
Testing Software Services in Cloud Ecosystems

Mariam Kiran, School of Electrical Engineering and Computer Science,

University of Bradford, Bradford, UK,

m.kiran@bradford.ac.uk

Anthony J H Simons, Department of Computer Science,

University of Sheffield, Sheffield UK,

a.j.simons@sheffield.ac.uk

Abstract—Testing in the Cloud is far more challenging than testing individual software services. A multitude of factors affect

testing, including variations across platforms and infrastructure. Architectural issues include differences between private, public

Clouds, multi-Clouds and Cloud-bursting. Platform issues include cross-vendor incompatibility, and diverse locales of service

deployment and consumption. Software issues include integration with third-party services, the desire to validate competing

service offerings to similar standards and need to re-validate services at different stages of service lifecycle. A complete approach

to testing whole Cloud ecosystems should involve all relevant stakeholders, such as service provider, consumer and broker.

When testing Clouds, the methodologies used should not hinder the advantages Cloud usage brings to the users or programmers

and more importantly be simple and cost effective. However, these testing methodologies differ according to the various kinds of

Cloud ecosystems and the different user perspectives of the actors involved such as the end-user, the infrastructures, or the

different software (i.e. web services). This paper also studies the state-of-the-art in Cloud testing where most research focuses

predominantly on web services, functional testing and quality-of-service, usually being considered separately. We suggest a

framework, Quality-as-a-Service (QaaS) which integrates quality issues such as functional behaviour and performance monitoring

with lifecycle governance and security of the service. This paper maps out the themes in the contemporary research literature and

links them with the service lifecycle process for validating future Cloud services. Along the way, we identify important research

questions that the future Cloud service testing agenda should seek to address.

Keywords— Web application testing, Cloud computing, software testing, functional and non-functional requirements

1. Introduction

Cloud computing is regarded as a new software delivery
paradigm and a 5th utility service after water, electricity, gas
and telephony [30]. Businesses are shifting their technologies
to the Cloud in order to save on the costs of infrastructure,
maintenance and personnel. However there are various risks
associated with using the Cloud and new research is turning to
building trust and security standards in order for the customers
to use the Cloud with greater confidence [34, 35, 36]. Testing
becomes an essential part of these standards.

Software testing is challenging and expensive requiring
time and resources to scrutinize the application’s reliability,
functionality and performance. Testing for the Cloud should,
in essence, be simple and cost effective; and go beyond the
traditional kind of functional and non-functional testing
practiced by developers. This is because there is still a need to
build trust within the community of Cloud users, and the need
for repeated revalidation of the same software, as it is
extended, customized or migrated from one platform to
another. The specific testing approaches used differ
depending on the various kinds of Cloud ecosystem, which
vary according to infrastructure, platform and software
architecture and the different stakeholder roles involved.

Testing should cover the functional and non-functional aspects
of the services. In this paper, various testing issues are
discussed in the context of future Cloud ecosystems, which
will require a spread of testing methods to validate services at
the different interaction points between the stakeholders. The
paper also surveys the current state-of-the-art in Cloud testing,
identifying the gaps between this and the needs that any future
complete Cloud testing methodology should satisfy.

Figures 1 and 2 describe various testing dimensions across
Cloud platforms. Depending on the different kinds of
platforms, depicting the Cloud environment being used,
testing issues vary across these. Examples of these issues
include functional testing methods, penetration testing or
multi-tenancy testing. These depend on the scenario to show
which ones would be relevant to the Cloud ecosystems being
used. For instance security testing may have a greater
influence in multi-cloud environments rather than private
Cloud environments. Besides the environments, Clouds exist
in three forms depending on the functionality being offered:

 SaaS (Software as a Service): Uses the Web to deliver
third-party applications to Clients. For example:Gmail;

 PaaS (Platform as a Service): provides framework to
build applications on top as well. It provides the

computer infrastructures, hardware and highly scalable.
Example: GoogleAppEngine [50], Heroku [51];

 IaaS (Infrastructure as a Service) third party allows you
to install a virtual server on their IT infrastructure.

Testing SOA applications, where most literature exists,
focuses on the SaaS functionality of Clouds. Further work for
the other two functionalities may need to include a collection
of testing issues as shown in Figure 2. These are discussed
below in this section with an extensive discussion on related
issues of testing with Cloud-related aspects, highlighting,
functional, non-functional, service oriented architectures and
specific Cloud issues.

Fig. 2. Cloud Testing issues lie across the platforms being used.

This paper aims to review and assess the current body of
knowledge related to Cloud testing, identifying new research
directions. The paper is organized into six sections.
Following the introduction, section 2 describes the
background and the current research trends in the field of
Cloud computing testing. The section also discusses in detail
the testing scopes and tools presently available, presenting
techniques for functional and non-functional testing
requirements. Section 3 describes the stakeholders involved
and how the stages in the different Cloud ecosystems can be
tested. Section 4 presents the future research directions that
testing should have in Cloud ecosystems towards Quality-as-a-
service, with the methodology presented in Section 5. Finally,
Section 6 summarises the argument with the problems which
may still persist on a larger context and should be considered
in future research issues.

2. Background

A. Current Research Trends

In order to review the vast literature in Cloud testing,
various resources were consulted to help classify the published
articles according to the sub categories in which most work
has been done. Various research databases were queried such
as IET digital library, Science Direct, Scopus and Web of
Science to produce Figure 3 to show the directions in which
most current research trends are focused.

Fig. 3. Categories of publications when searching for “testing Cloud

computing” papers (2004-2014).

Figure 3 shows that although most research is focused on
the applications of Cloud computing, security issues are more
researched than architectural and testing issues. Most of the
testing publications identified discuss the challenges in the
field but do not focus on any specific type of testing for the
Cloud. This could be because this is still an open research
question, where researchers are focusing their efforts in
identifying the issues present and will work on specific
answers to these issues in the future.

