
Self-Monitoring Software: Folding Assertions into
Model-Generated Code

Anthony J H Simons

Department of Computer Science, University of Sheffield,
211 Portobello, Sheffield S1 4DP, UK

A.J.Simons@shef.ac.uk

Abstract. For model-driven engineering to achieve acceptance as a trustworthy
technology, correctness properties must be preserved at every stage, including
verifying that the compiled code in different target languages executes with the
same semantics as expressed in the models. This paper reports on a series of
experiments that fold Eiffel-style assertion monitoring into Java code generated
from abstract models of programs. Assertions may be added incrementally to
the models, and the model transformation performs suitable modifications to
the target code, reorganising expressions, variables, exceptions and introducing
new program structure to handle error recovery. The generated software
monitors abstract properties expressed in the models, executing according to the
programming-by-contract metaphor. The described strategy extends to code
generation in multiple languages from the same models.

Keywords: Model transformation, model semantics, code generation, assertion
monitoring, program correctness, Java, Eiffel.

1 Introduction

Model-driven engineering (MDE) is an ambitious and fast-developing strategy in
software engineering for synthesizing software systems from high-level models that
represent the abstract structure and behaviour of those systems. One of the biggest
challenges facing MDE is the need to ensure correctness at every stage of the
transformation process from abstract models to executing systems. The initial models
must be checked for consistency and completeness, with respect to some declared
model syntax and semantics. The transformation process must be proven correct, in
the sense that each transformation step should execute in a verified, predictable way
and map all the source model elements onto the correct target model elements, every
time it is applied. Finally, the resulting compiled software systems should execute
predictably, with the same semantics as expressed in the original models.

1.1 Model-to-Model: Focus on Transformation Correctness

Within the MDE community, the greatest attention has been focused on investigating
model transformations. The impetus for this is provided by the Object Management
Group’s drive towards a specific Model-Driven Architecture (MDA) [1], which
explicitly integrates other OMG standards such as the Unified Modeling Language
(UML) for its notation [2], the Meta-Object Facility (MOF) [3] and Object Constraint
Language (OCL) [4] for bootstrapping its syntax and semantics and the rule-based
graph-matching strategy known as Query/Value/Transformation (QVT) for its model
transformations [5]. Specifically, QVT is intended to express model transformations
declaratively, all within the same meta-modelling framework as the rest of UML.

This has tended to set the agenda for model transformation research, highlighting
the value of UML, OCL and QVT-style model transformation by rule. Declarative
rules were adopted in Atlas Transformation Language, which expresses model
transformations as morphisms from the source to the target metamodels [6]. Others
prefer to describe ordered transformations imperatively, as in the meta-modelling
language Kermeta [7], an object-oriented language enriched with constraints and set
comprehensions. Others focus on the need to model the formal properties of QVT-
like transformations, as in UML-RSDS [8], where translation rules are expressed as
dependent quantifications (s  source, t  target), a mathematically elegant
approach that offers the prospect of proving the correctness of transformations.

1.2 Model-to-System: Focus on Execution Semantics

One area that has so far received less attention is the need to ensure that generated
software systems execute with predictable semantics. This is much harder to achieve
than it sounds: take four potential target implementation languages, such as Java,
C++, Eiffel and C#, and it is not long before you find ways in which these treat the
same program differently (consider combinations of dynamic binding and visibility;
or overriding and type redefinition [9]). So, the final code generation step needs as
much care as the earlier model transformation steps.

This motivated the background for the work reported in this paper, which was to
provide a common abstract model of object-oriented programming capable of being
implemented in multiple target languages and nonetheless execute with the identical
semantics in each. The model is expressed in a bespoke dialect of XML, called
ReMoDeL OOP [10]. This captures a large subset of features common to strongly
typed object-oriented languages, including: packages, classes, interfaces, basic types,
generic types, fields, methods, overriding, dynamic binding, visibility, expressions,
assignment, assertions and exceptions. Section 2 introduces the ReMoDeL
transformation and code generation framework in general and describes the specific
modelling language ReMoDeL OOP in more detail.

