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1. INTRODUCTION

Object-Oriented Programming (OOP) has attracted a large following in 
recent years.  Goals for the paradigm have included bringing 
computational implementations closer to abstractions (the HCI school, 
exemplified by Smalltalk [1]), partitioning spaces of concepts (the AI 
school, exemplified by CLOS [2]) and software engineering for reuse 
and extensibility (the SE school, exemplified by Eiffel [3]).  The present 
trend is away from type-free or dynamically typed languages and 
towards strong static typing, with some dynamic binding.  Attempts to 
provide formal typed models of OOP have been frustrated by the great 
flexibility in languages that permit unrestricted redefinition of class 
properties.  The principal difficulty lies in devising a typed functional 
algebra that conforms to the operational definition of OOP languages, 
which are usually described in completely different terms.

We take the view that types, rather than restricting the usefulness of 
an OOP language, provide an expressive framework for defining the 
protocols of classes of object.  Even languages that do not support 
typing start from a strong notion of an intrinsic set of attributes and 
operations that characterise a class.  Concept spaces are defined by a 
process of explicit differentiation of class attributes and operations.  
The fact that the resulting class hierarchy often fails to conform to a 
type-subtype hierarchy has been an embarrasment to OOP 
practioners favouring the strongly typed approach [4,5].  The reasons 
for this are complex, involving issues in inheritance and 
polymorphism, but which, for the moment, we shall summarise as the 
insufficient axiomatisation of abstract types when designing concrete 
class specifications.  It would seem self evident that a thorough-going 
type model for OOP would provide enormous benefits from the 
software engineering viewpoint.  Programs would be demonstrably 
type-secure and optimising compilers could exploit, wherever possible, 
the static binding of operations to objects.

In the rest of this paper, section 2 presents a rationale for relating the 
notions of class and type.  Section 3 reviews classic approaches to the 
mathematical definition of types.  Section 4 considers strong and weak 
inheritance and defines a space of inheritance schemes that conform 
to strict subtyping under monomorphism.  Section 5 introduces 
polymorphism to the model, contrasting various interpretations of 
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Strachey's original insight and proposing a scheme which subsumes 
parametric and some ad hoc polymorphism.  Section 6 presents the 
synthesis of the above arguments, assembling the full composite 
model.  We draw some conclusions on the future directions for 
strongly-typed object-oriented languages in section 7.

2. CLASSES, TYPES AND ABSTRACTION

The observation that most class-based OOP languages fail to conform 
to more mathematical treatments of types has led some to suggest 
that objects might have 'class' and 'type' independently [6].  This view, 
which is interesting, defines a universe of mappings from class 
hierarchies into type hierarchies.  The mappings are many-to-one, 
corresponding to the notion that several different class structures 
might satisfy the same abstract specification.  One demonstration of 
this is the choice facing the programmer whether to provide a new 
class by subclassing (extending previous classes by inheritance) or 
alternatively by composition (constructing a class from several 
component classes), the outcome of which results in markedly 
different inheritance graphs.  In such a case, the resulting class may 
end up with the same external interface (defined by the protocols for 
its methods) no matter what the implementation.  Generally, groups of 
classes acting in concert (which we might compare with the notions of 
a cluster [7] in CLU or system in Eiffel) may provide the same facilities, 
as a group, while factoring out behaviours in completely different ways 
among themselves.  It is therefore possible, in the general case, for 
relationships between individual classes and abstract types to be non-
homomorphic.  This view treats the class as a module of 
implementational convenience; which though formally lax does have 
advantages.  The decoupling of class from type enables, among other 
things, a maximum reuse of implementation through inheritance, at 
the expense of creating some idiosyncratic abstractions.  In most OOP 
systems, this economises on levels of indirection in structures and 
levels of nesting in remote calls.

We shall develop a different view here, which attempts to relate 
formally the notions of class and type, while preserving the possibility 
of differences in implementation.  We appeal to the philosophical 
argument, in the first instance, that classes and types aspire to the 
same goal, namely abstraction.  Any move away from this position 
seems to frustrate the aims of the HCI and AI schools in OOP, not to 
mention the security of the software engineers.  Smalltalk would 
appear to have advocated the 'implementable abstraction' to a 
generation of programmers more accustomed to arrays, variable 
counters and (just emerging) record types.  Flavors' [8] introduction of 
multiple inheritance provided much stronger support for the 
factorisation of common behaviour of objects; indeed one could argue 
that concept differentiation in AI is precisely the same task as that 
faced by designers of coerceable typing systems, a proposition 
recognised as important by the designers of CLOS [9] but not fully 
harmonised in its current specification.

A second philosophical argument is that type systems, as they are 
implemented in most strongly typed languages today, are far from 
complete in that they seldom venture to express relationships between 
general, abstract types.  To draw an ethical analogy, these languages 
are not so much pure as fortunate that they have not been tempted.  
The Algol-68 experiment [10] in implicit type coercion was a notable 
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exception, but proved to be theoretically so difficult that subsequent 
languages ceded this hard-won territory.  They cannot claim to hold 
the high moral ground; they have hardly entered the battle yet.  We 
are convinced that any language that seeks to implement a truly 
general system of abstract types will face exactly the same difficulties 
encountered in class factorisation in OOP.

The real enemy in OOP is the kind of salesmanship that recommends 
the solution to a new problem as 'simply' the extension of existing 
classes.  The argument of convenience is so beguiling that it masks 
the genuine difficulty in deciding how to provide a certain package of 
functionality in OOP.  Indeed, it runs the risk (with apologies to Cox 
[11], who meant this in a different sense) of being truly an evolutionary 
approach to the development of software systems.  Evolution implies 
growth and adaptation under highly localised constraints, no sense of 
destiny (unlike Dawkins' [12] biomorphs whose genetic pool is 
interpreted by design and whose survival is determined by long-term 
goals) and no sense of posterity.  Anyone who, like the authors, have 
progressed to depth five or more in the implementation of a 
hierarchical class library, only to find that the previous 'simple' 
extensions need to be reconfigured totally from the root to receive a 
new application, will appreciate that there is no substitute for good, 
abstract design.  Classes are things that should be wrestled with, 
argued over, survivors of the most rigorous scrutiny before they are 
accepted into libraries.  Like all good ideas that survive the test of 
time, they are painful to come by and leave many casualties on the 
way.  This is where OOP's strength in rapid prototyping really wins 
out; the point is never emphasised enough that most of the current 
adaptations are meant to die out.

3. TYPES, SETS AND AXIOMS

Types may be considered minimally as schemes for interpreting bit 
strings and their behaviour in a machine.  Some argue strongly [13] for 
their separate existence apart from computation, a view which we can 
only endorse, since it supports our view that natural classificatory 
activity is related to typing.  Reynold's argument here is that types are 
not constructed on sets of values, which would tie them too 
specifically to one domain in computation; rather they are syntactic 
disciplines for enforcing levels of abstraction.  The same argument was 
made earlier by Morris [14], who showed that in principle a type can be 
represented, or implemented by a variety of sets; in this sense a set of 
values is insufficient to determine a type.

