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1. Introduction 
This document provides a technical overview of the compilation strategy for metamodels and 
model transformations expressed in ReMoDeL v3, a high-level syntax for defining models 
and model transformations.  It assumes little prior knowledge of parsing, compilation or code 
generation.  It should be read along with the companion report ReMoDeL Explained [1], 
which explains the notions of models, metamodels and model transformations.   

The surface syntax of ReMoDeL allows designers to create abstract designs that closely 
model the concepts and relations in any given domain.  ReMoDeL may be considered a high-
level language for creating domain-specific models, which need tools to interpret, transform 
or compile and execute them. 

1.1 Parsing and Compilation 

High-level languages are analysed by a parser, after which they can either be interpreted, or 
compiled to machine-level instructions. 

• An interpreter is a program that reads the surface syntax of the language, builds 
models of the language's expressions, and then simulates their execution.   

• A compiler is a program that reads the surface syntax of the language, and then 
generates machine-level instructions that are directly executable on hardware.   

• A cross-compiler is an intermediate strategy, that converts the surface syntax of the 
language into an intermediate language, for which a compiler already exists. 

All these strategies start with a parser, a program for reading the surface syntax and building 
an internal model of the language's expressions, known as a parse tree.  The parse tree is 
checked for correct syntax, as it is constructed.  Afterwards, it may be checked to ensure that 
all concepts are defined before use, or all values have the types expected by the operations.  
The parse tree may then be used in different ways: 

• An interpreter will submit the parse tree to an evaluator, which simulates the 
execution of the expressions in the parse tree directly. 

• A compiler will submit the parse tree to a code generator, which will output low-level 
statements in a directly executable machine language. 

• A cross-compiler will submit the parse tree to a code translator, which will output 
mid-level statements in another programming language.   

1.2 ReMoDeL Compilation Strategy 

ReMoDeL v3 uses a cross-compilation approach, in which expressions in the surface syntax 
are converted into packages, classes and methods in the Java programming language.  The 
standard Java compiler is then used to convert these to bytecode, which is interpreted on the 
standard Java Virtual Machine (JVM). 

The syntax of ReMoDeL v3 is succinct and declarative.  Translating this into Java may 
generate up to three times the number of lines of code in Java, compared to ReMoDeL.  The 
compiler tools bring the benefits of model transformation to ReMoDeL itself! 



5 
 

2. Compiling a Metamodel 
A ReMoDeL metamodel is cross-compiled into a Java package, containing a set of Java 
classes, whose fields and methods are derived from the concepts, attributes, relationships and 
operations in the metamodel.  The following correspondences exist: 

• metamodel – the name of a metamodel is used to generate the name of a Java 
package.  The package name is "meta." plus the lowercase name of the metamodel. 

• concept – each defined concept corresponds to a public Java class having the same 
name, which belongs to the above package.  The class has a single public default 
constructor of the same name. 

• attribute  – each named attribute corresponds to a protected Java field having the 
same name, with default initialisation.  The field has public getter and setter methods. 

• reference – each named reference corresponds to a protected Java field having the 
same name, initialised to null.  The field has public getter and setter methods. 

• component – each named component corresponds to a protected Java field having the 
same name.  A single component is initialised to null; and collections are initialised to 
an empty collection of the right type.  The field has public getter and setter methods. 

• operation – each named operation corresponds to a declared public method.  The 
operation body is translated using code templates for each kind of expression. 

We illustrate these correspondences with examples of metamodels taken from the companion 
document ReMoDeL Explained [1]. 

2.1 The InTree Metamodel 

Figure 1 shows the InTree metamodel in the ReMoDeL visual notation, describing the shape 
of in-trees in which nodes refer to their parent node [1].  The Tree concept is simply a 
container for a list of Nodes.  Tree also provides an operation to detect the root Node.  Every 
Node except the root has a parent Node. 

 

Figure 1:  The InTree visual metamodel, with two concepts 

The same metamodel is shown in the ReMoDeL metamodel syntax in figure 2.  This 
metamodel has the name InTree, and contains two concepts called Node and Tree, where a 
Tree contains a list of Nodes, and each labelled Node may refer to a parent Node.   
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metamodel InTree { 
   concept Node { 
      attribute label : String 
      reference parent : Node 
      operation isRoot : Boolean { 
         parent = null 
      } 
   } 
   concept Tree { 
      component nodes : Node[] 
      operation root : Node { 
         nodes.detect(node | node.isRoot) 
      } 
   } 
} 

Figure 2:  The InTree textmetamodel, with two concepts 

2.2 The InTree Java Translation 

The InTree metamodel is translated into a Java package called meta.intree.  The two concepts 
in the metamodel are translated into two Java classes.  Figure3 illustrates the translation of 
the Node concept into a Java class, whose full name is meta.intree.Node.   

package meta.intree; 
import remodel.util.*; 

public class Node extends Top { 
   protected String label = ""; 
   public String getLabel() { 
      return label; 
   } 
   public Node setLabel(String label) { 
     this.label = label; 
     return this; 
   } 
 
   protected Node parent; 
   public Node getParent() { 
      return parent; 
   } 
   public Node setParent(Node parent) { 
      this.parent = parent; 
      return this; 
   } 

   public Boolean isRoot() { 
      return parent == null; 
   } 
   public Node() { 
   } 
} 

Figure 3:  The translated meta.intree.Node class in Java 

The class belongs to the package meta.intree; and it imports classes from remodel.util, a 
utility library.  One of these is the class called Top, which is the root class for translated 
ReMoDeL concepts.  The fields and methods of the Node class are generated according to the 
following regular translation conventions: 
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• properties – every attribute, reference or component property called X of the type T is 
converted into a protected Java field of the same name. 

• properties – as above, are also provided with public methods T getX() and N setX(T), 
where N is the self-type of the owning class. 

• attributes – are initialised to default values (here, the empty String ""). 
• references – are initialised to null (implicitly, by default Java rules). 
• a default constructor is provided to create an instance with no initial field values. 

These conventions are like those used by Java Beans [2], classes designed in a particular way 
to support runtime discovery of how to set object properties.  The standard method-naming 
conventions allow a compilers to infer which method to use when setting a property with a 
given name.  Setter-methods follow the Builder Pattern [3], always returning this, the current 
object.  This allows setter-methods to be invoked sequentially, in a cascading fashion. 

Figure 4 illustrates the translation of the Tree concept into a Java class, whose full name is 
meta.intree.Tree.  This class defines a list-valued field, nodes: 

package meta.intree; 
import remodel.util.*; 

public class Tree extends Top { 
   protected PureList<Node> nodes = new PureList<Node>(Node.class); 
   public PureList<Node> getNodes() { 
      return nodes; 
   } 
   public Tree setNodes(PureList<Node> nodes) { 
      this.nodes = nodes; 
      return this; 
   } 

   public Node root() { 
      return nodes.detect(new Predicate<Node>(){ 
        public boolean apply(Node node) { 
           node.isRoot(); 
        }); 
   } 
   public Tree() { 
   } 
} 

Figure 4:  The translated meta.intree.Tree class in Java 

In addition to the conventions described above, the following translation conventions also 
apply, where collection types are present: 

• collections – the list-type T[] is translated into the remodel.util class PureList<T>.  
The set-type T{} is translated into the remodel.util class PureSet<T>. 

• components – having a list-type T[] or set-type T{} are also initialised respectively to 
the empty PureList<T>, or empty PureSet<T>. 

• collection methods – apart from a basic add method (used internally), the collection 
classes PureList<T> and PureSet<T> have constructive insertion, removal, 
composition and decomposition methods that always return new collections. 

• higher order methods – higher-order collection methods, such as:  detect, select, 
reject, collect, accept further Predicate or Function lambda-expression arguments. 
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• lambda expressions – a lambda expression passed as a predicate is translated by an 
anonymous Predicate subclass, with an apply() method returning true or false.   

The compiler explicitly initialises fields of String, PureListT> and PureSet<T> types to 
an empty value.  It relies on Java's own default initialisation rules for int, double, char, 
boolean and reference types, which all receive the empty value, zero, false or null. 

2.3 The OutTree Metamodel 

Figures 5 and 6 show the OutTree metamodel, describing the shape of out-trees in which 
nodes contain their own children [1].  The Tree is simply a container for the root Node. 

