

ReMoDeL
Explained

An Introduction to
ReMoDeL by Example
Technical Report

Revision: 2.3

Date: 01 June 2025

Anthony J H Simons
School of Computer Science
University of Sheffield

2

Contents
1. Introduction .. 3

1.1 Model-Driven Engineering ... 3

1.2 Model-Driven Development ... 3

1.3 ReMoDeL History ... 4

1.4 ReMoDeL Today ... 4

2. Models and Metamodels .. 5

2.1 An InTree Model ... 5

2.2 The InTree Metamodel .. 6

2.3 An OutTree Model .. 8

2.4 The OutTree Metamodel ... 8

2.5 A Graph Model .. 10

2.6 The Graph Metamodel .. 11

3. Model Transformation ... 12

3.1 InTree to OutTree Transformation .. 13

3.2 InTree to Graph Transformation ... 15

3.3 Idempotence of Rules .. 16

3.4 Inverse Transformations .. 18

3.5 Partial Transformations ... 20

3.6 Other Kinds of Transformations ... 22

4 The Expression Language .. 24

4.1 Basic Operations ... 24

4.2 Concept Operations ... 24

4.3 Collection Operations .. 25

4.4 Higher-Order Operations ... 26

4.5 Variables .. 28

4.6 Type Inference ... 28

4.7 Type Conversion ... 29

4.8 Default Initialisation .. 31

4.9 Further Reading ... 31

5. References .. 32

3

1. Introduction
This document describes ReMoDeL v3, a high-level syntax for defining models and model
transformations. It assumes no prior knowledge of Model-Driven Engineering and aims to
introduce related concepts such as models, metamodels and model transformations from first
principles, using simple examples. To give some initial context, the field of Model-Driven
Engineering is introduced briefly below.

1.1 Model-Driven Engineering

Model-Driven Engineering (MDE) is a general strategy in software engineering that seeks to
raise the level of abstraction at which we create and manage software systems. In the future,
instead of focusing on detailed implementations in specific programming languages, we will
create high-level designs using conceptual models that are much closer to the stakeholders'
view of their business processes. These models will be checked, maintained and revised by
automated tools, which will also generate the eventual software system.

MDE is concerned with any aspect of the design and implementation of software systems that
can be represented and managed using models. Reverse-engineering a design from software
is one activity. Checking a design for faults and repairing it is another activity. Improving
the quality of a design by refactoring is another activity. Translating a design from one
representation into another is a further activity. Generating an executable software system
from a design is another activity. Each of these activities involves a process known as Model
Transformation (MT), the conversion of models from one kind to another.

1.2 Model-Driven Development

Model-Driven Development (MDD) is the subfield of MDE which focuses specifically on
generating executable software systems from high-level abstract designs. There are several
perceived benefits. Firstly, the designs are independent of any particular programming
language or execution platform, so if the latter change, the investment in the designs is not
wasted or lost. Secondly, when the business needs change, it is far easier to update the design
models than it is to intervene at the code level. Code is regenerated automatically from the
managed designs. It is expected that this will allow Software Engineers to be more
productive and more responsive to change requests.

MDD encompasses a range of approaches. Microsoft's Software Factories [1] supply a
number of code templates and automatic code generators to build product-lines for similar
kinds of software product. The Object Management Group (OMG), a consortium of
technology providers and consumers, proposes a specific approach called Model-Driven
Architecture (MDA) [2], based on a set of curated standards, which tool providers may
choose to follow. MDA prescribes three levels of abstraction at which models of systems
should be developed:

• Computation-Independent Model (CIM) – the business requirements model
• Platform-Independent Model (PIM) – the logical system design model
• Platform-Specific Model (PSM) – the template for implementation

The Eclipse Foundation provides a partial implementation of some of the OMG's standards in
the Eclipse Modelling Framework (EMF) [3], which supports the creation of visual and
textual editors for models. A number of earlier projects in MDD, such as ATL, Epsilon and

4

Agile UML are now embedded within EMF. Other independent approaches, such as
ReMoDeL [4], are not so strongly tied to MDA.

1.3 ReMoDeL History

ReMoDeL is an acronym for Reusable Model Design Language, reflecting the original goal to
specify an overlapping set of languages to model different aspects of software systems [4].
Some were closer to implementation (imperative, functional and object-oriented models) and
others closer to design (entity-relationship, business process models).

• ReMoDeL v1: specified a set of metamodels, initially focusing on core programming
and database concepts. These were published as XML specifications. Model
transformations were imperative Java programs that manipulated the XML DOM-tree
structures directly, which represented instances of these metamodels.

• ReMoDeL v2: specified a set of metamodels as Java packages, whose classes
modelled the domain concepts directly, serialised as XML. Model transformations
were hybrid declarative/imperative rules, using distinct Java patterns for mapping,
merging, updating or splitting kinds of transformation.

• ReMoDeL v3: specifies metamodels and model transformations in a bespoke compact
syntax, with compilers that convert these into executable Java libraries and programs.
Concepts and transformations are expressed declaratively in a pure functional style.
Mapping, merging and updating transformations are supported.

This history is provided only for completeness’ sake; the rest of this report describes the
current version of ReMoDeL, which is version 3.

1.4 ReMoDeL Today

ReMoDeL v3 has its own compact syntax for expressing models, metamodels and model
transformations. ReMoDeL v3 syntax is about one third the size of the generated Java code,
making it much easier to develop metamodels than in previous versions. This encourages
rapid experimentation with different kinds of domain-specific language, since the designer is
not burdened with code maintenance.

Designers are free to focus on the constraints captured in particular views of a software
system. There may be many such views, expressed in different metamodels. Model-
transformation then becomes a layered process of gradual refinement, which exploits the
constraints found at different levels of abstraction. A software system should be the result of
folding together models that capture the data, time and process views of the system.

5

2. Models and Metamodels
The notions of models and metamodels may be unfamiliar. A model is any constructed
representation of something of interest. A model may capture certain details and ignore
others. Informally, a model is a simplified version of the thing being modelled.

In Software Engineering, we are concerned almost exclusively with models of information.
This can include models of data, models of processes and models of time. Models must be
comprehensible to human Software Engineers, who are involved in the design process. In
Model-Driven Engineering, models must also be machine-readable, since programs will
transform models of one kind into models of another kind.

2.1 An InTree Model

The easiest way to explain these concepts is through examples. We will use the familiar idea
of a tree, which is a well-known data structure in computer science. Figure 1 depicts a model
of a tree, as a diagram expressing the structure of the tree model.

Figure 1: A visual model of an in-tree

The model consists of six labelled nodes, which are connected in a certain pattern. One node
is labelled the Root, and five other dependent nodes are connected by an arrow to their parent
node. Some nodes, labelled Branch1, Branch2, have further dependents. Other nodes,
labelled Leaf1, Leaf2, Leaf3, have no dependents. This model is of a particular kind of tree,
called an in-tree, in which the root node is reachable from every other node.

model tree1 : InTree {
 t1 : Tree(nodes = Node[
 n1 : Node(label = "Root"),
 n2 : Node(label = "Branch1", parent = n1),
 n3 : Node(label = "Branch2", parent = n1),
 n4 : Node(label = "Leaf1", parent = n2),
 n5 : Node(label = "Leaf2", parent = n2),
 n6 : Node(label = "Leaf3", parent = n3)
])
}

Figure 2: A textual model of an in-tree

The same logical model may be expressed either as a diagram, or as text. Figure 2 depicts the
same tree as text, using the ReMoDeL model syntax. The keyword model introduces the
model, which has the name tree1 and the metamodel-type InTree. The model consists of
seven typed nodes:

• t1: Tree – is a node representing the whole tree, consisting of six nodes
• n1..n6: Node – are the other nodes representing the parts of the tree

Root

Branch1
Leaf1

Leaf2

Branch2 Leaf3

6

Each of the nodes has a unique identifier (t1, n1..n6). This allows nodes to refer to each other
within the model. For example, the root node has the identifier n1, and the branch nodes n2,
n3 refer to this node n1 as their parent. Similarly, the leaf nodes n4, n5 refer to the branch
node n2 as their parent. The only node with no parent is the node n1. In this way, the textual
notation in figure 2 captures exactly the structure of the tree in figure 1.

