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current design notations such as UML and OML still contain certain misconceptions regarding class:

the debate on type versus implementation is old and focusses on the wrong argument - a class is not

strictly either one of these things.  This article unpacks 10 years of theoretical work on extensible

interfaces and implementations to explain exactly how a class is different from a concrete type.  This

work impacts widely on current standards, definitions and notations.

1. The Ambiguity of Class

What is classification?  After thirty or so years, object-oriented languages have still not reached a

consensus.  This is somewhat alarming, since classification is arguably what makes a language

distinctively object-oriented [Wegn87].  Perhaps the biggest obstacle to a common understanding of

the notion of class comes from the multivalent use of the concept in existing languages.  By default,

one is left to assume that class replaces the usual notion of type, especially in languages without

strong typing [GoRo83].  Class names are used everywhere as type identifiers [CoNo91, Stro91,

Meye92].  Yet, a class is different from a standard type in that it is an incomplete description, open

to extension through the mechanism of inheritance - but what do we mean by open-ended types?  On

the other hand, a class is like a package or module [IBHK79, Wirt82], the concrete implementation

of a type.  Yet, a class is also only a partial implementation, expecting further extensions - what kind

of construct is an open-ended implementation?  Or again, should the term class refer to the defining

characteristics of a group of objects, or to the group so defined?

We can identify at least three main dimensions of ambiguity in the current usage of the term class:
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•• Extension-Intension Dimension

1. class as extension - a set, referring to the family of objects which share some characteristic

properties and behaviour;  used when partitioning a domain into sub-groups;

2. class as intension - a definition, describing the characteristic properties and behaviour of a

family of objects;  the admission criteria for group membership;

•• Abstract-Concrete Dimension

3. class as specification - providing the visible type, the interface (or protocols) for a family of

objects, its instances;

4. class as implementation - providing the instance creation template, a table of shared (or

static) data and functions for a family of objects, its instances;

•• Monomorphic-Polymorphic Dimension

5. class as monomorphic - providing the exact concrete type of its own instances;  used when

creating objects;

6. class as polymorphic - providing the upper bound on a heterogeneous family of objects that

can be assigned to a given variable;  used when attaching type information to variables.

We can resolve the first ambiguity immediately, by agreeing to distinguish a class definition (2) from

its implicitly associated class family (1), where the need arises.  The meaning (1) is that assumed in

history, sociology and biological taxonomy, whereas (2) is that most often assumed in our field.

These two definitions are of primary importance, since all our notions of classification derive from

the ways in which we categorise not just software abstractions, but the world in general.

The abstract-concrete dimension has been considered previously [Snyd86, Lisk87, Sakk89, Amer90]

and these arguments are by now fairly well understood.  Languages like Eiffel [Meye92], Trellis

[SCBK86], Sather [Omoh94] and C++ [Stro91] prefer the view that a class (3) describes a type with

an associated implementation;  whereas the more cavalier use of inheritance allowed by Smalltalk
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[GoRo83] prompts the skeptical to consider that class (4) and type are entirely separate concerns

[Snyd86, RaLe89, Amer90].  The more recent introduction of mechanisms to handle type

compatibility independently from the class hierarchy, such as protocols in Objective C [NeXT93] and

interfaces in Java [KaWa96], continues to force a wedge between type (3) and class (4).  This view

is now becoming quite the norm in emergent standards [UML97, OML97] which endorse phrases

similar to:  "a class realises, or implements a type", conveying the implicit demotion of the class (4)

to a mere unit of implementation, quite at odds with (2), which is closer in spirit to (3).

The monomorphic-polymorphic dimension has been considered in theoretical treatments [CaWe85,

CCHO89a, CoPa89, CCHO89b, CHC90, Simo96] but the contribution offered by this valuable work

to practical standards and definitions has largely been overlooked.  Quite natural definitions of class

(6) and type (5) fall out of this work, which have yet to be appreciated by the object-oriented

mainstream.  It is a common misperception that the state of the art still revolves around the old

abstract-concrete debate.  The popular belief is that by shifting the role of class (4) hierarchies to

focus on implementation sharing alone, this frees up type (3) hierarchies to describe, independently,

sets of subtyping relationships between abstract types.  However, the article [CHC90] proved once

and for all that the kind of type compatibility adopted in the majority of object-oriented languages is

not subtyping.  Against this, significant papers still appear [DGLM95] asserting that "most object-

oriented languages have subtype polymorphism", which is largely incorrect.

