
Chapter 17

30 THINGS THAT GO WRONG IN
OBJECT MODELLING WITH UML 1.3

Anthony J H Simons
University of Sheffield, UK

a.simons@dcs.shef.ac.uk

Ian Graham
Ian Graham Associates, UK
grahami@compuserve.com

Abstract The authors offer a catalogue of problems experienced by developers, using
various object modelling techniques brought into prominence by the
widespread adoption of UML standard notations. The catalogue is revised to
reflect changes made between UML versions 1.1 and 1.3, in which a number
of semantic inconsistencies in the notation were fixed. Notwithstanding this,
developers still seem to create inordinate problems for themselves by
pursuing unproductive development strategies that are apparently fostered by
UML. This article shows how the biggest problem by far is cognitive
misdirection, or the apparent ease with which the rush to build UML models
may distract the developer from important perspectives on a system. This
problem is more serious than the outstanding inconsistencies and ambiguities
which still exist in UML 1.3. A number of inadequacies are also highlighted,
where UML somehow still fails to express what we believe are important
semantic issues. While UML itself is mostly neutral with respect to good or
bad designs, the consequences of allowing UML to drive the development
process include: inadequate object conceptualisation, poor control structures
and poorly-coupled subsystems.

1. INTRODUCTION

The following catalogue of problems is a revision of an earlier survey of developer
experiences using the OMG endorsed standard for object modelling, UML. In our
original findings [SG98a,b] some 37 different difficulties associated with using
UML 1.1 were reported. With the recent introduction of UML 1.3 [BRJ99] a

238 Chapter 17

number of semantic inconsistencies in the notation were fixed. However, a
significant number of problems, both cognitiveand semantic, still remain.

1.1 The context of this cr itique

The difficulties described below are drawn from the reports of developers managed
by, or known to theauthors, as they used UML on real projects, in academia and in
industry. In analysing these experiences, the authors found that it was not just that
UML contained semantic ambiguities and inconsistencies, but rather that the
increased prominence given to particular modelling notations had in turn placed a
premium on carrying out certain kinds of analysis and design activity. Analysts
were enthusiastically adopting new approaches to conceptualising their system,
eventually becoming trapped in unproductivearguments over theobjects populating
the system and the proper representation of the control structure of the system.
Designers were then refusing to implement the models produced by the analysts,
since it was often impossible to map from use case models and sequence diagrams
onto anything that a conventional software engineer would recognise. We decided
then that the problem of cognitive misdirection was at least as important an issueas
semantic inconsistency or ambiguity.

The authors appreciate the benefits that a standard modelling notation such as
UML is supposed to bring, by allowing developers to communicate in a common
language. However, the UML standard as currently defined [BRJ99; R97] is open
to some rather subtle differences in interpretation, leading to serious problems
downstream, as wehavediscovered with our developers in practice.

1.2 The cr itical framework

The body of this article is an enumeration of the problems experienced by
developers as they embraced the UML notations and engaged in what they
considered to be the most appropriate sequence of activities for building UML
models. Each problem is indexed, for ease of reference, and classified using a
three-letter code, in the style: (#2: MIS). The classification codes have the
following interpretation:

• INC - inconsistency, meaning that parts of UML models are in
contradiction with other parts, or with commonly accepted definitions of
terms;

• AMB - ambiguity, meaning that some UML models are under-specified,
allowing developers to interpret them in more than oneway;

• ADQ - adequacy, meaning that some important analysis and design
concepts could not becaptured using UML notations;

• MIS - cognitive misdirection, meaning that the natural development path
promoted by a desire to build UML models actually misleads thedeveloper.

Each problem cited below was placed into one of these categories, representing
the major perceived underlying cause of the fault. The categories are not intended
to bemutually exclusive, nor necessarily exhaustive, but merely indicative.

30 Things that Go Wrong in Object Modelling with UML 1.3 239

In the following section, we discuss what we believe are some of the causes
underlying the failures reported by developers in our survey. The subsequent
sections form the body of our catalogue. In our conclusions, we discuss the
significanceof thenumbers of problems in each category.

2. CRACKS IN THE HEART OF UML

UML is intended to be a general-purpose modelling notation, based on a few
consistently applied principles. As a result of pressures brought to bear during
standardisation, UML has accomodated heterogeneous elements from its precursor
methods and notations. It is a difficult task to tread the tightrope between
minimalism and expressiveness successfully; and UML does this moderately well
by managing to apply the same conventions across a number of its models.
However, thesestrengths of UML also eventually account for its weaknesses.

2.1 Universal notation has multiple interpretations

One of the claimed strengths of UML is that it is universal, that is, the same
notation is used for analysis, design and documenting the implementation. This
minimalism is typically cited as a benefit. However, the down-side is that one
developer will interpret another developer's diagram under a different set of
assumptions. What was intended as an analysis diagram in one context may be
interpreted as a concrete design in another context. Our developers repeatedly ran
into problems because they could not decide how concrete UML models were
supposed to be. Should an association just represent a vague imagined connection
in the problem domain, or should it mean a physical connection between classes in
the solution domain? Diagrams representing one thing were often found to have
been interpreted as the other. UML claims that its capacity to model both
perspectives is an advantage; the fact that it offers no control over how diagrams
are interpreted must then beconsidered a serious disadvantage.

2.2 Universal notation fosters naïve seamless development

Nowhere is this more obvious than when a class diagram, which is drawn as an
initial analysis of relationships between concepts in the problem domain, is pressed
into service as a concrete design. Associations are converted into pointers; many-
to-many relationships are translated directly into set-valued attributes and strong,
mutually-coupled Observer patterns appear in the design [GHJV95]. It would have
been better if our developers had noticed that many-to-many relationships could be
eliminated using linker entities (in Entity-Relationship Modelling) or Mediator
patterns (in Responsibility-Driven Design) to reduce coupling between classes in
the design [SSH98]. Yet, they repeatedly failed to perceive systems in terms of
such co-ordinating structures (seealso problem #28 below).

The practice of analysing the semantic relationships in the problem domain
using classes and associations actively blinds developers to alternative practical

240 Chapter 17

structures. Gestalt theory predicts that the initial concepts formed during the
perception of some phenomenon radically affect how subsequent constructs are
formed. Following this, we have observed how early analysis modelling using
classes tends to fix these concepts and suppress others. Development then becomes
a steady elaboration of detail; theanalysis classes and structures do not change, but
merely add to their attributes and methods, in the style of some early naïve
development methods [CY91a,b; WN95], which emphasised the seamless
transition from analysis into design. This approach leads to systems which are
overly coupled and exhibit poor modular structure [SSH98]. Well-structured
systems typically do not exibit a 1:1 mapping from analysis to design objects.