One of the more interesting challenges in ReMoDeL OOP was how to provide a
mechanism for propagating the correctness properties expressed in an abstract design
through to the generated code. For this, we were inspired by Eiffel’s programming-
by-contract metaphor [11], in which semantic assertions are converted into runtime
checks placed at suitable points in the executable code and integrated with the

exception handling mechanism. As a means of providing a uniform, modular way of
incorporating abstract specifications (c.f. OCL assertions [4]) into concrete designs,
we found this attractive. Eiffel’s single-minded attitude to guaranteeing correct
execution, or failing gracefully, also appealed more than the ad hoc Java style of
throwing and catching exceptions, which is sometimes abused as a kind of secondary
control flow mechanism [12]. The standard monitoring protocol also supported our
goal to generate systems with identical semantics in every target language.

1.3 Self-Monitoring Systems: Focus on Code-Folding

Correctness in ReMoDeL OOP is expressed via contracts, each a labelled assertion
that guarantees some property of the executing system (c.f. Eiffel [11]). Assertions
may be class invariants, method preconditions or method postconditions (c.f. OCL
[4]). According to the programming-by-contract metaphor, breaking a postcondition
or the invariant indicates a fault in the currently executing method, whereas breaking
a precondition is the fault of whatever client code called current method. Exceptions
must therefore be raised respectively in the current method, or its calling client. A
method may choose to protect itself against failure, with an exception handler. The
rescue-code may either clean up the local state and fail gracefully, or optionally
reattempt the failed method, if it has a chance of succeeding. A method may therefore
only succeed in its original purpose, or fail; it cannot bypass an assertion failure.

Translating from this model into Eiffel is quite straightforward, since the language
supports these concepts directly. However, translating this into Java, C++ or C# is a
trickier proposition, with regard to raising exceptions, protecting blocks of code and
reattempting methods. Likewise, the ability to refer, in postconditions, to variables in
their prior states, or to the result-expression of the method, requires a certain degree
of code-restructuring and program synthesis.

We approached this as a kind of delayed code-folding problem, similar to aspect-
oriented programming [13]. We wanted the code generators to produce as close to the
optimal, idiomatic translation as possible in each target language. This meant that the
introduction of different specification features would require separate, composable
program transformations. Section 3 demonstrates how introducing different invariant,
precondition and postcondition assertions into the OOP model affected the generation
of executable systems in Java. The same techniques may be applied in other target
languages, for which code generators exist in the ReMoDeL framework. More
generally, this kind of technique may be used to add a self-monitoring capability to
any software system. It may be contrasted with monitoring approaches that add
monitors as wrappers, intercepting requests [14]. The approach reported here
integrates the monitoring code more closely with the executing system.

2 The ReMoDeL Project

ReMoDeL is a research project based at the University of Sheffield, UK [10]. The
acronym stands for Reusable Model Design Languages, highlighting the goal to
develop related families of models, sharing common concepts, to describe software

systems at every level of abstraction. The name also reflects the intention to support
software systems remodelling, the continual regeneration of software systems by
adaptation at the model-level, in response to rapidly changing user requirements.

2.1 The Transformation and Generation Framework

Within the taxonomy of model transformation approaches [15, 16], ReMoDeL adopts
a forward-transformation strategy, from high-level models to low-level models and
executable code. It adopts the direct manipulation strategy, using algorithms encoded
directly in Java to manipulate models encoded in XML. We chose this approach in
order to prototype different kinds of transformation that were not yet well understood,
using the familiar technology of Java and XML. We believed that this would offer a
faster route to identifying, prototyping and ordering sets of transformations, than if we
had invested effort in developing declarative, pattern-driven rules, c.f. [5, 6].

Abstract
Generator

Package
Generator

Class
Generator

Member
Generator

Code
Generator

Symbol
Table

JavaSymbol
Table

JavaPackage
Generator

JavaClass
Generator

JavaMember
Generator

JavaCode
Generator

*

*

*

/delegate *

/delegate *

/delegate *

Fig. 1. The OOP generator framework, with specialised components for Java code generation.
Generators delegate to subcontractors responsible for handling the next level of detail in the
OOP model. Generators for specific languages specialise the abstract classes in the framework,
which share common resources, such as symbol tables.

The model transformation architecture consists of three broad kinds of component:
Transformers, which modify or optimise a model in-place, Translators, which map
models from one domain to another, and Generators, which produce source code in
one of the target languages. Figure 1 illustrates part of the Generator framework,

based around a compositional hierarchy of PackageGenerator, ClassGenerator,
MemberGenerator and CodeGenerator components. These are responsible for the
broad strategy of the code generation algorithm, but rely on more specific components
for generating code in particular languages, such as the illustrated subclasses that
generate Java code. So far, the framework contains components for generating Java,
C++, C# and Eiffel. The Generator framework has a four-tier architecture, which
follows naturally from the four levels of encapsulation in the OOP model: packages,
classes, members and code. Other Transformer and Translator frameworks used in
ReMoDeL follow a similar pattern, according to the models that they process.