In this paper, we want to bring to bear some of the theoretical results of the last decade on the

present formation of standards in notations and definitions, especially those to be adopted by the

OMG.  We want to get the terminology and relationships in the notation correct.  To do this, we

present an intuitive model of objects, types and classes (avoiding difficult λ-calculus notation).

Among the results we wish to emphasise are that:

• objects are instances of concrete types, rather than of classes - such a concrete type has a fixed

implementation and fixed recursive type;

• classes are polymorphic definitions for heterogenous families of objects, instances of different

concrete types - such a class has an extensible implementation and an extensible interface;
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• the type compatibility relationship in object-oriented programming is (by and large) not

subtyping, but polymorphic typing, a more subtle relationship;

• implementation and type extensions follow each other much more closely than the current

wisdom would have you believe - in particular, implementation extensions which would violate

subtyping are in fact well-typed in a polymorphic regime.

Relegating the class concept to the mundane level of an implementation unit constitutes a gross

failure of nerve.  In focussing too closely on the implementation strategies adopted by a generation

of programmers, have we somehow lost sight of the sublime notions of class and classification (1,

2)?  The false division of class and type along abstract/concrete lines is a red herring.  Computational

types were always considered from both the abstract and concrete points of view, so why not classes

also?  We show how the notion of class does indeed have a well-founded definition, which depends

more on an appreciation of the monomorphic-polymorphic dimension than the abstract-concrete one.

2. Objects and Types

Our starting point is with a model object-based [Wegn87] language, similar to Modula-2 [Wirt82] or

Ada (pre-95) [IBHK79], which offers data abstraction and encapsulated types, but not classification

or inheritance.  We want our understanding of class to harmonise with languages where composition

[RaLe89] is the only strategy for building larger objects.  However, in the model below, we assume

that objects "own" the methods used to manipulate them;  in other words, to invoke a method, it

must be selected from the object which owns it.  This contrasts with the Modula-2 and Ada style of

applying procedures to objects, and is more in keeping with the "message passing" style.

point1.moveTo(3, 4); -- message passing style

moveTo(point1, 3, 4); -- procedural style

We need a language-independent notation to describe the following intuitive and, we hope, non-

controversial concepts:

• object - a single software entity, an instance of a concrete type, that exists at run-time during the

execution of a program;
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• abstract type - the interface to an object, in terms of the type signatures (or protocols) and

axioms (or contracts) of the public methods used to manipulate the object;

• concrete type - a complete definition for an object, in terms of data storage declarations and

method definitions, that implements an abstract type;

Most objects and object types are recursively defined.  This is because an object's methods will, in

general, invoke other methods owned by the same object.  To do this, an object must be able to refer

to itself, to select the next method required.  We shall therefore take the liberty of allowing recursive

definitions in our formal notation1.  Let us define a simple point object:

define object point1 =

{ attributes

x = 0;  y = 0

   methods

x() = { return x };  y() = { return y };

equal(other) = { return point1.x() = other.x() and point1.y() = other.y() };

moveTo(newX, newY) = { x := newX;  y := newY;  return point1 }

}

In this notation, define object creates an object, a single instance.  The object's state is introduced by

the attributes keyword and its behaviour by the methods keyword.  Within these partitions, a

semicolon separates declarations.  Our formal model adopts the simplification whereby all objects are

deemed to contain their own methods, rather than access them indirectly through a shared class table

- this simplification has no bearing on the model's formal properties.  All access to state2 variables is

handled through methods;  these are distinguished as x and x() respectively.  Notice how the

definition of point1 contains recursive references to point1 in the body of the equal() method - this is

                                               

1 Technically, recursive definitions are merely equations;  we shall assume the result of the fixpoint theory to motivate

the existence of recursive definitions - see [Simo96] for a recent theoretical treatment of a similar example.  We

assume that define introduces a generator [CoPa89] and then implicitly takes the fixpoint, for recursive definitions.

2 Technically, this object is a functional closure, in the tradition of [CCHO89a, CCHO89b, CHC90].  Object state may

be modelled as the variables within the static scope of the functional closure when it was defined.



