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Abstract.  For model-driven engineering to achieve acceptance as a trustworthy 
technology, correctness properties must be preserved at every stage, including 
verifying that the compiled code in different target languages executes with the 
same semantics as expressed in the models.  This paper reports on a series of 
experiments that fold Eiffel-style assertion monitoring into Java code generated 
from abstract models of programs.  Assertions may be added incrementally to 
the models, and the model transformation performs suitable modifications to 
the target code, reorganising expressions, variables, exceptions and introducing 
new program structure to handle error recovery.  The generated software 
monitors abstract properties expressed in the models, executing according to the 
programming-by-contract metaphor.  The described strategy extends to code 
generation in multiple languages from the same models.
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1   Introduction

Model-driven engineering (MDE) is an ambitious and fast-developing strategy in 
software engineering for synthesizing software systems from high-level models that 
represent the abstract structure and behaviour of those systems.  One of the biggest 
challenges facing MDE is the need to ensure correctness at every stage of the 
transformation process from abstract models to executing systems.  The initial models 
must be checked for consistency and completeness, with respect to some declared 
model syntax and semantics.  The transformation process must be proven correct, in 
the sense that each transformation step should execute in a verified, predictable way 
and map all the source model elements onto the correct target model elements, every 
time it is applied.  Finally, the resulting compiled software systems should execute 
predictably, with the same semantics as expressed in the original models.



1.1   Model-to-Model:  Focus on Transformation Correctness

Within the MDE community, the greatest attention has been focused on investigating 
model transformations.  The impetus for this is provided by the Object Management 
Group’s drive towards a specific Model-Driven Architecture (MDA) [1], which 
explicitly integrates other OMG standards such as the Unified Modeling Language 
(UML) for its notation [2], the Meta-Object Facility (MOF) [3] and Object Constraint 
Language (OCL) [4] for bootstrapping its syntax and semantics and the rule-based 
graph-matching strategy known as Query/Value/Transformation (QVT) for its model 
transformations [5].  Specifically, QVT is intended to express model transformations 
declaratively, all within the same meta-modelling framework as the rest of UML.  

This has tended to set the agenda for model transformation research, highlighting 
the value of UML, OCL and QVT-style model transformation by rule.  Declarative 
rules were adopted in Atlas Transformation Language, which expresses model 
transformations as morphisms from the source to the target metamodels [6].  Others 
prefer to describe ordered transformations imperatively, as in the meta-modelling 
language Kermeta [7], an object-oriented language enriched with constraints and set 
comprehensions.  Others focus on the need to model the formal properties of QVT-
like transformations, as in UML-RSDS [8], where translation rules are expressed as 
dependent quantifications (s  source, t  target), a mathematically elegant 
approach that offers the prospect of proving the correctness of transformations.

1.2   Model-to-System:  Focus on Execution Semantics

One area that has so far received less attention is the need to ensure that generated 
software systems execute with predictable semantics.  This is much harder to achieve 
than it sounds:  take four potential target implementation languages, such as Java, 
C++, Eiffel and C#, and it is not long before you find ways in which these treat the 
same program differently (consider combinations of dynamic binding and visibility; 
or overriding and type redefinition [9]).  So, the final code generation step needs as 
much care as the earlier model transformation steps.

This motivated the background for the work reported in this paper, which was to 
provide a common abstract model of object-oriented programming capable of being 
implemented in multiple target languages and nonetheless execute with the identical 
semantics in each.  The model is expressed in a bespoke dialect of XML, called 
ReMoDeL OOP [10].  This captures a large subset of features common to strongly 
typed object-oriented languages, including:  packages, classes, interfaces, basic types, 
generic types, fields, methods, overriding, dynamic binding, visibility, expressions, 
assignment, assertions and exceptions.  Section 2 introduces the ReMoDeL 
transformation and code generation framework in general and describes the specific 
modelling language ReMoDeL OOP in more detail.