2.2 Operation of the Generator Framework

The general model-processing strategy follows a fusion of the Visitor and Composite
Design Patterns [17]. For example, a JavaPackageGenerator is the entry point for
Java code generation and initiates the translation of an OOP Package model into the
Java target language. It is responsible for creating the directory within which source
files will be placed. It spawns one JavaClassGenerator delegate for each class,
interface or other type declared in the OOP Package model (see 2.3 for an exposition
of the model elements used in OOP).

A JavaClassGenerator is responsible for creating the file in which the generated
source code will be placed, in the directory provided by its parent generator. It
dispatches internally to different routines, according to whether the visited model is a
Class, Interface, Symbolic or Basic type; and handles the generation of class-level
dependencies on superclass, interface or component types. A ClassGenerator then
spawns one JavaMemberGenerator delegate for each member found in the model.

A JavaMemberGenerator is responsible for translating the signature of each
member, including its visibility and type. It dispatches internally to different routines,
according to whether the visited model is a Field, Creator or Method member. It
spawns JavaCodeGenerators as needed, to translate expressions such as field
initialisers or code body sequences.

A JavaCodeGenerator dispatches internally on the kind of model expression,
invoking itself recursively where required, and generates fully idiomatic, executable
code in the Java programming language. The generated classes and interfaces may be
compiled and executed along with a small, predefined kernel Java library. The same
kernel is implemented slightly differently for each target language, and allows all
code generated from models to interface with a common set of APIs.

2.3 The Object-Oriented Programming Model

We adopted a bottom-up strategy for the ReMoDeL project, starting with idiomatic
system implementations and working backwards to identify what kinds of model and
transformation might be used to generate them. That way, we would always have a
proof-of-concept, in terms of working, generated systems. While at the higher end of
the modelling spectrum we have conceptual data models, control flow graphs,

dataflow models and abstract state machines, it was clear that we first needed a
common programming model from which to generate code.

Element

Declaration

Classifier

Property Type

Class

Interface

Symbolic

Basic

Variable

Field

Creator

Method

Member

Expression

Dependency

Employ

Inherit

Satisfy

Identifier

Operator

Create

Invoke

Compound

Control

Select

IterateAssert

Rescue

Sequence

Literal

Assign

Package

Return

Generic

Fig. 2. Derivation of OOP programming concepts in the ReMoDeL meta-model. Terminal
nodes correspond to XML elements used in OOP models of object-oriented programs.

The Object-Oriented Programming model, ReMoDeL OOP, was developed out of
a simpler language of functions and expressions, known as ReMoDeL FUN [10].
This earlier work allowed us to prototype the kinds of expression nodes needed to
represent executable code, such as literals, identifiers, selection and iteration. The
major OOP concepts are illustrated in figure 2, which depicts the metamodel tree
involved in the derivation of OOP. We used a common metamodel as a means of
unifying similar concepts across different languages. For example, while both FUN
and OOP have variables and identifiers, FUN has functions and application, whereas
OOP has methods and invocation. The additional concepts in OOP include
imperative programming, classification and inheritance, and assertions with exception
handling. As few new nodes as possible were introduced in OOP, following a
principle of minimalist design. Nodes represent program concepts at a higher level of
abstraction than typical program code, for example the Select node represents both

single- and multi-branching selection, while the Iterate node represents all kinds of
conditional, deterministic and quantified iteration.

2.4 Semantic Properties of the OOP Model

Here, we only have space to sketch the semantic properties of ReMoDeL OOP, which
was designed to conform to a Common Semantic Model (CSM) for object-oriented
programming, an operational model capable of being translated into multiple target
languages. The CSM is in some ways the dual of Microsoft’s Common Language
Infrastructure (CLI) for the .NET platform [18], in that while the CLI defines a least
upper bound, the CSM defines the greatest lower bound of all supported target
language features. The OOP model was designed to support:

 Dynamic objects with reference semantics: most target languages allocate objects
on the heap and recycle memory automatically – for the C++ translation, a special
implementation pattern using smart pointers was adopted;

