On the Compositional Properties of UML Statechart
Diagrams

Anthony JH Simons

Department of Computer Science, University of Sheffield
Sheffield, South Y orkshire

Abstract

This paper proposes a revised semantic interpretation of UML Statechart Diagrams which ensures, under the
specified design rules, that Statecharts may be constructed to have true compositional properties. In particular,
hierarchical state machines may be properly encapsulated to alow independent verification and compositional
testing, something which is not possible under the current UML semantics. Certain problems regarding the
formal tractability of UML Satechart Diagrams are addressed, such as the confusion over states and connectors,
the flattening effect of boundary-crossing transitions, and the conseguences of inverting the inter-level priority
rule for handling concurrent events. A set-theoretic formal treatment of object states, events, guards and run-to-
completion processing is given, describing both serial and concurrent Statecharts.

1 Introduction

One of the advantages of state machine based design models is the ability to visualise the control behaviour of a
system graphically, something that is more appealing than a dense mathematical specification. For this reason,
Statecharts of one kind or another have become perhaps the most acceptable means of specifying formal designsin
the software industry. The UML Statechart Diagram is now an important OMG standard for documenting the
behaviour of objects, components and systems.

An evolution of the Harel Statechart [1], the Statechart Diagram traces its history via the Dynamic Model of
OMT [2], aversion of which was subsequently incorporated in UML 1.1 [3]. After adoption by the OMG in 1997,
the Statechart Diagram was subject to scrutiny during the UML 1.2 and 1.3 revisions. The current published OMG
June 1999 standard defines the notation for Statecharts, giving examples of usage [4], and describes the intended
semantics of Statecharts as part of the State Machine behavioural elements package (which also describes Activity
Graphs) [5]. The latter sources provide perhaps the most precise descriptions that have yet been available for UML
1.3 Statecharts, superceding the gentler introduction in the UML 1.3 Users Guide [6].

1.1 Semanticsof State Machines

Classical finite state machines are amenable to formal reasoning in terms of their equivalence to orders of grammar
and formal language in the Chomsky hierarchy [7]. For example, a recursive language is defined by a context-free
grammar and is recognisable by a pushdown automaton, a variant of a finite state automaton with a global stack.
However, different Statechart formalisms are subject to a number of different semantic interpretations. These result
from differences in the treatment of events as signals or functions, the static or quasi-functional nature of states, the
existence of global or local memory, the discrete, continuous or interval-based nature of time and the precise
meaning of the connectors between different levels of hierarchical machines [8, 5]. Statecharts typically admit the
presence of read/writeable memory and allow conditions, or guards, which test this, making them equivalent to
augmented transition networks, capable of recognising arbitrary context-dependent languages.

1.2 Hierarchical Modular Testing

Another property of state machinesis the ability to validate the correct operation of the formal model with respect to
the events handled by it; and the ability then to generate test sets which verify the correct behaviour of an
implementation with respect to the formal design provided by the state machine. The basis for the state machine
testing method is due to Chow [9], which guarantees the behaviour of an implementation with respect to a minimal
finite state automaton, subject to assumptions about redundant states, by driving the system through its transition
cover and comparing all valid and error states reached with the specification.

Rigorous Object-Oriented Methods, 2000

On the Compositional Properties of UML Statechart Diagrams

Holcombe and Ipate [10, 11, 12] have generaised this approach for Strean X-Macdhines, which are a
generalisation d finite state machines with a global memory and inpu/output streams. X-Madines are formally
equivalent to a restricted class of augmented transition retworks and have Turing-equivalent computing power.
Using the Holcombe/l pate reductionist method, a design is decompaosed into a hierarchy of independent Strean X-
Madahines, whase behaviour may be validated independently. A system based onthis designistested, using a variant
of Chow's method in a bottom-up fashion. The method povides a groundbreging proof of corred integration
[13], which absolutely guarantees the @rred behaviour of an integrated system, on the asaumption that its
component parts are correct.

The importance of this canna be under-emphasised: conventional path-based testing approaches do nomore
than exercise & many parts of a system as is ecnamicdly feasible; and when testing is complete, no cfinite
statements can be made aou the number or locaion d any remaining faults, nor how serious these might be. With
the Holcombe/l pate method, systems may be tested in a divide-and-conquer fashion dawn to the lowest level and
smallest comporent whose behaviour you are prepared to trust, and in which all remaining faults are necessarily to
be found Compared with ather objed-oriented testing methods [14, 15] which flatten hierarchicd state machines
and compute the transition cover for the Cartesian product of states and transitions, the Holcombe/lpate method
computes the transition cover for eatcy machine independently, making complete functional black-box testing a
tradable posshility. This divide-and-conquer method depends crucialy on the design-for-test properties of the
Stream X-Machine model, which include (i) compaositiondlity - the aility to ded with ead level of abstradion as an
independent machine; (ii) output-distinguishability - the ability to associate the firing d ead dstinct transition with
a uniquely observed ouput; and (iii) test-completeness - the aility to drive amadine throughall its transitions
from any state.

1.3 Design-For-Test Properties

To oktain similar testing bkenefits for UML Statecharts, it is necessary to examine their formal properties under
decmposition. One of the principal novelties of Harel's original Statechart formalism [1] was the ideathat states
could be decomposed hierarchically, as illustrated in Figure 1, which models the behaviour of an automatic gearbox.