Let's Agree on the Meaning of Class,  page 6

to demonstrate how methods may in general refer to each other, remembering that all methods must

be selected from the object (here, point1) which owns them3.  The update method moveTo() also

happens to return the current object, point1, a common practice in some languages.

Since all attributes are private and all methods public, the type of point1 may be determined by

considering the types of its methods:

define type Point =

{ protocols

x() : Integer;  y() : Integer;  equal(Point) : Boolean;

moveTo(Integer, Integer) : Point

}

In this notation, the keyword protocols introduces the type signatures4 of the public methods of the

Point type;  for example, x() is a unary method returning an Integer result.  Notice how this type is

recursive:  equal() accepts another Point type argument and moveTo() returns a result of type Point.

Given the existence of this type, we can create a typed object (an instance with an associated type)

by attaching the type information to an object definition:

define typed object point1 : Point =

{ attributes

x : Integer = 0;  y : Integer = 0

   methods

x() : Integer = { return x };  y() : Integer = { return y };

equal(other : Point) : Boolean = { return point1.x() = other.x()

and point1.y() = other.y() };

moveTo(newX, newY : Integer) : Point = { x := newX;  y := newY;  return point1 }

}

                                               

3 We have deliberately constructed equal() to invoke x() and y() to illustrate mutual method invocation;  it would be

technically possible for equal() to access the x and y attributes directly.

4 We have deliberately adopted a programming-language style to express type signatures, rather than the product- and

arrow notations normally found in theoretical treatments, for the sake of familiarity.
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This nearly looks like a conventional encapsulated type definition - a concrete type with an

implementation and an associated interface - however, please note that the define typed object

expression merely creates a single typed object, point1, whose methods contain embedded references

to itself, point1.

3. Object Derivation and Subtyping

In order to extend the model language to allow the derivation of objects with more structure, we

introduce an operator with which has the two-fold effect of combining attribute declarations5 and

method definitions6.  The operator performs field union with overriding, giving preference to fields

on the right-hand side which have the same names as fields on the left-hand side.  We may use it to

create an extended point object, which has extra attributes and methods:

define object point2 = point1 with

{ attributes

selected = false;

   methods

selected() = { return selected };

toggle() = { selected := not selected;  return point2 }

}

This object, point2, is a mouse-selectable "hot" point whose toggle() method is invoked to switch

between the selected and deselected state.  Now, the manner in which point2 is defined reflects

exactly what Stroustrup says in [Stro91, p183]:

"An object of a derived class has an object of its base class as a subobject."

We can show this by internally evaluating the with-operator, in order to reveal the full definition of

point2 in which base and extra fields are combined:

                                               

5 Formally, this is modelled by introducing new state variables in the scope of the functional closure representing the

derived object.  New methods are introduced in this scope.

6 Formally, this is modelled by a simply-typed function override operator, ⊕, similar to Cook's operator in [CHC90].
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point2 =

{ attributes

[ x = 0;  y = 0 ];  selected = false

   methods

[ x() = { return x };  y() = { return y };

  equal(other) = { return point1.x() = other.x() and point1.y() = other.y() };

  moveTo(newX, newY) = { x := newX;  y := newY;  return point1 } ];

selected() = { return selected };

toggle() = { selected := not selected;  return point2 }

}

Here, the point1 base part7 of point2 is highlighted by enclosing the relevant sections in brackets [ ].

Please note how point2 is somewhat schizophrenic in its self-reference - the "inherited" base method

moveTo() returns the base object, point1, whereas the extra method toggle() returns point2.  This

outcome is absolutely normal when deriving one recursive object from another [CCHO89a].

We may create the corresponding HotPoint type in a similar fashion:

define type HotPoint = Point with

{ protocols

selected() Boolean;  toggle() : HotPoint

}

and, expanding the "inherited" part of the type definition, we obtain:

HotPoint =

{ protocols

x() : Integer;  y() : Integer;  equal(Point) : Boolean;

moveTo(Integer, Integer) : Point;  selected() : Boolean;  toggle() : HotPoint }

The schizophrenia of point2 is fairly reflected in its type signature, HotPoint.  Whereas you might

expect the methods of a HotPoint always to deal in HotPoints, it is clear that the "inherited" equal()

and moveTo() methods only deal in Points.