 

Figure 5:  The visual OutTree metamodel, with two concepts 

metamodel OutTree { 
   concept Node { 
      attribute label : String 
      component children : Node[] 
      operation descendants : Node[] { 
         children.append( 
            children.collate(child | child.descendants)) 
      } 
   } 
   concept Tree { 
      component root : Node 
      operation nodes : Node[] { 
         root.asList.append(root.descendants) 
      } 
   } 
} 

Figure 6:  The text OutTree metamodel, with two concepts 

This metamodel has the name OutTree, and contains two concepts called Node and Tree.   
Tree contains the root Node; and each labelled Node may contain further Node children.  
What is new is that the complete list of nodes must now be computed by an operation of Tree 
(c.f. InTree in figure 2, in which the list was stored).  This allows examination of a more 
complex method translation for the operation. 
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2.4 The OutTree Java Translation 

The OutTree metamodel is translated into a Java package called meta.outtree, containing two 
classes.  Figure 7 shows the translation of the Node concept into a Java class, whose full 
name is meta.outtree.Node.  The class belongs to the package meta.outtree; and it imports 
classes from the remodel.util utility library.  The Node class inherits from the library class 
Top, and uses the library class PureList. 

package meta.outtree; 
import remodel.util.*; 

public class Node extends Top { 
   protected String label = ""; 
   public String getLabel() { 
      return label; 
   } 
   public Node setLabel(String label) { 
     this.label = label; 
     return this; 
   } 

   protected PureList<Node> children =  
      new PureList<Node>(Node.class); 
   public PureList<Node> getChildren() { 
      return children; 
   } 
   public Node setChildren(PureList<Node> children) { 
      this.children = children; 
      return this; 
   } 

   public PureList<Node> descendants() { 
      return children.append(children.collate( 
         new Function<Node, PureList<Node>>() { 
            public PureList<Node> apply(Node child) { 
               return child.descendants(); 
            } 
      })); 
   } 
   public Node() { 
   } 
} 

Figure 7:  The translated meta.outtree.Node class in Java 

This generated Java class contains fields and methods according to the translation scheme 
described previously.  We highlight the following new aspects: 

• mapping operations – collections offer two mapping operations, collect() and 
collate().  The former accepts a lambda-expression returning a single element; the 
latter, seen here, accepts a lambda-expression returning a collection. 

• lambda expressions – a lambda expression passed as a function is translated by an 
anonymous Function subclass, with an apply() method returning the result type.  
Here, the function accepts a Node and returns a PureList<Node>. 

• The collate() operation, when applied to a PureList<Node>, merges the results 
returned by the lambda-expression as a single PureList<Node>.  When applied to a 
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PureSet<T>, it returns a single merged set.  The result type of the lambda-expression 
must follow the type of the original collection. 

The ordering of the descendants() method performs a breadth-first traversal of the Node's 
children, in which the immediate children of the Node appear in the result, before their 
recursive descendants().  This is achieved by the order of arguments to append().  The only 
Node not included in descendants() is the top node on which this is invoked. 

Figure 8 illustrates the translation of the Tree concept into a Java class, whose fully qualified 
name is meta.outtree.Tree.  This class defines a single root field, with an operation for 
calculating the complete list of nodes: 

package meta.outtree; 
import remodel.util.*; 

public class Tree extends Top { 
   protected Node root; 
   public Node getRoot() { 
      return root; 
   } 
   public Tree setRoot(Root root) { 
      this.root = root; 
      return this; 
   } 

   public PureList<Node> nodes() { 
      return asList(root).append(root.descendants()); 
   } 
   public Tree() { 
   } 
} 

Figure 8:  The translated meta.outtree.Tree class in Java 

The complete breadth-first traversal of the tree by nodes() is now apparent.  The root 
node is converted into a singleton list, and onto this is appended the root's descendants, as 
computed above.  We highlight the following: 

• asList and asSet – are available to every ReMoDeL concept, as if they were invoked 
operations, defined for the Top concept and inherited by every other concept. 

• They are translated into static methods of the library class remodel.util.Top, by 
transposing the object receiver into an argument.  This allows Java generic type 
inference to work correctly on the argument. 

The translation of asList and asSet is the same, whether the receiver is a single concept or a 
collection.  The library class Top provides multiple overloaded versions of these static 
methods, to convert the Java object correctly. 
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3. Compiling Higher-Order Operations 
Figure 7 above gave an example of a higher-order operation collate() and how this is 
translated into Java.  Here, we discuss the general approach to compiling higher-order 
operations.  ReMoDeL collections support four kinds of  higher-order operation: 

• predicates:   
      forall(Predicate): Boolean, 
   exists(Predicate): Boolean 

• filtering:   
       select(Predicate): Collection,  
   reject(Predicate): Collection,  
   detect(Predicate): Element 

• mapping:   
       collect(Function): Collection,  
   collate(Function): Collection 

• reducing:   
       reduce(Reduction): Element 

The receiver of these invocations is a list or set, with the ReMoDeL list type T[] or set type 
T{} for some element type T.  Each of the higher-order operations accepts a lambda-
expression (a Predicate, Function or Reduction) and returns either a Boolean value, a 
Collection (of the same type as the receiver), or an Element (of the receiver). 

3.1 Translation of Lambda-Expressions 

A simple lambda-expression is any expression of the following general form, in which the 
lambda-variable element may optionally be given an explicit type: 

(element | expression-referring-to-element) 
(element : T | expression-referring-to-element) 

The expression-referring-to-element may be any kind of ReMoDeL expression involving the 
element.  The lambda-variable element has the type T.  This is either given explicitly, or 
inferred from the collection-type of the receiver.  The result-type of the lambda-expression 
depends on the expression's result, but is always Boolean for predicates. 

Another kind of lambda-expression has two lambda-variables elem1, elem2 which may 
optionally be given an explicit type: 

(first, second | expression-combining-first-and-second) 
(first, second : T | expression-combining-first-and-second) 

The expression-combining-first-and-second may be any kind of ReMoDeL expression that 
performs some combination of the elements.  The two lambda-variables first and second have 
the same type T.  This is either given explicitly, or inferred from the collection-type of the 
receiver.  The result-type of this kind of lambda-expression is also T. 

Lambda-expressions are translated either as a Predicate, or a Function, or a Reduction.  This 
choice is determined by what the higher-order method expects as its argument (see above).  
The types Predicate, Function and Reduction are provided as Java interfaces in the ReMoDeL 
standard library remodel.util.  These have the form as shown in figure 9, in which the 
argument and result types are expressed as generic parameters. 
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public interface Predicate<T> { 
   public abstract boolean apply(T element); 
} 

public interface Function<T, S> { 
   public abstract S apply(T element); 
} 

public interface Reduction<T> { 
   public abstract T apply(T first, T second); 
} 

Figure 9:  The interfaces Predicate, Function and Reduction 

Any given lambda-expression is translated into an instance of an anonymous subclass of one 
of these interfaces, whose apply() method translates the body of the lambda-expression.  This 
captures the notion of a closure, that is, a dynamically created body of code, which exists 
within a surrounding static scope and may refer freely to variables in this scope. 

Three examples of generated Java expressions that construct an instance of an anonymous 
subclass are shown in figure 10.  This uses the Java syntax for anonymous classes, where the 
anonymous concrete type to be instantiated is given by a construction call to the abstract 
interface, followed by an overriding class-body, in which a concrete implementation of the 
interface's abstract method is provided: 

new Predicate<Node>() { 
   public Boolean apply(Node node) { 
      return node.isRoot(); 
   } 
}; 

new Function<Node, PureList<Node>>() { 
   public PureList<Node> apply(Node child) { 
      return child.descendants(); 
   } 
}; 

new Reduction<Integer>() { 
   public Integer apply(Integer first, Integer second) { 
      return first + second; 
   } 
} 

Figure 10:  Anonymous Predicate, Function and Reduction instances 

The ReMoDeL compiler is able to replace the generic type parameters by the actual types 
found in context.  The first two examples are taken from the generated expression code found 
in the translations of figures 4 and 7.  The Predicate instance accepts a Node and returns a 
Boolean result.  The Function instance accepts a Node and returns a List<Node> (in this 
example).  The Reduction instance accepts two Integers and returns the Integer sum. 