One of the more interesting challenges in ReMoDeL OOP was how to provide a 
mechanism for propagating the correctness properties expressed in an abstract design 
through to the generated code.  For this, we were inspired by Eiffel’s programming-
by-contract metaphor [11], in which semantic assertions are converted into runtime 
checks placed at suitable points in the executable code and integrated with the 



exception handling mechanism.  As a means of providing a uniform, modular way of 
incorporating abstract specifications (c.f. OCL assertions [4]) into concrete designs, 
we found this attractive.  Eiffel’s single-minded attitude to guaranteeing correct 
execution, or failing gracefully, also appealed more than the ad hoc Java style of 
throwing and catching exceptions, which is sometimes abused as a kind of secondary 
control flow mechanism [12].  The standard monitoring protocol also supported our 
goal to generate systems with identical semantics in every target language.

1.3   Self-Monitoring Systems:  Focus on Code-Folding

Correctness in ReMoDeL OOP is expressed via contracts, each a labelled assertion 
that guarantees some property of the executing system (c.f. Eiffel [11]).  Assertions 
may be class invariants, method preconditions or method postconditions (c.f. OCL 
[4]).  According to the programming-by-contract metaphor, breaking a postcondition 
or the invariant indicates a fault in the currently executing method, whereas breaking 
a precondition is the fault of whatever client code called current method.  Exceptions 
must therefore be raised respectively in the current method, or its calling client.  A 
method may choose to protect itself against failure, with an exception handler.  The 
rescue-code may either clean up the local state and fail gracefully, or optionally 
reattempt the failed method, if it has a chance of succeeding.  A method may therefore 
only succeed in its original purpose, or fail; it cannot bypass an assertion failure.

Translating from this model into Eiffel is quite straightforward, since the language 
supports these concepts directly.  However, translating this into Java, C++ or C# is a 
trickier proposition, with regard to raising exceptions, protecting blocks of code and 
reattempting methods.  Likewise, the ability to refer, in postconditions, to variables in 
their prior states, or to the result-expression of the method, requires a certain degree 
of code-restructuring and program synthesis.

We approached this as a kind of delayed code-folding problem, similar to aspect-
oriented programming [13].  We wanted the code generators to produce as close to the 
optimal, idiomatic translation as possible in each target language.  This meant that the 
introduction of different specification features would require separate, composable 
program transformations.  Section 3 demonstrates how introducing different invariant, 
precondition and postcondition assertions into the OOP model affected the generation 
of executable systems in Java.  The same techniques may be applied in other target 
languages, for which code generators exist in the ReMoDeL framework.  More 
generally, this kind of technique may be used to add a self-monitoring capability to 
any software system.  It may be contrasted with monitoring approaches that add 
monitors as wrappers, intercepting requests [14].  The approach reported here 
integrates the monitoring code more closely with the executing system.

2   The ReMoDeL Project

ReMoDeL is a research project based at the University of Sheffield, UK [10].  The 
acronym stands for Reusable Model Design Languages, highlighting the goal to 
develop related families of models, sharing common concepts, to describe software 



systems at every level of abstraction.  The name also reflects the intention to support 
software systems remodelling, the continual regeneration of software systems by 
adaptation at the model-level, in response to rapidly changing user requirements.

2.1   The Transformation and Generation Framework

Within the taxonomy of model transformation approaches [15, 16], ReMoDeL adopts 
a forward-transformation strategy, from high-level models to low-level models and 
executable code.  It adopts the direct manipulation strategy, using algorithms encoded 
directly in Java to manipulate models encoded in XML.  We chose this approach in 
order to prototype different kinds of transformation that were not yet well understood, 
using the familiar technology of Java and XML.  We believed that this would offer a 
faster route to identifying, prototyping and ordering sets of transformations, than if we 
had invested effort in developing declarative, pattern-driven rules, c.f. [5, 6].  
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Fig. 1.  The OOP generator framework, with specialised components for Java code generation.  
Generators delegate to subcontractors responsible for handling the next level of detail in the 
OOP model.  Generators for specific languages specialise the abstract classes in the framework, 
which share common resources, such as symbol tables.