Each node has a number of internal properties. Properties can be simple attributes, or
references to other nodes. For example, the node n2 has a property called label, an attribute
which is bound to the simple string value "Branch1". The same node n2 has a property called
parent, a reference which is bound to the node n1. The bound values of properties are
indicated using the simple equals operator.

Some nodes are containers of other nodes. For example, the tree node t1 has a property
called nodes, which refers to a list of other nodes: Node[n1 ... n6]. This makes t1 the
container of all the other nodes in the model, and we say that n1..n6 are its components.
Containers can be typed either as lists [...], or as sets {...}.

A model is written out as a collection of nodes, having a number of properties. The first time
any given node is encountered, it is written out in full, with all of its properties. If the same
node is encountered again, only its identifier is written.

2.2 The InTree Metamodel

The type of a model is a metamodel (a model of a model), which specifies the model's
structure and behaviour. The tree of figure 1 is an instance of the InTree metamodel,
depicted in figure 3 using the ReMoDeL graphical notation. This specifies what kinds of
node are allowed in an InTree, and what properties they are expected to have.

Figure 3: A visual metamodel for InTree

The metamodel is named InTree. The metamodel boundary encloses a couple of interlinked
concepts, which specify the allowed types of node. These are drawn as rectangles, named
Tree and Node, with two partitions listing their attributes and operations (see below). The
references are indicated using labelled arrows drawn from the source to the target. A black
diamond at the source-end indicates a stronger component reference.

7

Readers familiar with the UML notations [5] will notice that the visual syntax bears a certain
similarity to UML class and package diagrams. However, the ReMoDeL visual notation is
strictly simpler, in that all relationships are directed and are labelled in one direction.

metamodel InTree {
 concept Node {
 attribute label : String
 reference parent : Node
 operation isRoot : Boolean {
 parent = null
 }
 }
 concept Tree {
 component nodes : Node[]
 operation root : Node {
 nodes.detect(node | node.isRoot)
 }
 }
}

Figure 4: The textual metamodel for InTree

The same metamodel may also be expressed as text. Figure 4 depicts the same metamodel,
using the ReMoDeL metamodel syntax. This captures all of the information in figure 3, and
also specifies the operations. Below, we explain the meanings of certain keywords in the
ReMoDeL metamodel syntax, drawing analogies with UML and Java:

• metamodel – defines a given metamodel (c.f. a UML or Java package). All concepts
defined within the scope of the named metamodel belong to this namespace.

• concept – defines a concept within a metamodel (c.f. a UML or Java class). A
concept is an entity that may have attributes, references, components and operations.

• attribute – defines a named property of a concept that stores a simply-typed value.
Attributes store String, Integer, Decimal, Boolean and other simply-typed values.

• reference – defines a named property of a concept that refers to another concept
elsewhere in the model (c.f. a weak reference, or a directed association in UML).

• component – defines a named property of a concept that is contained by, and
managed locally by, the concept (c.f. an owned reference, or a composition in UML).

• operation – defines a named operation of a concept (c.f. a method in UML or Java).
An operation always returns a result, and may optionally have parameters.

Every concept is named; and every property also declares a type after its name. Types are
single, such as Node, or multiple, such as Node[], the type of a Node-list. A set-type would
be signalled as Node{}. Operations only require argument parentheses if they accept
arguments. The syntax for the body of operations follows a mix of object-oriented and pure
functional programming styles, using mapping and filtering:

• Node.isRoot : Boolean – returns true if the parent of the node is null.
• Tree.root : Node – filters the list of nodes for the only node that is a root.

The textual syntax is intended to be compiled to generate an executable metamodel, for
example, by converting the metamodel into a Java package, and converting each concept into
a corresponding Java class definition. The strong versus weak reference model also supports
translation into C++, where memory management is explicit (a class must manage its own
components, deleting these when it is deleted).

8

2.3 An OutTree Model

The in-tree is only one way in which we could choose to model a tree, in which every node
refers to its parent. For example, we might prefer to model the tree as an out-tree, in which
every node refers to its children. Figure 5 depicts an example of this kind of tree:

Figure 5: A visual model of an out-tree

The model consists of six labelled tree-nodes, which are connected in precisely the opposite
direction to the tree in figure 1. One node labelled Root refers to nodes labelled Branch1,
Branch2, where Branch1 refers to Leaf1, Leaf2 and Branch2 refers to Leaf3. This tree is an
out-tree, in which every node is reachable from the root.

model tree2 : OutTree {
 t1 : Tree(root =
 n1 : Node(label = "Root", children = Node[
 n2 : Node(label = "Branch1", children = Node[
 n4 : Node(label = "Leaf1"),
 n5 : Node(label = "Leaf2")
]),
 n3 : Node(label = "Branch2", children = Node[
 n6 : Node(label = "Leaf3")
])
])
)
}

Figure 6: A textual model for an out-tree

The same model may be represented either visually, or textually. Figure 6 depicts the same
tree from figure 5 as text, using the ReMoDeL model syntax. The keyword model introduces
the model, which has the name tree2 and the metamodel-type OutTree. The model consists
of seven typed nodes:

• t1: Tree – encapsulates the whole tree, whose root is bound to the root Node.
• n1..n6: Node – represent other labelled nodes, which refer to their own children.

Contrasting figure 6 with figure 2, there is no single container for all the nodes; instead, Tree
just refers to the root Node n1. Thereafter, each Node contains its own children. For
example, the Node n2 contains, as its children, the list Node[n4, n5]. This gives rise to the
levels of indentation in figure 6, where nested nodes are introduced further to the right.

2.4 The OutTree Metamodel

The different structure of this model is defined by a different metamodel, as you would
expect. Figure 7 depicts the OutTree metamodel in the ReMoDeL visual notation. This
specifies the different allowed linkage between nodes. Overall, the declared properties of a

Root

Branch1
Leaf1

Leaf2

Branch2 Leaf3

9

Tree in this OutTree metamodel are similar to the declared properties of a Tree in the InTree
metamodel of figure 3: the difference is in which properties are provided as components, and
which are provided as operations.

Figure 7: A visual metamodel for OutTree

The metamodel is named OutTree, and the boundary encloses two concepts named Tree and
Node. A Tree has one root component referring to a Node. A Node has a children
component referring to a list of Nodes. (In the visual notation, the list type indicator [] is
added to the label on the arrow, when this refers to a list of the target node. Elsewhere, a list
type is indicated by adding this indicator after the type-name: Node[]).

The same metamodel is depicted as text, using the ReMoDeL metamodel syntax, in figure 8.
The component keyword indicates that the Tree concept is now a container just for the root
Node; and that each Node is the container for its own children Nodes.

metamodel OutTree {
 concept Node {
 attribute label : String
 component children : Node[]
 operation descendants : Node[] {
 children.append(children.collate(child |
 child.descendants))
 }
 }
 concept Tree {
 component root : Node
 operation nodes : Node[] {
 root.asList.append(root.descendants)
 }
 }
}

Figure 8: A textual metamodel for OutTree

In both metamodels (figures 4, 8), the Tree concept defines properties called root and nodes.
Whereas in figure 4 the nodes are stored directly, in figure 8 the nodes are computed by an
operation which walks through the tree. Likewise, whereas in figure 8 the root is stored
directly, in figure 4 the root is computed by an operation which searches the nodes. This
illustrates how different design decisions can be made in a metamodel. The featured
operations in figure 8 work in the following way:

10

• Tree.nodes : Node[] – finds all nodes in the tree in top-down order, by treating the
root as a list, and then appending all of the root's descendants to this list.

• Node.descendants : Node[] – finds the descendants of a node by collating the
descendants of each child, found recursively, as a single list.

2.5 A Graph Model

Tree- and graph-like structures can either be modelled using nodes that refer directly to each
other, or they can be modelled in a more explicit way, using distinct elements to represent the
vertices (nodes) and edges (arcs) in the graph. An example of this is shown in figure 9, in
which nodes v1..v6 are vertices, and nodes e1..e5 are edges.