                                               

7 Technically, the x and y attributes are scoped only within the closure point1, hence the need to go through the public

interface using x() and y() in the point2 object.  We redefine equal() later, to test the selected field also.
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This model now captures the statically-bound aspects of C++.  We can demonstrate that HotPoint is,

in its current form, a proper subtype of Point.  To recap on subtyping rules [CaWe85]:

• An object type B is a subtype of an object type A if and only if:

♦ type B has the same number of method protocols, or strictly more protocols, than

type A;  and

♦ any replacement methods defined in type B have the same protocols, or have

protocols which are proper subtypes of their counterparts in A;

• A method protocol Q is a subtype of a method protocol P if and only if the methods have

the same number of arguments and:

♦ each argument of Q has the same type as, or has a proper supertype of, the

corresponding argument in P (the contravariance rule);  and

♦ the result of Q has the same type as, or has a proper subtype of, the result of P (the

covariance rule).

HotPoint is a proper subtype of Point, because it merely adds to the protocols of Point and does not

replace any methods (the method protocol rules are not needed in this case).

Unfortunately, an object-oriented type system based on subtyping is rather less useful than popular

opinion would have you believe.  This is because subtyping provides too weak a type constraint for

early (static) type checking.  Consider the following expression:

result : Boolean;

result := point2.moveTo(4, 7).selected(); -- does not typecheck!

which does not typecheck, because moveTo() returns a Point object and selected() is not defined for

this type.  You may confirm this by observing that the implementation of moveTo() does in fact

return point1, the embedded base object, rather than point2.  This illustrates the phenomenon of type

loss in experienced by programmers in C++, and is the reason why many adopt the unsafe practice

[Meys92] of type downcasting to recover this lost type information:

result := HotPoint(point2.moveTo(4, 7)).selected();
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You will no doubt agree that it is a poor state of affairs to have to keep reminding a programming

language what kind of object it is really dealing with.  Let us assume now that a point3 has been

defined exactly as point2, except for the fact that its selected attribute is initialised with the value

true, instead of false.  Consider the further expression:

result : Boolean;

result := point2.equal(point3); -- result is unintendedly true!

which returns an unexpectedly true result, as a consequence of the "inherited" equal() method only

considering the x() and y() parts of the two HotPoint objects, but not their selected() parts.

In order to address these problems, the typical strategy adopted in many languages is to redefine the

moveTo() and equal() methods in point2 to behave in the desired manner:

define object point2 = point1 with

{ attributes

selected = false;

   methods

equal(other) = { return point2.x() = other.x() and point2.y() = other.y()

and point2.selected() = other.selected() };

moveTo(newX, newY) = { x := newX;  y := newY;  return point2 };

selected() = { return selected };

toggle() = { selected := not selected;  return point2 }

}

The with-operator's preference for the fields of its right-hand operand will ensure that point2 obtains

the two redefined methods moveTo() and equal(), rather than the original implementations.  All the

problems of schizophrenic self-reference in point2 have now been resolved;  this is reflected in the

fact that the revised HotPoint type definition deals exclusively in HotPoints:

HotPoint = -- expansion of a revised 'define type' expression

{ protocols

x() : Integer;  y() : Integer;  equal(HotPoint) : Boolean;

moveTo(Integer, Integer) : HotPoint;  selected() : Boolean;  toggle() : HotPoint }

Unfortunately, this HotPoint type is not a subtype of Point, because it violates the contravariant rule

on the equal() method protocol - it replaces the Point argument of equal() with a more specific
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HotPoint  argument, rather than a more general type as the rule requires.  This prevents HotPoint

from being considered a subtype of Point.  It is not type-safe to pass a HotPoint instance to a Point

variable;  the consequences of doing this are severe in the context of dynamic binding, as observed in

languages like Smalltalk, Objective C and Eiffel [Cook89]:

var : Point;

var := point2; -- OK if HotPoint is a subtype of Point (but it isn't)

var.equal(point1); -- statically type correct, but dynamically fatal

because the equal() method selected dynamically (HotPoint's version), while appropriate for point2,

is inappropriate for point1, since it asks for its non-existent selected() field.  (C++ would still bind

this call statically, according to its overloading rules, treating point2 as though it were a Point).

Now, the focus of this argument is not to insist that all object-oriented languages should obey

subtyping rules.  As we saw above, this severely limits the expressive power of the type system.