2.3 Eclectic models fail to resolve competing design forces

Another of the claimed strengths of UML is that it is eclectic, that is, it keeps the
best parts from a number of precursor methods and notations, in particular [B94;
RBPEL91; JCJO92]. Eclecticism is regarded as a good thing, because this means
that the notation contains something for everyone; no-one's point of view is left
out. However, it is extremely difficult to ensure that all the parts work together all
of the time. Like the old adage that a camel is an animal that was designed by
committee, eclectic systems are often ugly because they borrow elements out of the
original context in which they evolved. In UML, great care has been taken to
ensure that theelements of thenotation fit together, at least on thesyntactic level.

However, if you examine the intent behind sets of model elements in a single
UML diagram, you will often find that these are in conflict, because they were
taken from contexts which originally supported mutually exclusive design
approaches. For example, a class diagram blends associative relationships between
data structures with client-server relationships equivalent to inter-moduleprocedure
calls. If one were to resolve the data model alone in terms of minimising data
dependency, this would lead to one structure, equivalent to 3NF. If one were to
resolve the client-server class coupling model (the sense in which RDD originally
used the term collaboration graph [WWW90]) then this would lead to a completely
different structure, minimising inter-module dependency [SSH98]. The down-side
of an eclectic notation is that different design forces compete within a single UML
model - rather than offering a single perspective, it offers multiple perspectives
simultaneously. As a consequence, developers do not profit from the structure
offered by either perspective; they are unable to proceed because the UML model
fails to resolve thecompeting design forces.

This duality is not just a feature of the class diagram. The sequence diagram
switches between a dataflow and a method invocation perspective. The state and
activity diagrams switch between a finitestatemachineand a flowchart perspective.
Models which were highly constrained in their original context lose their useful
constraint when extra enhancements are added in UML: an example of this is the
attaching of extra guard conditions to events on transitions in the state model,
which undermines the purpose of the state machine perspective. The richness of

30 Things that Go Wrong in Object Modelling with UML 1.3 241

UML is its own undoing, since it prevents its models from offering any clear
perspectiveon thedirection thedesign should take.

2.4 Universal definitions of notation elements transfer poor ly

The elements of a universal notation must have an interpretation for analysis,
design and implementation. Developers often take the most concrete examples of
notational elements in use (because this is what they can understand) and retrofit
these interpretations higher up in the analysis process. This impedes analysis, by
imposing implementation concerns too early. The problem is more subtle than
simply asserting that UML definitions are too concrete; it is rather that
universalism fosters the transfer of elements and their definitions out of context.

Nowhere is this clearer than with the fundamental definitions of association and
dependency in UML 1.3 [BRJ99]. An association is a concept from ERM that is
used initially to represent some imagined relationship between entities. It has no
immediate concrete interpretation. A dependency is likewise defined quite
abstractly in UML as a directed relationship in which the behaviour of thesource is
functionally dependent on the behaviour of the target. However, when proceeding
to the design level, UML asserts quite categorically that associations represent
structural relationships that would require pointers (or embedding) in the
implementation, whereas dependencies correspond to non-structural relationships,
such as when one class uses another as an argument in its method signatures. This
mutually exclusive definition is retrofitted on the analysis perspective and prevents
associations from being seen as kinds of dependency; instead, developers are
encouraged to make early distinctions between associations and dependencies in
analysis [BRJ99, p74], decisions which really concern the implementation structure
of systems. The notion of dependency is too important to be relegated to non-
structural dependency only; several outstanding problems regarding the
expressiveness of UML follow from this.

3. USE CASES AND USE CASE MODELS

Use cases were hailed in the field of object technology [JCJO92] as the first serious
attempt to elicit requirements upstream of object modelling (though business tools
such as RequisitePro may prove a better starting point). In OBA [G90; RG92],
scenarios were originally collected during interview as instances of user-
interaction, each describing a single execution path, like a procedure invocation.
The view adopted by UML 1.1 [R97] gave a use case a type-level interpretation,
rather like a procedure description. UML 1.1 also established the «uses» and
«extends» generalisation relationships between use cases as a kind of novel control
structure in the analysis domain. UML 1.3 now defines a scenario as an instance
of a use case [BRJ99] and has replaced the«uses» and «extends» relationships with
new «include» and «extend» dependency relationships.

242 Chapter 17

3.1 Fixes made to use cases in UML 1.3

The UML 1.1 use case model was perhaps the most contentious and most widely
misapplied part of UML. Originally, the «uses» and «extends» relationships were
defined as specialised subtypes of the inheritance relationship between use cases
(stereotypes of generalisation, in the jargon [R97]), using the standard
generalisation arrow. In our previous survey [SG98a,b], we reported how
developers simply disbelieved the official UML 1.1 semantics, preferring to infer
different meanings for «uses» and «extends», with a number of consequential
problems in communication and model consistency. Nowhere was this more
painfully evident than during the OOPSLA 1998 use cases panel, in which
Jacobson and Cockburn gave conflicting definitions on the meaning of «uses»
without realising it, and some 80% of those present indicated that they failed to
understand the«uses» and «extends» relationships [FCJAG98].

Jacobson's «uses» relationship, adopted in UML 1.1, was analogous to
subclassing, in which a concrete use case "inherited" elements of an abstract use
case and inserted them into its own sequence. In contradiction of this definition,
developers commonly imagined that «uses» had the semantics of a simple
subroutine call, in which the using case invokes theused caseas a whole; they thus
ignored thegeneralisation arrow semantics and the interleaving of elements.

The «extends» relationship was inconsistently defined from the start. On the
one hand, the extension case was modelled as "inheriting from" the base case, but
simultaneously was regarded as "inserting behaviour into" the base case. Both
views cannot be held consistently: the extension must either represent the extra
behaviour (insertion semantics), or the combination of the baseand extra behaviour
(specialisation semantics). In practice, the former semantics were applied, in
violation of the metamodel description. UML 1.3 addressed these problems by
abandoning the old «uses» and «extends» relationships. Their replacements are
known as «include» and «extend». The main change is that these are defined as
stereotypes of dependency (kinds of functional dependency) [BRJ99]. The effect of
this change has been to remove the earlier conflicts with the generalisation/
specialisation semantics.