3.2 Translation of Collection Operations 

The anonymous Predicate, Function or Reduction instances are passed as arguments to the 
translation of the higher-order Collection operations.  These are predefined in the ReMoDeL 
standard library remodel.util, as the methods of the PureSet<T> and PureList<T> classes, 
which respectively implement the ReMoDeL types T{} and T[].   
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public <S> PureList<S extends T> select(Predicate<T> predicate) { 
   PureList<S> result = new PureList<S>(); 
   for (T element : elements) { 
      if (predicate.apply(element)) 
         result.elements.add((S) element); 
   } 
   return result; 
} 

public <S> PureSet<S> collect(Function<T, S> function) { 
   PureSet<S> result = new PureSet<S>(); 
   for (T element : elements) { 
      result.elements.add(function.apply(element)); 
   } 
   return result; 
} 

public <S> PureSet<S> collate(Function<T, PureSet<S>> function) { 
   PureSet<S> result = new PureSet<S>(); 
   for (T element : elements) { 
      result.elements.addAll(function.apply(element)); 
   } 
   return result; 
} 

public T detect(Predicate<T> predicate) { 
   for (T element : getElements()) { 
      if (predicate.apply(element)) 
         return element; 
   } 
   return null; 
} 

public T reduce(Reduction<T> reduction) { 
   T result = null; 
   Iterator<T> = getElements().iterator(); 
   if (iter.hasNext())  
      result = iter.next(); 
   while (iter.hasNext()) 
      result = reduction.apply(result, iter.next()); 
   return result; 
} 

Figure 11:  Some examples of translated higher-order operations. 

Figure 11 shows examples of the translation of higher-order operations, including some 
defined in PureCollection, PureList and PureSet.  All of the operations select(), reject(), 
collect() and collate() create and return collections of the same kind (set or list), whose result-
type is inferred from the context.  The implementations of select() and reject() optionally 
allow the result type to be more specific than the receiver type.  This supports filtering 
heterogeneous collections to extract specifically-typed subsets [1]. 

The implementations wrap an underlying Java collection elements, which is traversed but not 
modified.  This is either accessed directly, or dynamically through the method getElements().  
Methods always build up a new collection as the result.  When translating the ReMoDeL 
creation expression for an empty collection, a Java Class-object is stored, denoting the 
element type, and this is used to model the type of added elements. 
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We could have used the Java 1.8 streaming API to implement higher-order operations, but 
chose not to, because the generated code would have been much more complicated, and some 
kinds of lambda expression would have required a nested work-around.  Our Java translation 
follows the ReMoDeL expressions closely, so is far easier to trace. 

3.3 The Graph Metamodel 

Figures 12 and 13 show the metamodel for a Graph, a single-rooted, directed graph in which 
the connections between each Vertex pair is modelled explicitly by an Edge.  The Graph is 
simply the collections of its vertices and edges.  This presents a more interesting use of 
higher-order operations to find the root of the Graph. 

 

Figure 12:  A visual metamodel for Graph, with three concepts 
 

metamodel Graph { 
   concept Graph { 
      component vertices : Vertex[] 
      component edges : Edge[] 
      operation root : Vertex { 
         vertices.detect(vertex | 
            not edges.exists(edge | edge.source = vertex)) 
      } 
   } 
   concept Vertex { 
      attribute label : String 
   } 
   concept Edge { 
      reference source : Vertex 
      reference target : Vertex 
   } 
} 

Figure 13:  A text metamodel for Graph, with three concepts 

3.4 The Graph Java Translation 

Figure 14 shows just a part of the translation of this metamodel, focusing on the translation of 
the Graph concept, generating the Java class meta.graph.Graph.  The other two classes are 
generated following a similar pattern, described in section 2. 
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package meta.graph; 
import remodel.util.*; 

public class Graph extends Top { 
   protected PureList<Vertex> vertices =  
         new PureList<Vertex>(Vertex.class); 
   public PureList<Vertex> getVertices() { 
      return vertices; 
   } 
   public Graph setVertices(PureList<Vertex> vertices) { 
      this.vertices = vertices; 
      return this; 
   } 
   protected PureList<Edge> edges =  
         new PureList<Edge>(Edge.class); 
   public PureList<Edge> getEdges() { 
      return edges; 
   } 
   public Graph setEdges(PureList<Edge> edges) { 
      this.edges = edges; 
      return this; 
   } 
   public Vertex root() { 
      return vertices.detect(new Predicate<Vertex>() { 
         public boolean apply(Vertex vertex) { 
            return !edges.exists(new Predicate<Edge>() { 
               public boolean apply(Edge edge) { 
                  return edge.getSource() == vertex; 
               } 
            }); 
         } 
      }); 
   } 
   public Graph() { 
   } 
} 

Figure 14:  The translated meta.graph.Graph class in Java 

We highlight the translation of the root() method, which returns the single root Vertex of the 
Graph.  This invokes two higher-order methods, detect() and exists().  The outer invocation 
has a predicate which searches the vertices for the single vertex satisfying a nested condition, 
expressed by the inner invocation, which searches the edges until it cannot find any edge 
which has the vertex as its source. 

The anonymous subclasses of Predicate contain implementations of the apply() method that 
may capture the values of variables that occur within the enclosing scope.  So, for example, 
the inner invocation (filtering edges) is able to refer to the variable vertex, defined in the 
scope of the outer invocation.  This variable occurrence is effectively final in Java, meaning 
that it cannot be modified.  Java's rules for compiling anonymous classes ensure that captured 
variables are copied into the inner context. 

  



16 
 

4. Compiling Concept Inheritance 
ReMoDeL concepts enter into classification relationships.  A concept may stand alone, or 
may be derived by inheritance from some other concept using the inherit keyword, naming 
the supertype concept from which the subtype inherits properties.  The translation of 
inheritance into Java is fairly straightforward; but it must also ensure that access is preserved 
to predefined methods declared in the root concept Top. 

• standalone concept – the translation must always generate a Java class that extends 
the remodel.util.Top class.  This must be added to the import list. 

• extended concept – the translation must always generate a Java class that extends the 
class corresponding to the translation of the concept from which it inherits.  In this 
case, remodel.util.Top should not be added to the import list. 

• setter-methods – the translation of an extended concept must redefine all setter 
methods to return a more specifically typed this reference.  The generated code 
merely has to type-downcast the result of the inherited setter-method. 

4.1 The ERM Metamodel 

Figure 15 illustrates a visual metamodel describing the concepts present in an Entity 
Relationship Model (ERM).  The metamodel is possibly incomplete, but shows the overall 
structure.  The metamodel specifies that a Diagram consists of a set of Entities and a set of 
Relationships, where each Entity consists of a set of Attributes, and each Relationship 
consists of two EndRoles called the source and target, each referring to an Entity. 

 

Figure 15:  The visual ERM Metamodel 

The Entity and Attribute concepts inherit from the Named concept.  This is shown using the 
generalisation arrow linking the subtypes to the supertype.  By virtue of this relationship, 
both Entity and Attribute inherit the name attribute that is defined in Named.  We will explore 
the consequences of this in the translation to Java, in the following section. 
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metamodel Erm { 
   concept Named { 
      attribute name : String 
   } 
   concept Entity inherit Named { 
      component attributes : Attribute{} 
      operation primaryKey : Attribute{} { 
         attributes.select(attribute | attribute.key) 
      } 
   } 
   concept Attribute inherit Named { 
      attribute type : String 
      attribute key : Boolean 
   } 
   concept Relationship { 
      component source : EndRole 
      component target : EndRole 
   } 
   concept EndRole { 
      reference type : Entity 
      attribute multi : String 
   } 
   concept Diagram { 
      component entities : Entity{} 
      component relationships : Relationship{} 
   } 
} 

Figure 16:  The text ERM metamodel 

Figure 16 shows the same metamodel in the textual format.  This shows the detail of the 
primaryKey operation, which filters a subset of an Entity's Attributes, returning only those 
Attributes in which key is true. 

4.2 The ERM Java Translation 

Figure 17 shows the Java translation of the standalone concept Named.  This follows the 
same translation scheme as described previously.  The ReMoDeL attribute name is translated 
by the compiler into a Java field, also called name, along with its getter- and setter-methods. 

package meta.erm; 
import remodel.util.*; 

public class Named extends Top { 
   protected String name = ""; 
   public String getName() { 
      return name; 
   } 
   public Named setName(String name) { 
      this.name = name; 
      return this; 
   } 
   public Named() { 
   } 
} 

Figure 17:  The translated meta.erm.Named class in Java 
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Next, we focus on how the ReMoDeL compiler determines whether a translation requires any 
special Java import statements.  If the generated Java class relies on any class provided in the 
ReMoDeL standard library, then the compiler must generate an import statement: 

import remodel.util.*; 

This makes any library class available in the new context.  However, if no library class is 
required, then it is an error to include such an import statement (it would raise a warning in 
most Java IDEs).  In this case, the import statement should be suppressed.  In figure 17, it is 
clear that Named refers to the remodel.util.Top class, so this library is imported. 