The designers of the language Russell [15,16] favoured types as values in 
a different sense, namely as elements of a universal Scott domain.  
This well-known construct [17] for avoiding Russell's paradox permits 
the admission of recursion, the admission of data types themselves as 
values in the same value-space through the notion of a retract, a 
function f : D  D such that f = f.f and, by using retracts as the single 
operation for interpreting values in the universal space, a final algebra 
semantics for the typed lambda calculus.  This was elegant and 
convenient, both for solving the typing problems associated with 
recursion and providing by the same token a rationale for treating the 
types so constructed as values in the semantics of the language, a 
feature upon which they constructed a model of polymorphism.
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Russell treats a data type as a set of operations specifying an 
interpretation of values of a universal value space.  This definition 
describes in more detail what it means to be an abstraction, drawing 
heavily on the algebraic specification approach of Guttag [18,19] which is 
still generally practised.  By appealing to the retract again, the 'types 
as sets of operations' view can be shown to map onto the 'types as sets 
of values' view, thereby demonstrating the greater generality of the 
former view.  This can be exemplified by the following inadequate 
definition of a simple ordered type by the supposed enumeration of 
the values which are members of the type:

SimpleOrdinal = {0, 1, 2, 3 ... }.

Another perfectly legitimate (and still indadequate) attempt at a 
description of the simple ordinal type might be:

SimpleOrdinal = {a, b, c, d ... }.

More precisely, there is no such thing as the set of simple ordinals; 
rather the type SimpleOrdinal denotes an abstraction that can be 
realised by a variety of carrier sets (cf Reynolds).  The more common 
approach is to define SimpleOrdinal as the abstract type over which 
the operations First() and Succ() are meaningfully applied:

SimpleOrdinal = ord . { First :  ord;
Succ : ord  ord ... }.

This definition is both more general and more precise than our 
previous two attempts.  Note that we are using a notational 
construction to describe the apparent recursive definition of the type 
SimpleOrdinal.  The token ord is a placeholder for the type, awaiting its 
full definition.  Such definitions are usually regarded as being 
existentially quantified.  It would therefore not matter what we called 
this token, since the meaning of the type would be the same.

It is commonly accepted that this kind of semantics for abstract data 
types is still insufficient.  Consider the following applications of 
operations to instances of the type:

Succ(1)  1
Succ(b)  a

which still yield valid results according to the function signatures.  
The relationships that hold between the instances of type 
SimpleOrdinal are inadequately captured.  For this, logical axioms are 
necessary, so that we could write assertions such as:

x.SimpleOrdinal(x)    (Succ(x)  x)  (Succ(x)  First()).

This axiomatisation treats the type as a predicate over its instances, 
where the type is further constrained by the relationships that hold 
between (some of) its member functions.  We shall therefore treat the 
data type as a set of operations, that are constrained by a set of axioms.  
Both the functional-algebraic and logical-axiomatic parts are 
necessary to complete the specification of an abstract type.

Of course, in some contexts we do need to go further and require a 
concrete type rather than an abstract one:  that is, one in which a 
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specific carrier set (viz a set of instances, as above) has been chosen, 
rather than any suitable carrier set being acceptable.  Where concrete 
types are required, however, there will generally be a 1-1 mapping 
between the abstract types being specified and the particular concrete 
types implementing them (as above).  Confusion is unlikely to arise, 
provided that we are consistent in working either in terms of the 
abstract types or in terms of the concrete ones.

4. INHERITANCE AND SUBTYPING

In treatments of inheritance, a contrast is usually drawn between 
essential and incidental inheritance [20], or strict and non-strict
inheritance [21].  Whatever the nomenclature, the strong variety of 
inheritance implies at least a sharing of class specification, which we 
would want to include the class's functional interface and class 
axioms by which all subclasses should be bound.  The weak variety of 
inheritance implies only implementation sharing (opportunistic reuse 
of code and declarations for storage allocation).  The strong kind 
usually occurs with some implementation sharing, since most 
languages strive to map in a fairly straightforward way from abstract 
datatypes onto their concrete counterparts.  Some writers prefer to 
segregate the two varieties, while others allow the stronger to 
subsume the weaker, to varying degrees.

Anyone who has wondered how this can affect system design should 
observe, in the geometrical shapes described in Figure 1, that the 
hierarchy on the left is motivated from the viewpoint of domain 
analysis, whereas the hierarchy on the right is the result of 
incremental software development.  From the abstract viewpoint, 
rectangles and triangles are kinds of polygon.  Functions defined for 
polygons, such as translate, rotate, or reflect are valid for all subtypes, 
in the sense that any instance of TRIANGLE could be substituted for 
any instance of RECTANGLE in programs using only POLYGON's 
functions.  In contrast, the concrete parameterisation of a rectangle by 
the two cartesian point objects that make up its opposing corners 
leads to a natural extension of three points for a triangle and n points 
for a n-vertex polygon.  Readers who find the latter alarming should 
be aware of the widespread practice of this kind of extension in OOP 
(particularly Smalltalk).

POLYGON

TRIANGLE RECTANGLE

RECTANGLE

TRIANGLE

POLYGON
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Figure 1: Contrasting Strong and Weak Inheritance

Such obvious and gross opportunistic development clearly invalidates 
any subclass-subtype homomorphism; however the real temptation to 
type-constrained OOP comes at a subtler level.  Eiffel, for example, 
strives to maintain hierarchies of classes corresponding to efficient 
implementations of properly axiomatised abstract types.  One such 
subtree reflects our preferred design for polygonal shapes from Figure 
1.  Eiffel also has orthogonal exporting and inheritance mechanisms.  
This means that a superclass may export a routine that is 
subsequently hidden from clients of its subclasses.  One example is 
where the class POLYGON's routine for adding to its vertices is 
subsequently hidden in RECTANGLE (which obviously cannot add to 
its vertices).  The result is a kind of 'selective inheritance' of exported 
routines, which is clearly at variance with the notion of types being 
defined by their functions.  This is not so much an instance of the 
recently popular 'type failure' problem [4], as an example of 
implementation creeping into abstract design.  Eiffel's POLYGON tries 
too hard to be both an abstract class for all closed shapes and a 
means of implementing polygons with an arbitrary number of vertices.  
While such criticisms are easy to make, the issues are extremely 
difficult to resolve practically, since enforcing proper abstraction 
inevitably leads to a proliferation of classes.

We shall be making the argument that, where choices exist in how to 
provide a package of functionality in a given set of terminal classes, 
then a maximum priority should be given to proper analysis of the 
domain.  This will typically result in a greater trend towards software 
reuse by composition and a reservation of inheritance to denote strict 
subtyping relationships.  This trend can only be strengthened by an 
approach based on axiomatising class specifications, a theme to which 
we shall return.  First, we investigate under what conditions 
inheritance may conform to subtyping.

Our intention is that the class-subclass relationship can be shown to 
correspond, under certain restrictions, to a type-subtype relationship.  
Cardelli and Wegner [22,23] have developed a simple model of classes-as-
types, based on the notion of record subtyping.  Later, we shall show 
that their scheme applies only to monomorphic types; or else to 
polymorphic but non-recursive types.