A number of problems still remain. Although use cases are supposed to be
independent of any formal design, such that they "cannot be forward or reverse
engineered" [BRJ99, p239], the conceptual structures fostered by use cases mislead
developers about design structures. Logical faults are introduced, which prevent
theusecasemodel from scaling up to largesystems.

3.2 Inadequacies of the «include» and «extend» relationships

The semantics of «include» is under-specified (#1: AMB)

By abandoning the old view that «uses» specialises an abstract base case and
interleaves procedural elements, it would appear that UML is bowing to popular
pressure for a straightforward compositional semantics for «include», as
recommended by OPEN [FHG97] and as practised already by [C97a,b] in disregard

30 Things that Go Wrong in Object Modelling with UML 1.3 243

of the UML 1.1 semantics. All of the examples given in [BRJ99, p227, 230, 337]
are consistent with subroutines, rather than interleaved routines, but theauthors fail
to make absolutely clear whether this semantics is intended, since at the same time
the included case is called "an aggregation of responsibilities" (p227) that is
determined by "factoring out" (p226) common behaviour, which is reminiscent of
generalisation [JCJO92, p170-173]. What we would like to see is a plain assertion
that included cases areatomic subroutines that areexecuted as a whole.

The semantics of «extend» cannot handle exceptions (#2: ADQ)

By abandoning the inconsistent view that theold «extends» is both an insertion and
a specialisation, this allows the new «extend» relationship to be considered purely
as an insertion. The inserted optional behaviour is executed if a trigger condition is
satisfied [BRJ99, p228]. This definition is equivalent to a guarded block, or a
single-branch if-statement, in which control returns to thepoint of call afterwards.

As well as optional branches, developers commonly use «extend» to indicate
exceptions; and this intention is also clear in [JCJO92, p165]. Unfortunately, the
insertion semantics of «extend» does not support exceptions. When an exception is
raised, control never returns to this point, but may return to the end of the failed
transaction after theexception has been processed, or not at all.

The semantics of «extend» cannot handle alternative history (#3: ADQ)

Likewise, developers commonly use«extend» to indicatealternativehistory. Figure
1 overleaf shows a typical example (adapted from [C96]) in which PayDirect is
intended as an alternative to SignForOrder; likewiseReturnGoods is intended as an
alternative to PayInvoice. Under the insertion semantics of «extend», this diagram
is nonsensical, because thebasecases would still execute, once the inserted optional
behaviour had terminated (seealso problem #5 below).

Jacobson originally expected the «extend» relationship to be able to characterise
insertions, exceptions and alternatives [JCJO92; p165]. It is clear from the
published semantics of «extend» that it can only handle the first of these. Usecase
diagrams are therefore dangerously ambiguous; developers have to rely on
intuitions about the labelling of the cases to establish the intended logic, in
disregard of the official semantics. The «extend» relationship is not one, but
several different relationships that havebeen conflated.

3.3 Misdirection fostered by use case development

Use case modelling misses long-range logical dependency (#4: MIS)

Use case modelling promotes a highly localised perspective which often obscures
the true business logic of a system. As a result, developers fail to capture important
long-range dependencies. In figure 1, the extension cases aim to capture local
alternatives (problem #3 notwithstanding). However, UML does not capture
explicitly the exclusive alternation of PayDirect with the more distant main cases
SendInvoice and PayInvoice; likewise, the PayDirect and ReturnGoods extensions

244 Chapter 17

are secretly inter-dependent. A customer who paid direct should not only not
receive an invoice, but must obtain a refund in addition to returning faulty goods.
Even simple examples like this exhibit unpleasant mutual interactions between
extensions and between these and other base cases. Most alarming is the fact that
the redress for thecash-paying customer is not captured at all - this logical loophole
is completely obscured in theusecasemodel.

<<extend>>

Make up Order

Place Order

Sign for Order

Deliver Goods

Send Invoice

Pay Invoice
Return Goods

<<extend>>

Pay Direct
Customer

Supplier

Figure 1: Pitfalls in a usecasediagram

The granularity of use cases and logical task units are different (#5: ADQ)

Some of these problems could be fixed if UML admitted functional task units that
were both larger and smaller than the nominal grain-size of use cases. A use case
is defined as: "a sequence of transactions performed by a system, which yields an
observable result of value for a particular actor" [JGJ97, p66]. The emphasis on an
observable result is a deliberate constraint which seeks to ensure a minimum and
maximum granularity: use cases may not be vacuous (they must deliver some
useful result) and may not bemultiple (they deliver a single result).

Unfortunately, to model alternative history requires empty base cases that may
then be extended by each of the substantive alternatives. Unlike the doomed
attempt to treat one alternative branch as the extension of the second branch (see
problem #3), which fails under the semantics of insertions, both of the alternative
branches could be legitimately modelled as insertions into some vacuous base case.
Jacobson may even be accused of doing this [JCJO92; p164-165] where he
considers LogOn/LogOff to be a base case into which the substantive alternative
activities of a terminal session (such as Compile, Mail or WordProcess) are
inserted. This basecase is really of no observablebenefit to theuser!

Likewise, to model long-range logical dependency (see problem #4) requires
large scale hierarchical units to co-ordinate the use cases that logically belong
together. In figure 1, the true logical alternation is between the missing concepts
CreditPurchase and DirectPurchase, not represented in UML, but which would
appear as abstract intermediate nodes in a conventional structure chart. These are
necessary to encode the long-range dependencies that exist between the use cases

30 Things that Go Wrong in Object Modelling with UML 1.3 245

arranged under them. Neither of these would qualify a use case in UML 1.3, since
they involvemultiple transactions for many actors.

Use case dependency is non-logical and inconsistent (#6: INC)

The direction of dependency is misleading for «extend», flowing from the insertion
to the base case that it modifies. This is an artefact of the order followed in the
analysis procedure, rather than indicating any real logical dependency. Logically,
it is the superordinate selection node, not represented in UML, but understood as
the bundling of the base and all extension cases, which depends on all of its parts.
The current UML 1.3 position is like saying that all branches of a multibranch-
statement depend logically on onedistinguished branch, clearly nonsense.

Whereas «include» can perhaps be construed as a genuine logical dependency,
that of a sequence node on its subroutines, «extend» cannot; it merely records how
the analysis paperwork was indexed. These are not stereotypes of the same
dependency, they are two completely different kinds of relationship.

Use case modelling is unsound and must be deconstructed (#7: MIS)

This non-logical formulation of dependency also explains why «extend» cases
break encapsulation, unfairly gaining access to the internal structure of the main
cases they extend [G97]. In a logical formulation, all alternatives would be
encapsulated inside the dispatching selection node. It also explains why «extend»
seems to behave likea come from instruction, seizing control from themain flow.