Researchers have highlighted specific testing research
issues that can be investigated individually. The specific
Cloud testing themes have been summarized in Table 1.
Katherine et al. [37] discuss various risks associated with

Fig. 1. Examples of testing issues for various Cloud aspects

cloud testing such as security, the lack of standards and its
usage. However in Table 1, the authors fail to go into details
of the attributes tested with each method and the risks
involved. Also all the testing methods mentioned only cover
non-functional testing, not including functional attributes.
Table 1 describes some of the testing targets to be achieved.
However following is list of the testing scope categorized
based on [26, 5, 37]:

 Unit testing - Verifies the modules of a system in
isolation before deploying them. Can use either white-
box testing, based upon the assumption that knowledge
about the system being tested is available or black-box
testing, using the output pages produced and compares
them with expected results according to the
requirements [31]. For stateful and stateless services,
unit testing can be used differently. For stateless
services, each operation of a service is treated as a unit.
However, when testing stateful services, the sequences
of operations need to be considered. Examples include
WSDLTest [23] a tool to generate random SOAP
requests for services expressed in WSDL and SOAP
syntax [11]. Unit testing covers the functional
requirements but can be costly where the test cases are
generated manually. Since the service-under-test may
collaborate with other services, testing may either be
conducted using a context of live web services or
simulated stub or mock services as the context.

 Interoperability testing - Refers to the ability to check
that multiple components can work together. Kumar et
al. [10] described the interoperability issues of core
web service specifications such as SOAP, WSDL and
UDDI and explained how the WS-I Basic profile
provided solutions for the interoperability issues with
web service specifications. Yu et al. [28] proposed an
ontology-based interoperability testing approach using
communication data among web services storing it in
an ontology library. This data is later analysed with
rules for error analysis with a reasoning framework.

 Collaborative software testing - Refers to testing where
multiple stakeholders are involved in a web service,
such as the developer, integrator, tester and user, all
participate in the testing process. It is used in testing
techniques such as a usability walk-through, where
correct functionality is tested with the participation of
different stakeholders. Bai et al. [2] use contracts to
allow the test provider to supply specification-based
test case designs for the other participants. Testers can
run synchronised tests and publish results on services.

 Integration testing - Is needed because SOA allows
multiple loosely coupled and interoperable distributed
services to form a software system. By performing
integration testing, all the elements of it can be tested
including services, messages, interfaces, and the
overall composition. This includes testing of services
at binding phase, all workflows and business process
connectivity. Yu et al. [29] addressed interaction
problems within OWL-S compositions among
participating web services using interaction

requirements. Integration is different from
interoperability as it focuses on services coupled
together to form a system, whereas interoperability
focuses on if systems can work together.

 Regression testing - Performs all the functional tests
again, after some change to the integration, reusing the
existing test cases from the previous system tests.
Regression testing is only about re-testing a
component, subsystem or system, after changes have
been made, in order to detect regression. Ruth et al.
[21] propose a regression testing approach that assumes
that the CFGs of services are provided by developers.

The right vendor for the infrastructure needs to be chosen
which will be able to mimic the requirements in the SLA,
satisfy hardware, software and legal requirements. Sometimes
the applications are too tightly coupled that it raises issues in
terms of the complexities and the binding contracts. Security
and trust are also important, when the applications harbour
confidential data, becoming a top priority for users.

TABLE I. TESTING SPECIFIC TO THE CLOUD. C.F. [13, 14, 47].

Testing Ap-

proach

Description

System

integration
testing

Verify that the cloud solution will work within the current

infrastructure environments. This will prove implementation
of a cloud solution will not impact existing systems.

User

acceptance
testing

Verify the current cloud solution from the vendor, meets the

business needs of the organization of the infrastructure.

Security

testing

Ensures that all sensitive information stored in the cloud will

be secure.

Performance

testing

Measures the system performances in cloud to determine

throughput and capacity statistics of the back end service

across a range of input and client variance for verifying

service level agreements. This also identifies bottle necks,
potential weaknesses and performance dependencies.

Examples include verifying the network latency, response

time, load balancing, peak request count by hosting
subscription in different data center across the globe.

Traditional load stress testing required validating business

scenarios in cloud models for varying the dynamic load and
stress on the application.

Disaster

recovery
testing

Verify the time it takes to recover such as if the system

crashes under high load/volume of data, hardware failures,
system failures, network outrage, insufficient bandwidth, as

per defined in the SLA. Also verify is there any data loss in

this process and time it takes to report the failure.

Availability
testing

Cloud offering should be available all the time for the
enterprise or end user. This would be one of the key

responsibilities of the provider to maintain as per the SLA.

Scalability
testing

Ensures cloud providers are offering scale in and out
functionality as per the demand from the user/organization.

Multi-

tenancy

testing

For multiple tenants, the concept of multi-tenancy is to

provide solution/offering from a single instance to multiple

user/clients (tenants). Cloud offering should be validated in
terms of security and data not being compromised.

Interoperabili

ty testing

Although not particularly testing, this can measure whether

the service design or characteristics comply with standards
and best practices of the providers. Verifies moving

application from one cloud to an alternate cloud provider

should have flexibility to run successfully. There should be
no issues if the business/user is migrating from one

infrastructure to another.

Accessibility

testing

Verify user groups across different geographic location are

accessible to the cloud at any time without any delay,

keeping in alliance with the SLA requirements of host

locations.

Automation

testing

Ensure that the automation suite can be created and executed

with minimal changes in the cloud.

Functional

testing

Provides the ability to verify the behaviour of the service

against a specification of its expected behaviour, builds test
suites to assess this.

Security

testing

A kind of testing, particularly "penetration testing", which

seeks to get past security protocols. Security as a whole

involves static design issues, as well as run-time verification
of security, security is a measure of reliability to test if the

data is secure assessing in terms of vulnerability, availability

and integrity.