They, along with others [24,25], formally treat an object as a record 
whose components are functions representing methods.  This model 
also provides a simple transparent interpretation of access to storage 
as the invocation of nullary functions delivering a result, ie:

CartesianPoint = { x : Integer; y : Integer }

is viewed as a record:

CartesianPoint = Rec { 
x :  Integer;
y :  Integer
}
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where x and y are nullary functions.  In this notation, reflecting the 
practice in OOP, the point-instance is not included as an argument to 
x and y since these functions implicitly return unique values for the 
object represented by the whole record.

In this simple algebra, the assignment of values to objects is side-
stepped by treating all modifications as returning new records, 
thereby avoiding the issue of side effects:

CartesianPoint = Rec pnt . { 
x :  Integer;
y :  Integer
moveBy : Integer x Integer  pnt;
equal : pnt  Boolean
}

Here, under the existential quantification of the token pnt, the 
moveBy-operation is viewed as returning a new object of the same 
type; the equal operation is defined to accept another argument of the 
same type.

Cardelli identified several important rules for record subtyping, three 
of which are summarised below.  In this notation, 'A  B' denotes an 
inclusive subtype relationship where A is the same type, or a proper 
subtype of B.  The same semantics apply whether A is an immediate, 
or eventual subtype of B in a chain.

(1) Basic Record Subtyping Rule

{ x1:s1, ... xk:sk, ... xn:sn }    { x1:s1, ... xk:sk }

This rule says that if a record has fields xi in the types si, i = 1..n, 
then in particular it has fields xi in the types si, i = 1..k.  Therefore 
any operation that can be meaningfully applied to records of type

{ x1:s1, ... xk:sk }

may also be meaningfully applied to records of type

{ x1:s1, ... xn:sn }.

In consequence, a record subtype may add monotonically to the fields 
(or functions) provided by its supertype; ie it may never delete any.  
This rule describes specialisation by extension; but fails to account for 
the possibility of overriding inherited functions with more specific 
versions.

(2) Covariance Rule for Function Result Types

          s1  t1, ... sk  tk

{ x1:s1, ... xk:sk }  { x1:t1, ... xk:tk }

This rule says that subtyping is preserved between records whose field 
types enter into a subtype relationship.  If fields are viewed as nullary 
functions, then this rule applies to the result type of the functions.  
This means that a record subtype may specialise monotonically in the 
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result types of its functions; ie it may never generalise in these, with 
respect to its supertype.

Rules 1 and 2 may be combined by imposing rule 2's restrictions on 
the first k fields of an extended subtype record { x1:s1, ... xk:sk, ... 
xn:sn }.

(3) Contravariance Rule for Function Argument Types

   s'  s   t  t' 

s  t    s'  t'

The rule for function subtyping [26,27] says that for a function s  t to 
be a subtype of another function s'  t', then the result types must 
obey the covariant rule (as above) but the argument types must be 
contravariant.  This is indicated in the transposition of notation in the 
hypothesis s'  s with respect to the terms in the rest of the rule.  This 
means that a record subtype may generalise monotonically in the 
argument types of its functions; ie it may never specialise in these, 
with respect to its supertype.

So far, we have distinguished types only by their function signatures.  
As we observed above, this fails to capture the full semantics of types.  
America [28] notes, for example, that signature information alone is not 
sufficient to distinguish a STACK from a QUEUE.  Axioms are needed 
to describe the LIFO property of STACKs and the FIFO property of 
QUEUEs with respect to their otherwise identical push and pop
signatures.  From the observation that an object can be considered as 
a machine with a state and behaviours (Meyer [3]), the role of axioms 
is to ensure the integrity of an object's state and the correct 
functioning of its behaviours.

A consensus view is that axioms may be classified under the headings 
data type invariants (Hoare [29]), pre-conditions and post-conditions
(Jones [30]).  Invariants describe the permanent semantic properties of 
a type, such as the intrinsic ordering of a sorted list.  Post-conditions 
describe time-varying semantic properties of a type and ensure the 
correctness of an object's state after the execution of one of its 
behaviours, such as the presence of an element in a set after it has 
been added.  Pre-conditions are a consequence of partial functions 
which cannot be applied to all members of the domain, such as empty 
stacks to which the pop and top functions may not strictly be applied.

Finding ourselves in agreement with America and Meyer, we include 
the following subtyping rules for axioms, which mimic in their form 
the rules given above for functions.  In this notation, 'A  B' denotes 
an entailment relationship such that satisfying axiom A automatically 
entails the satisfaction of axiom B.  B may either be equal to A, or 
some less stringent condition whose satisfaction is entailed by that of 
A.

(4) Basic Axiom Subtyping Rule

{a1, ... ak, ... an}inv  {a1, ... ak}inv

This rule says that if a type satisfies axioms ai, i = 1..n, then in 
particular it satisfies axioms ai, i = 1..k.  Therefore any type whose 
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invariant properties satisfy all n axioms will necessarily satisfy the 
first k axioms.  This means that a subtype may add monotonically to 
the set of invariant properties of its supertype; ie it may never remove 
axioms.  By the same reasoning, a subtype may add monotonically to 
the set of postconditions on functions inherited from its supertype.

(5) Covariant Entailment Rule for Invariants and Postconditions

          b1  a1, ... bn  an

{b1, ... bn}post  {a1, ... an}post

This rule says that subtyping is preserved between types whose 
invariant and variant semantic properties enter into an entailment 
relationship.  If the satisfaction of each axiom ai is entailed by the 
satisfaction of the corresponding bi then the subtype satisfies at least 
all the axioms of its supertype.  This means that a record subtype's 
invariants and postconditions may become monotonically stricter; ie 
they may never become less strict than those declared in the 
supertype.

Rules 4 and 5 may be combined by imposing rule 5's entailment 
restrictions on the first k axioms of an extended set {a1, ... ak, ... 
an}post.

(6) Contravariant Entailment Rule for Preconditions

        b1  a1, ... bn  an

{b1, ... bn}pre    {a1, ... an}pre

This rule says that subtyping is preserved between types whose pre-
conditions enter into a contravariant entailment relationship.  This is 
indicated in the reversal of the entailment symbol '' with respect to 
the subtype symbol ''.  This means that a record subtype's 
preconditions may become monotonically less strict; ie they may never 
be stricter than those declared in the supertype.

These rules define a space of possible treatments of inheritance which 
may be seen to preserve strict notions of type in the language 
concerned.  At the most stringent end, a language might be so 
committed to the uniqueness of types that it forbids inheritance 
altogether, as in CLU (Liskov [7]).  Inheritance is such a powerful 
notion, however, that abandoning it seems a waste of expressive 
power, a failure of nerve.  Inheritance is now correctly recognised as 
the single unique feature of all truly object-oriented languages [31]; 
CLU might be described more accurately as a 'class-based' language 
[32,33].  The greatest single formal advantage inheritance offers to 
programming languages is the ability to represent relationships 
between generalised, abstract types.