Figure 18 shows the Java translation of the extended concept Attribute, which inherits from 
Named.  In the Java translation, the generated Attribute class extends the Named class.  By 
virtue of inheriting from Named, this class transitively inherits from Top, so does not refer to 
Top directly.  Since it makes no reference to other library classes, the library import statement 
is suppressed, to avoid generating Java code that issues unused import warnings. 

package meta.erm; 

public class Attribute extends Named { 
   protected String type = ""; 
   public String getType() { 
      return type; 
   } 
   public Named setType(String type) { 
      this.type = type; 
      return this; 
   } 
   protected boolean key; 
   public boolean getKey() { 
      return key; 
   } 
   public Attribute setKey(boolean key) { 
      this.key = key; 
      return this; 
   } 
   public Attribute setName(String name) { 
      return (Attribute) super.setName(name); 
   } 
   public Attribute() { 
   } 
} 

Figure 18:  The translated meta.erm.Attribute class in Java 

The ReMoDeL metamodel compiler has a dependency-checking phase, which looks for 
dependencies on Top, on the collections PureList and PureSet, and on the higher-order 
lambda expression interfaces Predicate, Function and Reduction.  If any of these are 
required, the standard library is imported. 

Next, we focus on how the ReMoDeL compiler handles the types returned by setter-methods.  
Recall that all generated setter-methods must return this, the current object, so that the setter-
methods may be cascaded, following the Builder Pattern [3].  This pattern is widely used in 
transformation rules (see section 5). 
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In figure 17, the class Named provided a method setName(String) which returned this, of the 
type Named.  If an instance of Attribute were to use this inherited method to set its own name, 
the result would be returned as a Named instance, not an Attribute instance.  For this reason, 
in figure 18, the method setName(String) is redefined to override the returned type of this, to 
ensure the type is Attribute. 

If this were not done, then the following sequence of Java invocations would fail: 

new Attribute().setName("length").setType("Integer"); 

because the result of setName() is a Named object, for which the method setType() is not 
defined.  By providing the overriding method, which casts down the result type from Named 
to Attribute, this problem is avoided.  The redefined method is generated following a 
template, which uses the original method and casts down the result type. 

package meta.erm; 
import remodel.util.*; 

public class Entity extends Named { 
   protected PureSet<Attribute> attributes =  
           new PureSet<Attribute>(Attribute.class); 
   public PureSet<Attribute> getAttributes() { 
      return attributes; 
   } 
   public Entity setAttributes(PureSet<Attributes> attributes) { 
      this.attributes = attributes; 
      return this; 
   } 
   public PureSet<Attribute> primaryKey() { 
      return attributes.select(new Predicate<Attribute>() { 
         public boolean apply(Attribute attribute) { 
            return attribute.getKey(); 
         } 
      }); 
   } 
   public Entity setName(String name) { 
      return (Entity) super.setName(name); 
   } 
   public Entity() { 
   } 
} 

Figure 19:  The translated meta.erm.Entity class in Java 

Figure 19 shows the Java translation of the extended concept Entity, which also inherits from 
Named.  Similar to figure 18, the Top class is not referred to directly (but is inherited 
transitively through Named).   However, in this case, we must still supply an import 
statement, because the Entity class uses the PureSet<T> library class. 

Figure 19 also redefines the setName(String) method to override the type of the result, so that 
this has the more specific type Entity (rather than Named).  In this way, any generated Java 
class which extends another Java class must override any inherited setter-method, in order to 
return the more specific type of this. 
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5. Compiling a Model Transformation 
A ReMoDeL transformation is cross-compiled into a Java class, in which the individual 
mapping or merging rules are translated as the methods of this class.  A transformation 
belongs to a group, which is translated into a Java package owning the generated class.  

The following correspondences exist: 

• transformation name – the name of the transformation becomes the name of a Java 
class that is the translation of the transformation. 

• transformation group – the declared group becomes (part of) the name of a Java 
package containing the class denoting the transformation. 

• source metamodel – each declared source metamodel is mapped to a Java package 
corresponding to the translation of this metamodel. 

• target metamodel – the declared target metamodel is mapped to the Java package 
corresponding to the translation of this metamodel. 

• mapping rule – each mapping rule corresponds to a public method of the generated 
class accepting an argument from the source metamodel.  The rule caches its result 
from the target metamodel, based on the source key. 

• merging rule – each merging rule corresponds to a public method of the generated 
class accepting an argument from each source metamodel.  The rule caches its result 
from the target metamodel, based on a key computed from all sources. 

• function rule – each auxiliary function corresponds to a public method of the 
generated class.  Its result is not cached. 

5.1 Model Transformation 

 
Figure 20:  Visualising the InTree to OutTree transformation 

Figure 20 illustrates a model transformation called InTreeToOutTree in the ReMoDeL visual 
notation (taken from [1]).  This transformation converts an instance of the source InTree 
metamodel into an instance of the target OutTree metamodel.  The same metamodel is 
described using the ReMoDeL textual notation in figure 21, in which the transformation 
group Trees is declared. 
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transform InTreeToOutTree : Trees { 

   metamodel source : InTree 
   metamodel target : OutTree 

   mapping inTreeToOutTree (inTree : InTree_Tree) : OutTree_Tree { 
      create OutTree_Tree( 
         root := inNodeToOutNode(inTree.root, inTree)) 
   } 

   mapping inNodeToOutNode (inNode : InTree_Node,  
                              inTree : InTree_Tree) : OutTree_Node { 
      create OutTree_Node(label := inNode.label, 
         children := inTree.nodes.select(child | child.parent = inNode) 
            .collect(node | inNodeToOutNode(node, inTree))) 
   } 
} 

Figure 21: The textual InTree to OutTree transformation 

The transformation group Trees will be used to construct a Java package having the name:  
rule.trees.  By default, all transformations belong to a Java package whose prefix starts with 
rule, and whose suffix is the name of the transformation group converted to lowercase.   

The transformation name InTreeToOutTree will be used as the name of the generated Java 
class.  This class will belong to the Java package rule.trees.  Other transformations belonging 
to the same group, such as InTreeToGraph (see [1]) will be added to this package. 

5.2 Translation of a Model Transformation 

Figure 22 shows an outline Java translation (eliding the method bodies) of the transformation 
in figure 21, which generates the Java class rule.trees.InTreeToOutTree.  The approach is 
somewhat similar to the translation of a ReMoDeL concept, creating package, import and 
inheritance declarations.  Aspects of the Java translation are highlighted below: 

• owning package – the package owning the Java class is named rule.trees, after the 
Trees transformation group declaration in figure 21. 

• class name – the name of the Java class corresponds exactly to the name of the 
transformation:  InTreeToOutTree in figure 21. 

• inheritance – the generated class InTreeToOutTree extends the library class TopRule.  
This is the common ancestor of all generated transformation classes, which supplies a 
shared context in which to cache rule results.  TopRule extends Top. 

• main method – a public static main() method is generated, which allows the generated 
class to be executed on command-line arguments, representing the path name(s) to the 
source model(s) to be transformed. 

• apply method – a public apply method is generated, which accepts a source 
Model<S> as input, and returns a target Model<T> as output, where S and T are the 
types of the root elements, respectively of the source and target models. 

• rule methods – every mapping rule is translated into a public method from S to T, 
where S and T are respectively the types of a source and target element. 

• constructor – a default constructor is provided, named after the transformation. 
• import statements – Java import statements ensure that the generated class has access 

to Model, TopRule and Java IO classes File and IOException. 
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package rule.trees; 
 
import remodel.util.*; 
import remodel.meta.Model; 
import java.io.File; 
import java.io.IOException; 

public class InTreeToOutTree extends TopRule { 
   public static void main(String[] args) throws IOException { 
      ... 
   } 
   public Model<meta.outtree.Tree> apply(Model<meta.intree.Tree> tree) { 
      ... 
   } 
   public meta.outtree.Tree inTreeToOutTree(meta.intree.Tree inTree) { 
      ... 
   } 
   public meta.outtree.Node inNodeToOutNode(meta.intree.Node inNode,  
         meta.intree.Tree inTree) { 
      ... 
   } 
   public InTreeToOutTree() { 
   } 
} 

Figure 22:  Outline of generated rule.trees.InTreeToOutTree class.  

