) is invoked directly by Transaction.

Contracts (2) and (3) are sufficiently similar, from the perspective of "performing a

transaction", that a Template Method may be provided in Transaction which is subsequently

dynamically bound in Deposit and Withdrawal, to make the appropriate deposit or withdrawal.

The effect of this transformation is to merge the communication paths between Deposit and

Account with those between Withdrawal and Account.  In Figure 4 (b), this is shown by

migrating the source of the collaborations upwards, and merging the identical and similar

collaboration paths.  First, contracts (2) and (3) are merged (via polymorphism);  then later it

becomes clear that the contracts (2+3) and (4) are only used by the client Transaction, so these

are merged (rule 7).  Notice how this transformation leads systematically to a Template

Method pattern [GHJV95], in which Transaction's main handleRequest(Account&) method

invokes a virtual transact(int) method stub, followed by a concrete commit() method, on an

Account instance.  Transaction's descendants will provide appropriate concrete

implementations for transact(int).
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Checking
Account

Account

Savings
Account

Card
Reader

Teller

Verifier

Transfer

Nightsafe Dispenser

Terminal BalanceTransaction

Deposit Withdrawal

Figure 5:  Fully-transformed RDD collaboration graph

A similar process of generalisation (rules 10, 7) results in Balance, Transfer and Transaction

being attached under Teller, which is reintroduced as an abstract superclass in the final design

in Figure 5, having a single contract (1+2+3+4) with Account.  Notice how this is an instance

of the Command pattern [GHJV95]:  Teller encapsulates different kinds of banking requests,

fielded by its subclasses.  Further merging of Teller and Verifier is prevented by their too-

different external interfaces.

2.3 Subsystems and Coupling in RDD

The kinds of subsystems identified by RDD are equivalent to well-factored modules with

minimal inter-module procedure calls.  We emphasise that it is the systematic application of

rules 7-10 which layers systems properly;  and this is the aspect of RDD which is most often

neglected.  We introduced the per-service weighting measure (rule 7) to let the designer see

how many services each collaboration was carrying, in tightly-coupled systems.  It provides a

rationale for placing subsystem boundaries:  you aggregate over the most tightly-coupled parts

of the system (with the highest per-service counts) and break the system at weakly-coupled

points (with the lowest per-service counts).  RDD subsystems are eventually much better

motivated than Coad-Yourdon subjects [CoYo91a].

RDD supports the bottom-up discovery of Mediator patterns, where each Mediator is a

properly-layered subsystem.  The aggregate subsystem Transfer obviates the need for its

component Transaction managers to be coupled directly to each other.  Instead, it initiates the

communcation between them, handling the transfer of requests and money in a controlled
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sequence, possibly recording state information in the process (rule 3).  For example, the

withdrawal request may be refused, in which case the deposit cannot go ahead.  This is ideally

handled internally by the Transfer manager.

Most methods encourage clustering of classes with similar external interfaces (we assumed this

with the grouping of SavingsAccount and CheckingAccount under Account), in other words,

their similar behaviour is grouped according to how they act as servers.  RDD is unique in its

ability to cluster classes systematically according to how they invoke their clients.  We

emphasise how clever this is - it is the only approach which can optimise the opposite (usually

invisible, encapsulated) end of the collaboration relationship.  Through the partitioning of class

services into contracts (rule 7) and the construction of fine-grained collaboration graphs (rule

8) RDD supports the bottom-up discovery of Template Method and Command patterns.  In

particular, it is the per-client-set identification of contracts which allows the designer to see

similarities in the global pattern of invocation.  Coarser-grained definitions of a collaboration

graph [HeEd96, Rati97] do not show patterns of invocation;  but only patterns of coupling.

This will permit the aggregation activity (rule 9) to proceed, but not the generalisation activity

(rule 10).