The model transformation architecture consists of three broad kinds of component:  
Transformers, which modify or optimise a model in-place, Translators, which map 
models from one domain to another, and Generators, which produce source code in 
one of the target languages.  Figure 1 illustrates part of the Generator framework, 



based around a compositional hierarchy of PackageGenerator, ClassGenerator, 
MemberGenerator and CodeGenerator components.  These are responsible for the 
broad strategy of the code generation algorithm, but rely on more specific components 
for generating code in particular languages, such as the illustrated subclasses that 
generate Java code.  So far, the framework contains components for generating Java, 
C++, C# and Eiffel.  The Generator framework has a four-tier architecture, which 
follows naturally from the four levels of encapsulation in the OOP model:  packages, 
classes, members and code.  Other Transformer and Translator frameworks used in 
ReMoDeL follow a similar pattern, according to the models that they process.

2.2   Operation of the Generator Framework

The general model-processing strategy follows a fusion of the Visitor and Composite
Design Patterns [17].  For example, a JavaPackageGenerator is the entry point for 
Java code generation and initiates the translation of an OOP Package model into the 
Java target language.  It is responsible for creating the directory within which source 
files will be placed.  It spawns one JavaClassGenerator delegate for each class, 
interface or other type declared in the OOP Package model (see 2.3 for an exposition 
of the model elements used in OOP).

A JavaClassGenerator is responsible for creating the file in which the generated 
source code will be placed, in the directory provided by its parent generator.  It 
dispatches internally to different routines, according to whether the visited model is a 
Class, Interface, Symbolic or Basic type; and handles the generation of class-level 
dependencies on superclass, interface or component types.  A ClassGenerator then 
spawns one JavaMemberGenerator delegate for each member found in the model.

A JavaMemberGenerator is responsible for translating the signature of each 
member, including its visibility and type.  It dispatches internally to different routines, 
according to whether the visited model is a Field, Creator or Method member.  It 
spawns JavaCodeGenerators as needed, to translate expressions such as field 
initialisers or code body sequences.  

A JavaCodeGenerator dispatches internally on the kind of model expression, 
invoking itself recursively where required, and generates fully idiomatic, executable 
code in the Java programming language.  The generated classes and interfaces may be 
compiled and executed along with a small, predefined kernel Java library.  The same 
kernel is implemented slightly differently for each target language, and allows all 
code generated from models to interface with a common set of APIs.

2.3   The Object-Oriented Programming Model

We adopted a bottom-up strategy for the ReMoDeL project, starting with idiomatic 
system implementations and working backwards to identify what kinds of model and 
transformation might be used to generate them.  That way, we would always have a 
proof-of-concept, in terms of working, generated systems.  While at the higher end of 
the modelling spectrum we have conceptual data models, control flow graphs, 



dataflow models and abstract state machines, it was clear that we first needed a 
common programming model from which to generate code.
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Fig. 2.  Derivation of OOP programming concepts in the ReMoDeL meta-model.  Terminal 
nodes correspond to XML elements used in OOP models of object-oriented programs.

The Object-Oriented Programming model, ReMoDeL OOP, was developed out of 
a simpler language of functions and expressions, known as ReMoDeL FUN [10].  
This earlier work allowed us to prototype the kinds of expression nodes needed to 
represent executable code, such as literals, identifiers, selection and iteration.  The 
major OOP concepts are illustrated in figure 2, which depicts the metamodel tree 
involved in the derivation of OOP.  We used a common metamodel as a means of 
unifying similar concepts across different languages.  For example, while both FUN 
and OOP have variables and identifiers, FUN has functions and application, whereas 
OOP has methods and invocation.  The additional concepts in OOP include 
imperative programming, classification and inheritance, and assertions with exception 
handling.  As few new nodes as possible were introduced in OOP, following a 
principle of minimalist design.  Nodes represent program concepts at a higher level of 
abstraction than typical program code, for example the Select node represents both 



single- and multi-branching selection, while the Iterate node represents all kinds of 
conditional, deterministic and quantified iteration.