Figure 9: A visual model of a graph

The vertices do not refer directly to each other in this model. Instead, every edge connects a
pair of vertices. So, the link from the vertex v1 (the Root) to the vertex v2 (Branch1) is
represented by the edge e1, which refers to the pair of vertices. It is sometimes convenient to
build models in this way, because the edges can be added after the vertices, independently.

model graph1 : Graph {
 g1 : Graph(vertices = Vertex[
 v1 : Vertex(label = "Root"),
 v2 : Vertex(label = "Branch1"),
 v3 : Vertex(label = "Branch2"),
 v4 : Vertex(label = "Leaf1"),
 v5 : Vertex(label = "Leaf2"),
 v6 : Vertex(label = "Leaf3")
], edges = Edge[
 e1 : Edge(source = v2, target = v1),
 e2 : Edge(source = v3, target = v1),
 e3 : Edge(source = v4, target = v2),
 e4 : Edge(source = v5, target = v2),
 e5 : Edge(source = v6, target = v3),
])
}

Figure 10: A textual model of a graph

The same model is depicted as text using the ReMoDeL model syntax in figure 10. From this
it is clear that a Graph consists of a list of Vertex[v1..v6] and a list of Edge[e1..e5].

• g1: Graph – is a container of lists of vertices and edges.
• v1..v6: Vertex – have a label attribute bound to a specified String.
• e1..e5: Edge – have a source and target reference bound to Vertex objects.

v1 Root
v2 Branch1

v3 Branch2

e1

e2

e3

e4

e5

v4 Leaf1

v5 Leaf2

v6 Leaf3

11

2.6 The Graph Metamodel

The more elaborate structure of a graph model is defined by the Graph metamodel, which
specifies the relationships between the three types of concept: Graph, Vertex and Edge. This
is depicted in the ReMoDeL visual notation in figure 11:

Figure 11: A visual metamodel for Graph

The figure names the metamodel Graph, and within the metamodel boundary shows the three
concepts. Graph consists of a list of Vertex[] and a list of Edge[], which are its components.
Each Edge has two references, one to its source Vertex and one to its target Vertex.

metamodel Graph {
 concept Graph {
 component vertices : Vertex[]
 component edges : Edge[]
 operation root : Vertex {
 vertices.detect(vertex |
 not edges.exists(edge | edge.source = vertex))
 }
 }
 concept Vertex {
 attribute label : String
 }
 concept Edge {
 reference source : Vertex
 reference target : Vertex
 }
}

Figure 12: A textual metamodel for Graph

Figure 12 shows the same metamodel as text, using the ReMoDeL metamodel syntax. The
Graph concept is now the container for every Vertex and every Edge. Each Vertex is merely
labelled. Each Edge is a separate concept, denoting an arrow from a source Vertex to a target
Vertex. It is possible to find the root Vertex by a searching operation:

• Graph.root : Vertex – searches for the only Vertex, for which no Edge exists that has
this Vertex as its source (this is the definition of a root!)

12

3. Model Transformation
The notion of model transformation may be unfamiliar. Model transformation (MT) is the
process of converting models from one kind into another. In Software Engineering, we are
concerned almost exclusively with transformations that affect models representing different
views of a software system. Transformations may abstract a design, refine a design, translate
a design, or fold together different views of the system.

Model transformations are classified along different, independent dimensions [6, 7]:
• direction: transformations are classified as unidirectional (they transform a source to a target

model), or bidirectional if they are reversible (also transform a target to a source model);
• domain: transformations are classified as endogenous (rephrasing within the same language

or metamodel) or exogenous (translating from one language or metamodel to another);
• valency: transformations are classified according to the number of source and target models

as mapping (from one model to another), merging (of many models into one), splitting (of one
model into many), or updating (modifying the same model in-place);

• abstraction: transformations are classified as horizontal (migration, preserving the
abstraction-level), or vertical (refinement, becoming more concrete; or abstraction, becoming
more abstract);

• purpose: transformations are classified as translation (of one model into another),
refactoring (improving model quality), enhancement (inserting features into a model),
normalisation (simplifying the model), consistency maintenance (correction of a model with
respect to another).

Model transformations can be expressed as imperative programs that manipulate data
structures in an opaque way, or as declarative rule-based languages that express
transformations in a more transparent way. Consider the following:

• Imperative Transformation: programming language statements may create, modify or
delete elements from the model in arbitrary ways. The transformation depends on the states
of variables in the program and the order of statement execution, using assignment and
iterative loops; and it is not easy to discern the logic being applied.

• Declarative Transformation: the transformation is expressed as a mapping from the input
space to the output space. The transformation is more like a pure functional programming
language (Haskell, ML, etc.) and does not depend on state variables. Repeated actions are
accomplished using recursion, and variables are bound just once (not reassigned).

• Pattern-Matching Transformation: the transformation is expressed as a logical pattern,
specifying a set of constraints between the input space and the output space. Rules are
phrased using quantification: "for all X in the source, there exists Y in the target, such that
certain properties hold". This is the most abstract way of specifying a transformation, and
must be interpreted, or converted into an operational form before execution.

Clearly, there is a trade-off between the comprehensibility and executability of
transformations in these different approaches. Other concerns include:

• idempotence, the notion that if the same transformation is invoked in multiple places on the
same source entity, it should always yield the same target entity (not a duplicate copy);

• independence, the notion that different rules may specify different aspects of the same
transformation independently, but these are folded together correctly in the target.

13

3.1 InTree to OutTree Transformation

The first example model transformation we will consider is a simple translation. The InTree
and OutTree metamodels describe Tree and Node concepts, which support constructing tree
models which are broadly similar, apart from the direction in which nodes are linked. It is
therefore possible to provide a mapping transformation that performs a horizontal migration
of a model from one metamodel to another (an exogenous translation, according to the
taxonomy of model transformations).

Figure 13: Visualising the InTree to OutTree transformation

Figure 13 illustrates the transformation as a homomorphism from one metamodel to another,
which consists of a number of morphisms that map elements of one metamodel onto elements
of the other. That is, the large black arrow denotes the transformation as a whole, which
consists of several smaller grey arrows denoting individual rules that map elements from one
metamodel onto elements of the other.

transform InTreeToOutTree : Trees {

 metamodel source : InTree
 metamodel target : OutTree

 mapping inTreeToOutTree (inTree : InTree_Tree) : OutTree_Tree {
 create OutTree_Tree(
 root := inNodeToOutNode(inTree.root, inTree))
 }

 mapping inNodeToOutNode (inNode : InTree_Node,
 inTree : InTree_Tree) : OutTree_Node {
 create OutTree_Node(label := inNode.label,
 children := inTree.nodes.select(child | child.parent = inNode)
 .collect(node | inNodeToOutNode(node, inTree)))
 }
}

Figure 14: The InTree to OutTree transformation

Figure 14 shows the complete model transformation using the ReMoDeL textual syntax for
transformations. The transformation is called InTreeToOutTree, and it belongs to a group of
transformations known as Trees. It specifies the two metamodels being used (InTree for

14

source entities; and OutTree for target entities). It encapsulates a set of mapping rules, which
perform the actual transformation. A few more keywords of the ReMoDeL syntax are:

• transform – the keyword introducing a model transformation;
• metamodel – the keyword introducing source, target metamodels;
• mapping – the keyword introducing a mapping rule.

All source metamodels are declared first, before the target metamodel, which always comes
last. The mapping rules are declared after this, with the first rule (the top rule) being the rule
that transforms the topmost element in the model, here inTree : InTree_Tree.

A mapping rule may have one or more source arguments, and yields one target result. The
argument and result types are declared in their full metamodel-qualified form, because the
type-names alone are not sufficient to distinguish which Tree or Node we mean (concepts
with the same names exist in both metamodels).