3 Event-Driven Design:  Existence Dependency

The second object-oriented design method we consider is an original one, based on a process

algebra [Snoe95, DeSn95] and a conceptual modelling approach [SnDe96].  We call it Event-

driven design (EDD) because it takes the viewpoint that all computation is made up of events,

on which objects must synchronise in order to participate.  The notion of event participation is

deliberately abstract, avoiding early assignment of responsibility to objects for carrying out

actions.  A motivating example is where a Copy of a library book is taken out on loan by a

Borrower:  which object is responsible for performing this action?  The event-driven approach

says that neither is, instead both participate in a "borrowing" event.  This viewpoint is similar

to the view of communication defined in CSP [Hoar85];  whereas traditional message-passing

is more like CCS [Miln80].

Entities are identified initially as simple data abstractions and are inserted into an object-event

table (OET).  Every entity should have one or more associated creation and deletion events

bounding the lifetime of its existence;  these are logged in the table.  Further events, which

trigger the main system operations, are also logged against all those entities which participate

in each event.  An existence dependency graph (EDG) is constructed, in parallel with the OET.

This is different from an entity-relationship diagram in that every link is an existence- or

lifetime-dependency relationship, between a master and one or more dependent entities.  For

example, a library may acquire a new Title and several Copies of that book.  The existence of
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the Copies is directly dependent on that of the Title;  without the Title first being created, no

Copies can exist;  and if the Title is ever withdrawn, then all Copies must also be removed.

The EDG starts as a set of nodes, only some of which may initially depend on each other and

so be connected.  Eventually, the EDG becomes an acyclic graph (transitive, antisymmetric,

non-reflexive) as further nodes and connections are added.

The system elaboration phase extends the OET and EDG by considering groups of entities

which must synchronise to participate in events.  If they are not already linked by dependency

in the EDG, then some new entity must be invented to represent the time-bounded association

between the participating entities.  This is added to the EDG and appropriate creation and

deletion events are logged in the OET for the new entity.  An example is the borrow event, in

which a Copy of a book and a Borrower participate.  This event marks the creation of a Loan

entity, representing an association between the Copy and Borrower, which is deleted when a

corresponding return event signals the return of the book to the library.  The Loan

encapsulates the keys (pointers, IDs) of its participants.

In the system consolidation phase, methods are devised corresponding to each event handled in

each entity.  The flow of control is from the dependent associative entity to the participating

master entities, each of which must have a version of the method to fulfil its part of the jointly-

held responsibility for the event.  The borrow event is the constructor for a Loan, which tells a

Borrower to decrement his/her book allowance and tells the Copy to mark itself as unavailable

to other library users.

3.1 The Rules of EDD

Onece more, we are interested in EDD as a systematic design process, as described in Table 2.

EDD rule 1:  Entities are data or association concepts, existing for a period of time,

bounded by one or more creation and deletion events and involved in possibly many

other events.

EDD rule 2:  Primary data entities group atomic, non-overlapping sets of attributes,

which they are responsible for maintaining.

EDD rule 3:  Associative (dependent) entities group the keys of the master entities on

which they depend;  and may manage further relationship attributes.

EDD rule 4:  Events are defined as atomic, non-decomposable actions which (C)reate,

(I)nvolve or (D)elete entities;  an atomic event must impact on a finite, known number

of entities.
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EDD rule 5:  An object-event table arranges entities (x-axis) against events (y-axis);  C,

I, D are entered at appropriate intersections;  every entity should have at least one C

and D;  every event should have at least one C, or I, or D.

EDD rule 6:  An existence dependency graph connects 1:1 and M:1 simultaneous

dependents to their master(s);  the lifetime of each dependent is strictly contained

within that of its masters.

EDD rule 7:  A new association entity is created for each distinct group of entities

participating in 2 or more common events;  the C, I, D events for this new dependent

entity must correspond respectively to:  [C or I],  I, [D or I] events for its masters.

EDD rule 8:  Continue the process until all nodes in the EDG are connected;  and all

joint participations in events in the OET have been encapsulated in dependent

associative entities, or all but one, since two events are needed to bound the lifetime of

a dependent entity.