At a catain level of abstradion, the Drive state is considered as asingle state, but at a finer-grained level, this
is reveded to be made up d threeforward-gea substates. Certain transitions apply to the Drive state & a whae
(such as drive, neutral), whereas certain ather transitions apply to the substate machine (such as upshift, downshift).
To obktain the design-for-test property of compositionality, the superstate machine must be analysable in ignarance of
the mechanism of the substate machine; and the substate machine must be verifiable independently of the operation
of the superstate machine.

This particular example ill ustrates good encapsulation properties, in which the behaviour of ead machine is
independently verifiable, but Statecharts have dso been used in ways which violate the encapsulation o substate
machines. An example of thisis the phenomenon d boundary crossing, a style in which transitions lead dredly to,
or from, the substates of a cmposite state. Identifying styles of usage which preserve the hierarchicd encgpsulation
of state machines is therefore an important area of concern.

neutral reverse

-

park neutral

neutral drive

halt Drive upShift upShift
1stGeaM2ndGeza‘—_’[3rdGeaa

downShift downShift

Figurel: Harel Statechart for Automatic Gearbox

On the saumption that asingle inpu event in the X-Machine model corresponds to a message request, resultingin a
single method invocation in a Statechart, the output-distinguishable property is obtained if every distinct transition
produces adistinct output value. This can be adieved by instrumenting methods during the test phase. If the names
of methods do nd describe unique transitions, perhaps becaise the same method may be invoked to read two
destination states, which are seleded acmrding to an additional guard, then a distinct output value must be chosen

Rigorous Object-Oriented Methods, 2000 2

On the Compositional Properties of UML Statechart Diagrams

for eath guarded version. The test-completenessproperty is obtained for freein the objed-oriented model, since dl
of an object's methods may always be attempted in every state of the object (some may raise exceptions).

2 SomeFeaturesof UML Statecharts

The UML Statechart Diagram is a rich, hybrid model incorporating a number of influences that caer for different
modelli ng preferences. Some mnstructions are included which are redundant, some ae cnvenient extensions to the
basic state machine model and aher constructions unwittingly undermine the formal tradability of state machines
[16]. While redundant and syntadicdly sugared forms can always be anverted bad to canonicd forms, we shoud
be more mncerned ower violations of the semantics of automata and espedally constructions which prevent
hierarchical encapsulation of independent state machines.

2.1 Redundant Constructions

Examples of redundancy include the provision d a separate iconic notation for encapsulated substate machines,
which are no dfferent from ordinary (sequential) composite states; this is recogrised in [5]. The provision d
concurrent transitions with Petri-style forks and joins (seefigure 2a) is technicdly redundant, sinceit dugicaes the
semantics of concurrent composite states (see figure 2b). Originally, Petri-style notation was intended for the
separate Activity Graphs [3], but acording to the revised OMG natation dacument [4], p3.142, their use is now
apparently allowed in Statechart Diagrams (Activity Graphs are presented separately). Both dagrams in figure 2
describe the identical forking and synchronisation behaviour in the concurrent substate machines.

forth forth

/[First]2[Next j\ ._’[First]2[Next]—.@
back . I back I :
here here
stop stop
\‘[This]:_’[That]/ ._’[This j:[That]-’@

@) _ there - (b) there

Figure 2: Equivalent UML Modelsfor Concurrent Substate Machines

A state may also have an internal transition compartment, listing its distinguished entry and exit atomic adions;
supdemented by an ongang do-adivity and aribitrary user-defined internal transitions. The almisson o a separate
classof internal transitions (which do na leave the superstate, therefore which do na trigger its entry and exit
adions) complicaesthe model andis grictly unrecessary. All adivity that occursin a state can be modelled using a
substate machine. So, the do-adivity and internal transitions are redly part of the behaviour of a substate macine,
but are not treated explicitly as such in [4, 5].

2.2 Convenient Extensions

Examples of convenient extensions include the provision d connectors for expressng shared transition peths [4],
which may be expanded in full. The path leading to a forking connedor is smply expanded into as many paths as
leave the fork; a symmetricd expansion is possble for joining conredors. Another extension is the almisson o
conditional guards, which are equivalent to a duplication in the number of control states [16].

Guards have the dfed of introdwcing a cetain arbitrariness into the chasen control logic. Figure 3a
ill ustrates a temperature cntrol system with hysteresis, in which temperature dhanges trigger events and timing
constraints are expressd as a guards; this is reversed in figure 3b to show how the coice of event or guard is
esentially arbitrary and therefore one must be caeful in making asertions abou the red events driving a system.
Figure 3c shows that a two-state machine with guards is technicdly equivalent to a four-state machine with no
guards. Guards are useful because they allow some aspeds of the mntrol behaviour of a system to be dided, by
pushing it down into the mncrete memory variables. However, it would be better if UML Statedharts had a
mechanism for exposing the extra states implicit in such guards and relating these to the behaviour of the explicit
state machine (see section 5.1 below).