A second possibility is to permit only the inheritance of abstract 
specifications.  Emerald [34] is one such language in which 
implementation reuse is by composition.  Emerald supports an 
attractive intuitional model where the specification of a composite 
class declares the types of component necessary to complete it.  Type 
conformity among alternative component implementations is 
supported.
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A third possibility is to permit implementation sharing where this does 
not invalidate type conformity.  Such an approach maximises the 
benefits of the 'open-closed' principle (Meyer [3]) whereby completed 
classes are nonetheless open to further modification through 
subclassing.

The degree to which an object-oriented language treats inheritance as 
a kind of subtyping relationship corresponds to the progressive 
introduction of the rules described above.  The first rule describes 
those languages that forbid explicit overriding but permit extensions.   
The second rule describes those languages which allow some 
redefinition of attribute types and function results according to a 
restricted scheme, such as Eiffel.  A language which obeys the third 
rule is Trellis/Owl [35]; many languages, including Eiffel, break it.  This 
third result is counter-intuitive for OOP: it states that methods which 
take additional formal arguments must generalise, rather than 
specialise the typing of these when they are redefined, if subtyping is 
to be preserved in the subclass.  Such a facility is almost useless in 
practice.

Eiffel is one of the few languages which gives first-class status to 
axioms.  It treats them as executable specifications checked at run-
time.  Eiffel obeys our rules 4 to 6, justifying the covariant and 
contravariant entailment rules in terms of Meyer's 'programming by 
contract' metaphor.  All services that are guaranteed by one class 
must also be guaranteed by its descendent classes, therefore the post-
condition on which the success of a service depends must not be 
weaker, but may be stronger.  This is analogous to a supplier agreeing 
to deliver a product to a better specification than was demanded by 
the client.  On the other hand, all messages which one class 
understands must also be understood by its descendants, therefore 
the pre-condition on which acceptance of a message is contingent 
must not be stronger, but may be weaker.  This is analogous to a 
client agreeing to accept terms less strict than those originally drawn 
up with the supplier.

So far, we have only covered the relationship between inheritance and 
subtyping for simple monomorphic record types.  The model described 
above is still inadequate to account for the operational behaviour of 
object-oriented languages in the context of polymorphism.  We 
address this issue later.

5. CLASSICAL AND OBJECT-ORIENTED APPROACHES TO 
POLYMORPHISM

Polymorphism is a mechanism for expressing type compatibility.  The 
earliest references to the term come in the theoretical writings of 
Strachey [36].  Here and in his subsequent work [37,38] he recognises two 
kinds of polymorphism which he calls parametric polymorphism and ad 
hoc polymorphism.  Most of the subsequent research into polymorphic 
types has stemmed from Strachey's insight and uses his terminology, 
although we suspect that different authors take slightly different 
interpretations of Strachey's original observations.  We shall, no 
doubt, do likewise below.
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In Strachey's terms, a parametric polymorphic function is one that, 
upon different occasions, accepts arguments of different types and 
behaves in a semantically uniform way on each call, notwithstanding 
the type of the arguments supplied.  The idea is that some functions 
perform identical, generic operations, no matter what the type of their 
argument(s).  This kind of polymorphism is known as genericity in 
languages like Ada and Eiffel.

By contrast, an ad hoc polymorphic function is one that, upon different 
occasions, accepts arguments of different types and may behave in a 
semantically non-uniform way on each call, depending on the type of 
the arguments supplied.  The idea is that some function names may 
be used to invoke different operations, appropriate to the type of their 
argument(s).  This kind of polymorphism is widely known as 
overloading, from the ability to overload names with multiple 
meanings.

We are insisting here on the notion of semantic uniformity as the 
prime criterion for distinguishing between the two kinds of 
polymorphism.  Reynolds ([13], p 519) only appears to be taking the 
most extreme interpretation of Strachey when he declares that 

'a parametric polymorphic function behaves in the same way for 
all types, while an ad hoc polymorphic function may have 
unrelated meanings for different types.'

The notion in question is what is meant by 'all types'.  We can only 
conceive of a few programming operations to which this literally 
applies: for example, declaration of, assignment to and obtaining the 
address of a static variable; or any operation that treats with a datum 
as though it were merely a bit-string in computer memory. 

If we take the usual interpretation of Strachey's definition, 'all types' 
refers to the arbitrary typing of some primitive element out of which a 
new, generic type is constructed.  Parametric polymorphic functions 
may then be defined for the generic type which behave in the same 
way regardless of the type(s) out of which it is constructed.  The 
ubiquitous example cited here is the notion of a Stack.  Whether the 
Stack contains integers, reals, characters or any other arbitrary type 
of element, the operations push, pop, clear and top have the same 
semantics; but these operations may of course only be applied to 
objects that conform to the generic type Stack.

Tennent [39] developed the notion of a formal type parameter (from 
which, intuitively, we get the term parametric), starting from a set of 
principles for the design of programming languages.  These principles 
include procedural abstraction, completeness and correspondence.  
Procedural abstraction demands that any sequence of in-line 
statements can be abstracted over and made into a procedure, called 
from any part of the program.  Completeness demands that all data 
types are first-class citizens (Strachey's term) in a language.  
Correspondence demands that any in-line declaration can be 
parameterised with no loss of uniformity or expressive power.

It is a short step from here to propose that types themselves can be 
abstracted over and parameterised.  An even simpler example, using 
Eiffel syntax, illustrates this:
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class ARRAY [T] export
lower, size, upper, item, put ...

feature
...
item (i : INTEGER) : T is

-- value at array index i
...
put (value : T;  i : INTEGER) is

-- assign value to array at index i
...

end -- class ARRAY [T]

The element-type of the array has been abstracted over and 
parameterised.  It is represented by the formal type parameter T.  Any 
type which eventually instantiates the parameter T must be the same 
type for all T in the declaration.  This means that a static type checker 
could ensure that a call of the form:

j : INTEGER;
string1 : ARRAY [CHARACTER];
...

string1.put (j, 3);
...

would be flagged as an error at compile time, since it attempts to 
instantiate T simultaneously with the types INTEGER and 
CHARACTER.

We prefer to view generic types like ARRAY [T] as unary type 
constructors, rather than actual types.  This is exactly how such a 
declaration would be treated in Milner's approach to polymorphism [40] 
adopted by Burstall et al for the language Hope [41].  A Hope 
polymorphic function declaration such as

map : (alpha  alpha) # list alpha  list alpha;

is considered to contain incomplete type information; the label alpha
is a syntactic entity abstracting over all types in a static fashion.  The 
map function is not fully specified until the variable parts are fully 
specified.  This occurs when the compiler encounters a static call to 
the function, at which time the various arguments are examined and 
their intended use verified.  This is done by propagating the types of 
the actual arguments into the function's expressions to check for 
consistency.

The strict form of parametric polymorphism insists that the type 
parameter can be satisfied by any actual type.  This is seen as 
important to preserve the independence of the generic type's 
operations.  Such a view rules out the possibility of constructions like 
SORTED_LIST [Q  COMPARABLE], where Q is a bounded formal type 
parameter ranging over all those types which have an intrinsic 
ordering defined over them.  We take the view that this generalisation 
is a valid one.  We shall assume, for the moment, that bounded type 
variables are generally admissible.