 Types, subtyping and generic types: objects are strongly typed, types conform in a
subtype hierarchy and overriding is restricted to methods with the same signatures;
parametric generic types are supported, with upper bounds [11];

 Single inheritance with multiple interfaces: multiple inheritance is supported only
by some languages, C++ and Eiffel – but these may mimic the single-derivation,
multiple conformance strategy of Java and C# [11];

 No name overloading: no within-class name overloading is permitted, yielding a
one name per feature style – to avoid unintended method hiding [9];

 Redefinition and dynamic binding: any redefined method may expect dynamic
binding, if declared public or protected – private methods may not be so redefined,
since target languages may unpredictably hide, or bind dynamically [9];

 Method invocation: invocation expects a target object or expression, which may
be implicit, in which case the target is self, the currently executing object;

 Object construction: creation expressions return objects, whereas creator methods
are void procedures – to finesse functional and imperative initialisation styles;

 Namespaces and encapsulation: class members may have private, protected and
public visibility; and packaged classes may have private or public export status;

 Assertions and exception handling: assertion monitoring uses the programming-
by-contract metaphor [11] to raise and handle exceptions – handlers may clean up
and fail, or reattempt the failed method and succeed.

Examples of the concrete XML syntax used to express OOP are given in section 3
below (see also fig. 2).

3 Folding Assertions into Code

Below, we present a working example of the translation of ReMoDeL OOP into Java.
The example is taken from the Finance case study, one of several used to motivate the
OOP model and translation algorithms [10]. The example is developed by first giving

the plain translation of a class model into Java, then showing progressively how the
translation is modified, after adding assertions, and later, an exception handler.

3.1 The SavingsAccount Class from the Finance Package

Altogether, the Finance package defines an enumerated type, Status, describing the
status of an account; an interface type Asset representing something with financial
value; an abstract class Account that satisfies Asset, defines the notion of a balance
and the abstract methods deposit and withraw; and a concrete SavingsAccount that
inherits from Account. Listing 1 shows a fragment of this model, depicting the
SavingsAccount class, prior to adding any assertions.

Listing 1. An OOP class model, defining a SavingsAccount class. The class depends on three
other types and defines one creator and three methods.

<Class name="SavingsAccount" visible="public">
 <Inherit refer="Account" kind="Class" from="Finance"/>
 <Employ refer="Person" kind="Class" from="People"/>
 <Creator name="makeWith" type="Void" visible="public">
 <Variable name="holder" type="Person"/>
 <Variable name="amount" type="Integer"/>
 <Sequence type="Void">
 <Invoke method="openWith" implicit="true" type="Void">
 <Identifier name="holder" type="Person"/>
 <Identifier name="amount" type="Integer"/>
 </Invoke>
 </Sequence>
 </Creator>
 <Method name="deposit" type="Void" visible="public">
 <Variable name="amount" type="Integer"/>
 <Sequence type="Void">
 <Assign symbol="assign" type="Integer">
 <Identifier name="balance" type="Integer"
 scope="object"/>
 <Operator symbol="plus" type="Integer">
 <Identifier name="balance" type="Integer"
 scope="object"/>
 <Identifier name="amount" type="Integer"/>
 </Operator>
 </Assign>
 </Sequence>
 </Method>
 <Method name="withdraw" type="Integer" visible="public">
 <Variable name="amount" type="Integer"/>
 <Sequence type="Integer">
 <Assign symbol="assign" type="Integer">
 <Identifier name="balance" type="Integer"
 scope="object"/>
 <Operator symbol="minus" type="Integer">
 <Identifier name="balance" type="Integer"

 scope="object"/>
 <Identifier name="amount" type="Integer"/>
 </Operator>
 </Assign>
 <Return type="Integer">
 <Identifier name="amount" type="Integer"/>
 </Return>
 </Sequence>
 </Method>
</Class>

This shows the style of XML syntax used in the language-agnostic OOP model.
The SavingsAccount class depends on the inherited superclass Account and the class
Person, employed from another package. It defines a creator makeWith, to initialise
SavingsAccount objects, and methods deposit and withdraw, which override abstract
methods inherited from Account. The method bodies respectively add, or subtract an
amount from the inherited balance field. Whereas deposit returns no result, withdraw
returns the amount withdrawn. Each method body consists of a single Sequence,
containing further nested expressions. All expressions are typed (resolved by the
process that builds the OOP model) and some identifiers have scope attributes. So,
the OOP model has the flavour of a machine-readable annotated parse tree that also
supports visual inspection by humans.