B. Specific Available Testing Tools

Cloud computing may also adopt three broad styles of
software architecture, when communicating between nodes.
The oldest style uses straightforward HTTP requests and
responses, known as Representational State Transfer (REST).
This is a “lightweight” approach, where the client is a simple
web-browser and data is transferred in compact HTTP
formats; but it requires bespoke server-side processing to
dispatch requests and does not necessarily lead to
homogeneous systems.

A second style reuses concepts from Service-Oriented
Architecture (SOA), a mainstay of traditional web-services.
SOA adopts “heavyweight” XML standards, using SOAP for
message communication, WSDL and UDDI for service
description and discovery. SOA technology supports an open,
extensible, federated and composable architecture. SOA
fosters the separate development of autonomous, modular
software components, which can be reconfigured later in
various ways before usage [3]. In this respect, SOA is vendor-
diverse, offering the prospect of reusable, interoperable web-
services [1]. SOA also offers means of describing and testing
Quality-of-Service (QoS). Testing SOA applications is
complicated because of their distributed nature. Plentiful
research has been undertaken in this direction [7], where
programmers have demanded a more centralised approach for
managing testing [15].

Whereas both of the above styles depend on the coarse-
grained HTTP request and response cycle, a third and
increasingly popular style develops bespoke rich-client
desktops, providing App-like services that use continuous
information trickle via AJAX to communicate with back-end
servers. Rich-client applications are developed in client-side
scripting languages, such as JavaScript, resulting in “thick
client” MVC applications. This architecture presents a
completely different set of testing challenges [32, 33] and like
RESTful services, does not lead to homogeneity.

Much research has been conducted, for developing tools,
to test SOA, which arguably may also apply to the Cloud [5];
however there is also some research on `Testing as a service’
(TaaS) for the Cloud [37, 39]. This allows an application to
be tested online before deploying it, taking advantage of the
benefit of the Cloud by outsourcing the issue. Vengattaraman
et al. [38] used modelling tools to focus on the relationships
between the applications and the services being tested but
lacks the intricate details of how these will be done. TaaS can
be presented as two views, which focus on service testing
from the viewpoints of the developer and the end-user [40].

Other examples of commercial tools include OASTA
CloudTest [41] for performance testing of Web applications,
which can simulate thousands of virtual users visiting a
website simultaneously, using either private or public cloud
infrastructure service. iTKO LISA [42] aims to provide a
cloud based environment and virtual services for composite
application development, verification and validation
supporting continuous integration for development and testing.
Another example, Cloud Testing [40] supports cross browser
and functional testing of Web applications. Banzai et al. [43]
developed D-Cloud, as a dedicated simulated test environment
built upon Eucalyptus, using open-source virtual machine
software to build a virtual machine for simulating faults in
hardware including disk, network and memory. Parveen et al.
[44] used a JUnit test framework on the Hadoop platform
where the function received the test jobs as experiments to
run. Ciortea et al. [45] introduced Cloud9, a cloud based
testing service that promised to make high quality testing fast
to run on large shared clusters of computers harnessing the
aggregate memory and CPU resources based on utilities like
Amazon EC2. However these tools show that each of them
can be grouped under certain categories, but they need to be
merged together to form a complete testing methodlogy for
Clouds during the complete service lifecycle.

Most SOA testing is focused on unit testing, for example,
just the messages being communicated. However, SOA
deployments are complex in terms of WSDL schemas and
message patterns. Mostly unit testing focuses on the simple
request-response testing of the service’s functionality,
measuring the correctness of its behaviour. Sometimes these
unit behaviours depend on other external business functional
units that should also be considered. In some cases,
performance testing depicts how non-functional attributes can
be tested, which involves a verifying the QoS and could be
conducted offline, or in sandbox environments using actual
traffic patterns. Additionally, interoperability testing involves
a run-time assessment and handling of message patterns that
fall out of the expected patterns. Security may also have
various issues with injection attacks. The trust perspective
with security is also an important emerging standard of W3C
which is difficult to define. Bozkurt et al. [5] present a survey
of techniques and approaches that have been proposed for
testing web services. Most of these techniques have high costs
in terms of the test case numbers generated and also cover
only some of the facets of SOA. Issues like testing QoS,
security, trust or complete system testing still lack established
research standards.

Various functional testing tools for web applications exist,
such as LogiTest, Maxq, Badboy and Selenium, which are
based on capture and replay facilities – recording the
interactions that a user has with the graphical interface and
repeats them during regression testing. Another approach to
functional testing is based on HttpUnit, which is a Java API
providing all the building blocks necessary to emulate the
behavior of a browser trace, event sequence and form
comparison. Marchetto et al. [32] discusses the Document
Object Model (DOM) of the page manipulated by Ajax code
abstracted into a state model. The callback executions
triggered by asynchronous messages received from the web

server are associated with state transitions. Test cases are
derived from the state model based on the notion of
semantically interacting events. Mesbah et al. [33] discuss
invariance based testing in web services such as DOM
validity, error messages, discoverability, back-button
compatibility and the DOM-tree invariants that can serve as
oracles to detect such faults. Generic invariant checking
components can be used with a plugin-mechanism to add
application-specific state validators and generation of a test
suite covering the paths obtained during crawling. Both [32]
and [33] use rich-client applications using AJAX and
Selenium tests to drive the DOM tree through its states.

Poor service observability and a lack of control over the
infrastructure resources are some of the issues cited when
designing specific testing methods for the Cloud. The cost of
testing services is sometimes high, due to service disruptions
and the effects this may have on the system.

C. Testing Functional and Non-functional
Requirements

Due to the complexity of Cloud ecosystems, testing can
involve a number of functional and non-functional attributes,
which can influence the performance of the services when
they go live. Morris et al. [16] has highlights various
attributes that need to be tested such as functional behaviour
of basic operations, and non-functional attributes such as
availability of the service during different times of the day.