While the UML authors may undermine attempts to impose logical consistency
by asserting that use cases “cannot be forward or reverse engineered” [BRJ99,
p239], the consequence of promoting non-logical relationships is that analysts will
develop illogical use case models that have to be completely deconstructed later
during design. Developers aremisguided from thestart.

4. SEQUENCE AND COLLABORATION DIAGRAMS

Sequence diagrams and collaboration diagrams are two equivalent ways of
illustrating object-to-object message interactions in UML [BRJ99]. A sequence
diagram makes the time ordering of messages explicit, but hides the structural
relationships between objects. A collaboration diagram displays the structural
connections between objects and superimposes on this a sequenceof messages. The
sequence diagram may show the focus of control (stack frame invocation level), but
is limited in the degree of branching it can accommodate; whereas the
collaboration diagram may illustratemoresophisticated branching and iteration.

4.1 Fixes to sequence and collaboration diagrams in UML 1.3

A number of missing emphases have been added since UML 1.1, which address
some of the criticisms raised in [SG98a,b]. A sequence diagram may be used to
represent either a single execution of a singledecision path, or a procedural view of
the decision paths available for execution. In the former case, the sequence

246 Chapter 17

diagram models a scenario, whereas in the latter case, it models a use case (see 3
above). This still puts the onus on the developer to realise when the diagram is
being used in either sense. The failure of sequence diagrams to handle all but the
simplest kind of branching is acknowledged. The UML 1.1 policy of splitting and
merging an object's timeline when it enters an alternative history seems to have
been abandoned. Focus bars now have a clear stack-frame semantics and are
correctly mandated for every call-back and every self-delegation [BRJ99, p247].
Unfortunately, the UML authors don't observe their own rule on p252, so we list
focus bar interpretation as a continuing problem for developers.

Collaboration diagrams are largely unchanged. The interpretation of the
complicated syntax for branching and iteration is explained briefly on p249, but the
conventions for referring to iteration variables are not explained. An alarming
new concept is the admission of non-procedural message flow. This serves to
confuse further the object/messaging and dataflow/flowchart perspectives. In our
previous critique [SG98a,b], we reported how UML had subverted the original
meaning of the term collaboration from RDD [WWW90]. UML still lacks the
concept of a class-level client-server functional dependency (seeproblem #29).

4.2 The method invocation and dataflow/workflow duality

Sequence diagrams developed from use cases produce dataflow (#8: MIS)

In a properly-constituted sequence diagram, the meaning of the arrow stimulus is a
message sent to activate a method in the target object, the receiver. The arrow has
the semantics of an invocation. Against this, we find time and again that
developers do not have this perspective when drawing sequence diagrams. Instead,
they tend to create dataflow diagrams, in which the meaning of the arrow is the
transfer of information to destinations corresponding to imagined processes and
datastores. This persistent failure to adopt a proper object-oriented mind-set is
disturbing.

Eventually, we put this behaviour down to inadequate prior object modelling. If
developers proceed directly to sequence diagrams from use cases, the kinds of
object-concept availableat this early stage relatealmost exclusively to human actors
and passive datastore concepts, such as letters, forms, price and stock records.
There is a tendency to model thenouns in thedescription of theuse-case literally in
the sequence diagram. Sentences like: the warehouse manager looks up the price
and the stock-level result in messages between the external WarehouseManager
actor and object concepts representing a PriceRecord and a StockLevelRecord.
Instead, price and stock-level should most likely be access methods of a GoodsItem
object.

To counter this, developers must be prevented from drawing sequence diagrams
as a primary model; instead, they should concentrateon eliciting responsibleobject
abstractions [BC89, WW89, WWW90]. Sequence diagrams were deployed much
later in OOSE to confirm that the object model covered the behaviour expected in
usecases [JCJO92]; this has also been found useful in testing [M97].

30 Things that Go Wrong in Object Modelling with UML 1.3 247

Flat, or non-procedural message flow is workflow (#9: MIS)

In UML 1.3, the authors recognise both procedural and non-procedural message
flow between objects in collaboration diagrams [BRJ99, p213]. The former is
drawn with the filled arrowhead and has the semantics of method invocation, in
which messages may nest. The latter is drawn with thestick arrowhead and has the
flat semantics of "nonprocedural progression of control from step to step", in other
words, the workflow in a flowchart. Workflow has no place in an object-messaging
model and only serves to distract developers.

The return arrow is dataflow in an invocation model (#10: MIS)

UML 1.1 introduced the dotted-shaft return value arrow to distinguish the passing
of return values from call-back invocations. A new problem is that this is now the
only dataflow in an invocation model. It confuses developers about the intended
meaning of arrows in sequence diagrams. If focus bars are used consistently (see
problem #12), then return arrows are unnecessary - they should be dropped, except
to express a request from a concurrent thread to resynchronise (a rendezvous).

Focus bars are misunderstood and used inconsistently (#11: INC)

b:Ba:A

(a) (b)

b:Ba:A

(c)

b:Ba:A

Figure 2: Thread, activation and stack-framesemantics of focus bars

Focus bars should have a stack-frame semantics, as shown in figure 2c. A nested
focus bar must be shown for every call-back and self-delegation [BRJ99, p247]. It
should be clear from the nesting and length of focus bars which messages are the
master routines and which are the subroutines. In UML 1.1, a second process
thread semantics was allowed [R97], shown in figure 2a. In this case, the length of
the focus bar indicates the liveness of the thread. Most developers, including
[BRJ99, p252] misuse focus bars in the style of figure 2b. The length of the bar
conveys no useful logical information, corresponding only to the interval between
when an object was first and last touched.

Absent, or misused focus bars promote dataflow over invocation (#12: MIS)

The style of figure 2b also visually promotes a conflicting dataflow semantics for
the stimulus arrow, since it cannot now mean invocation (as no nested focus bar is
raised). A similar visual conflict arises if no focus bars are displayed. The correct
style of figure 2c promotes a proper invocation semantics. From this, it is always

248 Chapter 17

possible to determine when a subroutine terminates and to which caller the return
value should pass. The value returned is implicit in the request, so need not be
annotated, thus freeing thediagram from another dataflow (seeproblem #10).