Rigorous Object-Oriented Methods, 2000 3

On the Compositional Properties of UML Statechart Diagrams

Heating
Standard

timeOut

Standby (T] Standby
Extended Standard
tempOK

Figure 3: Guards Conceal Duplicated Control States

tempOK

e

Extended

tooCold

timeOut
[temp>=h]

tempOK

[ime>d] timeOut

tooCold

[time>d] timeOut

[temp<h]

@) (b) (©)

2.3 Inconsistent or Intractable Constructions

Examples of inconsistent constructions include the context-dependent interpretation of pseudostates as: states,
arrows, or connectors (see sections 3.1, 3.2 below); and the specia treatment of free transitions leaving composite
states (see section 4.1 below). The freedom to indulge in arbitrary boundary crossing, which includes the notion of
stubbed transitions (see figure 5) violates the clean compositional semantics of hierarchical state machines (see
section 4.2). While the admission of history states must be regarded as permanently intractable, since recorded
history conceals a product of state machines [16], it is possible to provide alternative treatments of pseudostates and
free transitions, such that the notion of an accept state may be more cleanly defined (see section 4.3). This allows
eventualy for a clear distinction between forms of composite state which are strictly hierarchical, and forms which
are merely convenient abbreviations for expanded machines.

3 Basic Propertiesof a State Machine

The UML Statechart [4] is based on the Harel Statechart [1], with certain small changes to express encapsulated
object-like behaviour; and a modified execution semantics based on the queueing of events [5]. The Harel
Statechart isitself a mix of Mealy and Moore classical state machines, with further extensions more characteristic of
aflowchart. The tensions between these different models pose some challenges to a consistent formal interpretation.

3.1 Classical Machinesand Flowcharts

In a classical finite state automaton, the states are quiescent vertices in the graph and al computational activity
happens on the transition arcs, as events are processed. Mealy machines may be styled as transducers [7] which read
an input symbol as each arc istraversed and generate an output symbol at the same time (figure 4a).

(@ Joutl Jout2

(b) I I Jout1 . out2 |
[done] ®

DoThis DoThat
[done]

(c) inl/outl in2/out2

Figure4: Comparison of (a) Mealy, (b) Moore Machinesand (c) Flowchart

By contrast, the output of a Moore machine is contingent on which state it reaches, rather than which arc it is
traversing. It is possible (though not necessary) to view this as the output occurring when the machine is in the
destination state (figure 4b), fostering the idea that computation can happen in a state. Both Harel and UML
Statecharts adopt the notion that the states are active processing stages, rather than quiescent vertices. Thisleadsto a

Rigorous Object-Oriented Methods, 2000 4

On the Compositional Properties of UML Statechart Diagrams

degenerate kind of machine in which both input and output can be processed in "states' and the transition from
"state" to "state" isthen automatic (figure 4c). Thisis aflowchart, not a state machine.

Figure 4 illustrates some of the important correspondences and differences. In particular, notice how the arcs
in the Mealy automaton correspond to the processing stages in the flowchart. The arcs on the flowchart correspond
to quiescent states in the Mealy machine. The flowchart completely reverses the senses of state and transition;
thereby demonstrating why it is difficult to arrive at any consistent combined interpretation. In a flowchart,
transition to the next processing stage is automatic, or dependent on some internal condition computed during the
previous stage, rather than on any handled event, such that the behaviour of the machine at the current level of
abstraction cannot be determined from the processing of events at this level. This is an important formal property
which must be restored. The notion of state is defined formally by the varying response of a system, on different
occasions, to the same event; such aview of state must be maintained in any semantics of state machines.

3.2 Contextual Interpretation of Pseudostates

The admission of non-quiescent "states' corresponding to processing stages does not otherwise pose any major
theoretical problem. However, their usage necessarily forces the invention of extra start and finish points, which are
not processing stages in the same sense. These are referred to as initial and final pseudostates in UML [4, 5],
because their role either asfirst-class states or as inter-level connectorsis left deliberately vague.

In a classica state machine, the initial state is a first-class state indicated by an initia free transition arrow
(see figure 4a, 4b). In UML Statecharts, the initial state is an extra pseudostate (see figure 4c) before the first
substantive "state". Likewise, the classical notion of an accept state (see figure 4a, 4b) is the fina state reached in
the machine when an event sequence has been fully processed. In UML, the fina state is usually the extra
pseudostate (see figure 4c) reached after the last substantive "state" of the machine. The comparisons in figure 4
reveal how the initial and final pseudostates, though they correspond to quiescent states in a classical machine, are
equivalent to the arcs in a flowchart and are not like the other active processing "states" at all. Instead, pseudostates
have the same status as mid-points reached on the arcs connecting processing stages in the flowchart.

UML pesudostates eventually have highly context-dependent interpretations [5] as either states or connectors,
arising from the ambiguous treatment of "states" sometimes as the processing stages and sometimes as the quiescent
points in between. At the outermost level, the initial and final pseudostates are interpreted as classical, quiescent
states, before and after the machine enters its active "states’. At nested levels, where the same icons are used to
indicate entry and exit points from substate machines, the initial pseudostate cannot have this interpretation, since it
isused like aMealy-styleinitial arrow, indicating the first substantive state in the nested machine (see figure 1). The
final pseudostate is nonetheless intended as a genuine Mealy accept state, indicating termination of the substate
machine. Depending on the context, UML switches between the semantics of classical arrows, classical states and
modern "states" (ie flowchart processes) in an unhelpful way.

While the intent of the UML 1.3 semantics document [5] is eventually to disambiguate the different context-
dependent meanings and uses of the pseudostate icons, surely this is the wrong approach. The elements of a formal
notation should have unambiguous, context-free interpretations: to do otherwise is to invite chaos [16]. Consider
that pseudostates may only have a consistent interpretation as classical statesif all the other "states' are processes. If
a Statechart contains genuine quiescent states, then pseudostates have no consistent interpretation as states (what is
the meaning of a pseudostate before an initial classical state?), but could be treated as indicator arrows, or connectors
between different levels in a state machine hierarchy.