Functional requirements specify what the system should
do, in terms of the specific behaviour of its functions, but may
also include ancillary certification requirements defined in the
SLA. Examples include rules of business (specific behaviour
defined in SLA), authentication methods, certification
requirements, historical data or legal requirements. Examples
of functional testing methods include:

 Model-based testing: Builds a model for the target
applications where a complete model exists to serve as
the oracle, which describes the desired behaviour [31,
5, 6]. Model-based verification symbolically checks
that the model is internally consistent. Examples
include using graph or path algorithms for defining the
flow of the behaviour [6, 8] or using finite state models
where stream X-machines can be used to model data
and control of the system [20, 31]. The test case
generation for web services can be useful to allow a
complete state based testing of the service.
Specification-based test case generation is similar to
model based testing, where the model is more formal.
Examples include using a graph transformation to
model rules on individual web services as
preconditions and updates to the world state [9] or a
registry-based testing approach, where the provider
augmented the WSDL documents with behavioural
descriptions written in UML to generate a complete set
of test cases for validating behavioural conformance
[5] or using descriptions of service operations (Input,
Output, Precondition and Effect) using Semantic Web
Rule Language rules and OWL ontologies to derive an
extended finite state machine [22]. Ramollari et al.

[20] used the Rule Interchange Format – Production
Rule Dialect using explicit state updates to working
memory to derive a Stream X-machine from which
exhaustive tests could be generated [31].

 Contract-based test case generation: is also a kind of
model based testing that focuses on testing single
operations in isolation to validate their pre and post
conditions. It defines preconditions under which an
operation may be legally accessed, and the post
conditions that assure the operation succeeded upon
completion. Example include a black-box testing
approach for services, by including paired input-output
dependencies, invocation sequences, hierarchical
function descriptions and sequence specifications [24].

 Partition testing or equivalence partition testing is also
a kind of model based testing. It develops a strategy
for selecting inputs for system functions and observing
outputs that indicate that each different categorical
response of the system was correctly triggered. This
technique aims to partition the input domain into each
significant sub-domain, generating test cases for each.
Examples include using a category partitioning method
with XML schemas for XML based partition testing [4]
or using ∆-grammars and WSDL definitions to test the
evolutions of services [8]. Sometimes this approach is
supplemented by mutation testing, where faults are
introduced in every sub-domain to measure the
effectiveness of the test suites. Here the specification is
used to suggest inputs that trigger different responses.

Non-functional requirements specify how a system should
perform, in terms of its efficiency and reliability. Some of
these aspects can also be defined in the SLA, such as response
time, scalability, reliability, availability, security or
maintainability. Testing examples, are performance testing,
security testing or dependability testing for satisfying
customer needs [46]. Examples of methods include:

 Other testing issues include using already present
standards [26, 19, 27]. The XML standard can be
validated using standard XML compliance tools based
on DTD or schemas [25]. WSDL descriptions must
conform to some published ontology, that can be
checked using profile tools. SOAP messages can be
tested for compliance to message protocols using WS-
I. A popular language supporting full behavioural
description of services is BPEL or WS-BPEL (Web
Services Business Process Execution Language) [17].
It is commonly used as a way of describing workflows
as a flowchart, although it also supports other
procedural and state-based views. It has become the
glue for orchestrating services in many SOA
applications. However, testing from BPEL only offers
little abstraction as a model for testing.

 Testing Service-centric Systems for QoS Violations:
QoS ratings must be published by the provider and be
accessible to consumers within the SOA environment.
The importance of QoS in Web services and problems
surrounding have led to service standards called WS-
Agreement, a specification language for standardising

the overall agreement structure [49]. The QoS testing
cost is high due to the cost of service invocation and
the need to generate test data that simulates real usage.
Multiple test case executions are needed to provide the
average of the results from the runs for a realistic QoS
score, rather than a single test. These QoS scores are
also updated periodically from the monitoring data.

 Fault-based testing: A specific approach that tests the
robustness of a system, usually by fault injection into
the code. It presupposes that other tests already exist to
detect the faults (not a test generation method, but a
test quality). XML/SOAP perturbation uses faulty
messages in SOAP from the captured messages and
injects faults before sending those where network fault
injection involve corrupting, dropping or reordering the
network packets [12]. Mutation of web services for
detecting errors defines mutated operators in contracts
checking for semantic adequacy in web services [15].

 Testing semantic behaviour: A web service can be
tested in conformance with key standards like
validating a service interface using WSDL. Web
service authentication is verified using WS-Security,
WS-Digest and non-proprietary web services
specification such as SOAP, WSDL and UDDI [16].
Validating the service binding and messaging in
conformance with SOAP protocol over HTTP involves
checking request-response message pattern, response
message exchange pattern, action feature and the
bindings. Validating web service interoperability
involves using standards such as WS-I Basic Profile
1.0, Simple SOAP Binding Profile 1.0, SOAP
messages with attachments, standard UDDI version 2.0
or XML Schema standards. For web service
compositions, testing for conformance is more
problematic. WS-BPEL is gaining widespread
acceptance for web service orchestrations, with several
tools to parse it and flag non-conforming use.
However, this can be built without a conformance
check which makes this difficult to be validated [18].

3. Testing Methodology in Cloud Scenarios

Stakeholders

Testing for Clouds is economically important, in the sense
that it will protect the investment of businesses that rely
increasingly on the Cloud. Along with the purely technical
challenges of testing the integration of infrastructure, platform
and software services with legacy systems, the social
environment in Cloud Computing comprises a number of roles
which play a part during service certification. The NIST
Reference architecture [49] defines five main stakeholder
roles: (i) the Cloud Consumer, who uses services, (ii) the
Cloud Provider, who provides services, (iii) the Cloud
Auditor, who independently assesses the security issues, (iv)
the Cloud Broker, who acts as an intermediary between
providers and consumers and (v) the Cloud Carrier, who
provides the network connectivity and transport of services.