Our argument here centres on two points.  Firstly, the notion of 
independence is relative to the level of abstraction at which you view 
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the generic type.  The closer you get to the implementation, the more 
dependent it is seen to be.  For example, a declaration ARRAY [T]
needs to know how large in bytes T is, in order to allocate arrays, or to 
compute offsets into arrays.  Secondly, the general form of parametric 
polymorphism may be shown to preserve the important property of 
semantic uniformity.  In our example, we can express this as a 
dependency relation of the form:

The function Insert behaves in a semantically uniform manner 
over all possible instantiations of SORTED_LIST [Q 
COMPARABLE] iff all ordering functions (such as < and >) 
behave in a semantically uniform manner over all permissible 
instantiations of Q  COMPARABLE.

By contrast, an overloaded function name may come to have unrelated 
meanings for different types.  A function denoted by the plus-sign '+' 
might add integers and reals, perform OR on boolean values, compose 
functions,  concatenate two strings and append two lists.  There is no 
reason why these operations should be pairwise semantically related.  
The overloading rule in C++ [42] simply requires two static occurrences 
of an overloaded function name to be distinguishable on the basis of 
either the number, or types of arguments supplied.  The compiler will 
ensure that the appropriate run-time code is inserted for those 
arguments and types.

We prefer to view overloading as defining a union of types.  From this, 
we determine that overloading is undisciplined in two ways.  Firstly, it 
allows the arbitrary extension of the union type.  The union is 
extended every time a function, defined over a new type, is added to 
the overloaded name.  The notion of an unbounded type seems at 
variance with the notion of typing as a classificatory activity.  
Secondly, there is no guarantee that semantic uniformity will be 
preserved pairwise across the set of functions denoted by the 
overloaded name.  Addition and appending clash on at least one 
axiom, namely the commutativity of arithmetic.

These properties have led many to ban any kind of overloading from a 
type-consistent treatment of polymorphism.  Unrestricted overloading 
is clearly too powerful a mechanism.  However, if we examine the use 
to which overloading is put in computer languages in general, we often 
find a surprising degree of semantic consistency within overloaded 
names.  This is in large part due to the designer's intuitions, since it is 
not enforced by the language.

Overloaded names may happen to contain subsets of functions for 
which a common semantics may be constructed.  In our example 
above, we might define axioms for addition, common to reals and 
integers, calling these the properties of the polymorphic type 
NUMBER; equally we might define axioms for appending, common to 
lists and strings, calling these properties of the polymorphic type 
SEQUENCE.

We wish to abstract out and constrain the polymorphic type of object 
over which some commonality in names and behaviour is defined.  In 
this respect, we share the goals of the designers of Russell [15, 16], 
Alphard [43], Euclid [44] and CLU [7].  Accordingly, we require a 
bounded polymorphic type which enforces a level of abstraction over 
the common features of its subtypes and provides for them a 
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restricted type-compatibility.  We permit REAL and INTEGER to be 
subtypes of polymorphic NUMBER; likewise LIST and STRING are 
subtypes of polymorphic SEQUENCE (cf Common Lisp).  Of course, we 
have not yet determined what kind of mathematical modelling would 
be adequate to capture the semantics of such a polymorphic type; at 
this point we are merely postulating that such types exist.

In some cases, successful type factorisation will reduce the need for 
overloading.  For example, a set of comparison functions defining a 
SIMPLE_ORDINAL polymorphic type might be implemented over binary 
values one byte long and therefore be directly applicable to instances 
of CHARACTER and SMALL_INTEGER.  Generally though, bounded 
polymorphic types will only be able to express the functional-algebraic 
interface and axiomatic specification for operations.  In such a 
scheme, the concrete types REAL and INTEGER will almost certainly 
have separate, overloaded functions for addition; likewise the concrete 
types STRING and LIST for appending, as an almost inevitable 
consequence of their implementation differences.

A bounded polymorphic type describes behaviour that has a common 
semantics for all its subtypes.  This provides a rationale for permitting 
some overloading in a type-consistent treatment of polymorphism.  
Any subtype is free to re-implement features, provided that it satisfies 
the functional and axiomatic algebra for subtyping.

Our discussion begs the question whether the kind of type-consistent 
polymorphism we are proposing for object-oriented languages falls 
into the category of parametric or ad-hoc, in Strachey's terms.  In fact, 
it is something different again, but which bears similarities (on 
occasion) with both of these views.  We find it helpful here to consider 
separately the mechanisms for implementing polymorphism in a 
programming language and the mathematical machinery necessary to 
describe such polymorphism formally.

From the implementation viewpoint, the distinction between 
parametric and ad-hoc is often signalled by the ability to define 
literally one generic function operating on a family of related types, as 
against a need to overload the function name with several different 
definitions.  A true generic function accesses only that part of a data 
structure that is common to the entire family of types.  Thus, the 
parametric polymorphism in typed functional languages based on a 
common list-cell representation for all kinds of typed lists bears a 
strong similarity with the inheritance-bounded polymorphism in 
object-oriented languages based on the shared record-structure 
included in all descendants.  Overloading, by contrast, is seen as a 
necessary consequence of data types having a mutually exclusive 
representation.

However, concentrating on the mechanisms whereby polymorphism is 
provided in a language can sometimes cloud the issue.  For example, 
Ada's generic packages must be explicitly instantiated before use and 
a compiler may therefore duplicate all generic functions for each 
separate instantiation in the target code.  In consequence, genericity 
is provided by a kind of implicit overloading:  generic functions do not 
really exist since they are expanded by the compiler.

Considering polymorphism from a more mathematical viewpoint, the 
only important concern is the notion of abstraction over types.  If we 
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accept that inheritance-bounded polymorphism (sometimes known as 
inclusion polymorphism, a phrase coined by Cardelli and Wegner in 
[23]) follows some kind of systematic pattern of relationships between 
types, then we would expect to be able to express this using one or 
more type parameters.  A key goal is to uncover the role played by 
type parameters in the object-oriented approach.

In the traditional approach to parametric polymorphism, a 
polymorphic type is declared by specifying the common parts of the 
structure and abstracting over the differences that remain (such as 
the element-type in a list or array).  In the object-oriented approach, 
the opposite is true.  A class defines a space of possible types bounded 
by the inheritance hierarchy and is, in this sense, an incomplete type 
specification.  A class abstracts over the shared specification of all its 
potential descendants.  Several contrasts with the traditional form of 
parametric polymorphism may be observed.

If we consider that a polymorphic type represents an incomplete 
specification of a family of types sharing some structure and 
behaviour, we may note firstly that the type parameter ranges over the 
unknown, disjoint parts of structure in the traditional form; whereas 
it ranges over the known, common parts of structure in the object-
oriented form.  Secondly, the type parameter is typically 
unconstrained in the traditional form; whereas it is necessarily bound 
by a partial specification in the object-oriented form.  Finally, the 
parameter is explicit in the traditional form, whereas it is usually 
implicit in the object-oriented form.  We might also add that the free 
generic type parameters in typed functional languages, Ada and Eiffel 
exploit more the idea of structural equivalence, an implementation 
concern, whereas the bounds imposed by inheritance in the object-
oriented languages exploit more the idea of behavioural similarity, 
indicating a predominant concern with specification.