2.4   Semantic Properties of the OOP Model

Here, we only have space to sketch the semantic properties of ReMoDeL OOP, which 
was designed to conform to a Common Semantic Model (CSM) for object-oriented 
programming, an operational model capable of being translated into multiple target 
languages.  The CSM is in some ways the dual of Microsoft’s Common Language 
Infrastructure (CLI) for the .NET platform [18], in that while the CLI defines a least 
upper bound, the CSM defines the greatest lower bound of all supported target 
language features.  The OOP model was designed to support:

 Dynamic objects with reference semantics:  most target languages allocate objects 
on the heap and recycle memory automatically – for the C++ translation, a special 
implementation pattern using smart pointers was adopted;

 Types, subtyping and generic types:  objects are strongly typed, types conform in a 
subtype hierarchy and overriding is restricted to methods with the same signatures; 
parametric generic types are supported, with upper bounds [11];

 Single inheritance with multiple interfaces:  multiple inheritance is supported only 
by some languages, C++ and Eiffel – but these may mimic the single-derivation, 
multiple conformance strategy of Java and C# [11];

 No name overloading:  no within-class name overloading is permitted, yielding a 
one name per feature style – to avoid unintended method hiding [9];

 Redefinition and dynamic binding:  any redefined method may expect dynamic 
binding, if declared public or protected – private methods may not be so redefined, 
since target languages may unpredictably hide, or bind dynamically [9];

 Method invocation:  invocation expects a target object or expression, which may 
be implicit, in which case the target is self, the currently executing object;

 Object construction:  creation expressions return objects, whereas creator methods 
are void procedures – to finesse functional and imperative initialisation styles;

 Namespaces and encapsulation:  class members may have private, protected and
public visibility; and packaged classes may have private or public export status;

 Assertions and exception handling:  assertion monitoring uses the programming-
by-contract metaphor [11] to raise and handle exceptions – handlers may clean up 
and fail, or reattempt the failed method and succeed.

Examples of the concrete XML syntax used to express OOP are given in section 3 
below (see also fig. 2).

3   Folding Assertions into Code

Below, we present a working example of the translation of ReMoDeL OOP into Java.  
The example is taken from the Finance case study, one of several used to motivate the 
OOP model and translation algorithms [10].  The example is developed by first giving 



the plain translation of a class model into Java, then showing progressively how the 
translation is modified, after adding assertions, and later, an exception handler.

3.1   The SavingsAccount Class from the Finance Package

Altogether, the Finance package defines an enumerated type, Status, describing the 
status of an account; an interface type Asset representing something with financial 
value; an abstract class Account that satisfies Asset, defines the notion of a balance
and the abstract methods deposit and withraw;  and a concrete SavingsAccount that 
inherits from Account.  Listing 1 shows a fragment of this model, depicting the 
SavingsAccount class, prior to adding any assertions.

Listing 1.  An OOP class model, defining a SavingsAccount class.  The class depends on three 
other types and defines one creator and three methods.

<Class name="SavingsAccount" visible="public">
  <Inherit refer="Account" kind="Class" from="Finance"/>
  <Employ refer="Person" kind="Class" from="People"/>
  <Creator name="makeWith" type="Void" visible="public">
    <Variable name="holder" type="Person"/>
    <Variable name="amount" type="Integer"/>
    <Sequence type="Void">
      <Invoke method="openWith" implicit="true" type="Void">
        <Identifier name="holder" type="Person"/>
        <Identifier name="amount" type="Integer"/>
      </Invoke>
    </Sequence>
  </Creator>
  <Method name="deposit" type="Void" visible="public">
    <Variable name="amount" type="Integer"/>
    <Sequence type="Void">
      <Assign symbol="assign" type="Integer">
        <Identifier name="balance" type="Integer" 
            scope="object"/>
        <Operator symbol="plus" type="Integer">
          <Identifier name="balance" type="Integer" 
              scope="object"/>
          <Identifier name="amount" type="Integer"/>
        </Operator>
      </Assign>
    </Sequence>
  </Method>
  <Method name="withdraw" type="Integer" visible="public">
    <Variable name="amount" type="Integer"/>
    <Sequence type="Integer">
      <Assign symbol="assign" type="Integer">
        <Identifier name="balance" type="Integer"
            scope="object"/>
        <Operator symbol="minus" type="Integer">
          <Identifier name="balance" type="Integer"



              scope="object"/>
          <Identifier name="amount" type="Integer"/>
        </Operator>
      </Assign>
      <Return type="Integer">
        <Identifier name="amount" type="Integer"/>
      </Return>
    </Sequence>
  </Method>
</Class>