EDD rule 9:  All events become methods invoked on the dependent entities, delegating

to the participating master entities;  dependents handle the intersection of their masters'

events.

EDD rule 10:  Branches in method-trees are renamed according to the rôles played by

each participating entity;  similar rôles are clustered;  degenerate methods are

eliminated.

Table 2:  Ten Rules of Event-Driven Design

Rules 1-4 govern the identification of entities and events;  rules 5-8 govern the elaboration

phase which layers the system according to the principle of existence dependency;  and rules 9-

10 govern the consolidation phase which converts events into chains of methods.  There is a

pleasing simplicity about the EDG, since all relationships have the same semantics and are

already normalised when they are constructed.  Also, the mutual influence of the OET and

EDG allows the two principles of event participation and existence dependency to drive the

invention of associative entity-abstractions.

3.2 Transformations in EDD

Most of the system layering activity is performed during the elaboration phase, in which new

entities are devised according to the principle of existence dependency.  Less structural re-

design is required, since the event-participation model deliberately leaves the initial message

pattern plastic;  however, transformations are made to the OET.  Figures 6 and 7 illustrate the
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lending library system before and after a Reservation entity has been added (rules 5-8).  In

Figure 6, the Loan entity manages the common events borrow, renew, overdue and return, in

which Copy and Borrower participate.  Note how the OET contains (I)nvolvement entries for

all the master entities (rule 7) impacted by Loan events which may have been identified later,

such as renew.  This allows the consequences to propagate to master entities (eg the Borrower

may have certain privileges restored by renewing an overdue book;  the Copy may have its

time-to-inspection reduced);  but it is difficult to imagine what impact this might have on Title.

The consolidation phase (rule 10) eliminates such degenerate methods which were created to

respond to events.
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Figure 6:  OET and EDG after addition of Loan

The existence of at least two events (reserve, cancel) which involve two participants (Title,

Borrower) not already covered by the existing Loan association motivates the creation of

Reservation (rule 7).  After due consideration (rule 1), the fetch event is also identified as a

deletion-event for Reservation.  This is the only event to involve both a Loan and Reservation,

having no duration, so no new associative entity may be created (rules 7, 8).

3.3 Subsystems and Coupling in EDD

Dependent entities in EDD have some of the characteristics of ERM's linker entities (they

represent associations;  they store foreign keys) but also have characteristics of RDD's

Mediator patterns (they are devised in response to events;  they fulfil a real need to

communicate).  However, data aggregations may be handled differently in EDD than in other

object modelling approaches [RBPE91, CABD94, Rati97, FHG97].  Aggregations
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representing existence dependencies are modelled the same way:  eg the Lines of an order are

dependent on the Order.  However, new associative entities must always be devised to relate

an assembly to its non-existence-dependent parts, such as the components of a PC.  Here, an

associative entity manages the collaboration between the whole and each part, which is

presumed to have a separate existence (it may be exchanged, substituted into other PCs).  This

tends to promote a distributed pattern of control:  the logic of the PC is handled by a society of

existence-dependent controllers governing the throughput between the PC and each of its

hardware components.
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Figure 7:  OET and EDG after addition of Reservation

EDD optimises the construction order of a system.  It is easy to draw entity life history

diagrams [AsGo90] for each entity and derive the life-history of the system from this.  The

logic handling other events during the life of an entity is either pure selection (all events equally

likely), or some sequencing of events is required.  EDD layers the composition structure

similarly to RDD;  but it suggests a quite different generalisation structure.  By modelling

methods on events, one is tempted to give similar names to reciprocal parts of the same

interaction.  It would be wrong to consider that a Borrower and a Copy are specialisations of a

Loan because they respond to a superset of Loan's events (cf rule 9) - fortunately, renaming

(rule 10) will tend to isolate the separate rôles in interactions (viz lend versus borrow).  But

consider instead that the interfaces of Loan, Borrower and Copy may all be generalised using a

Composite pattern [GHJV95], which delegates messages from composites to their

components.  EDD produces large numbers of composite patterns, because of the emphasis on

shared participation in events.  More important entities will participate in more than one

composite pattern, suggesting the use of multiple inheritance from several abstract base

page 15



Rigorous Object-Oriented System Design

classes.  Where one or other master entity is chiefly accountable in handling an event, this is

also an instance of Chain of Responsibility [GHJV95].  Exploitation of these patterns will tend

to reduce the duplication present in the proliferation of co-ordinating abstractions (such as the

PC-controllers, above).