3.3 Required State Machine Semantics

A state machine is not a flowchart. In order to be able to apply state-based verification and testing theorems to the
model, a Statechart must conform to state machine semantics. It must have proper reactive states and transitions
must be triggered in response to events. Below, a number of guiding principles are introduced which help to ensure
these properties.

. Principle #1: States are defined by their differential responses to the same event. You cannot define a state
by the amount of time that a system may dwell in it. This rules out pseudo state machines which are merely
seguences of processes strung together.

. Principle #2: Events are messages or signals, not conditions. The next state decision function should be
placed on the transitions and not hidden inside processing states. This rules out simple conditional branching
masquerading as event handling.

Rigorous Object-Oriented Methods, 2000 5

On the Compositional Properties of UML Statechart Diagrams

. Principle #3: The next state is computable from a state and an event. There ae no hidden o implicit
condtions. If a state has two or more transitions that can fire in resporse to an event, then the machine is
non-deterministic, otherwise it is deterministic.

To be tradtable under formal analysis, the states must be genuine states; that is, the resporse of the system to an
event must be contingent on which state it is in. This clarifies informa definitions of states as being system
condtions "which can handle events' [6], or which "may be queried by a bodean-valued function" [17]. This does
not rule out processng states, so long as these states handle events. The restrictionto genuine eventsis more severe,
since it forbids branching on simple bodean-valued condtions. To do dherwise upsets the uniform event-
processng semantics, becaise it hides the next state dedsion function inside the previous gsate. While these
restrictions eliminate aude flowcharts, it is gill poasshle to convert an exit condition into an event. In this case, the
processing state must generate the internal event, which is subsequently handled by the next state decision function.

. Principle #4: The pseudastate icons are entry and exit connectors, not states. Never refer to them as gates,
pseudo- or otherwise. Instead, visualise them as the mid-points along transition arcs into the first, and ou of
the last, substantive state.

. Principle #5. An initial state recaves a single half-transition from an entry conredor. Aninitial state is not
the connector itself (which is not a state), but the subsequent state.
. Principle #6. A final state, or accept state has a single half-transition to an exit conrecor. A final stateisnot

the mnredor itself (which is not a state), but the precaling state. To be alegal accept state, it must not have
any other exit branches.

This creaes a semantics that is consistent acossquiescent and adive state interpretations; and also consistent acoss
different levels of hierarchicd composition d state madcines. The entry connector has the sense of a half-transition,
a Medy arrow indicaing the real initial state of the (sub-) system. If the notion d an initial quiescent state is
relevant in a Moore macdine with adive processng states, then this must be modelled explicitly as ared state. The
exit connector has the inverse sense of a half-transition handing badk control to the higher level. The nation o a
Medy accept state is therefore defined as the last substantive state from which a half-transition exits. In a Moore
machine, this gate will nonethelessperform all its computation before terminating. An accet state (or final state)
may not have any further exit transitions, since this would contradict the semantics of finality.

4 Compositional Properties of State Machines

In the hierarchicd state machine model, an exit transition leaving a wmposite state's boundry is deemed to exit
immediately from al of the state's substates also. In figure 1, the neutral transition exits the Drive state; this is
understood to abhreviate and abstrad over multi ple neutral transitions leaving ead substate 1stGear, 2ndGear and
3rdGear. Thisisauseful feaure which eventualy contributes to the desired compasitional property of hierarchicd
state madhines. Operationdly, it means that exit transitions leaving composite state boundxries interrupt the on-
going adivity of the substate machine. This emantics also guarantees that composite states are readive states rather
than locked-in processes.

4.1 Inconsistent Treatment of Free Transitions

However, there is an inconsistency in the cae where the it transition leaving a ammposite boundary happens to be
an unlabelled transition. UML defines normal transitions as arrows between states that are labell ed with the event
that they process(classcd machine), or the condtion that they satisfy (flowchart) [5]. Unlabelled transitions, on
the other hand, have the semantics of a freeride, since they are not contingent on any event or condtion. A state
representing a processng stage may have afree «it transition, meaning that it may be quit automaticdly once its
asciated processng hes terminated. However, if such a state is a composite state with substates, there is an
immediate problem in interpreting the free «it transition consistently, since under Harel's hierarchicd semantics
[18], a transition leaving the mmposite state boundry is equivalent to an exit transition from every substate.
Literaly, this svoud mean that every substate dso has a free «it transition. Upon keing entered, the substate
machine should therefore terminate immediately!

To prevent this, UML defines a free boundiry exit transition spedally as the completion transition taken
when the substate machine terminates [5]. We ae asked to assume the existence of an invisible label standing for
the completion event, which is raised by the substate machine when it terminates. To ensure that the substate
machine exeautes to completion, UML suspends Harel's dandard interpretation d a transition leaving a cmposite

Rigorous Object-Oriented Methods, 2000 6

On the Compositional Properties of UML Statechart Diagrams

state boundry [18]. In UML, afreeboundry exit transition daes not interrupt the adivity of a substate madine,
but waits for its termination. Thisis quite significant, because it reverses the priority of inter-level event handlingin
the operational semantics;, and means that states are not always readive, but are sometimes locked-in processs.
Again, the intent of UML's definition [5] is eventually clea, but it gives rise to machines that behave strangely in
different circumstances, as the following example illustrates.