Each rule is a function from inputs to output, whose body is a single nested expression in the
ReMoDeL syntax. The rules have the following meaning:

• inTreeToOutTree – for each inTree : InTree_Tree, create a new OutTree_Tree, whose
root : OutTree_Node node is the result of mapping the root : InTree_Node. This
invokes the second rule:

• inNodeToOutNode – for each inNode : InTree_Node, create a new OutTree_Node,
whose label is the same as that of the inNode, and whose children are found by
filtering all the nodes of the inTree to select only those child nodes, whose parent
refers to this inNode; and then recursively transform this list of InTree_Node[] nodes
into corresponding OutTree_Node[] children.

To see how the whole model transformation works, imagine that we call the top-rule on the
topmost element t1: Tree of the in-tree in figure 2. This gives the following recursive pattern
of rule-invocation, shown in figure 15.

t1' := inTreeToOutTree(t1)
 n1' := inNodeToOutNode(n1, t1)
 n2' := inNodeToOutNode(n2, t1)
 n4' := inNodeToOutNode(n4, t1)
 n5' := inNodeToOutNode(n5, t1)
 n3' := inNodeToOutNode(n3, t1)
 n6' := inNodeToOutNode(n6, t1)

Figure 15: Recursive mapping rule invocation pattern

This shows how the elements t1', n1'..n6' of the target model are constructed in turn, by
applying the rules to elements t1, n1..n6 of the source model. The indentation in the figure
indicates the nested calling of a rule by the next outer rule above it.

The recursion stops, when no further children are found for a given node. For example, the
last application to n6 and t1 finds that none of the t1.nodes is a child of n6. Therefore, the
select method returns an empty list, and the nested collect operation likewise returns an
empty list, and so the rule is not invoked recursively a further time.

In the body of these rules, we see some examples of the ReMoDeL syntax:

15

• create – is an operation that constructs a new instance of a concept type. The syntax
is: create Type(property1 := value1, ... propertyN := valueN), for as many properties
of the type as are supplied (possibly an incomplete list).

• select – is a filtering operation applied to collections, which retains any object
satisfying a test. The syntax is: collection.select(element | condition-on-element).

• collect – is a transforming operation applied to collections, which maps each element
to an element of another type, returning a collection of the same size. The syntax is:
collection.collect(element | transformation-of-element).

3.2 InTree to Graph Transformation

The second example is a slightly more elaborate translation. The InTree and Graph
metamodels from figures 3 and 11 describe different sets of concepts: {Tree, Node} and
{Graph, Vertex, Edge} respectively. Whereas in the InTree metamodel, the nodes refer
directly to other nodes, in the Graph metamodel, the vertices are connected by explicit edges.
Nevertheless, it should be possible provide a mapping transformation that performs a
horizontal migration of a model from one metamodel to another (an exogenous translation,
according to the taxonomy of model transformations).

Figure 16: Visualising the InTree to Graph transformation

Figure 16 illustrates this transformation as a different homomorphism from one metamodel to
another, which consists of a number of morphisms that map elements of one metamodel onto
elements of the other. The large black arrow denotes the transformation as a whole, which
consists of several smaller grey arrows denoting individual rules that map elements from one
metamodel onto elements of the other.

The main difference between this and the earlier transformation in figure 13 is the additional
rule required. The top rule maps a Tree to a Graph; another rule maps a Node to a Vertex;
and a further rule maps a Node to an Edge. How this is done is described more completely in
figure 17, which specifies the full details of each rule, using the ReMoDeL syntax.

16

transform InTreeToGraph : Trees {

 metamodel source : InTree
 metamodel target : Graph

 mapping inTreeToGraph (inTree : InTree_Tree) : Graph_Graph {
 create Graph_Graph(
 vertices := inTree.nodes.collect(node |
 inNodeToVertex(node)),
 edges := inTree.nodes.without(inTree.root)
 .collect(node | inNodeToEdge(node))
 }

 mapping inNodeToVertex(inNode : InTree_Node) : Graph_Vertex {
 create Graph_Vertex(label := inNode.label)
 }

 mapping inNodeToEdge (inNode : InTree_Node) : Graph_Edge {
 create Graph_Edge(
 source := inNodeToVertex(inNode),
 target := inNodeToVertex(inNode.parent))
)
 }
}

Figure 17: The InTree to Graph transformation

The transformation is called InTreeToGraph, and it belongs to the group of transformations
known as Trees. It specifies the two metamodels being used (InTree for source entities; and
Graph for target entities). The top rule is called inTreeToGraph.

As in the previous example, the mapping rules are functions from input to output, and have
the following meaning:

• inTreeToGraph – for each inTree : InTree_Tree, create a new Graph_Graph, whose
vertices : Graph_Vertex[] are the result of mapping the rule: inNodeToVertex over all
the nodes of the inTree; and whose edges: Graph_Edge[] are the result of mapping
the rule: inNodeToEdge over all but one of these nodes, that is, over all the nodes of
the inTree except the root node.

• inNodeToVertex – for each inNode : InTree_Node, create a new Graph_Vertex, whose
label is the same as that of the inNode.

• inNodeToEdge – for each inNode : InTree_Node, create a new Graph_Edge, whose
source is the result of invoking inNodeToVertex on the inNode, and whose target is
the result of invoking inNodeToVertex on the inNode's parent node.

One aspect of these rules is appealing. Each rule states declaratively how it maps its source
to target elements. For example, the rule inTreeToGraph states that it uses inNodeToVertex
to map nodes to vertices, and uses inNodeToEdge to map nodes to edges. Similarly, the rule
inNodeToEdge uses inNodeToVertex again, to map the same nodes to source and target
vertices. Does this cause problems, if the same nodes are mapped multiple times?

3.3 Idempotence of Rules

To see how applying rules multiple times to some source elements might cause problems, we
can trace the pattern of rule-invocation. Imagine that we call the top rule on the topmost

17

element t1: Tree of the in-tree in figure 2. This gives the following recursive pattern of rule-
invocation, shown in figure 18.

g1' := inTreeToGraph(t1)
 v1' := inNodeToVertex(n1)
 v2' := inNodeToVertex(n2)
 v3' := inNodeToVertex(n3)
 v4' := inNodeToVertex(n4)
 v5' := inNodeToVertex(n5)
 v6' := inNodeToVertex(n6)
 e1' := inNodeToEdge(n2)
 v2'' := inNodeToVertex(n2)
 v1'' := inNodeToVertex(n1)
 e2' := inNodeToEdge(n3)
 v3'' := inNodeToVertex(n3)
 v1''' := inNodeToVertex(n1)
 e3' := inNodeToEdge(n4)
 v4'' := inNodeToVertex(n4)
 v2''' := inNodeToVertex(n2)
 e4' := inNodeToEdge(n5)
 v5'' := inNodeToVertex(n5)
 v2'''' := inNodeToVertex(n2)
 e5' := inNodeToEdge(n6)
 v6'' := inNodeToVertex(n6)
 v3''' := inNodeToVertex(n3)

Figure 18: Recursive mapping rule invocation pattern

Initially, every rule creates a target element (indicated with a single prime x') when invoked
for the first time on a source element. However, the rule inNodeToVertex is eventually
invoked many times on some source elements, mapping to the same target many times,
indicated by adding further primes (viz. x'' or x'''). So, for example, the node n2 is mapped to
v2 a total of four times:

• firstly, when n2 is mapped to v2' as one of the vertices of Graph g1
• secondly, when n2 is mapped to v2'' as the source of the Edge e1
• thirdly, when n2 is mapped to v2''' as the target of the Edge e2
• fourthly, when n2 is mapped to v2'''' as the target of the Edge e4.

From the point of view of writing a declarative specification, this is desirable. It says that:
the Edge you create for a given Node, has a source, which is the result of transforming this
Node to a Vertex, and a target, which is the result of transforming the Node’s parent to a
Vertex.

From a concrete programming point of view, this could lead to a disaster if, every time the
rule inNodeToVertex were called, this created a new Vertex. The resulting model would then
contain many duplicates of the same Vertex, which is not desirable (and is incorrect).