Rather, the argument demonstrates that the kinds of object used routinely in object-oriented systems

have types which routinely do not obey simple subtyping.  The polymorphic type-compatibility

expressed in the class-subclass relationship is not a type-subtype relationship, but something more

subtle.  The mathematics of simple subtyping is inappropriate for this type-checking task.

4. Class Interfaces and Implementations

The crux of the matter is that both Point and (the revised) HotPoint have methods which are closed

over their own types:  we want point1 to own methods that deal in Points, and point2 to own similar

methods that deal in HotPoints.  This is not just a peculiarity of these examples, but a general

phenomenon.  Consider that many object-oriented languages have an abstract Number type, which

defines the protocols for all the arithmetical operations (usually, deferred), which are closed over

Number arguments and results.  Then, "compatible" subclass types are defined, which implement

different versions of plus(), minus(), ... which are closed over arguments having Integer, Real,

Complex, ... types.  These protocols will always violate contravariance, such that Integer, Real,

Complex, ... can never be subtypes of Number.  In general, it is impossible to create a closed,

recursive type that is a proper subtype of another recursive type.
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Intuitively, we would like to think of Integer as a "subclass" of the Number "class" (pending a proper

formalisation of these notions), because it offers the same kind of interface - the operations are the

same, even though their protocols are not subtypes.  We can capture the notion of an interface by a

type function, which differs from a recursive type in that the self-type is not pre-determined, but

supplied as a formal argument, MyType.  An interface for a Point may be defined as:

define interface PointInterface (MyType) =

{ protocols

x() : Integer;  y() : Integer;  equal(MyType) : Boolean;

moveTo(Integer, Integer) : MyType

}

This kind of interface can be adapted to different types;  for example, if the interface function is

applied to the HotPoint type, the parameter MyType is replaced throughout by HotPoint:

PointInterface(HotPoint) = -- supply type argument HotPoint

{ protocols

x () : Integer;  y () : Integer;  equal(HotPoint) : Boolean;

moveTo(Integer, Integer) : HotPoint

}

generating a retyped version of the Point interface for a HotPoint object.  This suggests that the

notion of class has something to do with parameterised type interfaces, rather than with simple types

per se [CCHO89b].  Furthermore, this mathematical notion of interface is exactly what is required to

support the OMG's use of the term in its 1991 definition [OMG91].

The same principle may be used to define functions representing flexible object implementations, in

which self-reference does not yet refer to any particular object:

define implementation PointImplementation (self) =

{ attributes

x = 0;  y = 0

   methods

x() = { return x };  y() = { return y };

equal(other) = { return self.x() = other.x() and self.y() = other.y() };

moveTo(newX, newY) = { x := newX;  y := newY;  return self }

}
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This PointImplementation function is the pattern for all objects with state and methods like point1,

except that recursive references in the methods are parameterised by the formal argument, self.  By

applying PointImplementation to any particular object, we may redirect all self-reference in these

method definitions to refer to that object (see below;  also section 5).

By combining the two notions of the flexible interface and flexible implementation, we create exactly

the notion of a class definition (2).  This is a typed function in which both self and its associated

type, MyType, are parameters8, formal arguments to the function:

define class PointClass (self : MyType) =

{ attributes

x : Integer = 0;  y : Integer = 0

   methods

x() : Integer = { return x };  y() : Integer = { return y };

equal(other : MyType) : Boolean = { return self.x() = other.x()

and self.y() = other.y() };

moveTo(newX, newY : Integer) : MyType = { x := newX;  y := newY;  return self }

}

This class definition represents the minimum interface and implementation requirements for any

object, and its associated type, belonging to the Point class.  It should be clear by now that interface

and implementation are closely linked:  this is as true with classes as it is with concrete types.

Naturally, it is possible to provide alternative flexible implementations that exhibit the same flexible

interface, but this is not especially what characterises a class apart from a concrete type, which also

may have multiple implementations.  The only salient difference between this class definition and our

earlier definition of a recursive typed object is that self and MyType are not bound in a class, whereas

they are bound in a typed object, to refer back to the object and its type.

The difference between a (concrete) class and a (concrete) type is illustrated in figure 1.  A class

encompasses a family of different recursive types which, although they are not related by subtyping,

                                               

8 In the second-order typed λ-calculus, it is normal practice to define the type function first, followed by the typed

object function in which MyType is introduced before self [CHC90].
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have at least the interface and implementation described by the class.  In the figure, a class is denoted

by a cone describing a bounded closed volume, whereas a type is the point at the apex of a cone.