We may now define a space of languages and operations by their 
incorporation of some or all of five different kinds of polymorphism.  
We shall refer to these kinds of polymorphism more from a 
mathematical modelling perspective than according to the ways in 
which they are commonly constructed in programming languages:

(1) Universal Polymorphism:  is exhibited by type-free languages 
and those operations that are applicable literally to any type (such as 
declaration and assignment).  Universal type parameters may range 
freely over all types; and for each type in question the type parameter 
abstracts over the whole extent of the type.

Our use of the term universal is distinct from the sense in which it is 
employed by Cardelli and Wegner (op cit) where they use it to classify 
traditional parametric and object-oriented inclusion polymorphism 
apart from the more ad-hoc varieties of name overloading and type 
coercion.  Their choice of term is motivated by the idea that the set of 
types which may eventually instantiate the parameter is potentially 
infinite.  We agree with this assertion, yet prefer to use universal to 
denote a type parameter which ranges freely (unlike inclusion) over 
the whole extent (unlike parametric) of the abstracted types.

(2) Bounded Polymorphism:  is a generalisation of the above, which 
defines bounded type parameters ranging over some set of types 
which share a subset of their abstract specification.  Again, the type 
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parameter ranges over the whole extent of each type in the family of 
types; but unlike the universal parameter postulated above, it may 
only be instantiated by types satisfying certain constraints (the bound
in question).

This is the kind of polymorphism exhibited originally by the language 
Russell [15, 16] whose explicit type parameters could only be satisfied 
by types meeting the constraints imposed by a set of function 
signatures.  Russel's approach went hand-in-hand with a view of 
types as values which could be inspected like any other value.  
Strictly, the run-time inspection of types is only necessary in 
languages which permit dynamic binding of functions to arguments.

Object-oriented languages exhibit this kind of polymorphism 
operationally through the inheritance of common operations; or else 
through the planned overloading of a family of functions which satisfy 
a common set of axioms, usually because they descend from a 
common abstract or virtual function prototype.  The type parameter is 
usually implicit, ranging over the full extent of each type in some 
family of types.  The bound on the parameter is expressed as a node 
in a type hierarchy, whose purpose as an abstract type is to confer its 
specification upon all its descendent nodes.  As a result, this kind of 
polymorphism has also been referred to as inclusion polymorphism 
since it may yet bear a direct relationship with inclusion in the single-
sorted algebras [47].

Again, we use the term bounded in a slightly different sense from that 
found in Cardelli and Wegner, where the term is used to describe the 
constraints on a particular type capable of receiving objects of more 
than one type.  We assert that the bounds apply to a type parameter 
(ie a higher-order entity) whose self-referential and recursive structure 
must also be preserved when it is instantiated by actual types.

Finally, our term bounded polymorphism is more general than 
inclusion, in that it may be used to describe bounded parameters in 
languages without inheritance and which therefore do not 
(necessarily) support systematic sets of relationships among partially-
described types.

(3) Universal Construction:  is the creation of type constructors 
whose element type(s) are parameterised.  Type parameters therefore 
abstract over only a part of the extent of the whole constructor 
concerned, but are allowed to range freely over all types as candidates 
to complete this part.  This is what other authors have traditionally 
referred to as parametric polymorphism.  Such a scheme is provided in 
strongly typed functional languages such as Hope, Standard ML and 
Miranda.  This kind of polymorphism is known as genericity in Ada 
and Eiffel, where the type-constructor is known as a generic type.  The 
term generic arises from the fact that the type-constructor may be 
used to create a family of semantically related types; the complete 
family is constructed as the result of instantiating the formal 
parameter(s) by all possible actual types.

As we have observed above, the existence of the universal parameter is 
only possible because certain properties are required to be possessed 
by all types.  This aspect is usually implicit, although it is expressed 
explicitly in Ada in the notion of attributes for types.
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The combination of universal construction and bounded 
polymorphism may lead to interesting complexities.  In a strongly 
typed functional language which only has the former variety, the 
instantiation of the parameter in LIST [T] by an actual type P typically 
restricts the elements of such a list exclusively to objects specifically 
of type P.  In strongly typed object-oriented languages that have both 
varieties of polymorphism, the instantiation of the parameter is 
considered to impose a further bound on the list element-type such 
that it is assignment-compatible with all those objects whose type is P
or a proper subtype of P.  Among other things, this allows the 
construction of heterogenous lists, whose elements may arbitrarily 
belong to different subtypes of P, since they all satisfy the bound 
imposed by P.  We believe that this combination therefore is the formal 
equivalent of bounded construction, described below.

(4) Bounded Construction:  is a generalisation of the above, which 
defines type constructors whose element types are parameterised in a 
restricted way, such that all those types satisfying the bounded 
parameter share a subset of their abstract specification.  This is the 
kind of polymorphism present in Alphard, CLU and all languages 
committed to a view of type-identifiers as syntactic entities rather than 
full values in the Russel sense.  Bounded parametric polymorphism 
was introduced explicitly in the second major released version of Eiffel 
[45] where it is known as constrained genericity.  Here, the family of 
types is constructed as a result of instantiating the formal 
parameter(s) by all those actual types that are subtypes of the bound.

Bounded construction is a generalisation in the sense that it permits 
the declaration of a larger set of type-constructors than universal 
construction, since the additional constructors may now be seen to 
depend on some property of their element-type(s), something which in 
theory was excluded before.  Constructors such as SORTED_LIST [T 
COMPARABLE] are now possible, where the bound on T is expressed 
as another type whose operations any type instantiating T must at 
least supply.  The instantiation of the parameter leads to homogenous 
lists of a constrained type in functional languages; and may still lead 
to heterogenous lists in object-oriented languages.

(5) Arbitrary Union:  is the free union of types where these share no 
commonality that can be axiomatised; or share operations for which 
the functional or axiomatic specifications clash.  This accounts for the 
remaining applications of overloading not covered under bounded 
polymorphism.

This kind of polymorphism may also cover certain styles of explicit 
coercions between types provided in some languages.  Arbitrary 
coercion may, or may not, lead to sets of types being related which 
otherwise would have mutually exclusive semantic interpretations.

All kinds of polymorphism except the fifth variety may be incorporated 
in a type-consistent treatment of class inheritance.  Any language only 
need implement varieties 2 and 4, since varieties 1 and 3 are limiting 
cases of these, respectively, where the bound is drawn at the root 
node of the type hierarchy in order to encompass all types.

This is still not the whole story, however.  We shall want to examine 
further the role of the type parameter, especially where it abstracts 
over the whole extent of a type, in the context of inheritance and 
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polymorphism.  In particular, we shall want to revise again the 
algebra devised in section 4 above to encompass parameterised 
recursive and re-entrant structures.

6. INTERACTIONS BETWEEN TYPES, INHERITANCE AND 
POLYMORPHISM

The first thing to consider in our composite model is the practical 
effect of requiring inheritance to conform to behavioural subtyping.  
What models of inheritance are sufficient to handle a fully axiomatised 
and abstract treatment of types?

