
An Algebra to Represent Task Flow Models

Carlos Alberto Fernández-y-Fernández1, Anthony J. H. Simons2

1Instituto de Electrónica y Computación - Universidad Tecnológica de la Mixteca.
Km. 2.5 carretera Huajuapan – Acatlima. Huajuapan de León, Oaxaca, México

2Department of Computer Science - The University of Sheffield
Sheffield, U.K.

{C.Fernandez, A.Simons}@dcs.shef.ac.uk

Abstract. This paper presents the abstract syntax representation for the
Task Flow model in the Discovery Method. The abstract task algebra is
based on simple and compound tasks structured using operators such as
sequence, selection, and parallel composition. Recursion and encapsulation
are also considered. The axioms of the algebra are presented as well as a
set of examples showing a combination of basic elements in the expressions.

1 Introduction
There has been a steady take up in the use of formal calculi for software construction
over the last 25 years (Bogdanov, Bowen et al. 2003), but mainly in academia.
Although there are some accounts of their use in industry (basically in critical systems),
the majority of software houses in the “real world” have preferred to use visual
modelling as a kind of “semi-formal” representation of software.

A method is considered formal if it has well-defined mathematical basis. Formal
methods provide a syntactic domain (i.e. the notation or set of symbols for use in the
method), a semantic domain (like its universe of objects), and a set of precise rules
defining how an object can satisfy a specification (Wing 1990). In addition, a
specification is a set of sentences built using the notation of the syntactic domain and it
represents a subset of the semantic domain.

Spivey says that formal methods are based on mathematical notations and “they
describe what the system must do without saying how it is to be done” (Spivey 1989),
which applies to the non-constructive approach only. Mathematical notations commonly
have three characteristics:

• conciseness - they represent complex facts of a system in a brief space;

• precision - they can specify exactly everything that is intended;

• unambiguity - they do not admit multiple or conflicting interpretations.

Essentially, a formal method can be applied to support the development of
software and hardware. This paper shows the results of applying a particular process
algebra, called Task Algebra, to characterise the Task Flow models in the Discovery
Method. The advantage is that this will allow software engineers to use diagram-based
design methods that have a secure formal underpinning. The next section presents a
general vision of Process Algebra. In section 3 the Task Flow notation used in the

Discovery Method is presented. Section 4 depicts the proposed algebra. Finally in
section 5, conclusions are drawn and future research directions are indicated.

2 Process Algebra

The term process algebra or process calculus is used to define an axiomatic approach for
processes. There is not a unique definition for processes although Baeten (Baeten 2004)
says a process refers to the behaviour of a system. Process Algebras have been used to
model concurrent systems (Cheng 1994). Common concepts in the different process
algebras are process (sometimes called agent) and action (Glabbeek 1997). A process
can be seen as any concurrent system with a behaviour based in discrete actions. An
action is considered something that happens instantaneously and it is atomic. An action
is expressed in conjunction with other actions, using particular operations defined by the
algebras.

Some of the principal process algebras comprise ACP, CCS, CSP, and more
recently Pi-Calculus. The term process algebra was coined by Bergstra and Klop in the
paper (Bergstra and Klop 1982) where the Algebra of Communicating Processes (ACP)
was presented. The Calculus of Communicating Systems (CCS) was proposed by R.
Milner (Milner 1980). The contrasting calculus of Communicating Sequential Processes
(CSP) was proposed by Hoare (Hoare 1985). An extension and revision to CCS, the Pi-
calculus was later proposed by Milner (Milner 1999).

2.1 ACP
The Algebra of Communicating Processes is an algebra proposed in 1982 when
Bergstra and Klop wanted to research a question about unguarded recursive equations
(Baeten 2004). The algebra is defined using a combination of instantaneous atomic
actions and algebraic operators in order to generate a variety of processes. These
operators are used to represent union, concatenation, and concurrency:

• Concatenation, also known as composition or sequencing, uses the symbol ⋅ and
represents the order of the actions. Where, for instance, a⋅b⋅c indicates that
action a happens before action b and action b happens before action c.

• Union is used to specify a choice between actions, using the symbol + to
represent the union. For example, a+b represents that action a or action b can
occur but not both of them.

• Concurrency is represented with the interleaving || and left-merge operator ||_,
where p || q allows all possible interleavings of actions in the processes p and q,
whereas p || q always prefers the first action of p before the first action of q and
otherwise behaves like ||.