For this reason, every rule is designed to be idempotent, which means that if it is applied
more than once to the same source entity, this always returns the same target entity (and not a
new copy of it). The ReMoDeL compiler ensures, in the executable code generated for a
transformation, that the results of each mapping rule are cached and retrieved, rather than
recomputed, when that rule is applied to the same source argument(s) subsequently.

18

3.4 Inverse Transformations

In some approaches, model transformations are bidirectional. This is only possible if
sufficient information is preserved in a transformation to support the inverse transformation
(if information is lost, this is not possible). Some pattern-matching languages offer rule
patterns which can be applied in either direction (forwards, or in reverse). In ReMoDeL,
transformations are all unidirectional, but an inverse transformation may exist.

Figure 19: Visualising the GraphToInTree inverse transformation

Figure 19 shows the inverse transformation GraphToInTree, which transforms a Graph
model back to an InTree model. This is possible because all of the different representations
of trees preserve full information. Figure 20 shows the same transformation in the ReMoDeL
textual notation:

transform GraphToInTree : Trees {

 metamodel source : Graph
 metamodel target : InTree

 mapping graphToInTree(graph : Graph_Graph) : InTree_Tree {
 create InTree_Tree(
 nodes := graph.vertices.collect(vertex |
 vertexToInNode(vertex, graph))
)
 }

 mapping vertexToInNode(vertex : Graph_Vertex,
 graph : Graph_Graph) : InTree_Node {
 if vertex = graph.root
 then create InTree_Node(label := vertex.label
)
 else create InTree_Node(label := vertex.label,
 parent := vertexToInNode(graph.edges.detect(edge |
 edge.source = vertex).target, graph)
)
 }
}

Figure 20: The inverse Graph to InTree transformation

The transformation rules have the following meanings:

19

• graphToInTree – for each graph: Graph_Graph, create a new InTree_Tree whose
nodes are the result of mapping the graph's nodes using the rule vertexToInNode.

• vertexToInNode – for each vertex: Graph_Vertex, create a new InTree_Node, whose
label is the same as that of the vertex; and if the vertex is not the root, whose parent is
the result of mapping the parent vertex, using vertexToInNode recursively. The parent
vertex is the target of the edge referring to this vertex as its source. The edge is found
by searching the graph's edges for the only edge with this vertex as its source.

In the body of these rules, we see some more examples of the ReMoDeL syntax:

• if...then...else – is a conditional expression that tests a Boolean value and then returns
the result of either the then-branch (in the true case), or the else-branch (in the false
case). The two branches return a value of the same type.

• detect – is a filtering operation applied to collections, which returns a single element
passing a test. The syntax is: collection.detect(element | condition-on-element).

In keeping with the pure functional flavour of ReMoDeL, the if...then...else conditional form
is an expression, not a control statement; viz. it returns a value. The detect() filtering
operation returns an element passing a test, or null if none exists. If many elements pass the
test, then detect() returns the first such element of a List, or an arbitrary element of a Set.

The transformation GraphToInTree makes assumptions about the kind of graph to which it is
applied. Firstly, it assumes a fully-connected directed acyclic graph, with only one root
vertex. If this were not the case, then the rule vertexToInNode would be incorrectly specified.
Secondly, it assumes that every vertex has at most one parent, such that the graph may be
transformed exactly back into a tree.

model graph2 : Graph {
 g1 : Graph(vertices = Vertex[
 v1 : Vertex(label = "Root"),
 v2 : Vertex(label = "Branch1"),
 v3 : Vertex(label = "Branch2"),
 v4 : Vertex(label = "Leaf1"),
 v5 : Vertex(label = "Leaf2"),
 v6 : Vertex(label = "Leaf3")
], edges = Edge[
 e1 : Edge(source = v2, target = v1),
 e2 : Edge(source = v3, target = v1),
 e3 : Edge(source = v4, target = v2),
 e4 : Edge(source = v5, target = v2),
 e5 : Edge(source = v6, target = v3),
 e6 : Edge(source = v5, target = v3),
 e7 : Edge(source = v6, target = v1)
])
}

Figure 21: A textual model of a directed acyclic graph

What if the graph in question were a more general kind of directed acyclic graph, in which
vertices could be linked to many parents and many children? This case is shown in figure 21,
in which extra edges e6, e7 have been added to the model from figure 10, to link source
vertices v5, v6 respectively to the extra targets v3, v1. This means that v5, v6 have multiple
parents.

20

If we apply the top rule graphToInTree to the graph g1, the transformation still works (after a
fashion), and produces a tree model like that shown in figure 2. The reason that it produces a
tree is because the detect() operation picks at most one edge to link any given vertex to a
parent vertex. In fact, it picks the first such edges found in the model graph2, which means
that the search never reaches e6, e7, which are ordered later in the list of Edges.

Some information about the graph is lost in this reverse transformation from g1 to t1'. We
can see this by applying the forwards transformation inTreeToGraph to t1', which yields a
graph g1', identical to that shown in figure 10, and not the same as the more general graph in
figure 21. That is, the edges e6 and e7 vanish.

From this, we may determine that:

• InTreeToGraph has an inverse transformation GraphToInTree; viz. it is always
possible to convert an InTree into a Graph, which can be converted back into an
identical InTree.

• GraphToInTree does not have a total inverse transformation; viz. while it is possible
to convert a Graph to some kind of InTree, it is not always possible to convert this
back into an identical Graph.

3.5 Partial Transformations

The rule vertexToInNode contains an expression, which depends critically on a graph being
fully-connected, with every vertex apart from the root having a parent. The following is
applied to every other vertex, after the root has been handled by a special case:

graph.edges.detect(edge | edge.source = vertex).target

That is, the expression assumes that there will always be a detected edge, from which it is
possible to select the target vertex. If no edge were found for some source vertex, then this
code would fail (null has no target). If graphs are allowed to have multiple roots (a forest,
rather than a tree), this means that transformations to a tree will sometimes fail.

This raises the prospect of partial transformations, that is, transformations that are not
applicable to every source model. The usual way to handle this is to specify a precondition,
which accepts only those models to which the transformation may legally be applied.

function isTree(graph: Graph_Graph) : Boolean {
 graph.vertices.select(vertex: Graph_Vertex |
 not graph.edges.exists(edge: Graph_Edge |
 edge.source = vertex)).size = 1
}

mapping graphToInTree(graph : Graph_Graph) : InTree_Tree {
 if isTree(graph)
 then create InTree_Tree(
 nodes := graph.vertices.collect(vertex |
 vertexToInNode(vertex, graph))
)
 else null
}
...

Figure 22: Defining a precondition (in a transformation)

21

Figure 22 shows how a precondition may be defined as a simple function, which is used in a
transformation rule. Functions are distinguished from rules by the keyword:

• function – the keyword introducing an auxiliary function.

Functions are not idempotent, so compute their results every time they are called. Here, the
function isTree(Graph) is a Boolean-valued predicate which can be invoked on a graph to see
if it is in fact a tree (rather than a forest). The body of the function counts the number of
roots in the graph, expecting this to be exactly one. The roots are found by selecting all
vertices in the graph with no outgoing edges.

This precondition is tested inside the rule graphToInTree. If the precondition is true, the
transformation may safely proceed; otherwise, it does not exist, and the result is therefore
null. This is formally correct, if we wish to assert that there is no possible transformation
from a graph to a tree, unless it is a single-rooted graph. Of course, it is dangerous to return
null values, if other transformations expect non-null values (see below).

In figure 22, we expressed the precondition as part of the transformation. It is also possible
to specify constraints as part of the metamodel. Figure 23 shows the alternative style, in
which isTree: Boolean is an operation of the Graph concept:

metamodel Graph {
 concept Graph {
 component vertices : Vertex[]
 component edges : Edge[]
 operation roots : Vertex[] {
 vertices.select(vertex |
 not edges.exists(edge | edge.source = vertex))
 }
 operation isTree : Boolean {
 roots.size = 1
 }
 }
 concept Vertex {
 attribute label : String
 }
 concept Edge {
 reference source : Vertex
 reference target : Vertex
 }
}

Figure 23: Defining a constraint (in a revised Graph metamodel)

Figure 23 is a revision of the Graph metamodel from figure 12. Here, we allow the
possibility of multiple roots (a graph may now be a forest). However, the transformation
back to an equivalent InTree is only possible if isTree holds.