The default constructor has an empty body.  Details of the elided bodies of the other methods 
are given in the following sections. 

5.3 Generated main() Method  

Figure 23 shows the structure of the generated main() method.  This checks the number of 
command line arguments, creates a source Model, reads this from a file created from the 
pathname args[0], creates an instance of the transformation class InTreeToOutTree, invokes 
its apply() method on the source Model to yield a target Model and finally writes this to an 
output file created from the pathname args[1], or to a default temporary file. 

public static void main(String[] args) throws IOException { 
   if (args.length < 1) 
      throw new IOException("Missing args[] path to input model."); 
   Model<meta.intree.Tree> source0 = new Model<>("inTree", "InTree"); 
   source0.read(new File(args[0])); 
   System.out.println("Successfully read: " + source0.getPath()); 
   InTreeToOutTree transform = new InTreeToOutTree(); 
   Model<meta.outtree.Tree> target = transform.apply(source0); 
   File out = args.length > 1 ? new File(args[1]) :  
      new File(toOutPath(args[0])); 
   target.write(out); 
   System.out.println("Successfully wrote: " + target.getPath()); 
} 

Figure 23:  Generated main() method for rule.trees.InTreeToOutTree 

The generated main() method allows the transformation to be executed as a standalone 
program, and reports its progress to standard output.  This program expects pathnames for the 
input and output model files to be supplied as command-line arguments.  Here, suitable paths 
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might be:  model/trees/inTree1.mod and model/trees/outTree1.mod (model files are stored 
under a model folder in the Java project).  

The output pathname is optional.  If present, the output model is also renamed according to 
the output filename.  If omitted, a temporary output file will be created in the same folder as 
the input, with the default name:  model/trees/out.mod.  It is assumed that temporary out files 
will be deleted after inspection (they may also be overwritten). 

5.4 Generated apply() Method 

The generated main() method is just one way of executing the transformation.  The other way 
is to create an instance of the transformation class rule.trees.InTreeToOutTree, and invoke its 
apply() method on a source Model, to yield a target Model, directly within Java.  Figure 24 
shows the generated apply() method for InTreeToOutTree; and also the style in which it 
would be used in a bespoke hand-written Java program: 

public Model<meta.outtree.Tree>  
            apply(Model<meta.intree.Tree> inTree) { 
   return new Model<>("outTree", "OutTree", 
      inTreeToOutTree(inTree.getRoot())); 
} 

// Program fragment using the apply() method 

InTreeToOutTree transform = new InTreeToOutTree(); 
Model<meta.intree.Tree> source = new Model<>("inTree", "InTree"); 
source.read(new File("model/trees/inTree1.mod")); 
Model<meta.outtree.Tree> target = transform.apply(source); 
target.write(new File("model/trees/outTree1.mod")); 

Figure 24:  Generated apply() method and its usage 

The apply() method always accepts a source Model and returns a target Model.  The generic 
class Model<T> is part of the standard package remodel.meta containing ReMoDeL’s own 
meta-metamodel types.  Model<T> encapsulates a model, including the model’s name, its 
corresponding metamodel type, the root element of the model and the path to the file where it 
is saved.  The root element could be an instance of any type T (see below).  The principal 
methods of Model<T> are: 

• String getName() – returns the name of the model. 
• String getType() – returns the metamodel type name. 
• T getRoot() – returns the root element of the model. 
• String getPath() – returns the pathname of the model. 
• void read(File) – reads the model from a file (also sets the path). 
• void write(File) – writes the mode to a file (sets the name and path). 

Within any given model, one element is the root of this model.  That is, every other element 
in the model is a component (or transitively is a component) of the root element.  The type of 
this root element is used to instantiate Model<T>.  Therefore: 

• The source model is of the type:  Model<meta.intree.Tree> 
• The target model is of the type:  Model<meta.outtree.Tree> 
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in which T is instantiated by the type of the root model element.  The type names are always 
expressed using their full package-qualified Java forms, to distinguish the different source 
and target types, which otherwise have the same names. 

The method getRoot() is used in the generated apply() method in figure 24, to access the root 
of the source metamodel.  This root is passed as an argument to the top rule, the first rule in 
the transformation, which by convention must always act on the root element. 

The class Model<T> provides convenient methods to read and write models in the serial text 
format for ReMoDeL models [1].  These methods use a ModelReader and a ModelWriter, 
respectively from the standard packages remodel.in and remodel.out, which contain the 
readers and writers the ReMoDeL toolset. 

5.5 Translation of Mapping Rules 

The mapping rules from the transformation in figure 21 are translated into the rule methods 
of the class rule.trees.InTreeToOutTree, as shown in figure 25.  The first rule in this listing is 
known as the top rule.  The top rule is used to inform the compiler about the required types of 
the apply() method (see section 5.4), so by convention it must be listed first. 

public meta.outtree.Tree inTreeToOutTree(meta.intree.Tree inTree) { 
   final String ruleName = "inTreeToOutTree"; 
   Object ruleKey = getKey(inTree); 
   if (hasEntry(ruleName, ruleKey)) 
      return getEntry(ruleName, ruleKey); 
   meta.outtree.Tree result = new meta.outtree.Tree() 
      .setRoot(inNodeToOutNode(inTree.root(), inTree)); 
   return putEntry(ruleName, ruleKey, result); 
} 

public meta.outtree.Node inNodeToOutNode(meta.intree.Node inNode, 
      meta.intree.Tree inTree) { 
   final String ruleName = "inNodeToOutNode"; 
   Object ruleKey = getKey(inNode, inTree); 
   if (hasEntry(ruleName, ruleKey)) 
      return getEntry(ruleName, ruleKey); 
   meta.outtree.Node result = new meta.outtree.Node() 
      .setLabel(inNode.getLabel()) 
      .setChildren(inTree.getNodes().select( 
         new Predicate<meta.intree.Node>() { 
            public Boolean apply(meta.intree.Node child) { 
               return child.getParent() == inNode; 
            } 
         }).collect( 
         new Function<meta.intree.Node, meta.outtree.Node() { 
            public meta.outtree.Node apply(meta.intree.Node node) { 
               return inNodeToOutNode(node, inTree); 
            } 
         })); 
   return putEntry(ruleName, ruleKey, result); 
} 

Figure 25:  Generated rule methods for rule.trees.InTreeToOutTree 
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All rule methods are generated according to a template pattern, which ensures that the rule is 
idempotent, that is, if the method is invoked multiple times on the same source input(s), it 
always returns the same target output [1].  The pattern is as follows: 

• ruleName – is used as an indexing feature for the rule method. 
• ruleKey – is a key computed from the source inputs to the rule method. 
• hasEntry(ruleName, ruleKey) – returns true if a result value has previously been 

cached for this rule under the given key. 
• getEntry(ruleName, ruleKey) – fetches a cached result value for the given rule and 

key, which must exist if hasEntry() returns true. 
• putEntry(ruleName, ruleKey, result) – caches a result value for the given rule and 

key; and also returns the result. 

The three methods hasEntry(), getEntry() and putEntry() are defined in the standard library 
class TopRule, from which every transformation class inherits.  These access the shared 
context, used by all the rules within a given transformation.  The context indexes each rule 
result firstly by the ruleName, and secondly by the ruleKey. 

One important aspect to emphasise is that all Java class types generated from the source and 
target metamodels must be referenced using their full Java package-qualified names.  This is 
because it is expected that different metamodels will inevitably overlap in the names used for 
their concepts; and the translated Java classes will also have overlapping names. 

Here, both metamodels happen to use the identical concept names: Tree and Node.  These are 
translated into distinct classes in the source and target packages, having the same simple class 
names.  So that these are not confused, they are always referenced by their distinct Java 
package-qualified names:  meta.intree.Tree and meta.outtree.Tree. 