UML reverses the priority of concurrent event handling acossdifferent levels of state hierarchy with resped
to Harel [5, 18]. If events arrive cncurrently, then cases arise where multiple transitions could fire in madines at
different nested levels. To resolve such corflicts, Harel always €leds the transition in the outermost state machine,
whereas UML seleds the transition in the innermost state machine. In Harel's ssmantics, if the auitomatic geabox
state machine from figure 1 is in composite state Drive and substate 2ndGear and then receves the events {neutral,
upsShift} simultaneously, the neutral transition is fired, since the outermost state machine has priority (the vehicle
therefore dways reads to the driver's instructions). In UML, the upShift transition is preferred and fires instead,
since the innermost state machine has priority (apparently ignaring the driver's instructions). However, if only a
neutral event isrecaved, thereisnointer-level conflict and UML then interrupts the ongdng adivity of the substate
machine and exits to thdeutral state.

This has the arious consequence that a substate machine may sometimes be interrupted and sometimes not
(depending onthe presence, or absence of a cnflicting concurrent event). The outer state machine caanat then be
formally analysed in isolation. Inthe example @owve, it isimposgble to tell whether a neutral event will be handed,
or discarded de to the presence of an internal upShift event, which isinvisible & this level of decomposition. For
this reason, Harel's original priority rule is an essential part of any compositional Statechart semantics.

4.2 Boundary Crossing Violates Encapsulation

Through the notational convenience dlowed by composite states, designers may produce models which, although
they have the gpeaance of moduar, encapsulated and herarchicd systems, are no less complicaed than fully
expanded flat state machines. One pradice which immediately violates the encgpsulation d hierarchicd state
machines is boundary crossing. Figure 5aill ustrates an example, in which transitions both enter and leave substates
diredly, crossng the enclosing compasite state's boundiry. Graphicdly, the substate machine of figure 5a may even
be dided, by drawing the acs labelled direct and skip as stubbed transitions [4] entering and exiting the superstate,
shown in figure 5b. But it would be wrong to equate this with encgpsulation. In order to reason abou the formal
properties of this g/stem, it would always be necessary to expand it to the flat machine shown in figure 5c, since the
superstate machine is strongly, and completely, coupled to the substate machine.

direct

Working

Plld Working

Figure5: Logical Expansion of Boundary Crossing

Boundary crossng is clealy expeded and allowed by the UML authors [6], p299 301, 333 437. Since this
notational feaure has such a disastrous impad on the encapsulation d hierarchicdly composed states, we might
seek to oulaw it in any clean compositional model. However, the aility to compose states also serves the more
mundane purpose of abbreviation. Where agroup d states hare a @mmon exit transition, such as the ac labelled

Rigorous Object-Oriented Methods, 2000 7

On the Compositional Properties of UML Statechart Diagrams

out in figure 5, it is notationally convenient to group these in a composite state, simply in order to draw the exit
trangition just the once. Such a composite construction cannot be understood in any hierarchical sense, nor is it
technically even a state, but it may be considered an abbreviation for a set of transitions. Ideally, we should seek to
distinguish genuine hierarchical states from mere abbreviations, and insist that abbreviations are always expanded to
flat state machines in the formal analysis. This, however, would be at the cost of increasing the sizes of test setsin
the product of states and transitions for the flattened machine, compared to the sum of states and transitions in a
hierarchical machine (see section 1.2).

4.3 Boundary Crossing to Indicate Acceptance

It is sometimes interesting to examine Statecharts in which boundary crossing is present, in order to attempt to infer
why the designer resorted to this strategy. Another reason for crossing boundaries appears to result from a need to
indicate nested accept states by free exit transitions crossing the boundary [16]. According to the UML 1.3 Notation
Guide [4] and Semantics [5], an accept state should be drawn using the final pseudostate icon. However, many
examples exist in [6] where the accept states of a substate machine are only indicated using boundary-crossing free
exit transitions.

After seeking an explanation for this, we eventually found that UML Statecharts can only properly represent
one distinct accept state in a substate machine, whereas classical state machines often have multiple accept states,
indicating distinct outcomes. In UML, all exit paths from multiple accept states are subsequently merged in the
single completion transition leaving the composite state boundary. Figure 6aillustrates an example where there are
two final pseudostates representing logically distinct outcomes in the substate machine, but which cannot be
distinguished externally, and figure 6b distinguishes between these outcomes by boundary crossing, showing how
designers are forced into this strategy in order to express what they want to say (see aso [4], p 3.137 for a further

example).
better better
."[Trylng]‘—_’[Harderj ."[Trylngj‘—_’[Harderj
worse Success lose worse
S [Es

Figure6: Encoding Multiple Accept States

@

The work-around is assymmetrical, which usually indicates a problem. It would surely be better if UML had a more
appropriate way of indicating distinct accept states in a nested machine. Note that the approved use of the free exit
transition in figure 6 is notwithstanding our objections raised above in section 4.1.

4.4 Required State Compositional Semantics

To facilitate the hierarchical composition of independent state machines, some further principles are introduced
below. These address the problem of free transitions and the fact that their source states cannot be decomposed; the
need to distinguish abbreviations from genuine composite states; and the need to distinguish multiple accept states.

. Principle #7: Hierarchical, encapsulated state machines must be independently verifiable. The behaviour of a
state must be transparent at the level of its peer states; and the behaviour of its enclosed substate machine
must be transparent at the next level down.