Figure 24 shows a revised version of the partial transformation from a Graph to an InTree.
Here, we assume that the Graph metamodel is as specified in figure 23 (where graphs may be
forests). The other changes to the original GraphToInTree transformation from figure 20 are
that the isTree precondition has been added in graphToInTree, which now returns a failed
result as an empty InTree (rather than null, which would cause problems when saving), and a
root node is now detected as a member of the list of roots, in vertexToInNode:

22

transform GraphToInTree : Trees {

 metamodel source : Graph
 metamodel target : InTree

 mapping graphToInTree(graph : Graph_Graph) : InTree_Tree {
 if graph.isTree
 then create InTree_Tree(
 nodes := graph.vertices.collect(vertex |
 vertexToInNode(vertex, graph))
)
 else create InTree_Tree()
 }

 mapping vertexToInNode(vertex : Graph_Vertex,
 graph : Graph_Graph) : InTree_Node {
 if graph.roots.has(vertex)
 then create InTree_Node(label := vertex.label
)
 else create InTree_Node(label := vertex.label,
 parent := vertexToInNode(graph.edges.detect(edge |
 edge.source = vertex).target, graph)
)
 }
}

Figure 24: The partial inverse Graph to InTree transformation

3.6 Other Kinds of Transformations

All the transformations considered so far are translations from one metamodel to another.
Other kinds of transformation are possible. While we don't have room to give examples of
these in this introduction, we can describe the flavour of several other kinds.

Enhancement – An example of this might be a transformation that ensures that every Entity
in an Entity Relationship Model (ERM) [8] is identifiable. The source and target metamodel
is the same (ERM) and consists of a Diagram containing Entities and Relationships. The
Entities contain Attributes, some of which may have an id property set to true, to indicate a
candidate key.

The transformation is endogenous, consisting of a collection of mapping rules, with a rule to
map each concept to the same concept (with changes included). The rule for entities will
check whether the source Entity has at least one Attribute with id = true; and if not, the
transformation will append to the target Entity's attributes a surrogate key Attribute, whose
name is synthesised from the Entity's name: entity.name.asName.concat("ID").

Merging or folding – An example of this might be a transformation that constructs a
procedural call-graph (Proc) from two source models conforming to two metamodels,
Jackson Structured Programming (JSP) [9] and Dataflow Diagram (DFD) [10]. There are
three metamodels altogether, the two sources and the target. The JSP model Diagram
consists of named Blocks, each marked as one of {sequence, selection, iteration} and
optionally having component Block children. The DFD model Diagram consists of named
Process nodes with Dataflow edges indicating what Datatype flows from one Process to
another.

23

The transformation is exogenous, consisting of a collection of merging rules, each of which
accepts a pair of concepts from source1 (JSP) and from source2 (DFD). The rule for
Procedures will match up a Block and a Process having the same name, and will construct a
Procedure, whose Inputs are obtained from the Datatype(s) on the Dataflow arrow(s)
targeting the Process, and whose Outputs are likewise obtained from the Dataflow arrows
exiting the same Process. The call-graph structure will be determined from the Block
structure. The transformation may also generate named Variables within a Procedure to
store the results of executing one sub-Procedure, so that these are available to the next sub-
Procedure. The conditional expressions governing branching and looping will be taken from
the Blocks marked as {selection, iteration}.

Normalisation – An example of this might be a transformation that constructs a normalised
Entity Relationship Model (ERM) [8] in third normal form, from a pre-normal ERM. The
source and target metamodel is the same (ERM) and consists of a Diagram containing
Entities and Relationships. Some Entities are related by many-to-many Relationships; and
some are related by one-to-one Relationships. The rest are related by many-to-one
Relationships.

The transformation is endogenous, consisting of a set of mapping rules that merge sets of
Entities connected by one-to-one Relationships, and split many-to-many Relationships into a
pair of many-to-one Relationships joined to an intermediate linker Entity. The merging rule
uses an auxiliary function to compute transitive closures over one-to-one related Entities,
such that any entity in this set is mapped to the same merged Entity. All Relationships joined
to any one of the closure set are mapped to Relationships joined to the merged Entity. The
name of the linker Entity is synthesized, and the composite key Attributes of the linker are
created by renaming the key Attributes of the many-to-many linked Entities.

24

4 The Expression Language
So far we have seen only small examples of the ReMoDeL expression language. This is the
syntax used to define the body of an operation, or the body of a mapping rule. The same
executable syntax is used for both. The expression language is compact and has the flavour
of both object-oriented and pure functional programming styles.

4.1 Basic Operations

ReMoDeL comes with a number of predefined types and operations, which are added to every
metamodel implicitly. The predefined basic types are Boolean, Integer, Decimal, Character
and String. These are all valid operands to the comparison operators. The numerical types,
Integer and Decimal, are valid operands to the arithmetic operators, which include modulo
and power operators. The Boolean values are valid operands to the logical operators.

• constants: null, false, true
• comparison: =, /=, <, >, <=, >=
• arithmetic: +, -, *, /, %, ^
• logical: and, or, not
• creation: create Type(f1 := e1, ..., fN := eN)
• conditional: if e1 then e2 else e3

Note that the equality operator is a single equals-sign (not a double-equals sign) and the
inequality operator is slash-equals (not exclamation-equals), and these test all basic types and
collections by value, but other concepts by reference. The other comparison operators apply
to basic types and collections, performing the relevant ordering test. So, <= applied to sets
means subset, whereas applied to strings means lexicographic ordering.

The creation operator is used with an initialisation operator (colon-equals) to initialise the
fields of created objects. Multiple initialisations are separated using a comma. Due to the
pure functional nature of ReMoDeL, this is the only time values are assigned. Note that
commas are separators, not terminators.

The conditional expression returns either the left or right branch value. These must be of
compatible types (the result type is the least upper bound type). No parentheses are needed
to surround the test-expression (parentheses are only used to alter the precedence of binary
expressions). There is no single-branch conditional.

4.2 Concept Operations

Every type in ReMoDeL is a concept existing in a classification hierarchy. A concept may
declare that it inherits from a parent concept within the same metamodel, in which case it
obtains the property declarations of the parent concept, before any properties it defines
locally. If no explicit parent is declared, the concept inherits implicitly from Top, which is
the root concept.

• inheritance: concept C1 inherit C2 { ... }
• conversion: asSet: C{}, asList: C[]

25

Top provides two conversion operations that convert any concept into a list, or set. These are
invoked like methods. When invoked on a single concept C, they return a singleton set C{}
or singleton list C[] containing the concept. When invoked on a collection (list or set), they
return another collection of the requested type (conversions to the same type trivially return
the same instance). Whenever any concept C is used in lists or sets, the appropriately derived
set C{} or list C[] concept is added to the metamodel automatically.

The String concept is basic, so offers the binary comparison operations described above that
test the string’s state. The String concept also provides further predefined operations:

• predicates:
 isEmpty: Boolean
 startsWith(String): Boolean
 endsWith(String): Boolean
 contains(String): Boolean
inspection:
 length: Boolean
 indexOf(Character): Integer
 charAt(Integer): Character

• combination:
 concat(String): String
 cutstring(Integer): String
 substring(Integer, Integer): String
 split(String) : String[]

• case conversion:
 asName: String
 asType: String
 asWords: String

These support the manipulation of text. The String-appending operation is called concat()
and the String-slicing operations are called cutstring() and substring(). These operations
work as in Java – although cutstring() is renamed in ReMoDeL, which does not support
overloaded substring(). The operation split() segments a String into a list of String tokens
around a regex-pattern. The operations startsWith(), endsWith() and contains() test for the
presence of substrings, and isEmpty() tests for the empty String.

Special case conversion operations convert String values between "Word Case" (normal
space-separated words), "nameCase" (concatenated text, used for property names) and
"TypeCase" (concatenated text, used for type names). All of these operations return new
String values, and do not modify the original String.