The heterogeneous nature of Clouds involve many
different kinds of stakeholder, who integrate many packages
operating asynchronously. Table 2 presents a compilation of
the various stakeholders involved with different testing issues.

TABLE II. STAKEHOLDERS AND TESTING FOR FUNCTIONAL AND NON

FUNCTIONAL REQUIREMENTS.

Stake-

holder
Actions performed

Testing issues involved and re-

quirements addressed

Service

developer
/Program

mer

Create a service from
scratch, reuse an

available service. Or

create an interface for
services involved by

using an existing

component and wrapping
it to perform as a service.

Construct a test suite or
guidelines for testing the

independent/wrapped service

before deploying. Prefer to test
the service locally.

Tests functional requirements

such as performance and SLA
defined variables.

(Enduser)

Customer

Uses the services, asking

for it in the form of an

SLA request.

Can also use applications

that employ a service.

None. Just requesting services..

Service

provider

Provides services as a

form of SLA. Develops
the various governance

processes that support

the service agreement
and service consumers.

Establishes customer support

issues to satisfy defined in the
SLA. Both functional and non-

functional requirements have to

be met for business satisfaction.

Service

consumer

Executes services. Writing tests and standards

necessary to achieve assurance
about service performance. Both

functional/non-functional

requirements ensure SLAs.

Service

integrator

Uses existing services to

create composite
services or create an end-

user application.

Develop guidelines for testing

composites of various types
employing range of composition

mechanisms expected. Non-

functional requirements to
ensure integration of services are

successful not affecting results.

Infrastruc

ture

provider /
Platform

provider

r

Provides necessary

infrastructure and

middleware mechanisms
such as service

discovery, service

providers, service
consumers and service

integrators.

Provides the necessary
platform for the services

to execute.

Develop guidelines and

governance processes for testing

and verification of new and
revised infrastructure

capabilities. Includes

notification for users of
infrastructure and triggers for

retesting. Develop policies for

the level of testing support
provided by the infrastructure

provider to the service provider.

Third-
party

service

tester or
certifier

Validates and potentially
certifies whether a

service works as

expected.

Identify focus, expectations and
limitations of third-party testing

and certification activities. Both

functional and non-functional
requirements to ensure SLA

criteria.

Broker Acts as an intermediate

between the service
consumers and

providers. Ensures all

requirements of services
are met and delivered on

time.

Can have its own testing

methodologies to follow for both
functional and non functional

requirements for the SLAs to be

satisfied.

4. Proposed Steps towards testing during Service

lifecycle

There are various steps involved in Cloud ecosystems,
which focus on testing issues,

1. Functional Testing during on-boarding: The
providers or broker may test services before accepting
to execute it.

2. Pre-live sandbox functional testing: The
service could be executed in ‘safe’ or sandbox
environment to replicate how it would behave on real
infrastructures.

3. Monitoring sandbox performance: To
monitor service performance in safe sandbox
environments to monitor the QoS with respect to SLA.
This covers part of non-functional requirements.

4. Live testing: Execute service on real
infrastructures.

5. Monitoring performance: Monitor service
performance in the real environment.

6. Penalties issued: If requirements are not met,
penalties may be issued to the providers.

7. Reporting on performance and functional
testing results: Reporting on final results of the service
and it is performance to the providers and end users.

5. Testing in different Cloud Ecosystems

Figure 4 describes the various Cloud ecosystems and the
stages at which they can incorporate the steps (1-7) to test the
different aspects during the service lifecycle. In the private
cloud scenario, the infrastructure or platform provider can test
the service before on-boarding it. It can then run and be tested
in a sandbox, or in the real environment, and report the results

back to the end-user. Similar processes happen in the Cloud
bursting case, where one of the infrastructure providers shares
the service load with another provider. Each provider would
then run and test independently.

In the multi-cloud scenario, the service provider/end-user
communicates to a number of infrastructure providers, which
independently test their service executions. During the
brokerage scenario, the broker acts as an intermediary, taking
most of the responsibility of testing and collecting the results.

There are various interactions taking place between the
providers, brokers and the customers during the service
lifecycle. These have been explained as follows:

 Provider registration for brokers: Infrastructure and
platform providers (and service consumers) register
with brokers with their characteristics and policies.
This includes certifications, testing methodologies and
capabilities available for services. They may also
agree on what data will be shared with brokers during
service operation in case it is against company policies.

 Service on-boarding: The service provider sends an
offer of a service provision to brokers or infrastructure
providers. The Broker/infrastructure provider then
inspects the declared functional behaviour of the
service and inspects its declared performance
characteristics for example time to execute. It tests the
service on particular platforms and infrastructure, to
ensure that the service executes correctly and in time.
Functional test suites are created from the declared
service specification. The broker can then choose a
platform or infrastructure on which to deploy the
service.

 Service operation: The Broker or the infrastructure
provider monitors the pre-live sandbox performance of
the services deployed on infrastructure measures the
Quality of Service according to declared QoS in the

Fig 4. Testing steps in the different Cloud scenarios.

service specification (SLA). If the sandbox
performance of the deployed service fails to meet the
service’s declared SLA, the broker/infrastructure
provider notifies the service provider and does not
allow it to go live. The QoS can be monitored once it
has gone live. If this is about to fall below agreed
thresholds, the broker alerts the relevant consumers and
provider. In case the SLA is being broken, the broker
may impose something like a cost penalty (on the
provider) which can also be specified in the SLA. The
Broker/infrastructure provider monitors the run-time
functional behaviour of the service, using parallel
models generated from the specification. Any run-time
violation of behaviour is reported back to the service
provider and the service consumer. In case the run-
time functional behaviour of service is compromised,
the service provider must trigger some compensation to
revert to a stable state in which all parties are satisfied.
Again, this can be specified in the SLA.