. Principle #8: A hierarchical, or composite state encapsulates a substate machine. It may not exhibit any
boundary crossing, but must use a single entry connector and possibly one or more exit connectors to
communicate with its substate machine.

. Principle #9: An abbreviation is not a composite state. It is a notational short-hand for describing a set of
exit transitions shared by several states. It may not therefore use hierarchical entry and exit connectors and
must use boundary crossing.

The criterion of independent verification is quite deliberate and powerful, giving the intended meaning to the term
encapsulation, which cannot now just refer to the visual packaging of elements, but also must refer to the logical

Rigorous Object-Oriented Methods, 2000 8

On the Compositional Properties of UML Statechart Diagrams

independence of the dements padkaged. The reasons behind forbidding the use of boundry crossng for genuine
composite states are dea, but the insistence that abbreviations always use boundry crossng is an interesting
corollary. This is because a abbreviation is a notational device, not a state, therefore it is not part of any state
hierarchy and canna have entry and exit points. Communicaion to parts of an abbreviation must therefore go
diredly to thoseinternal states. We might also want to insist that abbreviations are not given names like states; they
are just enclosed regions. A given state may lie in the intersedion d multiple regions, indicaing that it shares the
union of their transitions. Formally, such regions must always be expanded to flattened state machines.

. Principle #10 A substate machine dways generates termination events. When a machine reades one of its
accet states, it must signal this to the higher level by generating the event associated with that accept state.
Distinct accept states generate distinct events.

. Principle #11: Events may be simple, or compostional. Some events are messages that encapsulate
argument values, which are unpadked by a substate machine. Accept states at one level may wrap up \alues
in the event signalled to the higher level.

. Principle #12 Free transitions may only link conredors to states. No free transition may link two
substantive states. The link between an entry connedor and the initial state is a freetransition, likewise that
between an accept (final) state and an exit connector.

The requirement for accept states to generate termination events lves a number of different problems. Firstly, this
means that every transition leaving a compasite state boundiry is alabell ed transition, where the label corresponds to
the termination event for the composite state. Seandy, a wmposite state may have more than ore termination
event, correspondng to the different accept states in the encapsulated substate machine. This drategy generalises
properly to concurrent substate machines. The it transition leaving a superstate boundry may be labelled with
any synchronous conjunction d events generated by concurrent substate machines. This is irrespedive of whether
the substate machines have multiple accet states indicating dstinct outcomes, since these can be wnjoined in the
desired fashion (so fixing the boundry-crossng problem in [4], p 3.137 for example). The only places where free
transitions may occur is in linking entry and exit conredors with their respedive initial and fina (accept) states.
These arows shoud never be labelled with events, since they are nat full state transitions, but merely connedion
points. To justify this, consider that: no further events can be handled by a machine that has readed its accept state;
and no machine can handle an event before its initial state.

5 Formalisation

A state machine for an oljed isatuple (S, @, E, R, M). The objed may exist in a number of control states s(1 S
which abstradt over its concrete memory states m [M, and always garts in adistinguished initial state s5 0 S, my O
M. The objed reads to events e [1 E, the set of message requests understood bythat objed. The set of transitions
¢ O @ describes the readion d the objed to an event, or the processng carried out by its methods. A transitionisa
maplet from a source state end event to a target state and resporse: ¢ = (s, €) — (%, r), where s, S O S are the
source and target states, e is an event and r [R is a resporse to the event. The set of resporses is output-
digtinguishable if ® and R are isomorphic, that is, for eat ¢ O ® there eists a unique r 00 R to indicae which
transition was fired.

5.1 Simpleand Guarded Transitions

If the behaviour of the state machine is deterministic, then orly ore transition can be fired in response to an event:
Og;, G 0 &. dom(g;,) n dOIn((;j) =[. If thisisnot the cae, then it is poasgble to make the madine deterministic by
extending the domain of the transition with a guard ona @ncrete memory state m [0 M, which maps to an extended
co-domain. In this case, the set of transition functions ¢ 0 @ is considered to be replacad by Y [0 W, such that eat
g=(s,m, € - (%, m, r), where m;, m, 0 M are the before and after concrete states of the objed’'s memory, and
Oy, 7 O W. dom(p;,) n dom(ij) =0.

A predse relationship relates the presence of guards on memory to elided control states. If g(m) isabodean-
valued guard ona cncrete memory state m [0 M, then the logicd complement —g(m) exists, whether or nat it is
explicitly natated. For some onstant s 0 Sand e 0 E, aguarded transition (s, m, €) firesonly if the guard g(m) is
true, otherwise it fails. This and the implicit complement —g(m) may therefore be refined by splitting the control
state s into two new states: Sy S-g which encode the guards, such that the guarded transition is replacal by the

Rigorous Object-Oriented Methods, 2000 9

On the Compositional Properties of UML Statechart Diagrams

unguarded (;(sg, e) and ¢(s, g €). In general, many guarded transitions may exist for the same event and state. For

ead dstinct ; fired on (s, m;, €), the memory states m; are dl that distinguish the ;. This implies that guards
g;(m,) for ead ; must be mutually exclusive: Om O M, Og;, g - gi(m) C gj(m) =fase. If there ae n such guards,
then these dther cover the mncrete memory states of the objed exhaustively, or there is an implicit logicd
complement, defined by. —(g,(m) C g,(m) C ... C g,(m)). Accordingly, a state with n guarded transiti ons triggered
on an event e may be refined into n states (empty complement) or n+1 states (hon-empty complement) with simple
unguarded transitions.