These operators satisfy the following axioms (for all a ∈ Action, and x,y,z ∈
Process):
 x+y=y+x

 x+(y+z)=(x+y)+z

 x+x = x

 (x⋅y)⋅z = x⋅(y⋅z)

 (x+y)⋅z=x⋅z+y⋅z

 x || y = (x || y) + (y || x)

 (a.x) || y = a.(x || y)

 (x+y) || z =(x || z)+(y || z)

 a||_y=a⋅y

As was mentioned, these axioms just expressed the concatenation, union and
concurrency (via the left-merge operator). These axioms represent the Basic Process
Algebra, which was later extended to include communication an presented by Bergstra
in (Bergstra and Klop 1984).

2.2 CCS
Even though the Calculus of Communicating Systems was presented by Milner in 1973,
it was not until 1980 that he published the book (Milner 1980) that is now considered
the definitive reference on CSS. In CCS a process is represented by a number of states
representing the possible lines of action that can be realised. The states of the process
are presented as dots (usually open dots), while the actions represent the transitions
from a state to other (Glabbeek 1997). The rules and axioms in CCS are provided as
laws.

In CCS, 0 (nil) represents the most basic process, offering a deadlock behaviour.
CCS also provides an action prefixing operator, where an action a can be prefixed to a
process P to denote sequential composition of a and P. An action can be seen as an
input or output communication on a port.

The choice operator proposed by Milner in CCS is +. It is commutative,
associative and idempotent. Additionally, the CCS operator | represents parallel
composition, where, for instance, the expression P|Q depicts two processes running in
parallel. Communication between two processes happens when there is an action a in
one process and a complementary action a in the other one.

2.3 CSP
CSP was proposed by Hoare in (Hoare 1978), initially without a formally defined
semantics. Later a semantic model was proposed based on trace theory (Hoare 1981). A
new model was proposed and CSP changed its name to Theoretical CSP (TCSP)
(Brookes, Hoare et al. 1984), which later was called again CSP.

The trivial element in CSP is the event, which is defined as instantaneous and
indivisible. Events are notated in lowercase, for instance x, y, z. are events in CSP.
Processes are notated in uppercase. There are also primitive processes such as STOP
and SKIP to represent basic predefined behaviours.

CSP builds processes from actions using a prefix operator , such that x P
denotes a process formed by prefixing the process P with the action x. CSP has two
choice operators, for external and internal choice. The external choice operator is
defined, such that (x P) (y Q) denotes a choice between two processes,

according to whether the environment supplies the event x or y, after which P or Q
execute, respectively. The internal choice operator makes a nondeterministic choice

and may refuse events from the environment. A response is only mandatory if all
prefixes are available. Concurrency is represented by the interleaving operator |||, such
that P ||| Q denotes a nondeterministic choice between all possible interleavings of the
actions of P and Q. The synchronising operator ||A forces its operands to synchronise,
such that P ||A Q forces synchronised communication between P and Q on all the events
in A.

3 The Task Flow Models
The Discovery Method is an object-oriented methodology proposed formally in 1998 by
Simons (Simons 1998; Simons 1998); it is considered by the author to be a method
focused mostly on the technical process (Simons 2000). From version 1, Discovery has
been using a simple and semantically clearer notation based on UML, but changing
some models where this is considered appropriate. In addition, it is consistent with the
process model of OPEN (Henderson-Sellers, Firesmith et al. 1999), and has been tested
in a number of industrial projects by MSc students at the University of Sheffield. The
simple and unambiguous Discovery notation makes it an appropriate option to work
with.

The Discovery Method is organized into four phases; Business Modelling,
Object Modelling, System Modelling, and Software Modelling (Simons 2007).The
Business Modelling phase is task-oriented. A task is defined in the Discovery Method
as something that “has the specific sense of an activity carried out by stakeholders that
has a business purpose” (Simons To be published). This task-based exploration will lead
eventually towards the two kinds of Task Diagrams: The Task Structure and Task Flow
Diagrams.

The workflow is represented in the Discovery Method using the Task Flow
Diagram. It depicts the order in which the tasks are realised in the business, expressing
also the logical dependency between tasks. While the notation used in the Discovery
Method is largely based on the Activity Diagram of UML, it maintains consistently the
labelled ellipse notations for tasks. Figure 1 shows the notation for the Task Flow
Diagram.