6. Towards Quality as a Service

The literature review highlights that testing in Cloud
ecosystems is a vast topic. Moving from private clouds to
ecosystems, the need for trust among parties will grow, and
the need for generally adopted methods and mechanisms for
quality control will grow. Automated testing techniques may
form a part of this. Having a complete testing methodology
which considers all aspects of functional and non-functional
requirements is a challenging task. Some issues can be broken
down as follows:

 Find an efficient manner for runtime testing with
binding of services or multi-tenancy tests for multiple
users of the services and the different tools using them.

 The same web service can have different
implementations. These can be based on the same
specification or be able to cover both perspectives.

 Issues like security and trust need also to be defined in
some manner to be tested as well.

 Be cost effective and run multiple tests at same time.

 Can a model be drawn up from a stateless protocol like
HTTP, to test its functionality? Services are usually
stateless or stateful depending on their business logic.
A model can be designed as a mental abstraction of
how a service should perform as a starting point.

 A service can be tested various stages – (i) pre-
deployment by the provider; (ii) post-deployment on
the target platform, with toy loads; and (iii) live during
operation, with realistic loads.

 How can integrated service be tested to check they do
not break other services when they go live?

 Multiple issues affecting the service such as multiple
users handling similar data, or security requirements of
the Cloud need to be tested.

 How to test the non-functional requirements such as
performance and load?

 When do we know when testing is enough for the
complex system depending on the notion of coverage?

 Generating an abstract test suite that converts the high-
level suite into actual code or scripts that can exercise
his service application.

Automating the process can allow providers to submit
valid specification for testing the services, supplied with the
SLA. The tools can then decide to use one of the advertised
standard specifications for the service supplied. This can then
be used as a complete specification generating high-level test
suite to some agreed measure of state coverage of the services.
This can be executed and any discovered faults noted, fixing
the service until the tests pass. The fully-tested service is then
used with its generated grounded test suite for regression
testing, containing the elements above, offered to customers
who want to sandbox-test the service. If the provider modifies
the service, this process must be repeated with a revised
specification.

An alternative path that may be possible is that the Broker
or infrastructure provider may generate one of several
standard grounded versions of the high-level test suite for a
particular kind of service technology, such as SOAP
communication or RESTful communication. This is only
possible if the service API is built in a standard way that every
provider agrees to observe. The provider submits the
implemented service and the grounded test-suite on the
intended platform for the software, and notifies the provider of
any errors. The provider must then fix the service until all
tests pass when the Broker or provider executes the software.
The service can be tested on a simulated environment or a real
environment depending on the costs and risks the business is
willing to take. For Cloud applications it would be ideal to
have these automated with minimum human interaction, only
responding if something has gone wrong.

Fig 5. TestCycle: The testing lifecycle.

7. Towards A Methodology

Figure 5 presents a testing cycle which contains the basic
functions needed to be carried out for testing. The
requirements can be presented by a test library which contains
functional and non functional elements that need to be tested.
Depending on the requirements, the strategies chosen can be
specific, for instance for functional testing a strategy of mod-
el-based testing can be used. The results generated in a report

are the output for the testing phase. The TestCycle can exist at
all stages of the service lifecycle as shown in Figure 6. The
cycle would allow complete testing issues to be covered de-
pending on the stage the service exists in.

Fig 6. The TestCycle exists at every stage of the service lifecycle.

The various categories of the testing requirements can be
selected at the various stages of the service lifecycle using the
test library. For instance,

 During Service Engineering phase: The service is se-
lected to only test for the following requirements, (i)
behavioural tests for the service, functional
requirements are chosen, (ii) SLA requirements are
tested – non-functional requirements like the load and
performance are under a certain limit.

 During Service Onboarding phase: The service may be
tested in a sandbox environment to test for
functionality and mimic how it would behave when it
goes live, (i) behavioural tests for the service – to test
the service behaves the correct way when it goes live,
(ii) Company policies are tested – Any rules that need
to be followed like documentation standards and legis-
lations will be tested for compliance, and (iii) Perfor-
mance and stress testing for load and capacity monitor-
ing of the service such that it would not fail when
running live with multiple transactions.

 During Service Operation phase: The service is contin-
uously tested while it is running live in the Cloud. This
will involve live monitoring on the service perfor-
mance and further tests include, (i) Company policies
are still being followed, (ii) Performance and stress
testing of the service and (iii) Other tests desired by
users like enforcing security issues.

This process of complete testing during the service evolu-
tion phase presents a comprehensive testing methodology to
ensure all aspects of services are tested. However there could
be certain costs with this kind of testing methodology dis-
cussed in the next section.

8. Summary

Some problems of testing include service observability and
lack of control on the infrastructure resources, which have not
been covered above. Cloud testing can provide key benefits
where it is possible to sometimes outsource the testing before
the service goes live. However there are certain

considerations before moving to Cloud testing which need to
be kept in mind,

 Testing services can present costs sometimes such as
cause service disruptions during testing and effects of
testing on the system, which is another thing to
consider when developing testing strategies.

 This can also introduce lower expenditure, as the
service is trusted and secure when it goes live.

 There is more consumption of hardware resources to
test the services.

 Does not support green computing as more resources
are being used for testing.

 Cost models need to be tailored per service to help
providers decide the cost of business maintainability
and the service itself. Testing services before they go
live in ‘sandbox’ environments can help reduce unpre-
dictable behaviour when the service goes ‘live’. Most
providers have their own systems to minimise the cost
of testing in sandbox environments.

Further future work needs to be carried out in constructing
a test library and gathering aspects that should be tested for
services and Cloud environments in general.

Cloud providers need to find a balance between the testing
resources and the actual product before services are made
available to be used by consumers. All these procedures aim
to build the trust and reduce risks associated with using
Clouds as future technologies.

ACKNOWLEDGMENT

The research leading to these results is funded from the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement no328392, the Broker@Cloud
project (www.broker-cloud.eu).