5.2 The States of an Object

At the finest level of detail, an oljed has many concrete memory states m [0 M. An upper bound onthe size of M
may be cdculated as. card(M) = card(A) x ... x cad(A,)), where A;.. A, are the sets of values from which the
objed's attributes are drawn; however, not every value combination may be meaningful. The number of abstrad
control states s Sis far fewer, determined by the diff erential response of an oljed to events. There ae severa
ways in which this resporse may be judged: one is by examining when it is legal to invoke some of its methodk,
ancther considers when certain methods are disabled (having alegal, but null effed). A final approach considers all
the state-dependent output resporses of an oljed. These gproades yield progressvely finer-grained models of
control state.

Consider first that an ohjed's methods typicdly have the semantics of partial functions, that is, they are not all
legally exeautable in every state. For ead s U S there exists a distinct subset of events L O E to which the objed
may legally react. A subset of eventsthat ardegal for an object in state s is defined by:

Ls={e DE|g(s, e)# (s, D)}
where s is the eror state and O is the undefined resporse. The number of control states then foll ows from the
number of distinct sets of legal events:

Us, §0S,ULg, LgUE . §75 = Lg7Lyg;
that is, two states can only be distinguished if a distinct set of legal events exists for that state. According to this
definition, if an oljed always responds legally to every event e [0 E, then it only has one astrad control state. A
bounded stadk has three legal states and ore aror state, derived from the following dstinct sets of legal events:
empty - {push}, loaded - {push, pop}, full -~ {pop} and error -~ {}. A corollary is that ead o these states also
corresponds to distinct subsets of eventse O (E - L) that areillegal in that state, for example (E - {push}) = {pop} is
illegal in state empty. It may be eaier to construct the mntrol states of an oljed by considering when certain
methods areillegal. If an oljed always responds legally to asubset L [0 E of events, then n= card(E - L) messages
areill egal in some state. A maximum 2" posshble cntrol states then may exist, cdculated from the cadinality of the
powerseP(E - L).

Consider next that alarger set of abstrad control states s{J S may be dhosen, correspondngto dstinct subsets
of valid events VO E. A valid event e I V¢ is one to which the objed readsin some way, wheregs an invalid event
el (E - V) is one which the object ignores. A subset of evegthaf arevalid for an object in state s is given by:

Vs={elLslg(s, e)# (s, p)},
where r indicates a trivial resporse generated when the event is ignared and the objed does nat leave the state s.

Since an event may be legal, but invalid for s S, card(V) < card(L) holds and many more distinct valid subsets V¢
O E may therefore be chosen than legal subsets L [0 E, and the greaer number of control states s S foll ows from
this. It may be more intuitive to construct these control states by considering when certain events are dther invalid
orillegal: if asubset V [0 E of eventsisalways valid for an oljed, then n= card(E - V) messages are ather invalid
or illegal in some state. A maximum 2" passble ntrol states then may exist, equivalent to the cadinality of the
powerset P(E - V). The largest possble set of abstrad control states s(0 S may be dhosen acording to the distinct
output responses of the object:

Os, 50 S,0e0E,Cs, O0S,CrOR. § = @s, e)=(s. " E(p(si, e)=(s, 1)-
Two states can only be distinguished if they immediately yield dstinct responses to an event, or elseif the transition
which fires in response to this event leads to distinct states (judged recursively by this rule).

Rigorous Object-Oriented Methods, 2000 10

On the Compositional Properties of UML Statechart Diagrams

5.3 Event Handling Semantics

An event handling model based on Harel's asynchronows smantics with run-to-completion is assumed [18]. The
only difference is that, whereas in Harel's mantics, all events are broadcast to al hierarchicdly nested state
machines, in the semantics given here, events are produced and consumed within the scope of particular madines,
representing the ideathat events are targeted at particular objeds. In thismodel, every objed obj is assumed to have
an event-handler n, such that n(obj, €) seleds a particular ¢ O ® to firein resporse to the event e. In general, nisa
dispatching function which ads on an oljed and a wnjunction o events. (e; C e, C ... [g,), since we dlow
concurrent event signalling.

Concurrent events may be recaved if obj encapsulates concurrent substate madines, or if obj is a substate
machine shared by concurrently-exeauting machines. To ensure determinism, only one transition may be enabled at
atimeinobj. Thisisadieved by ensuringthat) is well-behaved for all combinations of concurrent events that obj
could exped to hande. We dlow event conjunctions to have first-class satus as events: if E; 0 E is the concurrent
set of events, then all possble wnjunctionsis given by. e 00 (P(Ey) - {0}), excluding the empty conjunction. Then,
we assrt: OsO S, Oed (P(Ey) -{0}) . Cl¢ O P | ¢(s, €) # (s, ry). Thisensures that obj has distinct states in which

it ignares al but one singleton event, or event conjunction. It is passble to synchronise wncurrent subprocessng
streams by labelling a transition with an event conjunction.