4.3 Collection Operations

The predefined concepts List and Set inherit from a common Collection concept. These types
are parametric in the type of their element. You will never see the plain type names List, Set
directly in the expression language, but only specifically typed versions, such as Node[] (the
Node-List type) or Integer{} (the Integer-Set type).

Collection specifies a common set of operations, inherited by Set and List:

• predicates:
 isEmpty: Boolean

26

 has(Element) : Boolean
 count(Element): Integer

• inspection:
 size: Integer

• combination:
 with(Element): Collection
 without(Element): Collection

The operations with() and without() are the principal way of adding and removing elements
singly in the pure functional expression language. All operations affecting collections are
constructive, that is, they construct a new instance of the same kind of collection (they do not
modify the collection). The operation has() tests whether an element is present in a
collection; and count() counts the number of occurrences of an element.

The Set and List concepts provide distinct operations, in addition to those inherited from
Collection. Sets contain unique elements (viz. no duplicates) and are ordered by element
insertion. The Set operations that return Set results create a new Set value:

• combination:
 pick : Element
 union(Set): Set
 intersection(Set): Set
 difference(Set): Set

Lists may contain duplicate elements and are ordered by element insertion. The List
operations that return List results create a new List value:

• combination:
 first: Element
 rest: List
 append(List): List

Lists may be used in recursive functions, using lst.first and lst.rest to select the head element
and the tail of the list. Sets may also be processed recursively, using set.pick to select an
element, and set.without(set.pick) to give the rest of the set. The asList() and asSet()
operations convert from one to the other, where required, preserving order.

4.4 Higher-Order Operations

Collections play a major part in ReMoDeL, since rules frequently involve filtering collections
to find a subset to which some other transformation is applied. Collections provide higher-
order operations that accept a predicate or function argument (a lambda expression), applying
this to every element of the collection. These operations fall into four groups:

• predicates:
 forall(Predicate): Boolean,
 exists(Predicate): Boolean

• filtering:
 select(Predicate): Collection,
 reject(Predicate): Collection,
 detect(Predicate): Element

27

• mapping:
 collect(Function): Collection,
 collate(Function): Collection

• reducing:
 reduce(Reduction): Element

A lambda expression is an anonymous function (or predicate) constructed dynamically. It
has the syntactic form: (variable | expression-containing-variable). The variable denotes
one element of the collection, and may be declared with a type, which must be the element-
type of the collection (for convenience, the type may be omitted, in which case it is inferred
from the type of the collection – see below for a discussion of type inference).

A lambda expression is a predicate if the body is a Boolean-valued expression. Otherwise, it
is a function, returning some other typed value. When the lambda expression is passed as an
argument to one of the higher-order collection operations, it is applied to every element of the
collection. The meaning of these higher-order operations is as follows:

• forall – accepts a predicate and returns true if all elements of the collection pass this
test. The syntax is: collection.forall(element | condition-on-element).

• exists – accepts a predicate and returns true if any element of the collection passes this
test. The syntax is: collection.exists(element | condition-on-element).

• detect – accepts a predicate and returns the first object passing this test, or null if none
is found. The syntax is: collection.detect(element | condition-on-element).

• select – accepts a predicate and returns a filtered collection, selecting objects that pass
this test. The syntax is: collection.select(element | condition-on-element).

• reject – accepts a predicate and returns a filtered collection, rejecting objects that pass
this test. The syntax is: collection.reject(element | condition-on-element).

• collect – accepts a function, which maps each element to an element of another type,
and returns a collection of the same size, containing elements of the other type. The
syntax is: collection.collect(element | transform-element-to-element).

• collate – accepts a function, which maps each element to a collection-of-elements but
returns a single flat collection, formed by merging the results. The syntax is:
collection.collate(element | transform-element-to-collection).

• reduce – accepts a reduction (a reducing function of two arguments) which combines
all the elements of the collection, returning a single element. The syntax is:
collection.reduce(elem1, elem2 | combine-elem1-and-elem2-to-element)

The filtering operations typically return a collection of the same kind as the collection on
which they were invoked. That is, filtering a List returns a List, and filtering a Set returns a
Set. The element-type of the result is typically the same as that of the collection. However,
the select and reject operations may return a collection of a more specific element type (this
involves a runtime type cast). The detect operation returns one element (or null).

The mapping operations return collections of the same kind, but possibly having a different
element-type (according to the lambda expression). Mapping over a List returns a List, and
mapping over a Set returns a Set of the same size as the original collection. With the collate
operation, the lambda expression is expected to map individual elements to List or Set results
(depending on the kind of the visited collection). The results are then merged either using
append (for Lists) or union (for Sets).

28

The reducing operation reduce accepts a binary function that combines two elements into one
element of the same type (e.g. the sum, or the maximum, of two numbers). If applied to an
empty collection, the result is null. If applied to a singleton, the result is that element.
Otherwise, the result is the accumulated aggregation of all the elements in the collection
(mathematically, this is a limited kind of left-fold reduction).

The operations select, reject, detect and collect are used frequently. These are operations that
filter, or transform Sets or Lists of items. Because filtering is common in transformations, we
may see a collect (or collate) operation applied to the result of a previous select (or reject)
operation. This gives rise to nested invocations, in which the collection resulting from one
invocation may become the subject of the next invocation.

An example of nesting was shown in figure 14, in the rule inNodeToOutNode, where a select
operation is used to filter the list inTree.nodes, and then a collect operation is applied to this
result to convert every selected InTree_Node node to an OutTree_Node.

4.5 Variables

The expression language uses named variables to refer to different entities or values. The
variables that are in scope at any time may include the following:

• The attribute, reference, or component properties of a Concept may be used within
operations of the Concept, or any inheriting Concept.

• The formal arguments of any operation or transformation rule may be used within the
scope of that operation or rule, which may also refer to properties in the outer scope.

• The lambda variables of any lambda expression may be used within the lambda body,
which may also refer to variables in the outer scope.

• The following are special variables: self denotes the current concept instance; super
denotes this in its supertype context; and owner denotes a component’s (optional)
back-reference to its owning container type. If present, owner is automatically set
when the component is added to its container. The owner back-reference is transient
and is never serialised in models.

The names of variables must be unique within their scope. An exception to this is that
variables may also shadow the names of ReMoDeL keywords, such as attribute and
reference, without ambiguity due to the context of usage.

4.6 Type Inference

The ReMoDeL toolset can perform limited type inference, to determine the types of certain
expressions, where these are not given explicitly. For example, in figure 4, the InTree
metamodel has an operation root: Node containing an expression:

nodes.detect(node | node.isRoot)

in which the type of the lambda variable node is not given. In this case, the ReMoDeL tools
determine the type by type inference. A lambda variable iterates over every element of the
collection invoking the higher-order operation. Here, the collection is a list: nodes: Node[].
The type of one element of the list is therefore inferred to be Node. To avoid relying on type
inference, it is possible to give explicit types to lambda variables, like this:

29

nodes.detect(node : Node | node.isRoot)

Type inference is more challenging in transformation rules, where there may be more than
one type having the same name, in different metamodels. In figure 14, the InTreeToOutTree
transformation has a mapping rule inNodeToOutNode containing an expression:

inTree.nodes.select(child | child.parent = inNode)

in which the type of the lambda variable child is not given. We need to know if this refers to
an InTree_Node or an OutTree_Node. In this case, type inference seeks the metamodel-
qualified type of the collection. Here, the expression inTree.nodes refers to a component
declared in InTree_Tree, having the qualified list type InTree_Node[], from which we infer
that child has the element type InTree_Node.

This inference is only possible because the rule's argument (in figure 14) was declared with a
metamodel-qualified type: inTree: InTree_Tree in the first place. If types are not given in
their qualified forms, then a semantic error may be raised if the type's owning metamodel
cannot be resolved unambiguously.

