
A Pilot Study of Comparative Customer Comprehension

between Extreme X-Machine and UML Models
Christopher Thomson, Mike Holcombe, Tony Cowling, Tony Simons, George Michaelides

University of Sheffield

Department of Computer Science

Regent Court, 211 Portobello, Sheffield S1 4DP

+44 114 222 1980

{c.thomson, m.holcombe, a.cowling, a.simons, g.michaelides}@dcs.shef.ac.uk

ABSTRACT

Many design notations are used during software development to

help the developers better understand the required system.
However they are infrequently shown to clients, partly because

developers believe that clients don’t understand them. In this

study two popular UML diagrams (activity and use case) and
Extreme X-Machines diagrams (a type of state diagram developed

to support Extreme Programming) were shown to three clients for

whom we had recently delivered the software that was
represented. The clients were given some simple guidance on

interpreting them and asked to evaluate how well they understood

them. This pilot study found that all the diagrams studied were
equally understood, but further experiments are required to

evaluate their usefulness.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques -

Object-oriented design methods, State Diagrams.

General Terms
Measurement, Documentation, Experimentation, Human Factors.

Keywords
Extreme X-Machines, XXM, empirical, formal method, testing,

customer, requirements elicitation, requirements validation,
requirements verification.

1. INTRODUCTION
It is typical in traditional software development processes that the

customer provides a list of requirements that is agreed with the
developers who develop and return a functioning system, which

may or may not then be found to fit with the customer’s vision

[8]. The agile movement has begun to strengthen the relationship
between developers and customers through practices such as the

on site customer in Extreme Programming [2]. However this style

of relationship is not applicable to all projects and may lead to

poor documentation that can cause problems during maintenance

[12].

In traditional style development diagrammatic models are often
used to document the system. However these diagrams are often

not maintained after their original construction due to the pressure

to complete a system that is changing. As a result there have been
many calls for automated systems to generate these diagrams from

code or vice versa. Agile methods typically abandon such
techniques due to this problem; however this has led to

accusations of a hacker mentality [3].

The underpinnings of the agile manifesto encourage developers to

be more productive by casting aside those parts of a process
which are not useful. Therefore any modeling technique used in a

agile process should deliver a reasonable return on the time

investment made. Whilst this is a specific goal of the agile
philosophy it is also a fundamental business axiom, which

perhaps explains the recent rush to agile [7]. Therefore any model
produced should have a specific return on investment.

A potential return on investment is achievable if documentation

that is quick and easy to construct and can be used to verify a

technical requirement with a customer with little or no technical
training. Such a method has the potential to avoid unnecessary

development costs and ensure the right solution is produced.

We have demonstrated in previous papers that the use of Extreme
X-Machine (XXM) diagrams is beneficial to the development

process [10, 11]. XXMs belong to a class of state machines

known as X-Machines as defined by Eilenberg and later
investigated by Holcombe [5, 6]. In the context of XXM they are

partially defined and used to show a high level model of the entire

system. They are suited to agile methods, as in common with
other stream X-Machine models they can be used to generate test

sequences to give complete functional tests. However it is unclear

how useful they are to clients.

The use of design models with clients is not uncommon in

practice. A previous survey of UML practitioners by Dobing and

Parsons showed that Use Case Narratives, Activity Diagrams and
Use Case Diagrams were used by more than 70% of the

respondents to verify the design with their clients [4]. They also

found that 50% of respondents had use UML Statecharts with
clients; Statecharts are similar in representation to XXM

diagrams. Whilst this result suggests that such diagrams have

some use when shown to the client (rated as being “moderately
successful”[4]) it did not address how well understood they were

by the clients. To address this we posed our research question as:
do clients understand software engineering diagrams?

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

In this paper we present a pilot study that investigates this

question with three customers who had just received delivery of a
custom software application. The three models were Extreme X-

Machines (XXM), UML use case diagrams and UML activity

diagrams[1].

In this pilot study we produced both the UML and XXM models
for three different industrial customers who each received three

software systems which were intended to meet their requirements.

Each of the software solutions was produced concurrently by
teams of 3-5 students, whilst one author produced the models and

another verified them to ensure consistency. We asked the
customers to evaluate the models based on how useful they would

have found them had they been presented with them at the start of

the project.

2. EXPERIMENTAL DESIGN
The results reported here were obtained from a study where nine

self-selected teams with similar and adequate development
experience worked on one of three customer supplied projects

competitively. Each student was directed to spend 180 hours on

the project. Each of the three projects was provided by an
industrial customer who later used the software in his/her

business. Two projects were database driven websites and one an

e-learning environment. We assumed that the project
characteristics cannot confound comparisons between solutions

developed with the same customer, but that between customers
there is such a possibility.