This illustrates, for example, that the Point type is the least elaborate type which matches the

interface of the Point class (although, as we shall see in section 5 below, the more elaborate

HotPoint type also matches the Point class interface).

We may relate an interface to a type in our model language by defining Point as the type which fixes9

the Point class interface, such that all occurrences of MyType now refer to Point:

define type Point = PointInterface(Point)

The application of the interface function:  PointInterface(Point)  propagates the type argument Point

into the body of the interface function, yielding exactly the body of a recursive Point type.  (We take

the liberty of allowing this form of recursive definition, which is really no different from how we

defined Point in the first place).  We may also relate an implementation to an object, by fixing the

implementation such that all occurrences of self now refer to the desired object:

define object point1 = PointImplementation(point1)

So, in the same way that a type fixes an interface, an object fixes an implementation.  An object has

a type, which is fixed, but a class implementation has an interface, both of which are flexible.

5. Class Inheritance and Subclassing

The flexibility with self  and MyType allows us to extend classes without the normal schizophrenia

associated with extending concrete recursive types.  In Smalltalk, Eiffel, Objective C and dynamically

bound aspects of C++, authentic object-oriented inheritance involves not just embedding a base

object in an derived object, but redirecting self-reference in the base object's methods to refer to the

derived object.  Formally, we model this by adapting interfaces and implementations [CHC90].  A

subclass has an extended implementation:

                                               

9 In λ-calculus, this is known as taking the least fixed point of a generator, using the fixpoint combinator Y.
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define implementation HotPointImplementation (newSelf)

 = PointImplementation (newSelf) with

{ attributes

selected = false;

   methods

equal(other) = { return newSelf.x() = other.x() and newSelf.y() = other.y()

and newSelf.selected() = other.selected() };

selected() = { return selected };

toggle() = { selected := not selected;  return newSelf }

}

in which the base part is created by the evaluation of:  PointImplementation (newSelf).  Examine this

to see how the argument variable newSelf is propagated into the body of PointImplementation,

replacing all occurrences of self by newSelf.  We therefore no longer need to redefine moveTo(),

although we still redefine equal() for the sake of the extra field-comparison.  After the internal

evaluation of the with-operator, self-reference in all of the methods of HotPointImplementation is in

terms of newSelf, demonstrating that this model of inheritance eliminates schizophrenia.

A subclass also has an extended interface:

define interface HotPointInterface (NewType) =

PointInterface (NewType) with

{ protocols

equal (NewType) : Boolean;  selected() : Boolean;  toggle() : NewType

}

in which:  PointInterface (NewType) adapts the types of the inherited method protocols, such that all

occurrences of MyType in the body of PointInterface are now replaced by NewType.  This ability to

adapt the self-type captures the:  like Current type-anchoring mechanism in Eiffel [Meye92].

Determining the type-compatibility of a class interface with any given superclass is a more subtle

matter than simple subtyping, because the self-type is not fixed, rather it is a parameter.  The

subclassing rule must therefore ensure that, whatever the self-type, the interface generated by a

subclass is larger than that of the corresponding superclass [CCHO89b, CHC90]:
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• A class interface B is a subclass of a class interface A if and only if, for any self-type T, B(T)

yields the same protocols, or a larger set of protocols, than A(T) .

We do not need to appeal to subtyping among individual method protocols in this simple rule, since

the adapted protocols either match exactly, or do not.  We can illustrate this with:

HotPointInterface (T) = { protocols x() : Integer;  y() : Integer;  equal(T) : Boolean;  

moveTo(Integer, Integer) : T;  selected() : Boolean;  toggle() : T }

PointInterface (T) = { protocols x() : Integer;  y() : Integer;  equal(T) : Boolean;

moveTo(Integer, Integer) : T }

demonstrating that the HotPointInterface describes a subclass of PointInterface, since the former

substitution with an arbitrary self-type T yields a larger set of protocols than the latter substitution

(and all the common protocols are pairwise identical).

In section 4 above, we asserted that objects of many different recursive types could belong to the

same class.  The simple rule governing class membership is subtle, and allows this.