This shows the style of XML syntax used in the language-agnostic OOP model.  
The SavingsAccount class depends on the inherited superclass Account and the class 
Person, employed from another package.  It defines a creator makeWith, to initialise 
SavingsAccount objects, and methods deposit and withdraw, which override abstract 
methods inherited from Account.  The method bodies respectively add, or subtract an 
amount from the inherited balance field.  Whereas deposit returns no result, withdraw
returns the amount withdrawn.  Each method body consists of a single Sequence, 
containing further nested expressions.  All expressions are typed (resolved by the 
process that builds the OOP model) and some identifiers have scope attributes.  So, 
the OOP model has the flavour of a machine-readable annotated parse tree that also 
supports visual inspection by humans.

Listing 2.  Translation of the OOP SavingsAccount class model into the Java programming 
language.  This text is saved as the file SavingsAccount.java.

package example.finance;

import example.people.Person;

class SavingsAccount extends Account {

  public SavingsAccount(Person holder, int amount) {
    openWith(holder, amount);
  }

  public void deposit(int amount) {
    balance = balance + amount;
  }

  public int withdraw(int amount) {
    balance = balance – amount;
    return balance;
  }
}

The translation of the example OOP model into the Java programming language is 
given in listing 2.  This shows obvious mappings into Java, such as the translation of 
method names and types, and the recursive translation of expressions, all emitted by 
generators visiting each OOP node in turn, as described in section 2.2.  Canonical 
OOP types are mapped to Java types using a JavaSymbolTable (see fig. 1), for 



example, canonical Integer maps to the primitive Java type int.  The listing also 
illustrates the generation of a package namespace and the selective import of a type 
from outside this namespace (the locations are supplied by the OOP package model).

3.2   Adding Assertions to the SavingsAccount Class

In the next stage, we supplement the model with assertions.  We add a class invariant, 
stating that the balance of a SavingsAccount must always remain in credit.  We also 
add a precondition to the deposit method, requiring this to accept only positive 
amounts of money.  Likewise, we add a postcondition to the withdraw method, 
ensuring that the prior balance is equal to the sum of the amount and the current 
balance.  Listing 3 illustrates how these assertions are expressed in the OOP model.  
In general, many assertions of each kind may be added to the model.

Listing 3.  Adding assertions to the OOP SavingsAccount model from listing 1.  Only the extra 
elements are shown in full; other elements from listing 1 have been elided, for brevity.

<Class name="SavingsAccount" visible="public">
  ...
  <Assert contract="balance in credit" when="always">
    <Operator symbol="noLessThan" type="Boolean">
      <Identifier name="balance" type="Integer"
        scope="object"/>
      <Literal value="0" type="Integer"/>
    </Operator>
  </Assert>
  <Method name="deposit" type="Void" visible="public">
    <Variable name="amount" type="Integer"/>
    <Assert contract="amount is positive" when="before">
      <Operator symbol="moreThan" type="Boolean">
        <Identifier name="amount" type="Integer"/>
        <Literal value="0" type="Integer"/>
      </Operator>
    </Assert>
    ...
  </Method>
  <Method name="withdraw" type="Integer" visible="public">
    <Variable name="amount" type="Integer"/>
    <Assert contract="amount was debited" when="after">
      <Operator symbol="equals" type="Boolean">
        <Identifier name="balance" type="Integer" 
            scope="object" old="true"/>
        <Operator symbol="plus" type="Integer">
          <Identifier name="balance" type="Integer" 
              scope="object"/>
          <Identifier name="amount" type="Integer"/>
        </Operator>
      </Operator>
    </Assert>
    ...