To avoid relying on type inference, it is possible to give explicit metamodel-qualified types to
lambda variables, like this:

inTree.nodes.select(child : InTree_Node | child.parent = inNode)

4.7 Type Conversion

ReMoDeL concepts exist in a classification hierarchy. Variables are polymorphic (typed with
a general concept, but may receive objects of more specific types of concept). Sometimes, it
may be desired to recover the specific type of an object stored in a general variable. This can
be done simply by giving the access operation the more specific result type. This will create
a type down-cast at runtime.

concept Connective inherit Element {
 reference source : Concept
 reference target : Concept
}

concept Generalisation inherit Connective {
 operation specific : ObjectType { source }
 operation general : ObjectType { target }
}

Figure 25: recovering specific types by access operation

In figure 25, a very general kind of edge called Connective is defined to link a source and
target Concept. Later, a special kind of Connective called Generalisation is defined that only
ever links two ObjectTypes, which we assume are kinds of Concept. The source and target
may be referenced through the operations specific and general, which down-cast the results to
the declared result-type ObjectType.

References or components may be redeclared with more specific types, in concepts that
inherit from the one in which they were first declared. Similarly, operations may be
redeclared with more specific result types (argument types may not be changed).

30

concept Property inherit Element {
 attribute name : String
 reference type : Type
}

concept Attribute inherit Property {
 reference type : BasicType
}

Figure 26: redefining the declared type of a property

In figure 26, a very general kind of Property is defined, having a name and referring to a very
general type. Later, a special kind of Property called Attribute is defined, whose type is
redefined as a BasicType, which we assume is a kind of Type. When accessing the type of an
Attribute, this will be returned as a BasicType.

concept Property inherit Element {
 attribute name : String
 reference type : Type
 operation isAttribute : Boolean { false }
 operation isReference : Boolean { false }
}

concept Attribute inherit Property {
 reference type : BasicType
 operation isAttribute : Boolean { true}
}

concept Reference inherit Property {
 reference type : ObjectType
 operation isReference : Boolean { true }
}

concept ObjectType inherit Type {
 component properties : Property[]
 operation attributes : Attribute[] {
 properties.select(prop | prop.isAttribute)
 }
 operation references : Reference[] {
 properties.select(prop | prop.isReference)
 }
}

Figure 27: filtering for a more specifically typed collection

Collections may in general store elements of heterogeneous types, so long as the type of
every stored element is a subtype of the collection’s declared element type. In figure 27,
ObjectType has a general list of properties : Property[], which is used to store mixed
Attribute or Reference objects.

Such a collection may later be filtered using the select() or reject() operation, to obtain a
more restricted collection containing elements of a more specific type. An example is the
operation attributes : Attribute[], which filters the properties, returning only those which are
in fact attributes, and the result type is Attribute[]. Both select() and reject() may return a
more specifically typed collection (types are down-cast at runtime and checked). This is the
only kind of type down-casting that may be performed on collections.

31

4.8 Default Initialisation

When creating a new instance of a concept, many of its properties (attributes, references,
components) are initialised explicitly. However, if a given property is not initialised in a
creation expression, it will be initialised to a default value. This is to allow rules to choose
how many properties they wish initialise explicitly.

All of the basic types and collections have automatic default values, which are used if no
other initial value is specified:

• Boolean attributes are initialised to false;
• Integer and Decimal attributes are initialised to zero;
• String attributes are initialised to the empty string;
• List components are initialised to the empty list.
• Set components are initialised to the empty set.

This helps to avoid many problems with null values, for example, Strings, Lists and Sets can
be assumed to exist, even if they were not created explicitly. References to other kinds of
concept are initialised to null, the empty reference.

Properties with default values are also treated specially when saving a model. When a model
is saved (as a .mod text file), only those properties that were explicitly initialised are written
out. This avoids writing more verbose files with empty flag or counter attributes.

4.9 Further Reading

Some of the above tutorial material is summarised in an introductory conference paper about
the ReMoDeL language and toolkit [11]. This also gives an account of:

• the pure functional semantics of transformations;
• the directed acyclic graph structure of models;

There is a companion report to this one, describing the compilation of ReMoDeL to Java [12].
This explains in detail how ReMoDeL expressions are mapped to (more verbose) Java
language expressions.

There is a two-part report, covering a larger case study in ReMoDeL that describes how to
convert a UML Class Diagram all the way into a normalised relational database and generate
code for this in SQL [13, 14].

The ReMoDeL website [4] contains information on how to get hold of the software, how to
install an example project, and how to use the ReMoDeL tools. All of the other articles about
ReMoDeL are reachable from the website.

32

5. References
[1] J Greenfield, K Short, S Cook, S Kent and J Crupi. Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools, ISBN 0-471-20284-3
(Microsoft, 2004).

[2] Object Management Group: MDA - The Architecture of Choice for a Changing
World (OMG, 2014). https://www.omg.org/mda/

[3] Eclipse Foundation. The Eclipse Modelling Framework (EMF) (Eclipse, 2004-2022).
https://www.eclipse.org/modeling/emf/

[4] AJH Simons. ReMoDeL: Reusable Model Design Language (University of Sheffield,
2025). http://staffwww.cs.shef.ac.uk/people/A.Simons/remodel/

[5] Object Management Group. About the Unified Modeling Language Specification,
Version 2.5.1. December (2017). https://www.omg.org/spec/UML/About-UML/

[6] T Mens and P van Gorp. A Taxonomy of Model Transformation, Electronic Notes in
Theoretical Computer Science 152 (2006) 125–142.

[7] M Biehl. Literature Study on Model Transformations, Technical Report, Embedded
Control Systems, Royal Institute of Technology, Stockholm (Stockholm: KTH, 2010).

[8] P Chen. The Entity-Relationship Model: Towards a Unified View of Data, ACM
Transactions on Database Systems, 1 (1) (1976), 9-36.

[9] MA Jackson. Principles of Program Design, Academic Press (1975).

[10] E Downs, P Claire and I Coe. Structured Systems Analysis and Design Method :
Application and Context, 2nd Ed., Prentice Hall (1991).

[11] AJH Simons. ReMoDeL: a pure functional object-oriented concept language for
models, metamodels and model transformation. Proc. 13th Int. Conf. on Model-
Based Softw. and Sys. Eng. (Modelsward 2025), 26-28 February, Porto, Portugal, eds.
F. Ciccozzi, L. Ferreira Pires, F. Bordeleau: (SCITEPRESS, 2025), 242-249.

[12] AJH Simons. ReMoDeL Compiled (rev. 2.3): The Cross-Compilation of ReMoDeL
to Java by Example, Technical Report, 01 June, School of Computer Science,
University of Sheffield (2025).

[13] AJH Simons. ReMoDeL Data Refinement (rev 1.0): data transformations in
ReMoDeL, Part 1. Technical Report, 25 July, School of Computer Science,
University of Sheffield (2022).

[14] AJH Simons. ReMoDeL Data Refinement (rev 1.0): data transformations in
ReMoDeL, Part 2. Technical Report, 31 July, School of Computer Science,
University of Sheffield (2022).

https://www.omg.org/mda/
https://www.eclipse.org/modeling/emf/
http://staffwww.cs.shef.ac.uk/people/A.Simons/remodel/
https://www.omg.org/spec/UML/About-UML/

	1. Introduction
	1.1 Model-Driven Engineering
	1.2 Model-Driven Development
	1.3 ReMoDeL History
	1.4 ReMoDeL Today

	2. Models and Metamodels
	2.1 An InTree Model
	2.2 The InTree Metamodel
	2.3 An OutTree Model
	2.4 The OutTree Metamodel
	2.5 A Graph Model
	2.6 The Graph Metamodel

	3. Model Transformation
	3.1 InTree to OutTree Transformation
	3.2 InTree to Graph Transformation
	3.3 Idempotence of Rules
	3.4 Inverse Transformations
	3.5 Partial Transformations
	3.6 Other Kinds of Transformations

	4 The Expression Language
	4.1 Basic Operations
	4.2 Concept Operations
	4.3 Collection Operations
	4.4 Higher-Order Operations
	4.5 Variables
	4.6 Type Inference
	4.7 Type Conversion
	4.8 Default Initialisation
	4.9 Further Reading

	5. References