4. Towards Systematic Object-Oriented Design

This paper has examined two different approaches to object-oriented design, each of which

elevates a different modularising principle:  contract minimisation and existence dependency.

The design methods were presented in a semi-formal way, partly to show how a good informal

method can be improved, clarified and so applied in a rigorous way; and partly to act as an

introduction to a fully formal presentation, which we give in an appendix.  Being precise about

the application of a method is important;  however, it is at least as important to consider the

quality of the design artifacts produced by the method.

4.1 Coupling, Interdependency and Layering

The kinds of subsystems and layering suggested by each approach are different.  EDD

promotes unidirectional data coupling in its modelling, but would require the use of an

Observer pattern (not derived automatically) to handle inverse effects, such as cascading

deletions.  RDD is more successful in eliminating mutual and closed-loop couplings because of

the perspective offered by the collaboration graph.  In the same circumstances, where EDD

requires an Observer pattern, RDD will generate a Mediator pattern.  RDD is  unique in its

generalisation strategy, because it merges communication paths at both the source and

destination ends.  RDD and EDD contrast strongly in the way they generalise - whereas RDD

will generate Command and Template Method patterns, EDD will generate Composite and

Chain of Responsibility patterns.

Both approaches reduce the number of subsystems which interact directly.  In some cases, they

will suggest the same structures, but for different reasons.  A Purchaser, Vendor and Product

will end up encapsulated in a Sale using both approaches.  In RDD, Sale will be invented at a

late stage to aggregate over the closed ring of collaborations involved in transferring money,

goods and ownership;  whereas in EDD, Sale will necessarily exist, by virtue of the existence

dependency rules, but only for the duration of the agreement to purchase until the final

transaction is complete.
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4.2 Pattern Metrics for System Design

This paper claims that object-oriented design, in particular system modelling, can be made

much more systematic.  We have emphasised the system modelling aspect, because this has

only been treated informally in many other presentations [RBPE91, JCJO92, Booc94,

HeEd96].  The distilling of a set of ten rules for each design approach goes some way towards

demonstrating our point;  but we were further rewarded during the investigation.  Initially, we

had set out simply to codify and then compare two design approaches.  When we applied the

semi-formal rules to example system designs, we found again and again that recognisable

design patterns emerged [GHJV95].  In particular, we gave examples of Mediator, Command,

Chain of Responsibility, Template Method and Composite patterns that were generated

automatically by the rules.  This reinforces our confidence in the quality of the designs

generated by rule and quantifies to some degree the particular bias of the two design methods

examined.  We note that Design Patterns have not been used in this manner before - as

evaluation metrics for methods.

4.3 Design as a Transformational Activity

We have also emphasised that system modelling is a transformational activity, something not

truly appreciated by seamless approaches [CoYo91a, CoYo91b, WaNe95, HeEd96].  This is

also exemplified in the rulesets.  Each ruleset may be partitioned, retrospectively, into three

kinds of rule:  elicitation-, elaboration- and transformation-rules.  Elicitation-rules are almost

entirely dependent on the developer for basic information.  Elaboration-rules may use internal

completeness indicators to request identified pieces of missing information.  Transformation-

rules apply on parts of the system that are recognised to be in a sub-optimal state and generate

new entities and new communication patterns.  In conclusion, we feel that system

transformation is an important, but neglected area of object-oriented design; the rule-based

approach adopted here bears further investigation into whether high-quality designs can

eventually be generated automatically from naïve analysis data.