  </Method>
</Class>

Each Assert node represents an individual contract, a named semantic property 
requested in the design, which must be translated faithfully into code.  The Assert
node may stand for an invariant, pre- or postcondition, respectively depending on the 
when-attribute's value of always, before or after.  Assert nodes are attached as 
children to the Class or Method nodes they constrain.

The asserted property is any single (possibly nested) Boolean expression, the only 
child of the Assert node.  Whereas the invariant may only refer to class members, 
preconditions and postconditions may also refer to method arguments.  Postconditions 
may also refer to variables in their prior states (indicated using the old attribute), or to 
the distinguished result identifier.

Listing 4.  Translation of the extended OOP SavingsAccount model from listing 3 into Java, 
showing the result of folding in assertion monitoring code.  Java comments were inserted by 
the code generators, for tracing purposes.

package example.finance;

import example.people.Person;

class SavingsAccount extends Account {

  public SavingsAccount(Person holder, int amount) {
    openWith(holder, amount);
  }

  protected void assertInvariant() {
    super.assertInvariant();
    if (balance < 0)
      brokenContract("invariant: balance in credit");
  }

  public void deposit(int amount) {
    if (amount <= 0)
      brokenContract("deposit: amount is positive");
    balance = balance + amount;
    assertInvariant();  // Check before exit
  }

  public int withdraw(int amount) {
    int result;
    int oldBalance = balance;
    balance = balance – amount;
    result = amount;  // Save the result
    if (oldBalance != (balance + amount))
      brokenContract("withdraw: amount was debited");
    assertInvariant();  // Check before return
    return result;  // Return saved result
  }
}



The Java translation of the model, including the assertions, is given in listing 4.  
From inspection, it is clear that both code synthesis and expression re-ordering has 
occurred.  Below, we sketch the algorithm for folding in assertions:

 Class-level invariant assertions trigger the synthesis of assertInvariant, a protected 
method to check the invariant, to be generated with other members; this contains 
boilerplate to check the inherited invariant, and includes local assertions;

 Method-level postcondition expressions are scanned for the presence of references 
to the result, or to old variables in their prior state; this triggers the synthesis of 
extra local state variables, to be generated early in method bodies;

 Methods that contain assignments to local fields trigger an invariant check, placed 
last in (each branch of) the method body, unless a return-expression is found;

 Methods that contain return-expressions and invariant or postcondition checks 
trigger the synthesis of a local result variable to store the return-expression;

 Methods are generated in order of:  method signatures, preconditions, local state 
variables with initialisation, method body, saved method result, postconditions, 
invariant check, and returned result; or pro rata, where applicable;

 Assertions are converted into guarded exceptions:  each asserted contract property 
is converted into its logical complement, which acts as the guard condition.  If the 
guard is satisfied, the brokenContract utility method will raise an exception.

This algorithm is not wholly declarative, but is partly dependent on the states of the 
generators.  Tricky interactions occur, according to the combination of field 
assignments, posterior checks and return expressions encountered.  For this, the code 
generator may need to reset multiple times to its starting state, especially when 
processing each branch of a Select-node, to ensure that the right result is temporarily 
saved and returned when all posterior checks are complete.

3.3   Adding an Exception Handler to the withdraw Method

In the next stage, we illustrate the addition of an exception handler to the model.  In 
order to implement programming-by-contract [11] correctly, failed preconditions 
should be handled by the current method's caller, whereas failed postconditions may 
be cleaned up by the current method.  Listing 5 shows a more developed version of 
the OOP withdraw method, declaring a precondition and an exception handler.

Listing 5.  Revised OOP method model for withdraw, with a precondition and an exception 
handler.  We assume that an invariant was also declared for the owning class.