Listing 2. Translation of the OOP SavingsAccount class model into the Java programming
language. This text is saved as the file SavingsAccount.java.

package example.finance;

import example.people.Person;

class SavingsAccount extends Account {

 public SavingsAccount(Person holder, int amount) {
 openWith(holder, amount);
 }

 public void deposit(int amount) {
 balance = balance + amount;
 }

 public int withdraw(int amount) {
 balance = balance – amount;
 return balance;
 }
}

The translation of the example OOP model into the Java programming language is
given in listing 2. This shows obvious mappings into Java, such as the translation of
method names and types, and the recursive translation of expressions, all emitted by
generators visiting each OOP node in turn, as described in section 2.2. Canonical
OOP types are mapped to Java types using a JavaSymbolTable (see fig. 1), for

example, canonical Integer maps to the primitive Java type int. The listing also
illustrates the generation of a package namespace and the selective import of a type
from outside this namespace (the locations are supplied by the OOP package model).

3.2 Adding Assertions to the SavingsAccount Class

In the next stage, we supplement the model with assertions. We add a class invariant,
stating that the balance of a SavingsAccount must always remain in credit. We also
add a precondition to the deposit method, requiring this to accept only positive
amounts of money. Likewise, we add a postcondition to the withdraw method,
ensuring that the prior balance is equal to the sum of the amount and the current
balance. Listing 3 illustrates how these assertions are expressed in the OOP model.
In general, many assertions of each kind may be added to the model.

Listing 3. Adding assertions to the OOP SavingsAccount model from listing 1. Only the extra
elements are shown in full; other elements from listing 1 have been elided, for brevity.

<Class name="SavingsAccount" visible="public">
 ...
 <Assert contract="balance in credit" when="always">
 <Operator symbol="noLessThan" type="Boolean">
 <Identifier name="balance" type="Integer"
 scope="object"/>
 <Literal value="0" type="Integer"/>
 </Operator>
 </Assert>
 <Method name="deposit" type="Void" visible="public">
 <Variable name="amount" type="Integer"/>
 <Assert contract="amount is positive" when="before">
 <Operator symbol="moreThan" type="Boolean">
 <Identifier name="amount" type="Integer"/>
 <Literal value="0" type="Integer"/>
 </Operator>
 </Assert>
 ...
 </Method>
 <Method name="withdraw" type="Integer" visible="public">
 <Variable name="amount" type="Integer"/>
 <Assert contract="amount was debited" when="after">
 <Operator symbol="equals" type="Boolean">
 <Identifier name="balance" type="Integer"
 scope="object" old="true"/>
 <Operator symbol="plus" type="Integer">
 <Identifier name="balance" type="Integer"
 scope="object"/>
 <Identifier name="amount" type="Integer"/>
 </Operator>
 </Operator>
 </Assert>
 ...

 </Method>
</Class>

Each Assert node represents an individual contract, a named semantic property
requested in the design, which must be translated faithfully into code. The Assert
node may stand for an invariant, pre- or postcondition, respectively depending on the
when-attribute's value of always, before or after. Assert nodes are attached as
children to the Class or Method nodes they constrain.

The asserted property is any single (possibly nested) Boolean expression, the only
child of the Assert node. Whereas the invariant may only refer to class members,
preconditions and postconditions may also refer to method arguments. Postconditions
may also refer to variables in their prior states (indicated using the old attribute), or to
the distinguished result identifier.

Listing 4. Translation of the extended OOP SavingsAccount model from listing 3 into Java,
showing the result of folding in assertion monitoring code. Java comments were inserted by
the code generators, for tracing purposes.

package example.finance;

import example.people.Person;

class SavingsAccount extends Account {

 public SavingsAccount(Person holder, int amount) {
 openWith(holder, amount);
 }

 protected void assertInvariant() {
 super.assertInvariant();
 if (balance < 0)
 brokenContract("invariant: balance in credit");
 }

 public void deposit(int amount) {
 if (amount <= 0)
 brokenContract("deposit: amount is positive");
 balance = balance + amount;
 assertInvariant(); // Check before exit
 }

 public int withdraw(int amount) {
 int result;
 int oldBalance = balance;
 balance = balance – amount;
 result = amount; // Save the result
 if (oldBalance != (balance + amount))
 brokenContract("withdraw: amount was debited");
 assertInvariant(); // Check before return
 return result; // Return saved result
 }
}