The teams were instructed to use a modified form of Extreme
Programming (XP) [2, 9] to capture the requirements as story

cards and implement the systems. To ensure that a high quality

working solution was delivered to the customer 50% of the
overall marks were awarded by the customer for the delivered

product and user documentation. The remaining marks were

awarded by the academic staff for the process followed by the
students.

Prior to the delivery of the final system each of the teams
demonstrated and explained their solution to the researcher, who

used this information to construct Use Case, Activity and XXM

diagrams for each of the systems. The diagrams were constructed
to have a common look and feel, level of detail (to represent the

top level of the system), and accuracy across all nine teams, this

normalization process was to ensure a fair comparison that was
not dependant on the quality of software developed or the skills

of the developers.

The diagrams were delivered to the customers after they had time

to evaluate all three of the systems that they had each received.

The customers were also supplied with a one paragraph
description on the interpretation of the diagrams:

XXM: “This type of diagram shows the order in which things
can occur in a software system. In this diagram the bubbles

represent screens in your system, but occasionally a bubble

represents several screens with a similar purpose. The first

screen is shown by a small (green) bubble, after which the

movement between the screens is shown by arrows. Each of the

arrows is named to denote a user action (e.g. “click()”) or a

system test (e.g. “[valid]”), if the action is made, or the test

succeeds then the arrow may be followed. The arrow indicates

that the system is doing something as described by the name.”

Use case: “This type of diagram shows who can do what in a

software system. The stick men on this diagram represent

different types of user. The bubbles represent actions in the

system. When bubbles are linked to a stick man this indicates that

the action is available to that user. When a bubble is linked to

another bubble this indicates that the action in the bubble uses

the action in the other bubble. Lines ending in a triangle indicate

that the bubble or stick man on the other end of the line includes

all of the functionality of item at the triangle end.”

Activity: “This type of diagram shows the order in which things

can occur in a software system. A solid spot indicates where the

system starts; follow the arrows from this position to explore the

activities available to you. Each bubble represents an activity in

the system, in some cases this may be prefixed with

“<<name>>”, this indicates that this activity has a wider

purpose as indicated. The diamond boxes indicate a choice

between options, on the arrows from a diamond are tests, if this

test is fulfilled that path can be followed.”

The customers were given the opportunity to comment on the

diagrams and to rate each diagram using the following questions
on a five point Likert scale from “Not at all” to “Completely”:

1. How well do you understand this diagram?

2. How well does it represent the system produced?

3. How much did you like this diagram?
4. How easy is it to locate faults in the system which are also in

the diagram?

5. How easy is it to locate faults in the diagram which are not in
the system?

3. RESULTS
The customer responses to the questions are presented in table 1.

The Wilcoxon signed ranks test was computed with SPSS 13 to

compare each the responses to each question and diagram to the
same questions asked about the other diagrams (as some of the

sets are clearly not normal - i.e. for Use Case questions 4 and 5 all

the results are 1). This revealed that none of the questions asked
delivered significantly different responses. The most significant

was between Q4 in XXMs and Use Cases with a significance of

0.08. Further data will be required to investigate this further.

Table 1: The customers’ responses to the questions.

 Question XXM Use Case Activity

Customer 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

A 2 2 1 1 1 3 2 3 1 1 3 2 2 1 1

A 3 3 3 2 1 4 4 4 1 1 4 4 4 1 1

A 2 2 2 2 1 3 3 3 1 1 3 3 3 1 1

B 2 4 2 1 1 2 4 1 1 1 2 4 2 1 1

B 2 3 2 1 1 2 3 1 1 1 2 4 2 1 1

B 2 4 2 1 1 2 3 2 1 1 2 2 2 1 1

C 4 3 3 2 2 2 3 3 1 1 2 3 3 1 1

C 2 2 1 1 1 1 1 1 1 1 4 3 3 2 2

C 3 3 3 1 1 2 2 1 1 1 2 3 2 1 1

All of the diagrams scored similarly for the questions so this

would suggest that none of them offered any more value to the

customer than any other.

Question 1 showed that the customers felt that they had a basic

understanding of the diagrams presented (mean: 2.5). This

supports the previous findings [4]. It is possible that this rating

would be improved if the customer would see such diagrams

throughout the project. We checked with an additional question to
see if any of the clients had previously encountered any of the

diagrams and found client A had seen state based models similar

to both XXM and Activity diagrams but not recently. A Wilcoxon
signed ranks test confirmed that his answers were not

significantly different to those of the other customers (A-B 0.09,

A-C 0.22), however the mean was slightly higher.