Tasks are connected by an arrow indicating the direction of the flow. Choice is
represented by a diamond and exception, a special case of a choice, is represented using
a half-diamond symbol. The full diamond is used to split the flow in two or more
choices, whereas the half-diamond symbol represents the choice between continuing the
normal flow or the exceptional flow. Because the conditions on the choices are
mutually exclusive, the half-diamond decision only needs to express one of the
conditions, the one raising the exception. The start and end symbols are the standard
symbols used in flowcharts and state diagrams. There is also a particular kind of end
symbol identified as fail. Fail is notated as a small circle crossed by a diagonal line and
represents exit with failure from the task described by the diagram. By contrast, the
traditional end symbol represents an exit with success from the same task.

[cond]

Task 1

Task 2

Task a Task b

Task y Task x

flow fork

join

choice

Task I

Task II

start

end

failure
exception

[cond] [¬cond]

Figure 1 Elements of the Task Flow Diagram

Finally, the Task Flow diagram in the Discovery method allows the representation
of parallel tasks. This representation in the diagram is necessary because business
processes, just like other kind of processes, are sometimes independent from other
processes and, consequently, could be performed concurrently. The Task Flow diagram
employs the fork and join symbols to delimit two or more concurrent flows. The fork
and join symbols are common to many different notations for flow and state diagrams,
such as those surveyed by (Beeck 1994). A fork is a transition with one source task and
many target tasks. A join is a transition from many source tasks to one target task.
After a fork, the concurrent flows are understood to execute simultaneously. Tasks in
each subflow are executed sequentially, but tasks in different subflows may execute in a
nondeterministic order. A join indicates a syncrhonisation point, where the concurrent
subflows must all terminate before proceeding to the next task. Forks and joins have to
be balanced: for each fork a corresponding join symbol closing the parallel tasks section
should exist.

4 The Task Algebra for Task Flow Models
Even though Task Flow models could be represented using one of the process algebras
described above, a particular algebra was defined with the aim of having a clearer
translation between the graphical model and the algebra. One of the main difficulties
with applying an existing process algebra was the notion that processes consist of
atomic steps, which can be interleaved. This is not the case in the Task Algebra, where
even simple tasks have a non-atomic duration and are therefore treated as intervals,
rather than atomic events.

A simple task in the Discovery Method (Simons 1998; Simons 1998; Simons
2002) is the smallest unit of work with a business goal. A simple task is the minimal
representation of a task in the model. A compound task can be formed by either simple

or compound tasks in combination with operators defining the structure of the Task
Flow Model.

In addition to simple tasks and compound tasks, the abstract syntax also requires
the definition of three instantaneous events. These may form part of a compound task in
the abstract syntax.

4.1 The Abstract Syntax
The basic elements of the abstract syntax are the simple task, which is defined using a
unique name to distinguish from others; ε representing the empty activity; and the
success σ and failure φ symbols, representing a finished activity.

Simple and compound tasks are combined using the operators that construct the
structures allowed in the Task Flow Model. The basic syntax structures for the Task
Flow Model are sequential composition, selection, parallel composition, repetition, and
encapsulation:

• Sequential composition defines the chronological order of execution for a task
or a group of tasks from the left to the right and ‘;’ is used as the operator.

• Selection is represented with the symbol ‘+’ and it means that there is a choice
between the operands.

• Parallel composition defines the simultaneous execution of the elements in the
expression. It is represented by the symbol ‘||’.

• Repetition allows the reiteration of an expression in the form of an until-loop
and while-loop structure. It is represented using the μx fixpoint.

• Finally, encapsulation is used to group a set of tasks and structures. This
constructs a compound task and is represented using curly brackets ‘{‘ ‘}’.

The abstract syntax has the following definition in Backus Naur form:

Activity ::= ε -- empty activity

 | σ -- succeed

| φ -- fail
 | Task -- a single task
 | Activity ; Activity -- a sequence of activity
 | Activity + Activity -- a selection of activity
 | Activity || Activity -- parallel activity
 | μx.(Activity ; ε + x) -- until-loop activity

| μx.(ε + Activity ; x) -- while-loop activity

Task::= Simple -- a simple task

| { Activity } -- encapsulated activity

A task can be either a simple or a compound task. Compound tasks are defined
between brackets ‘{‘ and ‘}’, and this is also called encapsulation because it introduces
a different context for the execution of the structure inside it. Curly brackets are used in
the syntax context to represent diagrams and sub-diagrams but also have implications
for the semantics that will be explained later. Also, parentheses can be used to help

comprehension or to change the associativity of the expressions. Expressions associate
to the right by default.