5. Appendix:  Formalising RDD

Due to the limitations of space, we are only able to present a formalism for one of the two

methods.  A newly-published specification for EDD is given in [SnoDe98].  It turns out that

RDD is more challenging to specify, since the logic of existence-dependency is already a

natural fit with the ∀x, ∃y style of quantification in predicate logic.  Many of the analytical

procedures in RDD are quite hard to quantify, being based on judgements of meanings and

purpose.  Clearly, the later transformational rules do apply in specific syntactic circumstances,

for which appropriate patterns have to be matched in collaboration diagrams, but the earlier
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rules depend on interpretations of statements of responsibility.  Nonetheless, it is possible to

construct a purely syntactic scheme for RDD, which we develop below.

5.1 Syntactic Elements of RDD

Let N be the set of nouns in the domain of discourse, from which labels for entity-concepts and

attributes may be drawn.  We may now specify certain other label sets of interest, and assert

that these sets, when marked with a prime (′), also include the undefined element ⊥:

A ⊆ N, the set of salient attribute-nouns;

E ⊆ N, the set of salient entity-nouns;

S = E ∪ A, the set of salient nouns, where A ∩ E = ∅.

Now, let R be the set of atomic natural-language statements of responsibility.  By atomic, we

mean that these statements do not contain "and" or "or".  A grammar P for labels describing

purpose may then be given, to allow the construction of non-atomic statements of purpose:

P ::= R | R "and" R | R "or" R | (R)

A candidate entity is defined as a map from salient labels S to 5-tuples representing purpose,

superclass, sets of responsibilities, collaborators and attributes.

entity : S → (P′ × E′ × P(P) × P(E) × P(A)), where P is powerset.

This function is defined for s∈S according to the conditions:

∀s∈S, ∀p∈P, ∀e∈E, ∀r∈P(P), ∀c∈P(E), ∀a∈P(A) .

(entity(s) = (p × e × r × c × a) ∧ p ≠ ⊥ ∧ 2 ≤ card(r)  ⇔  s ∈ E) ∧
(entity(s) = (⊥ × ⊥ × ∅ × ∅ × ∅)  ⇔  s ∈ A)

This defines the membership of A, E and S;  and implicitly the syntactic meaning of salience, by

ruling out other possible entity structures (RDD rules 1 and 3, above).  Hereafter, we are

chiefly interested in the subset domain ∀s∈E, and define the accessors:

purpose : E → P ∀e∈E . purpose(e) = entity(e)[1];

superclass : E → E′ ∀e∈E . superclass(e) = entity(e)[2];

responsibilities : E → P(P) ∀e∈E . responsibilities(e) = entity(e)[3];

collaborators : E → P(E) ∀e∈E . collaborators(e) = entity(e)[4];

attributes : E → P(A) ∀e∈E . attributes(e) = entity(e)[5];

Now, let F be the set of atomic services.  Each service f∈F is a function defined in the context

of an entity.  Each f typically acts on many inputs and yields a single output in S, but may also
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read or modify an entity's attributes and, by invoking other services, may affect the state of

other referenced entities.  So, we formalise f as a map from 3-tuple to 3-tuple:

f : (P(S) × P(A) × P(E)) → (S × P(A) × P(E)), for each f∈F;

Let us now interpret the a meaning of a purpose as a map from labels to sets of services and

define that, for any p∈P, the evaluation refine(p) will yield the corresponding services:

refine : P → P(F) ∀ e ∈ E, ∃s ∈ P(F) . refine(e) = s.