4.3 Adequacy and expressiveness of interaction diagrams

The normal course plus extensions model is a fiction (#13: MIS)

Sequence diagrams are supposed to be drawn for each use case. A use case starts
from the premise that you can construct a normal course of events and supplement
this with various extensions. This works only for simple examples. In general,
business logic is much more complicated, with multibranching decision paths. In a
credit reinsurance system developed for BTR [HSR98], there were four ways a
credit limit application could succeed and four ways in which it could fail.

The natural business logic is structured such that early rejection or acceptance
cases are spun off the continue to investigate creditworthiness case, which in turn
may lead to acceptance or rejection. It is impossible to decide which of these
should be considered the normal course, since acceptance and rejection eventually
occur with equal likelihood. The analysts were artificially constrained into
accepting the continue to investigate caseas thenormal course, despite the fact that
this is a fairly unlikely path through thesystem.

The granularity of use cases and logical sequence units is different (#14: ADQ)

In the same credit reinsurance system [HSR98], the designers rejected the analysis
model from (problem #13), because the different cases were of unequal size and
complexity. The modularisation of the system was judged to be poor. Instead, the
designers wanted to truncate use-cases at points where conditions and branching
were introduced, because of the weak support given to branching and iteration in
sequencediagrams.

The designers represented in a single diagram the initial portion of thecontinue
to investigate case up to the first early rejection point; then spun off a second
sequence diagram to cover the continuation of the case up to the first early
acceptance point; and so on. This was judged habitable, because each sequence
diagram supported a single branch of the logic and was of a comparable modular
size. However, the granularity principle for use cases was broken (seeproblem #5),
since many cases were spun off which did not correspond to a single, complete
interaction of a user with thesystem. Cases also acquired unlikely sounding names,
such as: Early Credit Limit Acceptance that was Previously Not Rejected Early.

Decision logic in sequence and collaboration diagrams is limited (#15: ADQ)

In UML 1.3, a branching condition is indicated in [] brackets and placed as a
guard on message stimuli. The guards for all branches at a fork must be mutually
exclusive; only one branch is selected at one time. This allows client objects to
dispatch requests to alternative servers, or to dispatch alternative requests to the

30 Things that Go Wrong in Object Modelling with UML 1.3 249

same server, but cannot represent the client object entering a different timeline
[SG98a,b].

UML 1.1 introduced the splitting of object timelines in sequence diagrams
[R97], but this seems to have been dropped in UML 1.3 [BRJ99]. Instead, objects
may occur multiple times in a collaboration diagram [BRJ99, p254] if they enter a
substantively different state. In our earlier critique [SG98a,b] we noted how
business logic tends to produce many overlapping and parallel timelines
representing alternative ways of reaching the same outcomes, but which are
contingent on having passed through different histories. To split and join multiple
timelines is impossible in a single sequence diagram and clutters a collaboration
diagram. The need to enter an alternative timeline forces the creation of another
diagram (see problem #14) which also forces the premature truncation of use cases
(seeproblems #5 and #14).

4.4 Conflicts between object messaging and decision logic

The sequence perspective generates incorrect control logic (#16: MIS)

Sequence diagrams are often used in ways that emphasize object interactions at the
expense of proper decision logic. One of the models developed for the credit
reinsurance system [HSR98] (see problems #13, #14) produced an example in
which an early rejection point should logically have terminated the timeline;
however, because of the CASE tool's inability to support branching and alternative
timelines, the developer had continued using the same object timeline for the
continue to investigate case, which was logically inconsistent.

b:B c:C

[true]

[false]

a:A

No continuation
past this point!

d:D

Merged
timelines!

Figure 3: Pitfalls in a sequencediagram

This logic fault is equivalent to continuing past the termination point indicated
in figure 3. Sequence diagrams are problematic where they suppress the
developer's perceptions of proper decision logic. A timeline must either represent a
single sequence of actions (with no branching), or a mutually exclusive set of
guarded alternativehistories, as in figure3.

250 Chapter 17

Alternative timelines are combined and misread (#17: MIS)

Sequence diagrams also merge object timelines which are logically distinct,
especially when they are at several removes from the point of branching. These
timelines are easily misread by designers and result in merged processing streams
in the implementation. Figure 3 illustrates a case where the two alternative
processing branches initiated by the object a:A are eventually merged as a single
timeline in the object d:D. It is possible to view this as a single history for d:D
when in fact this represents two alternativehistories.

5. STATE AND ACTIVITY DIAGRAMS

UML's state diagram derives from the dynamic model of OMT [RBPEL91] and
ultimately from Harel's statecharts. It is a fusion of Moore and Mealy finite state
machines in which computational activity may be attached to transitions (Mealy)
and to states (Moore) [BRJ99, p336]. Each state at one level may be expanded to a
substate machine, to model this computational activity. Arcs entering a superstate
correspond to commencing the substate machine in its initial substate; arcs leaving
thesuperstateboundary indicateexit transitions from all substates.

UML's activity diagram is a synthesis of a state machine, a flowchart and a
Petri net. Described in state machine terms, the so-called action and activity states
are really processing stages in a flowchart and the transitions represent program
conditions rather than events. Diamond decision nodes indicate branching; and
Petri-stylesynchronisation bars indicateconcurrent fork and join points.

5.1 Status of state and activity diagrams in UML 1.3

Since UML 1.1, the scope of the state diagram has been widened to model whole
system behaviour, rather than merely local object behaviour; and the importanceof
the activity diagram has been elevated, in line with our earlier recommendations
[SG98a,b]. The activity diagram is much better suited to modelling real business
processes than either of the interaction models (see problems #13-#17 above), since
it models workflow, rather than object messaging. Alternate and parallel paths
through the business logic may easily merge at points where the outcome is
thereafter thesame.

Nonetheless, we still find that developers make too little use of this model and
proceed to interaction modelling at a far too early stage. Likewise, statemodels are
under-used and we occasionally still see instances of the "use case too far"
syndrome in which developers try to encode all the business logic in use cases
[SG98a,b]. We have also identified a number of new inconsistencies since our last
survey.

30 Things that Go Wrong in Object Modelling with UML 1.3 251

5.2 Interpretation problems with initial and final states

The initial state is both an indicator and a state (#18: AMB)

Developers do not know whether the initial state represents a true state, or merely
points to the first substantive state. The Harel-semantics conflict with Mealy-
semantics in which a free transition arrow proceeds to the first substantivestate.

Harel-semantics encourages the view that the initial state is a real state, in
which the system is dead, not yet switched on. However, when used to indicate the
starting point of a substate machine, the initial state icon cannot represent a dead
system state; it is used exactly like the Mealy initial free transition arrow.
Similarly, since a majority of UML state diagrams place no event on the initial
transition, the initial state may as well not bea state.