5.6 Focus on inTreeToOutTree() 

Figure 26 focuses on the first of the two mapping rules that were shown in figure 25.  The 
method has a standard signature.  It is named after the mapping rule inTreeToOutTree.  It 
accepts an instance of the source type meta.intree.Tree, and returns an instance of the target 
type meta.outtree.Tree. 

public meta.outtree.Tree inTreeToOutTree(meta.intree.Tree inTree) { 
   final String ruleName = "inTreeToOutTree"; 
   Object ruleKey = getKey(inTree); 
   if (hasEntry(ruleName, ruleKey)) 
      return getEntry(ruleName, ruleKey); 
   meta.outtree.Tree result = new meta.outtree.Tree() 
      .setRoot(inNodeToOutNode(inTree.root(), inTree)); 
   return putEntry(ruleName, ruleKey, result); 
} 

Figure 26:  Focus on the mapping rule inTreeToOutTree. 

The structure of the method is as follows.  The code that is shaded in grey is standard 
boilerplate code, designed to index the result of the rule.  If the context (defined in TopRule) 
contains an entry for the ruleName "inTreeToOutTree" and the ruleKey inTree, then the 
cached result is returned immediately.   
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Otherwise, the transformation is computed, and the result is cached in the context, before it is 
returned.  The transformation creates an instance of meta.outtree.Tree and sets its root to the 
result of transforming the inTree's root: meta.intree.Node, into a meta.outtree.Node.  This 
invokes the second mapping rule, inNodeToOutNode(), to translate the node.  We highlight 
the following aspects of the Java translation: 

• The names of the method arguments correspond to the names of the mapping rule 
arguments and the types correspond to package-qualified source types. 

• the name of the method's return value is conventionally result, which is declared as a 
local variable in the body of the method, to support the caching behaviour.  Its type is 
the package-qualified target type. 

• The body of the method constructs an instance of the target type, using the Builder 
Pattern [3], in which the instance is first constructed using a default constructor, and 
those fields to be initialised are set using a cascaded sequence of setter-methods.  This 
allows more, or fewer fields to be set. 

5.7 Focus on inNodeToOutNode() 

Figure 27 focuses on the second of the two mapping rules that were shown in figure 25.  The 
method has a standard signature and is named after the mapping rule inNodeToOutNode.  It 
accepts two source arguments, inNode: meta.intree.Node, and inTree: meta.intree.Tree, and 
returns an instance of the target type meta.outtree.Node. 

public meta.outtree.Node inNodeToOutNode(meta.intree.Node inNode, 
      meta.intree.Tree inTree) { 
   final String ruleName = "inNodeToOutNode"; 
   Object ruleKey = getKey(inNode, inTree); 
   if (hasEntry(ruleName, ruleKey)) 
      return getEntry(ruleName, ruleKey); 
   meta.outtree.Node result = new meta.outtree.Node() 
      .setLabel(inNode.getLabel()) 
      .setChildren(inTree.getNodes().select( 
         new Predicate<meta.intree.Node>() { 
            public Boolean apply(meta.intree.Node child) { 
               return child.getParent() == inNode; 
            } 
         }).collect( 
         new Function<meta.intree.Node, meta.outtree.Node() { 
            public meta.outtree.Node apply(meta.intree.Node node) { 
               return inNodeToOutNode(node, inTree); 
            } 
         })); 
   return putEntry(ruleName, ruleKey, result); 
} 

Figure 27:  Focus on the mapping rule inNodeToOutNode. 

The structure of the method is as follows.  The code that is shaded in grey is the standard 
boilerplate code, designed to cache the result of the rule.  If the context (defined in TopRule) 
contains an entry for the ruleName "inNodeToOutNode" and the composite ruleKey (inNode, 
inTree), then the cached result is returned immediately.  Note that the key is based on both 
source arguments (although the second argument is always the same inTree). 
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Otherwise, the transformation is computed, and the result is cached in the context, before it is 
returned.  The transformation creates an instance of meta.outtree.Node and sets its label to 
the same as the inNode's label, and sets its children to the result of searching all the inTree's 
nodes to find those nodes that refer to inNode as a parent, and transforming each of these to a 
child node of the type meta.outtree.Node. 

The body of the method makes use of the Builder Pattern [3], in which the result is created 
using a default constructor, followed by the cascaded sequential invocation of setter-methods 
setLabel() and setChildren().  These can only work as intended if they return this, the 
instance of meta.outtree.Node on which they were invoked (see section 4.2). 

The way in which the children are calculated makes use of higher-order collection operations, 
namely select() and collect().  These are composed sequentially, with the list resulting from 
select() being the receiver for collect(). 

• The select() method receives a Predicate argument to filter the source nodes, 
returning true if a node satisfies the predicate.  This follows the pattern for 
implementing predicate arguments as anonymous subclasses of Predicate, whose 
method body performs a boolean test (see section 3.1) 

• The collect() method receives a Function argument to transform each of the source 
nodes into a target node.  This follows the pattern for implementing function 
arguments as anonymous subclasses of Function, whose method body transforms the 
argument, yielding the result (see section 3.1). 

In fact, the body is a recursive call to the inNodeToOutNode method.  The recursion halts, 
when the filtered list of source children is empty, so there is nothing to transform into target 
children nodes. 

5.9 Java Code Characteristics 

From the figures 22 – 27, it will have become clear to the reader that the translation of a 
model transformation is a fairly complicated affair, but that the different stages of the 
translation into Java make logical sense.  It is worth re-reading sections 5.2 - 5.7 until you 
understand how the Java translation faithfully implements the intent of the ReMoDeL 
mapping transformation. 

The size of the generated Java code for a transformation can be three to four times larger than 
the original transformations in ReMoDeL’s own syntax.  We think that this is one of the 
benefits of using ReMoDeL.  
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6. Further Aspects of Compilation 
Here, we describe some remaining aspects of the ReMoDeL cross-compilation strategy that 
were not covered in earlier sections.  These include: 

• translation of different kinds of identifiers 
• translation of different kinds of rule 
• translation of metamodel inheritance 
• translation of ReMoDeL comments 

The ReMoDeL expression language uses identifiers to name different kinds of property:  
attributes, references, components and operations.  These can occur in different contexts, 
such as when being declared, or when being accessed (read), or when being assigned 
(written), or when being invoked. 

6.1 Translation of Type Identifiers 
All ReMoDeL type identifiers are expected to follow "CapitalCase" conventions (initially 
capitalised, with internal capitalisation at word boundaries in multi-word identifiers).  The 
following translation schemes are applied: 

• Basic type identifiers occurring in non-parametric contexts are mapped to the 
equivalent Java basic type identifier (in lowercase), except for the String type, which 
is not a basic type in Java.  The type Decimal is mapped to double. 

• Basic type identifiers occurring in parametric contexts (as the element type of a 
PureList<T> or PureSet<T>) are mapped to the equivalent Java class-wrapper for the 
basic type (in "CapitalCase").  The type Decimal is mapped to Double. 

• Other ReMoDeL concept type identifiers are mapped to a Java class having the same 
name (in "CapitalCase"). 

• In the translation of a metamodel, all ReMoDeL types that are not predefined (basic or 
collection types) come from the same metamodel and are declared to belong to the 
corresponding Java package; and are mapped to Java class identifiers using the 
unqualified short name of the class. 

• In the translation of a transformation, all ReMoDeL types that are not predefined 
(basic or collection types) are assumed to come from different metamodels, and are 
mapped to a Java class identifier using the full package-qualified name. 

6.2 Translation of Property Identifiers 
All ReMoDeL property and variable identifiers are expected to follow "camelCase" 
conventions (initially lowercase, with internal capitalisation at word boundaries in multi-
word identifiers).   Different translations into Java apply, depending on whether the identifier 
is being declared, or accessed, or updated (viz. initialised) in the context of the code.  The 
following translation schemes are applied: 

• Variable and property identifiers occurring in a declaration-context are mapped to a 
Java identifier having the same "camelCase" convention. 

• Property identifiers that denote operations or rules will acquire generated parentheses 
for their arguments, even if argument lists are empty. 

• Variable identifiers occurring in an access-context are mapped to a Java identifier 
having the same name (there is no variable-update context). 
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• Property identifiers (excluding executable properties) occurring in an access- or 
invoke-context are mapped to the access method getX() for a property named X. 

• Property identifiers (excluding executable properties) occurring in an update-context 
are mapped to the update method setX() for a property named X. 

• Operation identifiers used in an invoke-context are mapped to an invocation of the 
same-named method against the receiver expression (but see also below). 

• Rule identifiers used in an apply-context are mapped to a call of the same-named rule 
method, with an implicit receiver (the transformation object). 