<Method name="withdraw" type="Integer" visible="public">
  <Variable name="amount" type="Integer"/>
  <Assert contract="amount is positive" when="before">
    <Operator symbol="moreThan" type="Boolean">
      <Identifier name="amount" type="Integer"/>
      <Literal value="0" type="Integer"/>
    </Operator>
  </Assert>



  <Rescue type="Integer" attempts="2">
    <Sequence type="Integer">
      <Assign symbol="assign" type="Integer">
        <Identifier name="balance" type="Integer"
            scope="object"/>
        <Operator symbol="minus" type="Integer">
          <Identifier name="balance" type="Integer"
              scope="object"/>
          <Identifier name="amount" type="Integer"/>
        </Operator>
     </Assign>
      <Return type="Integer">
        <Identifier name="amount" type="Integer"/>
      </Return>
    </Sequence>
    <Sequence type="Void">
      <Assign symbol="assign" type="Integer">
        <Identifier name="balance" type="Integer"
            scope="object"/>
        <Operator symbol="plus" type="Integer">
          <Identifier name="balance" type="Integer"
              scope="object"/>
          <Identifier name="amount" type="Integer"/>
        </Operator>
      </Assign>
    </Sequence>
  </Rescue>
</Method>

The method body is now a Rescue node, denoting a protected environment, whose 
two Sequence children are the operational body code, and some recovery code, whose 
job is to roll back the SavingsAccount object to its prior state.  The Rescue node may 
optionally specify the number of times a method may be attempted.  Reattempted 
methods may refer to the distinguished attempts variable, to track their progress.

Listing 6 shows the translation into Java, assuming that SavingsAccount also 
declared an invariant to ensure that the balance never goes negative.  This generates 
code with both prior and posterior checks, so that we may observe the context of 
raised exceptions.

Listing 6.  Translation of the OOP method model for withdraw, from listing 5, into Java.  The 
generated code obeys the programming-by-contract principle [11] in the way exceptions are 
handled, refusing failed preconditions, but rescuing failed postconditions and invariants.

  public int withdraw(int amount) {
    if (amount <= 0)
      brokenContract("withdraw: amount is positive");
    int result;
    int attempts = 2;
    while (attempts > 0) {
      try {
        balance = balance – amount;



        result = amount;  // Save the result
        assertInvariant();  // Check before return
        return result;  // Return saved result
      }
      catch (BrokenContract broken) {
        balance = balance + amount;
        if (--attempts == 0)
          throw broken;  // Fail eventually
      }
    }
  }

From inspection, it is clear that substantial code synthesis is required to obtain the 
desired behaviour.  We sketch the actions of the folding algorithm below:

 The presence of a rescued method body triggers the synthesis of a Java try…catch
construction, in which the operational body code is placed in the try-block and the 
recovery code is placed in the catch-block;

 If multiple attempts are specified, this triggers the synthesis of a Java while-loop 
surrounding the try...catch, and an associated attempts loop control variable;

 Reattempted operational body code must either return, or else set the attempts
control variable to zero, the loop exit condition, upon normal termination;

 Reattempted recovery code must decrement the attempts control variable after 
cleaning up and re-throw the exception when zero is reached; if not reattempted, it 
must simply re-throw the exception after cleaning up;

 Precondition checks are inserted at the head of the method, before the try-block; 
whereas postcondition and invariant checks are placed last inside the try-block, but 
before any return statement.

Notice how violated preconditions must now be handled by this method's caller, 
whereas violated postconditions and invariants fall under the protection of this 
method's own handler, satisfying the programming-by-contract principle.

4   Conclusions

In this paper, we presented a folding approach to generating self-monitoring software, 
which recovers from failure according to the programming-by-contract rule [11].  The 
monitored properties and related exception handlers are expressed in a modular way, 
in an abstract programming model.  The folding algorithms were developed as 
methods of the code generator classes, some of which are quite complex.  Whereas 
some steps could be encoded as pattern-driven rules, others depend mostly on the 
states of the generation process.  We believe that this kind of example should 
motivate interest in direct manipulation approaches to model transformation [7, 10], 
which outperform other approaches in terms of the ease with which they can produce 
quite sophisticated, multi-layered and idiomatic transformations.  Folding approaches 
to model transformation are clearly needed to develop strategies for combining partial 
and orthogonal abstract views of software systems, to advance the state-of-the-art in 
model-driven engineering.
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