REFERENCES

[1] Arcitura Education Inc, Service Orientation.com, Dec 2012 Online:
http://serviceorientation.com/.

[2] X. Bai, Y. Wang, G. Dai, W.T. Tsai, and Y. Chen, A framework for
contract-based collaborative verification and validation of web
services. Proc. of 10th Int. Symposium on Component-Based
Software Engineering, LNCS, H.W. Schmidt, I. Crnkovic,
G.T.Heineman, J.A. Stafford, Eds., vol. 4608, USA: Springer, 2007,
pp. 258–273.

[3] M. Bell, 2008, Introduction to Service-Oriented Modeling. Service-
Oriented Modeling: Service Analysis, Design, and Architecture.
Wiley & Sons. p. 3. ISBN 978-0-470-14111-3.

[4] A. Bertolino, I. Frantzen, A. Polini, and J. Tretmans, Audition of
Web Services for Testing Conformance to Open Specified
Protocols. Reussner, R., Stafford, J.A., Szyperski, C. (eds.)
Architecting Systems with Trustworthy Components. LNCS, vol.
3938, pp. 1–25, 2006.

[5] M. Bozkurt, M. Harman, and Y. Hassoun, Testing & Verification in
Service-Oriented Architecture: A Survey, In Software Testing
Verification and Reliability, 2009 pg: 1–7, DOI: 10.1002/000,
Online:
http://www0.cs.ucl.ac.uk/staff/M.Bozkurt/files/pdf/Bozkurt_Harman
_Hassoun_Testing_Verification_In_SOA_A_Survey.pdf.

http://www.broker-cloud.eu/
http://serviceorientation.com/
http://www0.cs.ucl.ac.uk/staff/M.Bozkurt/files/pdf/Bozkurt_Harman_Hassoun_Testing_Verification_In_SOA_A_Survey.pdf
http://www0.cs.ucl.ac.uk/staff/M.Bozkurt/files/pdf/Bozkurt_Harman_Hassoun_Testing_Verification_In_SOA_A_Survey.pdf

[6] A.T. Endo, A.S. Simao,S.R.S. Souza, and P.S.L. Souza, Web
services composition testing: A strategy based on structural testing
of parallel programs. Proc. of the Testing: Academic & Industrial
Conf. Practice and Research Techniques. IEEE Computer Society,
2008, pp. 3–12.

[7] Gartner 2009, Norton D., Feiman J., MacDonald N., Pezzini M.,
Natis Y., Sholler D., vander Heiden G., Karamouzis F., Young A.,
James G.A., Knipp E., Duggan J., Murphy T.E., Valdes R., Blechar
M., Driver M., Young G., Vining J., Knox R.E., Feinberg D., Hart
T.J., Patrick C., Forsman J., Basso M., Simpson R., Adachi Y.,
Clark W., King M.J., Hill J.B., Gootzit D., Bradley A.J., Kenney
L.F., Stang D.B., Hype Cycle for Application Development, 2009.

[8] R. Heckel, L. Mariani, Automatic Conformance Testing of Web
Services. Cerioli, M. (ed.). LNCS, 3442, pp. 34–48. Springer, 2005.

[9] R. Heckel, M. Lohmann, Towards contract-based testing of web
services, in Proc. of Int. Workshop on Test and Analysis of
Component Based Systems, vol. 116, Barcelona, Spain, pp. 145–
156, 2004.

[10] K.S. Kumar, A.S. Das, S. Padmanabhuni, WS-I Basic Profile: A
practitioner’s view, Proc. of IEEE Int. Conference on Web Services.
San Diego, CA, USA: IEEE Computer Society, July 2004, pp. 17–
24.

[11] C. Lenz, J. Chimiak-Opoka, R. Breu, Model Driven Testing of
SOA–based software, in Proc. of the Workshop on Software
Engineering Methods for Service-oriented Architecture, D. Lubke,
ed. Hannover, Germany, FG Software Engineering, May 2007, pp.
99–110.

[12] N. Looker, J. Xu, M. Munro, Determining the dependability of
service-oriented architectures, Int. Jour. of Simulation and Process
Modelling, 3, 26, pp. 88–97, 2007.

[13] J. Macy, SOA Testing Tools & Best Practices Oct 2009,
www.soatesting.com.

[14] J. Macy, Limits of Opensource SOA testing tools Jun 2009
www.soatesting.com.

[15] H. Mei, L. Zhang, A framework for testing web services and its
supporting tool Proceedings of IEEE Int. on Service-Oriented
System Engineering. Beijing, China: IEEE Computer Society, 2005,
199–206.

[16] E. Morris, W. Anderson, S. Bala, D. Carney, J. Morley, P. Place, S.
Simanta, Testing in Service-Oriented Environments, technical
report, CMU/SEI-2010-TR-011, Online:
http://www.sei.cmu.edu/reports/10tr011.pdf.

[17] L. O’Brien, L. Bass, P. Merson, Quality Attributes and Service-
Oriented Architectures, Technical Note: CMU/SEI-2005-TN-014,
2005, Online:
http://www.sei.cmu.edu/library/reports/abstracts/05tn014.cfm.

[18] Organization for the Advancement of Structured Information
Standards (OASIS). Online: http://www.oasis-
open.org/home/index.php.

[19] OWL-S: Semantic Markup for Web Services. Online:
http://www.w3.org/Submission/OWL-S/.

[20] E. Ramollari, D. Kourtesis, D. Dranidis, A.J.H. Simons, Leveraging
semantic web service descriptions for validation by automated
functional testing, Proc. 6th Eur. Semantic Web Conf., eds. L
Aroyo, P Traverso, LNCS, 5554, Greece: Springer, 2009.

[21] M. Ruth and S. Tu, A safe regression test selection technique for
web services. Proc. of Second Int. Conf. on Internet and Web
Applications and Services. IEEE Computer Society, May 2007, pp.
47–47.