This allows us to relate syntactically the "statement of purpose" and the individual "statements

of responsibility" in an entity.  The responsibilities map to sets which exhaustively partition the

set mapped from the purpose;  and each responsibility maps to a nonempty set:

∀e∈E, ∀p ∈ responsibilities(e) . refine(purpose(e)) = refine(pi), i = 1..n;

∀e∈E,  ∀p,q ∈ responsibilities(e) . p ≠ q  ⇒  refine(p) ∩ refine(q) = ∅;

∀e∈E,  ∀p ∈ responsibilities(e) . refine(p) ≠ ∅;

We introduce various shorthand functions below to facilitate access to services and to their

arguments, results and other entity-scoped variables and references:

services : E → P(F) ∀e∈E  .  services(e) = refine(purpose(e));

arguments : F → P(S) ∀f∈F . arguments(f) = dom(f)[1];

result : F → S ∀f∈F . result(f) = ran(f)[1];

variables : F → P(A) ∀f∈F . variables(f) = dom(f)[2] ∪ ran(f)[2];

references : F → P(E) ∀f∈F . references(f) = dom(f)[3] ∪ ran(f)[3].

We may also characterise the "need to know" assignment of attributes in RDD rule 3 by

specifying that attributes may only be used or modified by services owned by the same entity,

and must be read/written at least once:

∀e ∈ E, ∀a ∈ attributes(e), ∃f, g ∈ services(e) . a ∈ dom(f)[2] ∧ a ∈ ran(g)[2];

∀d,e ∈ E, ∀a ∈ attributes(e), ∀f ∈ services(e) . d ≠ e  ⇒  a ∉ variables(f).

5.2 Elaboration Rules in RDD

It is fairly easy to formalise syntactic conditions for the RDD elaborational rules 2, 5 and 6.

The basic constraint is that when the size of the responsibility-set exceeds seven, the entity

must be split into two or more equivalent entities.  The decision whether to subcontract (rule

5) or split into peers (rule 6) is encoded as a predicate on the atomicity of purpose.
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∀e ∈ E, ∃c,d,e′ ∈ E . card(responsibilities(e)) > 7  ∧  purpose(e) ∈ R  ⇒
card(responsibilities(e′)) < card(responsibilities(e)) ∧
services(e) ⊇ (services(c) ∪ services(d)) ∧
services(c) ∩ services(d) = ∅ ∧
c ∈ collaborators(e′) ∧  d ∈ collaborators(e′);

∀e ∈ E, ∃c,d ∈ E . card(responsibilities(e)) > 7  ∧  purpose(e) ∉ R ⇒
card(responsibilities(e)) = card(responsibilities(c)) + card(responsibilities(d)) ∧
services(e) = (services(c) ∪ services(d)) ∧
services(c) ∩ services(d) = ∅.

The first formula above captures RDD rules 2 and 5, in which entity e is replaced by e′, which

subcontracts to c and d.  The second captures RDD rules 2 and 6, in which entity e is replaced

by peers c and d.  The re-statement of responsibilities in more or less general terms may be

captured in a formula asserting the equivalence of the set of services to which they (the

individual responsibilities; and hence the corresponding purposes) map.  This covers the

outstanding aspects of RDD rules 2, 5 and 6:

∀e ∈ E, ∃e′,e″ ∈ E  .  services(e′) = services(e) = services(e″)  ∧
card(responsibilities(e′)) < card(responsibilities(e)) < card(responsibilities(e″)).

To this, we add a predicate for determining when an entity is in canonical form and so provide

for testing when the RDD elaboration process is complete (rules 1, 4):

canonical : E → Boolean

∀e ∈ E, ∀p ∈ responsibilities(e) . canonical(e)  ⇔  purpose(e) ∈ R  ∧  p ∈ R  ∧
2 ≤ card(responsibilities(e)) ≤ 7  ∧  card(refine(p)) = 1.

5.3 Transformation Rules in RDD

The construction of a collaboration graph depends on formalising the notion of client-server

dependency.  Each service f∈F is defined in terms, not only of its simple inputs and outputs,

but also in terms of the attributes and references it uses.  Eventually, we are interested in

capturing all client-server connections, whether permanent or temporary, so define a constraint

on collaborators accordingly:

∀c,e ∈ E, ∃f ∈ services(e) .

c ∈ collaborators(e)  ⇔  c ∈ arguments(f) ∨ c ∈ references(f).
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It is possible to construe all collaborators as permanent initially and progressively transfer

some of these to temporary arguments as the permanent entity coupling is reduced, during

system transformation:

∀c,e ∈ E, ∃e′ ∈ E . ∀f ∈ services(e), ∃f′ ∈ services(e′)  .
c ∈ references(f)  ⇒  c ∈ arguments(f′) ∧ c ∉ references(f′).