• An object having (self-) type T belongs to a class with interface A if the protocols T are the

same, or a larger set than A(T).

So, the object point2 which has the type HotPoint, may nonetheless be considered a member of the

Point class, because HotPoint has a larger set of protocols than PointInterface (HotPoint):

HotPoint = { protocols x() : Integer;  y() : Integer;  equal(HotPoint) : Boolean;  

moveTo(Integer, Integer) : HotPoint;  selected() : Boolean;  toggle() : HotPoint }

PointInterface (HotPoint) = { protocols x() : Integer;  y() : Integer;

equal(HotPoint) : Boolean;  moveTo(Integer, Integer) : HotPoint }

Similar principles apply when considering implementations.  A HotPointImplementation must

provide at least all the methods of a PointImplementation, in which occurrences of self are replaced

by newSelf;  however, methods may also be replaced.  A point2 object satisfies the requirements of a

PointImplementation if its own attributes and methods are a larger set than the result of applying the

function:  PointImplementation(point2) [Simo95].
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6. Implications for Future Standards

We have situated the four notions of object, type, class interface, and class implementation with

respect to each other.  The primary notion of a class definition (2) was developed quite naturally and

encompasses both specification and implementation aspects - the two are inextricably linked.  The

specification aspect of a class is commonly known as an interface [OMG91], formally a type

function of MyType, the self-type recursion variable.  The related implementation aspect of a class is

a function of self, the object recursion variable.  The primary notion of a class family (1) was also

implicitly defined, through the development of subclassing and class membership rules.  We

emphasise the fact that a class family (1) may contain objects that are instances of different concrete,

recursive types, providing that each type satisfies the class interface and each object satisfies the

chosen class implementation.  By the reverse argument, an object, though it has exactly one type

upon creation, may be considered a member of more than one class (1), specifically of all those

superclasses which include its fixed concrete type within their bounds (cf figure 1).

Part of our aim has been to correct popular misconceptions regarding class.  It is, in general, not

correct to assert that a class identifier has the status of a type, except perhaps in the languages Trellis

[SCBK86], Modula-3 [CDJG89] and the statically bound parts of C++, which have modest type

systems based on subtyping.  In a majority of object-oriented languages and contexts, a class is not a

type and subclassing is not subtyping, not simply because the language's type rules may happen to

violate subtyping, but more fundamentally because self-reference is routinely redirected during

inheritance.  Neither is it correct to assert that a class merely realises, or implements a type [UML97,

OML97].  The observation that a derived class implementation does not have a corresponding

subtype signature should not compel one to think that a class only serves an implementation purpose.

A subclass typically extends a recursive structure, and there are in any case no proper subtypes of

closed recursive types.  Instead, a class is an inherently more flexible formal construct.

Our chief aim has been to establish a solid foundation for the popular, historic notion of class, and

for the relationships between class, type and object, with a view to informing present standardisation

efforts.  We have defined precisely the difference between derivation, an operation on simply-typed

objects, and subclassing, an operation on polymorphically-typed classes.  The relationship between
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an object and an adaptable implementation is similar to that between a type and an adaptable

interface, in that they both fix a flexible structure at a given level of specialisation, by binding

recursion variables.  Figure 2 illustrates some of the relationships which should form part of a future

standard.  In particular, we want to emphasise that:

• an object has an associated type;

• a class implementation has an associated interface;

• an object conforms to many, and fixes one, class implementation;

• a type conforms to many, and fixes one, class interface;

• a class definition encompasses an interface and an implementation;

• a class family contains objects having different, structurally related types, but which

are unrelated by subtyping;

• derivation produces objects having subtypes and schizophrenic self-reference;

• inheritance produces classes with subclass interfaces and uniform self-reference.

The difference between a class and a typed object is explained formally in terms of generator

functions and fixpoints in the λ-calculus.  We have tried to present these notions without appealing

self-consciously to the λ-calculus foundations [CCHO89a, CoPa89, CCHO89b, CHC90, Simo95,

Simo96], for the sake of the average object technologist.  To that end, we developed a user-friendly

formal language for reasoning about objects, types and classes, which bears more resemblance, in its

syntax, to a programming language than to pure mathematics.  With all this clear evidence before us,

can we please, finally, agree on the meaning of class?

[ Figures and references attached on following supplementary pages ]
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Figures
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