The Java translation of the model, including the assertions, is given in listing 4.
From inspection, it is clear that both code synthesis and expression re-ordering has
occurred. Below, we sketch the algorithm for folding in assertions:

 Class-level invariant assertions trigger the synthesis of assertInvariant, a protected
method to check the invariant, to be generated with other members; this contains
boilerplate to check the inherited invariant, and includes local assertions;

 Method-level postcondition expressions are scanned for the presence of references
to the result, or to old variables in their prior state; this triggers the synthesis of
extra local state variables, to be generated early in method bodies;

 Methods that contain assignments to local fields trigger an invariant check, placed
last in (each branch of) the method body, unless a return-expression is found;

 Methods that contain return-expressions and invariant or postcondition checks
trigger the synthesis of a local result variable to store the return-expression;

 Methods are generated in order of: method signatures, preconditions, local state
variables with initialisation, method body, saved method result, postconditions,
invariant check, and returned result; or pro rata, where applicable;

 Assertions are converted into guarded exceptions: each asserted contract property
is converted into its logical complement, which acts as the guard condition. If the
guard is satisfied, the brokenContract utility method will raise an exception.

This algorithm is not wholly declarative, but is partly dependent on the states of the
generators. Tricky interactions occur, according to the combination of field
assignments, posterior checks and return expressions encountered. For this, the code
generator may need to reset multiple times to its starting state, especially when
processing each branch of a Select-node, to ensure that the right result is temporarily
saved and returned when all posterior checks are complete.

3.3 Adding an Exception Handler to the withdraw Method

In the next stage, we illustrate the addition of an exception handler to the model. In
order to implement programming-by-contract [11] correctly, failed preconditions
should be handled by the current method's caller, whereas failed postconditions may
be cleaned up by the current method. Listing 5 shows a more developed version of
the OOP withdraw method, declaring a precondition and an exception handler.

Listing 5. Revised OOP method model for withdraw, with a precondition and an exception
handler. We assume that an invariant was also declared for the owning class.

<Method name="withdraw" type="Integer" visible="public">
 <Variable name="amount" type="Integer"/>
 <Assert contract="amount is positive" when="before">
 <Operator symbol="moreThan" type="Boolean">
 <Identifier name="amount" type="Integer"/>
 <Literal value="0" type="Integer"/>
 </Operator>
 </Assert>

 <Rescue type="Integer" attempts="2">
 <Sequence type="Integer">
 <Assign symbol="assign" type="Integer">
 <Identifier name="balance" type="Integer"
 scope="object"/>
 <Operator symbol="minus" type="Integer">
 <Identifier name="balance" type="Integer"
 scope="object"/>
 <Identifier name="amount" type="Integer"/>
 </Operator>
 </Assign>
 <Return type="Integer">
 <Identifier name="amount" type="Integer"/>
 </Return>
 </Sequence>
 <Sequence type="Void">
 <Assign symbol="assign" type="Integer">
 <Identifier name="balance" type="Integer"
 scope="object"/>
 <Operator symbol="plus" type="Integer">
 <Identifier name="balance" type="Integer"
 scope="object"/>
 <Identifier name="amount" type="Integer"/>
 </Operator>
 </Assign>
 </Sequence>
 </Rescue>
</Method>

The method body is now a Rescue node, denoting a protected environment, whose
two Sequence children are the operational body code, and some recovery code, whose
job is to roll back the SavingsAccount object to its prior state. The Rescue node may
optionally specify the number of times a method may be attempted. Reattempted
methods may refer to the distinguished attempts variable, to track their progress.

Listing 6 shows the translation into Java, assuming that SavingsAccount also
declared an invariant to ensure that the balance never goes negative. This generates
code with both prior and posterior checks, so that we may observe the context of
raised exceptions.