• Special operation identifiers {asSet, asList, asName, asType, asWords} used in an 
invoke-context are mapped to static method calls accepting the receiver as an 
argument (see section 2.4). 

6.3 Translation of Special Identifiers 
Three special identifiers are reserved in ReMoDeL:  self, super and owner.  The special 
identifier self is used to refer to the current instance (the implicit receiver) when it occurs in 
the body of an operation.  This has two translations: 

• when self occurs outside the scope of a lambda-expression, it is mapped to the 
corresponding Java special identifier this. 

• when self occurs inside the scope of a lambda-expression, it is mapped to T.this, 
where T is the name of the Java type enclosing the lambda-expression. 

The special identifier super is translated unchanged, and is used in the same way as in Java 
for method-combination, invoking an inherited operation within its redefined version. 
The special back-reference owner may optionally be declared in any concept that is added as 
a component of some other container concept.  The owner reference has the type of the 
container.  This is translated into a transient field, which is not serialised in models.  Instead, 
it is set automatically when adding the component to its container.  The automatic setOwner() 
method is generated, only if the types of the owner reference and the container match. 
The owner back-reference may be accessed in any operations that need to navigate upwards 
in a model, to the containing concept owning the component concept.  This helps to access 
further elements of a model that were not reachable from the component. 

6.4 Translation of Merging Rules 
Merging rules (distinguished by the keyword merging) are expected to have (at least) two 
arguments taken from different metamodels.  The idea is that a merging rule constructs an 
instance of the target by folding together information gained from multiple sources.  We may 
draw an analogy with aspect-weaving in Aspect-Oriented Programming (AOP) [4].  This 
kind of transformation may be useful to combine the different timing, process and data views 
of a software system. 
A partial sketch for a merging transformation is given in figure 28.  This assumes two source 
metamodels.  The first is a JSP (Jackson Structured Programming [5]) metamodel, with a 
Diagram containing a simple tree of Block nodes capturing the sequence, selection and 
iteration structure of a software system.  We assume that a Block has a component list of 
children: Block[].  The second is a DFD (Dataflow Diagram [6]) metamodel, a general graph 
consisting of Process nodes and Dataflow edges.  We assume that the top-level Diagram has 
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component lists of processes: Process[] and dataflows: Dataflow[].  We also assume that a 
Process has a back-reference owner: Diagram to its owning DFD_Diagram. 
The transformation seeks to construct a call-graph of Procedure nodes, following the tree-
structure of the JSP diagram, in which Procedure nodes are also annotated with their inputs 
and outputs, represented by Variable nodes, which are translated from the Dataflow edges in 
the DFD diagram.  This uses information from both source metamodels. 

transform JspDfdToProc : Procs { 

   metamodel source0 : JSP 
   metamodel source1 : DFD 
   metamodel target : Proc 

   merging jspDfdToProcDiag (jsp : JSP_Diagram,  
                     dfd : DFD_Diagram) : Proc_Diagram { 
      create Proc_Diagram( 
         root := blockProcToProc(jsp.root,  
            dfd.processes.detect(proc : DFD_Process | 
               proc.name = jsp.root.name)) 
      ) 
   } 

   merging blockProcToProc(block : JSP_Block,   
      proc : DFD_Process) : Proc_Procedure { 
      create Proc_Procedure( 
         name := block.name,  
         kind := block.kind, 
         inputs := proc.incomingFlows 
            .collect(flow | flowToVariable(flow)), 
         outputs := proc.outgoingFlows 
            .collect(flow | flowToVariable(flow)), 
         children := block.children.collect(child : JSP_Block | 
            blockProcToProc(child, proc.owner.processes 
               .detect(pro2 : DFD_Process | pro2.name = child.name)) 
         ) 
      ) 
   } 

   mapping flowToVariable(flow : DFD_Dataflow) : Proc_Variable { 
      create Proc_Variable(name  := flow.name, type := flow.type) 
   } 
} 

Figure 28: Merging JSP and DFD views into a procedural model 

The top rule takes a JSP_Diagram and a DFD_Diagram and constructs a Proc_Diagram 
(Proc is the name of the target metamodel).  To do this, it starts with the root Block of the JSP 
Diagram and seeks out the DFD Process having the same name as this Block, and then 
invokes the second rule with these arguments.  The second rule takes a single JSP_Block and 
the matching DFD_Process and constructs a Proc_Procedure having children mapped from 
the JSP children, and inputs and outputs mapped from the DFD dataflows. 
The merging transformation in figure 28 is slightly different from the mapping transformation 
in figure 21 in the following ways: 

• it depends on two source metamodels, rather than just the one; 
• the top rule accepts an argument from each source metamodel; 
• some other rules are also merging rules with two arguments; 
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• some other rules are just mapping rules with one argument. 

Because of this, the translation of a merging transformation into Java is slightly different 
from that of a mapping transformation; and is sketched in overview in figure 29. 

package rule.procs; 
 
import remodel.util.*; 
import remodel.meta.Model; 
import java.io.File; 
import java.io.IOException; 

public class JspDfdToProc extends TopRule { 
 
   public static void main(String[] args) throws IOException { 
      if (args.length < 2) 
         throw new IOException("Missing args[] paths to input models."); 
      Model<meta.jsp.Diagram> source0 = new Model<>("jsp", "JSP"); 
      source0.read(new File(args[0])); 
      System.out.println("Successfully read: " + source0.getPath()); 
      Model<meta.dfd.Diagram> source1 = new Model<>("dfd", "DFD"); 
      source1.read(new File(args[1])); 
      System.out.println("Successfully read: " + source1.getPath()); 
      JspDfdToProc transform = new JspDfdToProc(); 
      Model<meta.proc.Diagram> target = transform.apply(source0, source1); 
      File out = args.length > 2 ? new File(args[2])  
        : new File(toOutPath(args[0])); 
      target.write(out); 
      System.out.println("Successfully wrote: " + target.getPath()); 
   } 
 
   public Model<meta.proc.Diagram> apply(Model<meta.jsp.Diagram> jsp, 
         Model<meta.dfd.Diagram> dfd) { 
      return new Model<>("proc", "Proc", 
         jspDfdToProcDiag(jsp.getRoot(), dfd.getRoot())); 
   } 
 
   public meta.proc.Diagram jspDfdToProcDiag(meta.jsp.Diagram jsp, 
            meta.dfd.Diagram dfd) { 
      final String ruleName = "jspDfdToProcDiag"; 
      Object ruleKey = getKey(jsp, dfd); 
      if (hasEntry(ruleName, ruleKey)) 
         return getEntry(ruleName, ruleKey); 
      meta.proc.Diagram result = new meta.proc.Diagram() 
         .setRoot(blockProcToProc(jsp.getRoot(), 
            dfd.getProcesses().detect(new Predicate<meta.dfd.Process>() { 
               public boolean apply(meta.dfd.Process proc) { 
                  return proc.getName().equals(jsp.getRoot().getName()); 
               } 
            }) 
          )); 
      return putEntry(ruleName, ruleKey, result); 
   } 
 
   ... 
} 

Figure 29: Partial translation of the transformation in fig. 28  
The main changes in figure 29 compared to the translation of a mapping rule transformation 
(see figures 22-24) are: 
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• The generated main() method seeks two input file pathnames at args[0] and args[1] 
on the command line, one for each of the expected source models. 

• The generated main() method seeks an optional output file pathname at args[2] on the 
command line, otherwise uses a default out.mod file. 

• The generated apply() method expects two source Models, one typed with the root 
type JSP_Diagram and the other typed with the root type DFD_Diagram. 

• The top rule expects two source elements (jsp, dfd) of these respective types and 
caches the result under a composite key computed using getKey(jsp, dfd). 

A merging transformation could, in principle, accept more than two source models, in which 
case the translation simply adjusts where it seeks to find input and output pathnames on the 
command line, and generates apply() and other rules to accept more arguments.    
Otherwise, the Java generation strategy is what was described previously.  Note that a 
merging transformation may also contain mapping rules.  In figure 28, converting a Dataflow 
into a Variable only depends on the DFD metamodel, so a simple mapping rule is used.   