The notion of contracts depends first on identifying all the clients of an entity:

clients : E → P(E) ∀e ∈ E . clients(e) = { c ∈ E | e ∈ collaborators(c) };

Let there be a map from client-server pairs to the set of services invoked by the client in the

server.  We may relate this primitive function to proper notions of collaboration:

invokes : E × E → P(F)

∀c,e ∈ E, ∃s ∈ P(F) . c ≠ e  ⇒  invokes(c,e) = s  ∧
(s ≠ ∅  ⇔  c ∈ clients(e) ∧ e ∈ collaborators(c));

The contracts of an entity are defined as the disjoint partitioning of its services, such that each

partition is invoked by a different subset of its clients.  For this, we must use indexing to assert

that service partitions are disjoint and that the corresponding subsets of clients are distinct:

contracts : E → P(P(F))

∀e ∈ E, ∃p1..pn ⊆ services(e)  .  pi ∈ contracts(e)  ⇔
∃s1..sn ⊆ clients(e), ∀c ∈ si  .  invokes(c, e) = pi  ∧  si ≠ sk   ∧
  pi ∩ pk = ∅  ∧  pi = services(e), i, k = 1..n,  i ≠ k.

Minimisation of contracts may be judged later according to card(contracts(e)), for each e∈E.

The basic logical machinery for transforming a subsystem by aggregation has already been

described above, in the formulae for subcontracting and for transferring a permanent

collaborator to a temporary argument.  A rule for recognising mutually-joined entities and

suggesting that a mediator-transformation is appropriate is encoded as:

∀c,e ∈ E, ∃m,c′,e′ ∈ E,

∀f ∈ invokes(c, e), ∀g ∈ invokes(e, c), ∃f ′,g′,f″,g″ ∈ F .

(e ∈ collaborators(c) ∧ e ∈ references(f) ∧
 c ∈ collaborators(e) ∧ c ∈ references(g))  ⇒

(c′ ∈ collaborators(m)  ∧ e′ ∈ collaborators(m) ∧
f″ ∈ invokes(m, c′) ∧ g″ ∈ invokes(m, e′)  ∧

((f ′ ∈ invokes(c′, e′) ∧ e′ ∈ arguments(f′)) ∨ e′ ∉ collaborators(c′))  ∧
((g′ ∈ invokes(e′, c′) ∧ c′ ∈ arguments(g′)) ∨ c′ ∉ collaborators(e′)) )
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Transforming a system by generalisation depends on being able to introduce a parent for pairs

of clients which share some contracts with a server.  We can set the threshold at which

generalisation is triggered by saying that the clients must share at least half of their contracts.

∀c,d,e ∈ E, ∃p,c′,d′ ∈ E,

∀f ∈ invokes(c, e), ∀g ∈ invokes(d, e), ∃f′,g′,h ∈ F  .

(e ∈ collaborators(c) ∧ e ∈ collaborators(d) ∧
card(contracts(c) ∩ contracts(d)) ≥ card(contracts(c) ∪ contracts(d)) / 2)  ⇒

(p = superclass(c) ∧ p = superclass(d) ∧ e ∈ collaborators(p) ∧
((f′ ≠ g′ ∧ h ∈ invokes(p, e) ∧ f′ ∈ invokes(c′, e) ∧ g′ ∈ invokes(d′, e)) ∨
  (f′ = g′ = h ∧ h ∈ invokes(p, e) ∧

e ∉ collaborators(c′) ∧ (e ∉ collaborators(d′))) )

In all our transformation rules, we have simply asserted that an alternative system structure

exists.  To be able to trace the evolution of the system, we should have to introduce further ∃-

quantified state-variables, which considerably complicates the model.
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