Listing 6. Translation of the OOP method model for withdraw, from listing 5, into Java. The
generated code obeys the programming-by-contract principle [11] in the way exceptions are
handled, refusing failed preconditions, but rescuing failed postconditions and invariants.

 public int withdraw(int amount) {
 if (amount <= 0)
 brokenContract("withdraw: amount is positive");
 int result;
 int attempts = 2;
 while (attempts > 0) {
 try {
 balance = balance – amount;

 result = amount; // Save the result
 assertInvariant(); // Check before return
 return result; // Return saved result
 }
 catch (BrokenContract broken) {
 balance = balance + amount;
 if (--attempts == 0)
 throw broken; // Fail eventually
 }
 }
 }

From inspection, it is clear that substantial code synthesis is required to obtain the
desired behaviour. We sketch the actions of the folding algorithm below:

 The presence of a rescued method body triggers the synthesis of a Java try…catch
construction, in which the operational body code is placed in the try-block and the
recovery code is placed in the catch-block;

 If multiple attempts are specified, this triggers the synthesis of a Java while-loop
surrounding the try...catch, and an associated attempts loop control variable;

 Reattempted operational body code must either return, or else set the attempts
control variable to zero, the loop exit condition, upon normal termination;

 Reattempted recovery code must decrement the attempts control variable after
cleaning up and re-throw the exception when zero is reached; if not reattempted, it
must simply re-throw the exception after cleaning up;

 Precondition checks are inserted at the head of the method, before the try-block;
whereas postcondition and invariant checks are placed last inside the try-block, but
before any return statement.

Notice how violated preconditions must now be handled by this method's caller,
whereas violated postconditions and invariants fall under the protection of this
method's own handler, satisfying the programming-by-contract principle.

4 Conclusions

In this paper, we presented a folding approach to generating self-monitoring software,
which recovers from failure according to the programming-by-contract rule [11]. The
monitored properties and related exception handlers are expressed in a modular way,
in an abstract programming model. The folding algorithms were developed as
methods of the code generator classes, some of which are quite complex. Whereas
some steps could be encoded as pattern-driven rules, others depend mostly on the
states of the generation process. We believe that this kind of example should
motivate interest in direct manipulation approaches to model transformation [7, 10],
which outperform other approaches in terms of the ease with which they can produce
quite sophisticated, multi-layered and idiomatic transformations. Folding approaches
to model transformation are clearly needed to develop strategies for combining partial
and orthogonal abstract views of software systems, to advance the state-of-the-art in
model-driven engineering.

References

1. Object Management Group: MDA Guide, Version 1.0.1, Miller, J., Mukerji, J. (eds.), 12
June (2003)

2. Object Management Group: Unified Modeling Language (OMG UML) Superstructure,
Version 2.3, 5 May (2010)

3. Object Management Group: Meta Object Facility (MOF) Core Specification, Version 2.0, 1
January (2001)

4. Object Management Group: Object Constraint Language, Version 2.0, 1 May (2006)
5. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification, Version 1.0, 3 April (2008)
6. ATL: A Model Transformation Technology, http://www.eclipse.org/atl/
7. Kermeta: Triskell Metamodelling Kernel, http://www.kermeta.org/
8. Lano, K.: A Compositional Semantics of UML-RSDS. Software and Systems Modeling 8,

85--116 (2009)
9. Beugnard, A.: Une Comparaison de Langages Objet Relative au Traitement de la

Redéfinition de Méthode et à la Liaison Dynamique. L’Objet, 8 (1-2), 99--114 (2002)
10.ReMoDeL Project, http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/
11.Meyer, B.: Object-Oriented Software Construction, 2nd ed., Prentice Hall, Redwood CA

(1997)
12.Kinriy, J.: Exceptions in Java and Eiffel: Two Extremes in Exception Design and

Application. In: Doney, C., Knudsen, J.L., Romanovsky, A.B., Tripathi, A. (eds.)
Exception Handling 2006, LNCS, vol. 4119, pp. 288--300. Springer, Heidelberg (2006)

13.Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes C. V., Loingtier, J., and Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997,
LNCS, vol. 1241, pp. 220--242. Springer, Heidelberg (1997)

14.Bratanis, K., Dranidis, D. and Simons, A. J. H.: An Extensible Architecture for the Run-
time Monitoring of Web Services. In: Karastoyanova, D., Kazhamiakin, R., Metzger, A.
(eds.) Proc. 3rd. Int. Workshop on Monitoring, Adaptation and Beyond, ACM, New York,
pp. 9--16 (2010)

15.Mens, T. and van Gorp, P.: A Taxonomy of Model Transformations. ENTCS, vol. 152,
Elsevier, 125--142 (2006)

16.Biehl, M.: Literature Study on Model Transformations. Technical Report, Embedded
Control Systems, KTH, Stockholm (2010)

17.Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Design. Addison Wesley, Reading MA (1995)

18.ECMA International: Standard ECMA-335, Common Language Infrastructure (CLI).
ISO/IEC 23271:2006, June (2006)