[22] A. Sinha, A. Paradkar, Model-based Functional Conformance
Testing of Web Services Operating on Persistent Data. Proceedings
of Workshop on Testing, Analysis and Verification of Web Services
and Applications, pp. 17–22, 2006.

[23] H.M. Sneed, S. Huang, WSDLTest - a tool for testing web services,
Proc. of Eighth IEEE Int. Symposium on Web Site Evolution. IEEE
Computer Society, Sept. 2006, pp. 14–21.

[24] W.T. Tsai, R. Paul, Y. Wang, C. Fan and D. Wang, Extending
WSDL to facilitate web services testing, Proc. of 7th IEEE Int.

Symposium on High Assurance Systems Engineering, Japan, Oct.
2002, pp. 171–172.

[25] World Wide Web Consortium (2009) Online: http://www.w3.org/.

[26] Web Services Description Language (WSDL 1.1). Online:
http://www.w3.org/TR/wsdl.

[27] Web Service Modelling Ontology (WSMO). Online:
http://www.wsmo.org/.

[28] Y. Yu, N. Huang, M. Ye, Web services interoperability testing
based on ontology. Proc. of Fifth Int. Conf. on Computer and Inf.
Technology. IEEE Computer Society, Sept. 2005, pp. 1075–1079.

[29] Y. Yu, N. Huang, Q. Luo, OWL-S based interaction testing of web
service-based system, Proc. of Third Int. Conf. on Next Generation
Web Services Practices, South Korea: IEEE Computer Society,
2007.

[30] R. Buyya, C.S Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality
for Delivering Computing as 5th utility. Future Generation
Computer Systems, 25, 599 – 616, 2008.

[31] M. Holcombe, F. Ipate Correct Systems Building a Business Process
Solution. Springer Applied Computing Series, 1998.

[32] A. Marchetto, P. Tonella, F. Ricca., State-Based Testing of Ajax
Web Applications. Proc. of the Int. Conf. on Software Testing,
Verification and Validation. IEEE Computer Society, 121-130,
DOI=10.1109/ICST.2008.22, 2008.

[33] A. Mesbah, D. Roest, Invariant-Based Automatic Testing of Modern
Web Applications, January/February 2012, vol. 38, no. 1, pp. 35-53.

[34] K. Djemame, B. Barnitzke, M. Corrales, M. Kiran, M. Jiang, D.
Armstrong, N. Forgo, I. Nwankwo, Legal issues in clouds: towards
a risk inventory, Phil. Trans. of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol 371, Issue 1983, 2013.

[35] A.U. Khan, M. Kiran, M. Oriol, M. Jiang, K. Djemame: Security
risks and their management in cloud computing. CloudCom 2012:
121-128.

[36] M. Kiran, M. Jiang, D. Armstrong, K. Djemame, Towards a Service
Life Cycle-based Methodology for Risk Assessment in Cloud
Computing, Int. Conf. Cloud and Green Computing,
Australia,2011.

[37] Katherine, A.V., Alagarsamy K., Software Testing in Cloud
Platforms: A survey, Int. Jour. of Computer Applications, 0975-
8887, 46, 6, 2012.

[38] P. Vengattaraman, R. Dhavachelvan, R. Baskaran, Model of Cloud
Based Application Environment for Software Testing, Int. Journal
of Computer Science and Inf. Security, vol. 7, no. 3, 2010.

[39] Y. Yang, C. Onita, J. Dhaliwal, X. Zhang, TESTQUAL:
conceptualizing software testing as a service, in 15th Americas conf.
on information systems, USA, paper 608, 2009.

[40] Cognizant reports, Taking Testing to the Cloud. March 2011.

[41] SOASTA. [Online]. Available: http://www.SOA STA.com/.

[42] ITKO. [Online]. Available: http://www.itko.com.

[43] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa, M.
Sato, D-Cloud: Design of a Software Testing Environment for
Reliable Distributed Systems using Cloud Computing Technology,
Proc. of 10th IEEE/ACM Int. Conf. on Cluster, Cloud and Grid
Computing, 2010.

[44] T. Parveen, S. Tilley, N. Daley. P. Morales, Towards a Distributed
Execution Framework for JUnit Test Cases, IEEE Int. Conf. on
Software Maintenance, 2009, pp.425 –428.

[45] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, G. Candea, Cloud9:
A software testing service, 3rd SOSP Workshop on Large
Distributed Systems and Middleware, Big Sky, MT, October 2009.

[46] Communities, Functional versus Non-Functional Requirements and
Testing,http://communities.vmware.com/servlet/JiveServlet/preview
Body/17409-102-2-22494/Functional%20versus%20Non-
functional.pdf.

[47] K. Sahoo, Overview of Testing in Cloud, Code Project Article
2013,http://www.codeproject.com/Articles/580167/Overview-of-
Testing-in-Cloud.

http://www.soatesting.com/
http://www.soatesting.com/
http://www.sei.cmu.edu/library/reports/abstracts/05tn014.cfm
http://www.oasis-open.org/home/index.php
http://www.oasis-open.org/home/index.php
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/
http://www.w3.org/TR/wsdl
http://www.wsmo.org/

[48] P. Mell and T. Grance, Effectively and Securely Using the Cloud
Computing Paradigm (v0.25), NIST, 2009.

[49] A. Andrieux, K. Czakkowski, K. Keahey, H. Ludwig, T. Nakata, J.
Pruyne, J. Rofrano, S. Tuecke, M. Xu, Web Services Agreement
Specification (WS-Agreement), Grid Resource Allocation

Agreement Protocol (GRAAP) WG, Open Grid Forum, 2007,
http://www.ogf.org/documents/GFD.107.pdf

[50] https://developers.google.com/appengine/

[51] https://www.heroku.com/

http://www.ogf.org/documents/GFD.107.pdf
https://developers.google.com/appengine/