The abstract syntax represents in a simple way every basic structure used for the
Task Flow Diagram. For instance, supposing there are three tasks a, b and c; a sequence
composition of these elements can be specified as follows:

a; b; c

Which means the execution of a, then b, and then c. The selection operator ‘+’
should be used for representing the choice among tasks:

a + b + c

The concurrent execution of these three tasks may be represented using the
parallel composition operator ‘||’:

a || b || c

Meaning that a, b and c are executed simultaneously and may terminate in any
order. Finally, the repetition operator works either as an until-loop or a while-loop. The
difference between each repetition is, as can be supposed, that the until-loop structure
guarantees at least one execution of the activity in the repetition:

μx.(a ; ε + x)

Repetition is modelled using recursion. In the example above, μx binds x to the
expression (a;ε+x), where a occurs at least once and, if under the choice of x, the
expression is expanded (i.e. the expression is repeated recursively, x being the fixed-
point of bound by μ.) The next example shows a while-loop:

μx.(ε + a ; x)

As in the until-loop, μx binds x to the expression (ε+a; x), but the choice is put
in front of the expression to be repeated.

4.2 Task Model Constructions
Just as the graphical structures of the Task Flow Model can be composed, basic
definitions in the abstract syntax may form complex expressions. The abstract syntax
definition can be considered like a Universal Algebra which, to accomplish an accurate
representation of the diagram syntax, has to be limited by axioms. The abstract syntax
definition and its axioms form an Ideal or Quotient Algebra.

4.2.1 Simple task

As it was explained before, a simple task is the minimal representation of a task in the
abstract syntax with significance for the expressions; whilst an Activity is formed using
a combination of operators (sequence, selection parallel composition, and repetition),
simple tasks, empty activity, end with success and end with fail. Empty and finished
activities are vacuous activities. Empty is represented with ε, success with σ and fail
using φ. The fact that simple tasks cannot be vacuous activities is formalised in the next
axioms:

(sp.1) σφε ≠∧≠∧≠•∈∀ aaaSimplea

(sp.2)
);.();.()||(

)();(,
xyxaxyxazya

zyazyaActivityzySimplea
+≠∧+≠∧≠∧

+≠∧≠•∈∀•∈∀
εμεμ

Simple tasks are different from succeed, fail and empty activities because simple
tasks represent processes with interval duration different from zero. Succeed, fail and
empty activities are considered instantaneous events.

4.2.2 Empty activity

As was said before, the symbol ε is used to represent the empty activity. It is needed
because the selection is a binary operator and ε is used to characterise the empty branch,
where in combination with the selection operator it is used as the choice between doing
something or nothing.

As a result of the existence of this element, a set of axioms must be defined to
interpret the meaning of the empty activity when it is a part of other kinds of expression.
These rules are specified within each operator description.

4.2.3 Finished activity
The finished activity is necessary to represent situations when an activity should
terminate before the normal end. The abstract syntax representation allows two kind of
finished activity: succeed and fail. Succeed is useful to represent an early exit from
within an expression, returning the control to the higher scope. On the other hand, fail is
used to represent the termination of all tasks, and the failure is propagated to the higher
levels.

σ and φ are considered instantaneous events. Similar to the empty activity, the
finished activities have an effect in many operator constructions, and they will be
defined later.

4.2.4 Sequential composition
Sequential composition is defined as the consecutive execution of activities, from the
left to the right. Tasks are separated by ‘;’. For example:

a; b; c ; d ⇔ a; (b; (c ; d))

The intuitive meaning is that first a will be executed, then b, and so on until the
task d. Parentheses can be used to group elements but the meaning is not altered
whatsoever. An associative axiom is defined to support this notion. Axioms for
distribution, empty sequence and finished activity are also defined. Commutativity and
idempotence properties are not considered for sequences:

(s.1) -- associative sequence cbacbaActivitycba);;();(;,, ⇔•∈∀

(s.2));();();(,, cbcacbaActivitycba +⇔+•∈∀ -- right distributivity of sequence
over selection