If you consider the domain of abstract types as an infinitessimally 
divisible continuum reaching from the most general to the most 
specific, then particular types are represented by fixed points in this 
domain.  A polymorphic type is not a fixed point, but rather a sub-
space in this domain, bounded by an upper limit; this limit is a fixed 
point representing the most general type that can satisfy the bound.  
There is a type-compatibility relationship between polymorphic types 
and all fixed points falling within their bound.  There is also a very 
similar relationship between abstract types and concrete types which 
implement them; but for the moment we will focus on abstract types.

Now, there are many possible selections of fixed points within the type 
domain which may prove to be of practical use.  There is no 
requirement for any particular type to have a 'canonical' status or an 
a priori right to be represented, provided that the correct 
homomorphisms exist between the fixed points selected for use as 
specific types and those used to represent upper bounds on 
polymorphic types.

However, it is consistent with our approach to demand that any new 
functionality be introduced at single fixed points in the domain.  If 
this were not so, the fixed points selected by the programmer would 
represent sub-optimal expressions of type for the task in hand.  The 
consequence of this is that there should be no duplicate introduction 
of functions in an optimal, type-consistent inheritance graph.  In an 
object-oriented language that adheres to this formal requirement, 
functions are typically introduced at one class in the hierarchy and 
are directly applicable to all eventual descendants.  Where this is not 
physically possible, due perhaps to a mutually exclusive 
implementation among the descendent classes, then a full axiomatic 
specification for some set of overloaded functions may be introduced 
at a common (partly) abstract ancestor class.

Immediately, we can establish that this requirement cannot be met in 
languages that only have single inheritance, or a tree-like 
specialisation hierarchy.  An example of this is exhibited in the 
Collection hierarchy in Smalltalk/V [46], in which the add: method is 
implemented variously for sets, bags, extrinsically ordered collections 
and intrinsically sorted collections.  The common semantics of add:
require the target collection to be extensible and to ensure that an 
element is present after it is added.  However, the single inheritance 
scheme of Smalltalk/V chooses to partition the space of collections on 
the basis of whether the collection can contain multiple occurrences of 
an element, or whether the collection is indexable.
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Smalltalk/V has no way to express the commonality of an extensible 
collection.  In practice, Smalltalk/V defines a protocol for add: for all 
collections, but derails the application of this in the non-extensible 
classes (formally the equivalent of deleting a function).  To obtain a 
distinction between fixed and extensible collections would require 
either a different partitioning of the hierarchy (with similar attendant 
problems), or an alternative inheritance scheme.

Multiple inheritance, or a graph-like specialisation hierarchy, resolves 
the problem due to partitioning, since it allows multiple abstract 
behaviours to be combined in descendent classes.  It would be 
possible, for example, to define ExtensibleCollection and 
UniqueCollection as joint parents of Set.  IndexedCollection and 
FixedCollection may likewise be joint parents of Array; and further 
pairwise combinations could give rise to unusual classes such as a 
BoundedSet or ExtensibleArray.  Operationally, this is the kind of 
design approach recommended in Flavors, Eiffel and CLOS.

From a type-theoretic viewpoint, multiple inheritance of behaviours 
permits a finer-grained factorisation of notions of type.  Minimally, the 
introduction of a single function or axiom would require a new, more 
specialised type; and this illustrates that our notion of type-space is 
quantal in functions and axioms.  In practice, programmers select 
only a few of the many possible fixed points in the type domain, 
revealing for the first time, rather than introducing, sets of useful 
functions and axioms at these points.  

Given a multiple inheritance scheme, it is desirable to define functions 
as generally as possible, so that these may apply polymorphically to 
all descendent classes.  This practice is in fact enforced by our 
requirement to introduce novel packets of functionality strictly at 
single points in an optimal inheritance graph.  Of course, we should 
like the polymorphic application of such generic functions to be type-
correct, but we have not yet demonstrated that this is the case.

We need to examine the interaction between inheritance and 
polymorphism.  As Canning, Cook and others have noted [47, 48] the 
straightforward Cardelli-Wegner record subtyping model does not 
quite encompass the operational behaviour of OOP languages in 
situations where functions are being invoked polymorphically.  The 
simple algebra we have been using so far merely models specific types
and their sub-types, rather than generalised polymorphic types.  The 
effect of this is demonstrated in the following two examples (adapted 
from Canning).

Consider a simple, recursively defined type supplying an operation to 
move screen-relocatable objects:

Moveable = Rec mv . { move : Integer x Integer  mv }

Given that the types Square and Triangle can be derived as subtypes 
of Moveable, we should like move also to apply to these and return 
arguments of the correct types.  However, interpreting the result as a 
type-bounded variable gives us the wrong answer: the function move
applies to squares and triangles but always returns an object of the 
specific type Moveable.  The algebra does not force the function's 
result type to mirror its polymorphic target.  This problem is repeated 
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and subtly compounded when the recursively defined type appears on 
the left hand side of function signatures:

Comparable = Rec comp . { < : comp  Boolean }

Here, we should like Integer and Character to be subtypes of 
Comparable, inheriting the < operation.  However, if our 
understanding is that < should always compare its target with an 
argument of the same specific type, this is not what we obtain under 
record subtyping:

Character = Rec char . {  ...; < : Comparable  Boolean; ...  }

which says that the inherited function compares with any type 
conforming to Comparable.  Alternatively, if we were to override the 
inherited function deliberately with the one we really want, the 
subtyping relationship which establishes this:

{  ...; < : Character  Boolean; ...  }    { < : Comparable  Boolean }

would in turn require Comparable  Character by the contravariance 
rule, which is precisely the opposite of what we intended.  This 
manifestly prevents us from deriving Character  Comparable, unless 
in fact Character = Comparable.  Canning et al. [47] refer to these 
cases as positive recursion and negative recursion in the definition of 
types.  They show that Cardelli-Wegner bounded quantification strictly 
does not provide the same degree of flexibility in the presence of 
recursion as it does for non-recursive types.

Curiously enough, this problem is solved in the functional languages 
by treating all polymorphic references as type parameters (syntactic 
abbreviations for sets of actual types) bound throughout the 
expressions in which they appear.  A simple denotational semantics 
can be constructed to handle ML-style polymorphism [49].  Of course, 
the functional languages do not require the kind of complex 
machinery needed in object-oriented languages for correct type 
inference under inheritance; this is because they do not generally 
make strong claims about systematic sets of relationships existing 
between types.  However, it is intuitively apparent that some kind of 
subtyping relationship must exist between polymorphic type 
constructors and their family of instantiations.

The formal solution for object-oriented languages lies in treating class 
identifiers not literally as bounded types (declaring containers capable 
of receiving more than one kind of object), but as type-bounded 
parameters (syntactic abbreviations for some inclusive, ie non-disjoint, 
set of types).  In fact, object-oriented languages must interpret class 
identifiers in two quite distinct senses; we shall return to this below.