6.5 Translation of Function Rules 
Function rules (distinguished by the keyword function) are ancillary functions, used as 
helpers in the transformation process.  They are simple functions, possibly recursive, and 
unlike other kinds of rule, they are not idempotent and do not cache their results.  The 
translation of such rules is therefore simpler. 
In the accompanying technical report ReMoDeL Explained [1], we introduced an auxiliary 
function to test whether a general directed acyclic Graph was in fact a tree.  That is, the point 
of the function was to help as a precondition test, which could be invoked as part of a 
transformation from a Graph to a Tree. 

# ReMoDeL coding of a helper function 

function isTree(graph: Graph_Graph) : Boolean { 
   graph.vertices.select(vertex: Graph_Vertex |  
      not graph.edges.exists(edge: Graph_Edge |  
         edge.source = vertex)).size = 1 
} 

// Java translation of a helper function 

public boolean isTree(meta.graph.Graph graph) { 
   return graph.getVertices().select( 
      new Predicate<meta.graph.Vertex>() { 
         public boolean apply(meta.graph.Vertex vertex) { 
            return ! graph.getEdges().exists( 
               new Predicate<meta.graph.Edge>() { 
                  public boolean apply(meta.graph.Edge edge) { 
                     return edge.getSource() == vertex; 
                  } 
               }); 
         } 
      }).size() == 1; 
} 

Figure 30:  Function rule and its simple translation to Java 
Figure 30 shows both this function in the ReMoDeL expression language (above) and its 
translation into Java (below).  The main difference between this and other kinds of rule is that 
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no boilerplate code is generated for caching the result.  The result of the generated method is 
returned directly.  The translation is otherwise similar to what was presented previously.  The 
Java code follows the functional style of the original ReMoDeL expression language.  Like 
other rules, this generated method is owned by a transformation class. 

6.6 Translation of Updating Rules 
Updating rules (distinguished by the keyword updating) are rules that map from a given 
source metamodel back to itself.  That is, the same metamodel is both source and target.  
Updating rules are translated in exactly the same way as mapping rules, and the only 
difference is that the keyword updating is used by convention.  Like mapping and merging 
rules, updating rules are idempotent, and always recreate the target. 

6.7 Translation of Metamodel Inheritance 
In section 4, we described how the ReMoDeL compiler treats concept inheritance.  This is 
translated exactly into Java, in which the derived concept becomes a Java class which extends 
the Java class that translated the parent concept. 
ReMoDeL also supports metamodel inheritance.  This allows a designer to derive a new 
metamodel which obtains some of its concepts from an existing metamodel.  Syntactically, 
this is done in the same way, using the inherit keyword to name the parent metamodel.   
The semantics of metamodel inheritance is package merge with overriding.  The derived 
metamodel first obtains all of the concepts defined in the parent metamodel, and then adds its 
own concepts, which may possibly replace inherited concepts, if they have the same names.  
This permits a derived metamodel to redefine concepts. 
Since the contents of a derived metamodel are resolved when the metamodel is read by the 
ReMoDeL parser, compiling this is no different from compiling a standalone metamodel.  
The generated Java package will contain classes drawn from the concepts of all inherited 
metamodels. 

6.8 Translation of ReMoDeL Comments 
Multi-line comments can be inserted into models, metamodels and transformations.  These 
are consecutive lines that begin with the hash ‘#’ symbol.  However, comments are only 
permitted in the following locations: 

• at the very beginning of a file, before the first keyword 
• immediately preceding a concept definition (in a metamodel file) 
• immediately preceding a rule definition (in a transformation file) 

and they are rejected at other locations.  Comments are converted into equivalent Java 
comments, that are inserted at the file-, class-, or method-level.  They help document the 
translation and provide a trace back to the original ReMoDeL code.  Executing a 
transformation causes a comment to be inserted at the head of the target model output file, 
describing a trace of how it was created. 
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7. The ReMoDeL Distribution 
The ReMoDeL toolset comes as a Java archive (jar-file).  This is a compiled library, which 
you will import into your own ReMoDeL projects.  Any given ReMoDeL project is created as 
a separate Java project.  It includes the binary ReMoDeL toolset on its build-path as an 
external library.  An individual ReMoDeL project may generate different Java packages 
(source and binary), depending on what metamodels and transformations are specified in the 
ReMoDeL language. 

7.1 The ReMoDeL 3.x Toolset 

The ReMoDeL toolset comes as a binary Java archive file, containing the following packages: 

• remodel – command-line tools for checking and compiling models 
• remodel.in – the scanner and parser components 
• remodel.out – the writer and streamer components 
• remodel.cmp – the cross-compiler components 
• remodel.meta – the meta-metamodel components 
• remodel.expr – the expression language components 
• remodel.util – the standard runtime library 

The command-line tools are intended to be used to check and compile your own ReMoDeL 
projects.  These include two general-purpose main programs, which are sensitive to the 
filename extensions used to distinguish models, metamodels and transformations.  Each 
program expects a single file pathname, relative to the IDE project directory in which they 
are executed. 

• Validate – reads a model, metamodel or transformation file named on the input path: 
“pathname/file.ext”; and writes it out again as the file "pathname/out.ext" in the same 
directory, where out is a temporary output file for comparison with the input. 

o Metamodel (.met) and transformation (.tra) files are parsed as grammar trees; 
and, if syntactically correct, they are serialised back to text. 

o Model (.mod) files are parsed into instances of the compiled Java metamodel 
classes, and if syntactically correct, are serialised back to text. 

• Compile - compiles a metamodel or transformation file named on the input path: 
“pathname/file.ext”, creating a Java package consisting of one or more classes. 

o The metamodel file “meta/Graph.met” is compiled into the Java package 
“meta.graph” containing the Java classes for the metamodel concepts. 

o The transformation file “rule/InTreeToGraph.tra” is compiled into the Java 
package “rule.trees” containing the rule class InTreeToGraph.java. 

If any syntax errors are found, these are reported as Java exceptions.  A SyntaxError will 
report the expected syntax at a line number in the ReMoDeL source.  A SemanticError will 
report other kinds of inconsistency, e.g. if a model references a non-existent Java class 
(because the metamodel was not compiled), or if a ReMoDeL property references a missing 
Java field (because a transformation rule is inconsistent with the metamodel). 

Metamodel and transformation files may be validated at any time; model files may only be 
validated if the corresponding metamodel has previously been compiled.  Metamodels may 
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be compiled at any time; compiling a transformation will force prior re-compilation of any 
metamodel referenced by the transformation (for dependency’s sake); and these are all 
assumed to be in the same directory. 

7.2 An Example ReMoDeL Project 

We assume the introductory examples of trees and graphs are to be provided as a separate 
ReMoDeL project.  To create this, you first set up a Java project in your preferred Java IDE.  
Let us assume it is called RM_Trees.  You then import the ReMoDeL 3.x toolset as an 
external library on your project's build path.  We expect the following directory structure 
under the RM_Trees project directory: 

• RM_Trees/src – the root folder for Java source code, compiled by ReMoDeL 
• RM_Trees/meta – the root folder for metamodels (.met files) 
• RM_Trees/model – the root folder for models (.mod files) 
• RM_Trees/rule – the root folder for transformations (.tra files) 

Any ReMoDeL project installation expects the three root folders: meta, model and rule.  
Further subfolders may be added, as desired, to partition the project data.  In the 
demonstration project, example files are added directly to these folders: 

• meta – InTree.met, OutTree.met, Graph.met 
• model – inTree1.mod, outTree1.mod, graph1.mod, ... 
• rule – InTreeToOutTree.tra, InTreeToGraph.tra, OutTreeToInTree.tra, ... 

When compiling a metamodel file, or transformation file, this will generate new Java 
packages containing Java source classes under the src directory, for example: 

• meta.intree – containing the Java classes compiled from InTree.met 
• meta.graph – containing the Java classes compiled from Graph.met 
• rule.trees – containing the Java classes compiled from transformations 

The generated Java model transformations will have their own main() methods, so these may 
be executed directly.  They expect on the command-line one (or more) paths to suitable 
model files that are appropriate for the transformation.  For example: 

java InTreeToGraph model/inTree1.mod 

Mapping transformations will expect one input path, whereas merging transformations will 
expect two (or possibly more) input paths, according to the number of source metamodels 
required.  An optional output path may also be supplied. 

Whereas the above is styled as a command-line program executed in JDK, when running 
transformations in an IDE such as Eclipse, one would use the Project > Run Configurations 
option and set the command-line path argument under the Arguments tab.  A more complete 
user guide is available on the ReMoDeL website [7].  
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