The final state is both an accept state and a halt state (#19: AMB)

Developers do not know whether the final state represents a true accept state in the
system, or merely a halt state after the system has terminated and is dectivated.
The Harel-semantics conflict with the Mealy-semantics in which the ringed state is
an accept state, that is, the last substantivestate in themachine.

The accept state view causes developers to place final state icons in substate
machines [BRJ99, p303], to indicate that these eventually terminate. Under Harel-
semantics, this indicates the premature halting of the whole system, rather than the
successful completion of a substate machine. If the final state icon is reserved for a
halt state (after the last substantive state), there is no way to indicate a true accept
state. This mostly makes it harder to see where a substate machine terminates,
without breaking theencapsulation of nested statemachines (seeproblem #21).

5.3 Consistency problems when decomposing state machines

Transitions across a superstate boundary violate encapsulation (#20: ADQ)

The advantage of Harel statecharts is supposed to be that they allow the developer
to view the control structure of a system at different levels of abstraction, hiding
different amounts of detail inside substate machines. However, if major alterations
to the state transition pattern are needed when a superstate is exposed as a substate
machine, this negates thebenefit of encapsulation and abstraction.

UML state diagrams routinely allow transitions to state boundaries at one level
of description to be redrawn to connect with substates when these are exposed
[BRJ99, p299, 301, 333, 437]. This breaks the encapsulation of state machines.
The labelling of such transitions at the superstate and substate levels must often be
different (see problem #21). Further problems of encapsulation are caused by
admitting shallow and deep history connectors (seeproblem #24).

252 Chapter 17

Boundary crossing makes a nested accept state redundant (#21: ADQ)

The most irritating example of boundary-crossing (see problem #20) is the practice
of identifying an accept state in a substate machine (see problem #19) by a free
transition, which exits this substate across the superstate boundary. This transition
would have to be properly labelled with an event at the higher level (triggered by
completion of the substate machine), thus illustrating the inconsistency of labelling
at each level. Furthermore, a free transition exiting a nested accept state effectively
makes this state redundant - it might as well not be there; instead, the penultimate
states could exit directly when their events were triggered.

These points illustrate how boundary crossing breaks encapsulation by upsetting
the state machine logic at both the higher and lower levels. Instead, substate
machines should not connect directly across the superstate boundary. Reaching the
accept state of a substate machine should be deemed equivalent to signalling a
separateevent at thehigher level.

States with free exit transitions are not decomposable (#22: INC)

Sometimes, states representing processing stages, in the sense of a Moore-machine,
have free exit transitions, meaning that the state may be quit automatically once its
associated processing has terminated. However, if such a state is ever expanded,
there is an immediate problem in interpreting the free exit transition consistently,
since under Harel-semantics, a transition leaving the superstate boundary is
equivalent to an exit transition from every substate. This would mean that every
substateexits immediately! Thesubstatemachinecannot execute.

5.4 Misdirection in captur ing the under lying control logic

Conditional guards conceal a duplication of control states (#23: MIS)

The admission of extra conditional guards on events in UML 1.3 undermines the
purpose of the state machine formalism and conceals a duplication in control states.
Figure 4a illustrates a simple heating system whose basic events are temperature
triggers, which have been augmented by timing guards to introduce a delay in
switching.

Heating

Standby

tooCold
tempOK

[time>d]

[time>d]

Heating

Standby

timeOut

timeOut

[temp<h]

[temp>=h]

Heating

Standby

timeOut

Heating

Standby

timeOut

Standard

Standard

Extended

Extended

tempOK

tooCold

tooCold

tempOK(a) (b) (c)

Figure 4: Pitfalls in statemachine logic

30 Things that Go Wrong in Object Modelling with UML 1.3 253

This model is exactly equivalent to figure 4b, in which the basic events are
timeouts, augmented by temperature threshold guards, illustrating how the
augmented notation makes the choice of events essentially arbitrary! In figure 4c
the guards are revealed for what they are: extra hidden control states. Because
conditional guards lead to self-deception about the real control structureof systems,
we advise our developers to expand them away, so that they areat least awareof the
real number of states and events in thesystem.

History connectors conceal a multiplication of state machines (#24: MIS)

UML 1.3 admits shallow and deep history connectors [BRJ99, p301]. Upon reentry
to a superstate containing a shallow history connector, the substate machine
resumes where it last left off, rather than starting in its initial state. This
enrichment not only breaks encapsulation (problem #21), since it requires
reasoning across state boundaries, but also corresponds to a repeated duplication of
the entire super state machine, once for each alternative remembered substate! A
deep history connector applies this expansion recursively, to all nested substate
machines.

We appreciate that this approach is typically thought necessary to model
interrupts and co-routines; unfortunately it blinds most developers to the real
complexity of what they havecreated. Wediscourage its routineuse.

Entry/exit actions and internal transitions promote flowcharts (#25: MIS)

The simple logic of state machines is upset yet again by the concern to execute
attached procedural elements in the correct order [BRJ99, 295-298]. For example,
a distinction is drawn between standard self-transitions, which trigger entry/exit
actions, and internal transitions, which do not. This imposes a procedural
flowchart perspective, rather than an event-driven one, when designing state
diagrams.

We think that a self-transition should always be equivalent to dwelling in a
state, rather than exiting and re-entering. Self-transitions typically decompose into
lower-level transitions in the substatemachine. This leads us to conclude that there
should only beone activity attached to a state, modelled by its substatemachine.

6. CLASS DIAGRAMS

Class diagrams are perhaps the most stable and widely used part of UML, since
they translate in a straightforward way into program classes. Paradoxically, this
can lead to developer overconfidence after the analysis stage and inadequate object
modelling in the design stage. Thestrength, and also theweakness, of UML's class
diagram is its ability to capture a wide variety of semantic relationships, which are
either the anticipated, but as yet uninterpreted associations between entities in the
analysis domain, cf. OMT [RBPEL91]; or the actual structural and functional
connections between classes in the design domain, cf. has and uses in Booch '94
[B94].

254 Chapter 17

Eventually, it is the richness of the representation which confuses developers.
They are wrestling simultaneously with analysis and design perspectives, with data
modelling and client-server functional dependency perspectives, all in the same
diagram. A number of theseproblems werealready described in section 2.