The hierarchicd aspeds of this model are catured in the exeaition d eah method ¢ O ®, which may
distribute events (send messages) to further objed state machines. The sequentiall y-ordered exeaution o a method
isnot described in detail here, but it is modelled as a separate state machine. The objeds whose methods it invokes
in turn are available @ elements of the memory M of the aurrent objed. Deampaosing further, the behaviour of
these mllaborator-objeds may also be modelled as gate machines. Thisisin a similar spirit to the Holcombe/l pate
model of transition refinement [11, 12, 13] and dightly different from the Cook and Daniels model of objed state
machine refinement [19]. The only speda consideration here is in the semantics given to the completion o
processng. The termination d a subroutine (substate machine) must always sgnal an event to the cdler (superstate
machine), which in the model looks identicd to an event generated at the higher level. This ensures that every
objed's gate machine may be analysed independently. At ead level of abstradion, a machine receves externa
events, correspondng to message requests from its clients. In seleding a particular ¢ O @, it exeautes a single
processng step, which may distribute further events to substate machines. These run to completion and return to the
cdler, signalling completion events. A completion event may in turn trigger a further step, such that the machine
makes maximal progress, corresponding saper-step in Harel's asynchronous semantics [18].

6 Conclusions

An dternative semantics for UML Statechart Diagrams has been presented. The semantics are designed around
twelve principles. The first six principles ensure a onsistent interpretation o both classcd-style and flowchart-
style elements of the notation. The second six principles support the intended compositional semantics.

In particular, the notion d pseudostatesis abandored in favour of a deaer nation o conredors, such that all
other states are represented explicitly. The independence of nested state machines was aso examined, with the goal
of identifying a set of design rules to ensure that Statecharts were tradable under hierarchicd and moduar
approaches to verificaion and testing, such as the Chow [9] or Ipate/Holcombe [13] methods. It was foundthat true
composite states must be formally distinguished from abbreviations, which are regions enclosing some states saring
a set of exit transitions. Boundary-crossng transitions must be diminated from composite states. UML's reversed
priority rule for resolving inter-level concurrency conflicts was foundto introduce nonceterminism in the outer state
machine and so Harel's original inter-level priority rule was restored [18]. These steps together ensured that state
machines could be analysed independently of ead ather. Problems with the interpretation o freetransitions were
eliminated by ensuring that all substate madines generate red termination events. This also solved the problem of
indicating dstinct outcomes in a substate macdine, which previously could orly be indicated by boundry crossng.
The same approach scaled up to concurrent event handling.

Finaly, a set-theoretic semantics was given in which the trandation ketween guards and ssimple states was
spedfied, the number of distinct control states of an oljed was explored and the esent handing mode was
described, showing haw this deds with concurrency. This model is being explored as the basis for a cmmpositional
design-for-test approach which promises to reduce the usual state explosion.

Rigorous Object-Oriented Methods, 2000 11

\l

A 0w hoE

10.

11

12.
13.

14.

15.

16.

17.

18.
19.

On the Compositional Properties of UML Statechart Diagrams

References

Harel D. Statecharts: a visual formalism for complex systems. Sci of Comp Prog 1997, 8:231-274
Rumbaugh J, Blaha M, Premerlani W et al. Object-Oriented Modeling and Design. Prentice-Hall, 1991
Rational Software Corporation. UML 1.1 Reference Manual. http://www.rational.com/uml/, 1997

Objed Management Group. Sedion 3 Notation Guide, Part 9: Statechart Diagrams. In: UML 1.3 Reference
Manual, OMG, 1999, pp 3.131-3.150

Objed Management Group. Sedion 2 UML Semantics, State Machines. In: UML 1.3 Reference Manual,
OMG, 1999, pp 2.129-2.157

Booch G, Rumbaugh J and Jacobson I. The Unified Modeling Language User Guide. Addison Wesley
Longman, Reading MA, 1999

Gazdar G and Mellish C. Natural Language Processing in Prolog. Addison Wesley, Reading MA, 1991
von der Beeck M. A comparison of statechart variants. Lect Notes in Comp Sci 1994; 863:128-148

Chow T. Testing software design modeled byfinite state machines. |EEE Trans Soft Eng SE-4 1978 3:178
187

Holcombe W M L. X-machines as a basis for dynamic system spedficaion. Software Engineaing J 1988
March:69-76

Holcombe W M L. An integrated methoddogy for the formal spedficdion, verificaion and testing o
systems. Software Testing, Verification and Reliability 1993; 3(3/4):149-163

Holcombe W M L and Ipate F. Another look at computability. Informatica 1996; 20:359-372

Ipate F and Holcombe W M L. An integration testing method that is proved to find all faults. Int J Comp
Math 1997; 63:159-178

Binder R V. The FREE approach to ohjed-oriented testing: an owerview (synthesis of four articles).
http://www.rbsc.com/pages/FREE.htm, 1996

KimY G, HongH S, BaeD H et al. Test cases generation from UML state diagrams. |EE Proc Softw 1999
146(4):187-192

Simons A JH and Graham |. 30things that go wrongin oljed modelling with UML. Chap. 17 in: Kilov H,
Rumpe B and Simmonds | (ed) Predse Behavioral Spedficaion d Businesses and Systems. Kluwer
Academic Publishers, 1999

d'SouzaD F and Wills A C . Objeds, Comporents and Frameworks with UML: the Catalysis Approach.
Addison Wesley Longman, Wokingham, 1998

Harel D and Naamad A. TI®&TATEMATE semantics of statecharts. ACM Trans Soft Eng Method 1996; 5(4)

Cook S and Daniels J. Designing Object Systems, Prentice Hall, London, 1994

Rigorous Object-Oriented Methods, 2000 12