Of the all questions 4 and 5 scored the lowest on average (mean:
1.1). Indicating that the diagrams neither illustrated the faults of

the system nor were easily comparable to the systems to locate
faults in the diagrams. This is unexpected as the customers

indicated that they had some understanding of the diagrams (Q1,

mean: 2.5). There are three explanations, their understanding is
not enough to identify faults, the types of faults detected were not

those that mattered to the client, or the wording of the question

was poor. It is possible to interpret the questions to mean that the
customers had to identify a fault to score highly whereas the

intension as to measure if they could identify a fault if it existed,

thus this should be corrected in the next study.

Question 2 showed that the customers could see some

relationship between the diagrams and the delivered systems

(mean: 2.9). Contrasting this to the responses to questions 4 and
5 suggests that this understanding is in response to the major

functionalities of the system or flow rather than specific details.

Question 3 shows no significant distributions of the scores so the

data does not favor any diagram. We also asked the customers to
select their preferred diagram overall. They each selected a

different diagram. One customer (B) commented that “[XXMs]
seem to have fewer states and links, so easier/quicker to get to

grips with. [Use cases] has too much information presented in the

same way - hard to see what is important”, the customer (C) said
“I would probably still go for diagram type [Activity] overall as I

think it would be generally easier for more complex applications”,

whereas the final customer (A) felt that “[Use cases] was the type
of diagram I could best understand”. These responses suggest that

the clients were looking for different desirable features in the

diagram. Whilst this may help to refine the presentation both of
these questions will need to be made more precise to obtain

comparable results.

Lastly customer B commented: “All three diagrams are hard to
read intuitively - I feel they will be of more use to the design team

than to me as the customer”. Dobing and Parsons also found that

many of the clients that worked with the practitioners surveyed
had UML training [4]. This suggests that further work is needed

to refine the presentation of the diagrams to better match

customer knowledge.

4. DISCUSSION AND FUTHER WORK
The data collected so far suggests that all three diagrams (XXM,

UML Use Case and Activity) are equally understandable and
useful for a customer. As XXMs are found to be as

understandable as the UML diagrams it suggests that they are
equally useful for use with clients based on the previous literature

[4]. Nevertheless it was disappointing that none of the diagrams

were identified by the customer to be useful in finding faults. To
make full use of a diagram with a customer this remains an

elusive and desirable attribute.

The low scores collected for the questions regarding fault finding

may have been due to the phrasing of the questions. Therefore a
follow on study to this one will repeat the experiment but will

revise these questions with the aim of collecting enough data to

achieve significant results. As an alternative a task could be
designed for the customer to complete, where they would be

required to identify a seeded fault. As one of the customers

identified that the diagrams were hard to interpret further thought
must be given to the presentation of all the diagrams types so as

to improve this.

If we assume that the data will be found to be normal once more
is gathered and the questions revised then a power analysis can be

used as a guide to the number of samples required. For a paired

sample t-test with a hypothetical mean difference of .33 (⅓ of the
comparisons have delta>=.33) and of a hypothetical SD=.5 (⅓ of

the comparisons have an SD=<.5) then a sample of 20 is needed

to achieve a significance level=0.05 and power=0.8.

5. ACKNOWLEDGEMENTS
This work was supported by an EPSRC grant: EP/D031516 - the

Sheffield Software Engineering Observatory.

6. REFERENCES
[1] Unified Modeling Language (UML), Object Management

Group, http://uml.org.

[2] Beck, K. and Andres, C. Extreme Programming Explained:

Embrace Change. Addison-Wesley Professional, 2004.

[3] Constantine, L.L. 2001. Management Forum. Software
Development, 9 (6). 16-28.

[4] Dobing, B. and Parsons, J. 2006. How UML is used.

Commun. ACM, 49 (5). 109-113.

[5] Eilenberg, S. Automata, Languages and Machines.

Academic press, 1974.

[6] Holcombe, M. and Ipate, F. Correct Systems - building a

business process solution. Springer-Verlag, 1998.

[7] Krasteval, I. and Llieva, S., Rush into Agile - Analytical

Framework for Agile Practices Applicability. in Agile

Manufacturing, 2007. ICAM 2007. IET International

Conference on, (2007), 229-238.

[8] Sommerville, I. Software Engineering. Addison-Wesley,

2007.

[9] Thomson, C. Defining and Describing Change Events in

Software Development Projects, Department of Computer

Science, University of Sheffield, 2007.

[10] Thomson, C. and Holcombe, W., Applying XP Ideas
Formally: The Story Card and Extreme X-Machines. in 1st

South-East European Workshop on Formal Methods,
(2003), South-East European Research Centre, 57-71.

[11] Thomson, C. and Holcombe, W., Using a formal method to

model software design in XP projects. in 2nd South-East

European Workshop on Formal Methods, (2005), South-
East European Research Centre.

[12] Turk, D., France, R. and Rumpe, B., Limitations of Agile

Software Processes. in Third International Conference on
eXtreme Programming and Agile Processes in Software

Engineering (XP 2002), (2002).