(s.3) aaaActivitya ⇔⇔•∈∀ ;; εε -- empty sequence

(s.4) φφ ⇔•∈∀ aActivitya ; -- fail on sequence

(s.5) σσ ⇔•∈∀ aActivitya ; -- succeed on sequence

Rule (s.2) defines that a right sequence is distributed over a left selection. Left
distribution of sequence over selection is not allowed because, as in ACP (Baeten and
Weijland 1990; Baeten 2004), left sequence distribution changes the point where the
choice is made. It follows that:

);();()(;,, cabacbaActivitycba +≠+•∈∀

Because in the expression a;(b+c), initially a is executed and then the choice
between b and c is made; while in the expression (a;b)+(a;c) the choice is first and
afterwards a is executed. The difference in the branching position can be easily
appreciated in Figure 2.

a
a a

b c b c

a) a;(b+c) b) (a;b)+(a;c)

Figure 2 State transition diagram for expressions a;(b+c) and (a;b)+(a;c)

Empty and finished activities may coexist in an expression, in which case the
rules (s.3), (s.4) and (s.5) are confluent and may interact, for instance:

a) a1; φ; ε; a2

fi a1; φ -- by applying (s.4), or (s.3) and (s.4)

b) a1; ε; σ; a2

fi a1; σ -- by applying (s.3) and (s.5)

Or:

c) φ; ε ⇔ ε; φ ⇔ φ -- by applying (s.3) and (s.4)

d) σ; ε ⇔ ε; σ ⇔ σ -- by applying (s.3) and (s.5)

4.2.5 Selection
The selection of activities is performed with the ‘+’ operator. It represents the choice
among a group of activities, for instance:

a + b + c + d ⇔ a + (b + (c + d))

Intuitively each branch is evaluated from the left to the right. Guards are implicit
and are not represented in the syntax. The guards are supposed to be mutually exclusive
and exhaustive. When a guard is satisfied the left activity is executed and the right
branch is discarded, otherwise the left activity is discarded and the next guard is
verified. Logically, the last guard does not need to be checked and the order in which
the branches are considered is irrelevant.

The axioms defined for the selection operator are:

(sel.1) cbacbacbaActivitycba ++⇔++⇔++•∈∀)()(,,

-- associative selection

(sel.2) abbaActivityba +⇔+•∈∀ , -- commutative selection

(sel.3) -- idempotent selection aaaActivitya ⇔+•∈∀

In the case of the empty activity, it is also possible to reduce the expression if
both sides have the empty activity by the idempotent rule (sel.3). But, if just one of the
elements (right or left) is ε, then the selection has no reductions. ∀a ∈ Activity, the
following expressions are irreducible:

a + ε -- irreducible selection of empty activity or activity

The same applies to the finished activities, where the selection between any of
the finished activities or a general Activity has no reduction:

φ + a -- irreducible selection of fail or activity

σ + a -- irreducible selection of succeed or activity

ε + φ -- irreducible selection of empty activity or fail

ε + σ -- irreducible selection of empty activity or succeed

As described above, selection interacts with sequences and the right
distributivity axiom may be applied. Its interaction with parallel composition is shown
below.

4.2.6 Parallel composition
Parallel composition is defined as the simultaneous execution of all its tasks and it is
represented with the operator ‘||’. An example is the expression:

a || b || c || d ⇔ a || (b || (c || d))

Intuitively it expresses that the elements a, b, c, and d are initiated at the same
time and executed simultaneously. The end of any of them is non-deterministic. Like
the last operators, a set of axioms are defined:

(p.1))||(||||)||(,, cbacbaActivitycba ⇔•∈∀ -- associative parallel composition

(p.2) -- commutative composition abbaActivityba ||||, ⇔•∈∀

(p.3))||()||(||)(,, cbcacbaActivitycba +⇔+•∈∀

-- right distributivity of
concurrency over selection

(p.4) aaActivitya ⇔•∈∀ ε|| -- instant synchronisation

(p.5) φφ ⇔•∈∀ ||aActivitya if a ≠ σ -- instant failure

(p.6) σσ ⇔•∈∀ ||aActivitya -- instant success

The associative and commutative axioms (p.1, p.2) reflect the nondeterministic
order of concurrent activity. Also, it is possible to do right and left distribution of

concurrent composition over selection, but only the one axiom is necessary. Right
distribution over selection is defined in (p.3) and left distribution is derived by applying
(p.1) and (p.3):