6.1 The premature curtailment of object modelling

Class diagrams tend to fix object abstractions too early (#26: MIS)

As we noted in sections 2.1 and 2.2, class diagrams drawn during the analysis
phase exercise an undue influence on the eventual design. Initial class diagrams
contain obvious domain concepts, related by uninterpreted associations. These are
typically pressed into design in a naïve way. Developers do not reconsider the true
nature of functional coupling between classes, so they simply add behaviour to the
initial domain concepts, eventually overburdening them. They are hindered from
thinking more imaginatively about classes as smaller, less concrete, agent or
manager concepts exercising limited sets of responsibilities [WWW90].

Associations fix object connections and translate poorly into design (#27: MIS)

Again, in section 2.2 we noted how the recording of uninterpreted associations
during analysis produces poorly-coupled designs, because these associations do not
necessarily correspond to the optimal functional couplings in a design. As with the
object abstractions, it is hard to undo initial perceptions. Associations are often
pressed prematurely into physical class connections (viz. pointers). The
universalism of UML fosters this (see2.1).

We noted in [SG98a,b] how automatic translation schemes also resulted in
overly-coupled designs, with set-valued attributes and Observer-style mutual
connectivity between unimaginative domain classes (see also problem #26). In any
case, the association perspective is not the correct one for optimal class coupling
(seeproblems #29, #30).

Detailed analysis labelling impedes structural transformation (#28: MIS)

In [SG98a,b], we noted how developers worry inordinately over detailed labelling
concerns, such as disjoint, versus overlapping, subclasses; or thedifferencebetween
an association, a shared aggregation and a composite aggregation; or how far to go
with adornments such as OCL constraints and stereotypes. While it is important to
ensure that the semantic characterisation of the analysis domain is preserved in the
design and implementation stages, many subtle annotations on analysis models are
often irrelevant later in design, especially if model structure is transformed.

Consider the Mediator pattern [GHJV95], which can be applied systematically
to reduce inter-object coupling [SSH98]. It matters little whether the Mediator
itself is a true composition, a shared aggregation, or simply some kind of
coordinating abstraction, so long as all cross-connections are removed between the
mediated objects. Applying the Mediator pattern radically alters the structure of a
system, deleting relationships and their adornments. This would seem to indicate

30 Things that Go Wrong in Object Modelling with UML 1.3 255

that developers should be wary of investing too much effort in analysis labelling.
Unfortunately, we find a reverse effect, which is that developers are motivated
against applying radical structural transformations to the design, because of the
earlier effort invested in labelling thestructureof theanalysis model.

6.2 The functional coupling and data dependency duality

The term collaboration is misconstrued and the concept is missing (#29: ADQ)

UML 1.3 still lacks an unequivocal concept for an abstract, class-level, client-server
functional dependency. This is arguably the most important relationship in object-
oriented modelling, the dual of an association in data modelling. In RDD, this
concept is known as a collaboration [BC89; WW89; WWW90].

Unfortunately, the term collaboration has been subverted in UML to refer
instead to a cluster of objects and their interactions; hence the use of collaboration
diagram to refer to an object interaction diagram. This is an instance-level model,
in which the arrows denote individual messages to objects. In RDD, a
collaboration is an abstract, directed relationship between two classes, representing
the functional dependency of one class on the other. This missing perspective is
critical for the proper modular analysis and transformation of systems [SSH98,
S98].

The available UML concepts do not cut the cloth in the same way: a directed
association represents a concrete structural connection indicating navigability in
one direction. A dependency indicates a non-structural dependency on method
arguments (see 2.4). Both make premature assumptions about implementation and
fail to capture theabstract notion of client-server dependency.

The class diagram mixes data and functional dependency (#30: MIS)

UML class diagrams freely mix associations with dependencies, thus confusing the
data modelling and functional dependency perspectives. It is not clear whether
dependency stretches to include existence dependency also (like the derived
relationships in OMT [RBPEL91]). In section 2.3 we noted how such eclecticism
leads to diagrams that offer no clear perspective on the direction in which a design
should proceed. Theclass diagram fails to resolve thecompeting forces.

In its proper context, an association hails from data modelling (ERM) and is
used to establish minimal coupling between data files. The RDD notion of a
collaboration hails from responsibility analysis (CRC) and is used to establish
minimal functional coupling between subsystem modules [BC89; WWW90;
SSH98; S98]. Applying either technique will optimise a class diagram in a
different way. UML class diagrams do not in any case offer an abstract
collaboration graph [WWW90] perspective (see problem #29), which would allow
subsystem optimisation to proceed from an analysis of inter-module functional
dependency.

256 Chapter 17

7. CONCLUSIONS

Our survey has emphasised the way developers embrace and use UML 1.3. The
cognitive issues surrounding the focus of developers' attention, how this is engaged
and directed, are at least as important as the static issues of model semantics. By
problem category, we identified the following counts (totalling 30):

INC (inconsistency) 3 counts
AMB (ambiguity) 3 counts
ADQ (adequacy) 8 counts
MIS (misdirection) 16 counts
The high level of misdirections (MIS) encountered in our survey is worrying.

The ratio of MIS to the other three (INC, AMB, ADQ) has grown since our
previous survey [SG98a,b], partly as a result of fixes made in UML 1.3 to
inconsistencies and ambiguities in UML 1.1. However, the absolute increase in
MIS scores (previously 12 out of 37) shows how developers are finding more ways
to confuse themselves with UML. This is alarming, not just because it represents a
waste of effort, but because it is not a problem which can be fixed simply by trying
to clarify the semantics of UML as it stands; instead, large chunks of UML need to
be reconstructed to take into account theways in which developers' minds operate.

It is clear from Gestalt psychology how important initial conceptualisations are;
and how much they influence subsequent concept formation. If the initial UML
analysis view is of a pre-normalised data model, and if communications between
entities are conceived initially as dataflow (or workflow), then substantial mental
effort is required to undo these faulty perceptions. It involves going against the
tide, fighting against theconceptual clutter in theminds of developers.

The INC and AMB scores reflect on problems with the consistency of UML,
whereas the ADQ scores reflect on problems with thecompleteness of UML. These
counts suggest that further revisions to UML are necessary. In particular, the
authors identified problems with the control flow logic in use cases and sequence
diagrams; and the absence of a proper model to illustrate client-server coupling for
system design optimisation. The interested reader is referred to alternative
treatments of these topics in the methods SOMA [G95], Discovery [S98] and
OPEN [FHG97; HSY98]. Here, task analysis replaces use cases; and the
relationship between tasks corresponds to clear sequence, selection and iteration
compositions. Class diagrams correspond to proper client-server graphs, allowing
thesystem design stage to proceed smoothly.