)||()||()(||,, cabacbaActivitycba +⇔+•∈∀ -- left distribution of concurrency
over selection, by axiom (p.1) and (p.3)

The use of instant events such as ε , σ and φ may occur too in combination with
parallel composition. Axioms (p.4), (p.5) and (p.6) define instant synchronisation, fail
and succeed respectively. Whilst (p.4) performs the elimination of ε whether it is on the
right or the left of the parallel operator, (p.5) and (p.6) establish that any activity in
parallel composition with fail or succeed is equivalent to just itself. Although the
parallelism is resolved as the simultaneous execution of simple activities (i.e.
concurrency between a single task and an Activity means that the single task could occur
at any time among all the simple actions of such Activity), Succeed and fail are
considered as instantaneous events and they have priority over the elements of the
Activity. In addition, succeed has a major priority than fail, therefore in the case of a
parallel composition between these two elements succeed will prevail (p.6).

Logically, this set of rules is confluent, which can be easily proved. The specific
case of φ ||ε can be resolved using any of the rules defined for each symbol to work
with parallel composition. For example, the next expressions are equivalents:

φφεεφ ⇔⇔ |||| -- from (p.2), (p.4) and (p.5)

The result is obtained by applying either the rule (p.4) or rule (p.5). The
instantaneous events are also confluent with the rest of the parallel axioms:

babababaActivityba ||||||)||(||||)||(, ⇔⇔⇔•∈∀ εεε -- by (p.1) and (p.4)

aaaActivitya ⇔⇔•∈∀ |||| εε -- by (p.2) and (p.4)

φφφ ⇔⇔•∈∀ aaActivitya |||| if a ≠ σ -- by (p.2) and (p.5)

σσσ ⇔⇔•∈∀ aaActivitya |||| -- by (p.2) and (p.6)

φφφφ ⇔⇔⇔•∈∀ ||||)||(||||)||(, bababaActivityba

if a ≠ σ ∧ b ≠ σ -- by (p.1) and (p.5)

σσσσ ⇔⇔⇔•∈∀ ||||)||(||||)||(, bababaActivityba -- by (p.1) and (p.6)

bababaActivityba +⇔+⇔+•∈∀)||()||(||)(, εεε -- by (p.3) and (p.4)

φφφφ ⇔+⇔+•∈∀)||()||(||)(, babaActivityba

if a ≠ σ ∧ b ≠ σ -- by (p.3) and (p.5)

4.2.7 Repetition
Repetition of tasks is defined as an until- and while-loop. The structures in the abstract
syntax are constructed using recursion. The until-loop is formed by an Activity followed
by an option of continuing or repeating x:

);.(xax +εμ

Intuitively can be seen that the Activity is repeated as long as ε is not chosen.
When ε is chosen (i.e. the end state of the recursion function is reached) the recursion
terminates, which means that the next activity outside of the until-loop may be
executed. The choice of the fixed-point x results in expanding unrolling the expression.

The until-loop has only one axiom specifying the unrolling of the recursions on
the loop:

(r.1));.(;);.(xaxaxaxActivitya ++⇔+•∈∀ εμεεμ

-- unrolling one cycle of until-loop repetition

This rule can be applied as many times as necessary resulting possibly in an
infinite repetition of the activity and the option to continue or repeat:

...));.(;(;);.(;);.(⇒+++⇒++⇒+ xaxaaxaxaxax εμεεεμεεμ -- by (r.1)

Additionally, there are three special cases where the expression may be reduced,
those ones when any of the instantaneous events is involved. In one case an until-loop
containing just the empty element ε can be reduced just to ε :

εεεμεεεεεεμεεεεμ ⇒⇒+++⇒++⇒+ ...));.(;(;);.(;);.(xxxxxx

-- by (r.1) and (s.3)

The reduction of empty sequences can be made by the axiom (s.3). The
recursion keeps going infinitely or finishes when the ε in the selection is chosen.

On the other hand, if the activity in the until-loop contains just φ or σ, the
expression may be reduced and the recursion is eliminated:

φεφμεφεφμ ⇒⇒++⇒+ ...);.(;);.(xxxx -- by (r.1) and (s.4)

σεσμεσεσμ ⇒⇒++⇒+ ...);.(;);.(xxxx -- by (r.1) and (s.5)

As the examples above show, it is possible to reduce the until-loop using the
axioms (s.4) or (s.5) already defined.

Alternatively, the while-loop is formed by the option of doing an Activity
followed by repeating x, or the option of finishing the execution of the loop:

μx.(ε + a ; x)

As the until-loop, the while-loop has only one axiom specifying the unrolling of
the recursions on the loop:

(r.2));.(;);.(xaxaxaxActivitya ++⇔+•∈∀ εμεεμ

 -- unrolling one cycle of while-loop repetition

Applying this rule as many times as necessary results in an infinite repetition of
the option to finish the loop or doing the activity and repeat:

...));.(;(;);.(;);.(⇒+++⇒++⇒+ xaxaaxaxaxax εμεεεμεεμ -- by (r.2)

Additionally, there are three special cases where the expression may be reduced,
those ones when any of the instantaneous events is involved. The while-loop containing
just the empty element ε can be reduced just to ε :

εεεμεεεεεεμεεεεμ ⇒⇒+++⇒++⇒+ ...));.(;(;);.(;);.(xxxxxx

-- by (r.2) and (s.3)

The reduction of empty sequences can be made by the axiom (s.3). The
recursion keeps going infinitely or finishes when the ε in the selection is chosen.
Finally, in the cases where the activity in the while-loop contains only the symbol φ or
σ, the expression may be reduced and the recursion is eliminated:

φεφεμφεφεμ +⇒⇒++⇒+ ...);.(;);.(xxxx -- by (r.2) and (s.4)

σεσεμσεσεμ +⇒⇒++⇒+ ...);.(;);.(xxxx -- by (r.2) and (s.5)

4.2.8 Encapsulation
The encapsulation of tasks is used to isolate an Activity from the rest of the expression
giving it a scope and a name. It is built by using curly brackets “{ }” around the
Activity. Consequently, {act} represents the encapsulation of the Activity act. But, the
real importance of encapsulation is denoting the scope of a compound task to limit the
effect of σ and φ, which represent early exit. A more detailed example could be:

{{a1; {a2+a3}; a4}; a5}

Supposing a1, a2, …, a5 are simple tasks, in that case the expression also could
be expressed as a set of compound tasks:

let X = {a2+a3}

let Y = {a1; X; a4}

{Y;a5}

Using encapsulation is a way of abstracting the representation of a complex task
flow and treating it as a single task (i.e. a subtask, part of another larger task), in the
same way that a complex diagram can be divided into different sub-diagrams to
facilitate comprehension.

As mentioned above, when a succeed event occurs in an expression, this
corresponds to an early exit from the scope of the enclosing task. The normal flow of
control resumes at the task boundary. A different result is obtained when a fail event
occurs in the expression. In this case, the fail event is promoted to the higher level,
beyond the immediate task boundary. All the usual axioms apply to activity that is
encapsulated within a task. Some additional axioms describe the specific effects of σ at
the task boundary:

(e.1) }{}{ εεσ ⇔⇔ -- vacuous subtask

(e.2) }{};{ aaActivitya ⇔•∈∀ σ -- coincident exit

(e.3) εσ +⇔+•∈∀ }{}{ aaActivitya -- vacuous selection

(e.4) { }φ φ⇔ -- promotion of fail

(e.5) { ; } { };a Activity a aφ φ∀ ∈ • ⇔ -- promotion of fail in sequence

(e.6) { } { }a Activity a aφ φ∀ ∈ • + ⇔ + -- promotion of fail in selection

The vacuous subtask axiom (e.1) denotes that succeed alone within curly
brackets is equivalent to the empty activity because succeed has no influence outside of
its scope. Similarly, if succeed is next to the left bracket, it has no effect and may be
removed even forming part of a sequence (e.2). The axiom (e.3) promotes the selection
outside of the encapsulation area changing succeed for ε. Basically it establishes that a
selection between an activity and succeed is equivalent to the choice of that activity
within brackets and nothing (ε). If fail is alone within the curly brackets, it is promoted
to the higher level by the axiom (e.4). The axiom (e.5) denotes the promotion of fail
when this is next to the left bracket in a sequence. Finally, the axiom (e.6) promotes the
selection and fail outside the curly brackets.