References
[BC89] K Beck and W Cunningham (1989), "A laboratory for teaching object-oriented

thinking", Proc. 4th ACM Conf. Object-Oriented Prog. Sys., Lang. and Appl., pub.
Sigplan Notices, 24(10), 1-6.

[BRJ99] G Booch, J Rumbaugh and I Jacobson (1999), The Unified Modeling Language
User Guide, Addison Wesley Longman.

[B94] G Booch (1994), Object-Oriented Analysis and Design with Applications, 2nd edn.,
Benjamin-Cummings.

30 Things that Go Wrong in Object Modelling with UML 1.3 257

[CY91a] P Coad and E Yourdon (1991), Object Oriented Analysis, Yourdon Press.
[CY91b] P Coad and E Yourdon (1991), Object Oriented Design, Yourdon Press.
[C96] A Cockburn (1996), Basic Use Case Template, TR.96.03a, rev. 1998, Humans and

Technology; also pub. http://members.aol.com/acockburn/papers/uctempla.htm
[C97a] A Cockburn (1997a), "Goals and use cases", J. Obj.-Oriented Prog., 10 (5), 35-40.
[C97b] A Cockburn (1997b), "Using goal-based use cases", J. Obj.-Oriented Prog., 10 (7),

56-62.
[FHG97] D Firesmith, B Henderson-Sellers and I Graham (1997), OPEN Modelling

Language(OML) ReferenceManual, March, SIGS Books.
[FCJAG98] M Fowler, A Cockburn, I Jacobson, B Anderson and I Graham (1998),

"Question time! About use cases", Proc. 13th ACM Conf. Obj.-Oriented Prog. Sys.,
Lang. and Appl., pub. ACM Sigplan Notices, 33 (10), 226-229.

[GHJV95] E Gamma, R Helm, R Johnson and J Vlissides (1995), Design Patterns:
Elements of ReusableObject-Oriented Software, Addison-Wesley.

[G90] E A Gibson (1990), "Objects born and bred", BYTE magazine, 15(10), 255-264.
[G95] I Graham (1995), Migrating to Object Technology, Addison-Wesley.
[G97] I Graham (1997), "Some problems with use cases... and how to avoid them", Proc.

3rd Int. Conf. Object-Oriented Info. Sys., eds D Patel, Y Sun and S Patel, (London:
Springer Verlag), 18-27,

[HSY98] B Henderson-Sellers, A J H Simons and H Younessi (1998), TheOPEN Toolbox of
Techniques, Addison-Wesley.

[HSR98] K S Y Hung, A J H Simons and A Rose (1998), "Can you have it all? Managing
the time and budget against quality issue in a dynamic business object architecture
development", Proc. 6th Conf. Software Quality Management (Amsterdam: MEP), 21-
34.

[JCJO92] I Jacobson, M Christerson, P Jonsson and G Övergaard (1992), Object-Oriented
SoftwareEngineering: a Use-CaseDriven Approach, Addison-Wesley.

[JGJ97] I Jacobson, M Griss and P Jonsson (1997), Software Reuse: Architecture, Process
and Organisation for Business Success, Addison-Wesley and ACM Press, Reading MA,
USA, 497pp.

[M97] J D McGregor (1997), Testing Object-Oriented Components, ECOOP '97 Tutorial 2
(Jyväskylä, AITO/ACM).

[R97] Rational Software (1997), UML 1.1 Reference Manual, September,
http://www.rational.com/uml/ .

[RG92] K Rubin and A Goldberg (1992), "Object-behaviour analysis", Comm. ACM, 35(9).
[RBPEL91] J Rumbaugh, M Blaha, W Premerlani, F Eddy and W Lorensen (1991), Object-

Oriented Modeling and Design, Prentice-Hall.
[S98] A J H Simons (1998), Object Discovery - a Process for Developing Medium-Sized

Applications, ECOOP '98 Tutorial 14, (Brussels, AITO/ACM), 90pp.
[SG98a] A J H Simons and I Graham (1998), "37 things that don't work in object-oriented

modelling with UML", Proc. 2nd ECOOP Workshop on Precise Behavioural Semantics,
eds. H Kilov and B Rumpe, Technical Report TUM-I9813 (TU Munich, Institut für
Informatik), 209-232.

[SG98b] A J H Simons and I Graham (1998), "37 things that don't work in object-oriented
modelling with UML", British Computer Society Object-Oriented Programming Systems
Newsletter, 35, eds. R Mitchell and S Kent (BCS: Autumn, 1998),
http://www.oopsnl.ukc.ac.uk/Issue35Autumn1998/contents.html.

258 Chapter 17

[SSH98] A J H Simons, M Snoeck and K S Y Hung (1998), "Design patterns as litmus paper
to test the strength of object-oriented methods", Proc. 5th. Int. Conf. Object-Oriented
Info. Sys., eds. C Rolland and G Grosz (Paris: Springer Verlag), 129-147.

[WN95] K Waldén and J-M Nerson (1995), Seamless Object-Oriented Architecture, Prentice
Hall.

[WW89] R Wirfs-Brock and L Wiener (1989), "Responsibility-driven design: a
responsibility-driven approach", Proc. 4th ACM Conf. Object-Oriented Prog. Sys., Lang.
and Appl., pub. Sigplan Notices, 24(10), 71-76.

[WWW90] R Wirfs-Brock, B Wilkerson and L Wiener (1990), Designing Object-Oriented
Software, Prentice Hall.

About the Authors

Anthony Simons is a lecturer in Computer Science at the University of Sheffield,
with 14 years experience using, researching and teaching object technology. He
joined the department as a research assistant building speech recognisers; later he
moved into mainstream software engineering. He has research interests in type
theory, language design, analysis and design methods, and verification and testing.
He is the author of over 50 research publications and the creator of the Discovery
Method for developing object-oriented systems. He holds a PhD in object-oriented
type theory and language design and a Masters degree in modern languages and
linguistics.

Ian Graham is chairman of IGA Ltd, a consultancy specialising in advanced
information technology and change management. Ian has over 20 years experience
as a practitioner in IT. Previously, he was a VP at Chase Manhattan Bank and
senior manager at the Swiss Bank Corporation (now Warburg Dillon Reed). Ian
created the system development methods for both Chase and SBC. He is theauthor
of 9 books and over 60 papers and the creator of the SOMA object-oriented
development method. Ian is a Fellow of the British Computer Society, has a
Masters degree in mathematics and holds an Industrial Chair in Requirements
Engineering at DeMontfort University.