Additional axioms are not required for parallel composition and repetition, since
the transformations can be derived from the existing ones:

εσ ⇔•∈∀ }||{aActivitya -- by (p.5) and (e.1)

εεσμ ⇔+)};.({ xx -- by (r.1), (s.5) and (e.1)

5 Conclusions
The present paper depicted the abstract syntax representation for the Task Flow model
in the Discovery Method. The abstract task algebra is based on simple and compound
tasks structured using operators such as sequence, selection, and parallel composition.
Recursion and encapsulation are also considered. The axioms of the algebra were
presented as well as a set of examples showing a combination of basic elements in
expressions denoting simple, and more complex, Task Flow diagrams.

 Current work in progress involves the definition of the denotational semantics
for the task algebra, giving the semantics in terms of traces. Additionally, model-
checking techniques will be developed to validate Task Models represented in the
algebra.

6 References

Baeten, J. C. M. (2004). A brief history of process algebra, Technische Universiteit
Eindhoven.

Baeten, J. C. M. and W. P. Weijland (1990). Process algebra. Cambridge; New York,
Cambridge University Press.

Beeck, M. v. d. (1994). "A Comparison of Statecharts Variants." Lecture Notes In
Computer Science 863: 128-148.

Bergstra, J. A. and J. W. Klop (1982). Fixed point semantics in process algebras.
Amsterdam, Mathematical Centre.

Bergstra, J. A. and J. W. Klop (1984). The Algebra of Recursively Defined Processes
and the Algebra of Regular Processes. 11th ICALP, Springer Verlag.

Bogdanov, K., J. P. Bowen, et al. (2003, December 2003). "Working together: Formal
Methods and Testing." Retrieved June 2004, 2004, from
http://www.fortest.org.uk/documents/landscape3.pdf.

Brookes, S. D., C. A. R. Hoare, et al. (1984). "A Theory of Communicating Sequential
Processes." J. ACM 31(3): 560-599.

Cheng, M. H. M. (1994). "Calculus of Communicating Systems: a synopsis." from
citeseer.ist.psu.edu/cheng94calculu.html.

Glabbeek, R. J. v. (1997). "Notes on the methodology of CCS and CSP." Theoretical
Computer Science 177(2): 329-349.

Henderson-Sellers, B., D. G. Firesmith, et al. (1999). "Instanting the process
metamodel." Journal of Object-Oriented Programming (ROAD) 12(3): 51-57.

Hoare, C. A. R. (1978). "Communicating sequential processes." Communications of the
ACM 21(8): 666-677.

Hoare, C. A. R. (1981). A Model for Communicating Sequential Processes. U. o. O. C.
L. Programming Research Group. Oxford, University of Oxford.

Hoare, C. A. R. (1985). Communicating sequential processes. Englewood Cliffs, N.J.,
Prentice/Hall International.

Milner, R. (1980). A calculus of communicating systems. Berlin; New York, Springer-
Verlag.

Milner, R. (1999). Communicating and mobile systems: the pi-calculus. Cambridge,
UK, Cambridge University Press.

Simons, A. J. H. (1998). Object Discovery - A process for developing applications.
Workshop 6, British Computer Society SIG OOPS Conference on Object
Technology (OT '98), Oxford, BCS.

Simons, A. J. H. (1998). Object Discovery - A process for developing medium-sized
applications. Tutorial 14, 12th European Conference on Object-Oriented
Programming (ECOOP '98), Brussels, AITO/ACM.

Simons, A. J. H. (2000). "The Discovery EBook." Retrieved June 2004, 2004, from
http://www.dcs.shef.ac.uk/~ajhs/discovery/ebook/.

Simons, A. J. H. (2002). "Discovery Method. Systems Analysis and Design for Object-
Oriented Applications." Retrieved June 2004, 2004, from
http://www.dcs.shef.ac.uk/~ajhs/campus_only/com3410.html.

Simons, A. J. H. (2007). Discovery and Invention (in preparation - personal
communication).

http://www.fortest.org.uk/documents/landscape3.pdf
http://www.dcs.shef.ac.uk/%7Eajhs/discovery/ebook/
http://www.dcs.shef.ac.uk/%7Eajhs/campus_only/com3410.html

Simons, A. J. H. (To be published). Discovery Method. (Discovery and Invention).
Sheffield, University of Sheffield.

Spivey, J. M. (1989). "An Introduction to Z and Formal Specifications." Software
Engineering Journal IEEE/BCS 4(1): 40-50.

Wing, J. M. (1990). "A Specifier's Introduction to Formal Methods." IEEE Computer
23(9): 8-24.