Interpreting a class identifier as a bounded parameter has the 
following intuitive meaning: instead of denoting an actual, possibly 
quite general, type, it denotes a space of types satisfying a bound.  
This means that instead of treating a function like move as belonging 
to the type Movable, we need to treat it as belonging to some space of 
types constructed from Moveable, expressed using a parameter 
satisfying the bound imposed by Movable.  Provided we can do this, 
objects of the actual type Moveable, or for that matter Square and 
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Triangle, can be shown to be type-compatible with the parameterised 
construction.

In object-oriented languages, there is a difficulty in constructing a 
quantification for type parameters which binds the type variable(s) 
both in the body of the type definition and in the expression denoting 
the type-bound itself.  This problem is not apparent until you examine 
what should happen in the context of recursively defined types; and is 
precisely the situation uncovered by Canning et al. above.  They call 
their solution F-bounded quantification, where the F stands for a 
typing function constraining the type parameter, but which contains 
the parameter itself (see Canning et al. [47] for a full derivation).  The 
functional bound (F-bound) is constructed by working backwards 
from the desired conclusion - we desire a parameter t such that:

t  F[t] . s(t)



22

where s stands for some set of function signatures describing the F-
bound and which may include the parameter t.  This permits the 
declaration of polymorphic typing functions of the form:

F-Moveable[t] = { move : Integer x Integer  t }

F-Comparable[t] = { < : t  Boolean }

which describe polymorphic type spaces rather than fixed-point types.  
The signatures of these typing functions now properly reflect the true 
underlying nature of polymorphic types as type-constructors, since 
they contain a parameter requiring instantiation.

Actual types are derived by the application of these polymorphic 
typing functions to specific types, during which process the type 
parameter is replaced.  By this substitution, we can show that:

F-Moveable[Square]  =  { move : Integer x Integer  Square }

F-Moveable[Triangle]  =  { move : Integer x Integer  Triangle }

and if we wish to define the specific types Square and Triangle as 
having further unique behaviours in addition to being moveable:

Square = Rec sqr . {  ...; move : Integer x Integer  sqr; ...  }

Triangle = Rec tri . {  ...; move : Integer x Integer  tri; ...  }

we thereby demonstrate that:

Square  F-Moveable[Square],
Triangle  F-Moveable[Triangle] ... etc

Integer  F-Comparable[Integer],
Character  F-Comparable[Character] ... etc

In consequence, the application of move defined for F-Moveable is in 
fact type-correct for Squares and Triangles; also Characters or Integers
may be compared pairwise using F-Comparable's function <.  This 
construction solves the polymorphic typing problem for recursive 
types; it captures the notion of adding functions to a (polymorphic) 
type while preserving the recursive structure of the type for all 
instantiations of the type parameter.  Canning et al note that F-
bounded quantification is closely related to inclusion for single-sorted 
algebraic signatures.

7. CONCLUSION:  CLASSES, TYPES, INHERITANCE AND 
POLYMORPHISM

We now come to the place where we have to decide what we 
understand by the notions of class and inheritance.

Earlier, we remarked on the view held by some that objects have class
and type separately, if not independently.  Although we do not support 
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this view, we agree that an informal and undisciplined use of classes 
presupposes such a view.  Instead, we intend to bring the notions of 
class and type much closer together.

Attempts to describe the notion of class formally are frustrated by the 
conflicting requirements on the semantics of class obtained by 
inspecting the uses to which classes are commonly put in most OOP 
languages.  Operationally, a class may serve three different purposes 
(Cox, [11]): to act as a template for creating the objects which are its 
instances; to act as a shared data structure storing values accessible 
by all its instances; and to provide the message-interface for all its 
instances.  The first two roles concern the implementation of objects, 
the last concerns the specification of behaviour.

As we observed above, the behaviour of a type is defined by its 
functional and axiomatic specification.  If we therefore treat external 
behaviour as the primary structuring mechanism for a space of 
classes, then we may show that classes conform in some way to types 
and inheritance relates more to behavioural subtyping than to the 
incremental extension of data storage cells.  This last point is 
extrememly important - a class is not, first and foremost, a description 
of objects with identically-named attributes, rather it describes objects 
with similar behaviour.  Given our argument so far, we cannot yet 
insist that classes are types; nor that inheritance is subtyping.

Our view of classes may seem to have a lot in common with the so-
called abstract data types (ADTs) created in module-based languages 
such as Modula-2 and Ada.  In these languages, great emphasis is 
laid on the external interfaces of ADTs, which describe (at least) the 
functional specification of types.  However, we disagree in points of 
detail with the terminology and design approach taken in these 
languages.  To clarify our use of terms, we shall note these points of 
disagreement.

Firstly, the word 'abstract' in the widespread use of the term abstract 
data type to denote a software component whose internal nature is 
partially concealed is strictly a misnomer.  Such types are not 
abstract, they are in fact concrete since they are fully implemented.  It 
would be better to refer to such constructions as encapsulated data 
types, where encapsulation includes both the notions of information 
hiding (the client programmer need not know about the internal 
details of a type's implementation) and protection (the client 
programmer may not tinker with the internal details of a type's 
implementation).  In contrast, a properly abstract datatype provides a 
functional and axiomatic specification for that type's behaviour and 
absolutely no implementation.

Secondly, the mechanism governing the visibility of objects and 
operations in these languages relates not to types themselves, but to 
modules (in Modula-2; called packages in Ada).  A module is simply a 
syntactic arrangement of datatype declarations and operations, 
without any obvious theoretical status.  There is no requirement to 
devote a module to the implementation of a single encapsulated data 
type; in practice modules may contain several related data types.  The 
fact that modules are in competition with types for control over levels 
of abstraction mitigates against a full and proper expression of type.
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Thirdly, there is no serious attempt in these languages to establish 
systematic sets of relationships between types and generalised types.  
Ada has genericity and a complicated set of rules governing type 
coercion; Modula-2 renounces even the small amount of overloading 
available in Pascal.  But otherwise there is no systematic notion of 
type compatibility, specialisation by extension, specialisation by 
restriction or progressive reification.  These languages preclude the 
existence of homomorphisms between types and generalised types.

Needless to say, our understanding of the notion of class encompasses 
a spectrum from the fully abstract types to the fully concrete types, 
together with a systematic set of relationships among generalised 
polymorphic types constructed from actual types.  Each type should 
have full and sole control over its own visibility.  We cannot yet 
complete our definition of class until we have considered both 
inheritance and polymorphism.

Inheritance is usually taken to mean the same thing as specialisation.  
If B is a subclass of A, then B may specialise A by extension (it may 
add new functions) or by restriction (it may enforce stricter axioms, 
such as only permitting a subset of the original underlying value 
space); consequently A is said to generalise B in the sense that A
subsumes B.  A particular application of specialisation is reification, 
for example where an abstract type PLANAR_POINT offering 
specifications for the functions {x, y, theta, rho} is specialised by the 
alternative implementations given in CARTESIAN_POINT and 
POLAR_POINT.  This gives us an operational definition of inheritance, 
but fails to explain what it is, in a formal sense.

The question remains: what are we to understand by the terms 
specialisation and generalisation?  Have we simply replaced inheritance
by another label?  These terms arise from the AI community in 
connection with prototypes and cognitive theories of learning 
(chunking, hierarchical clustering).  Often, specialisation is mistakenly 
compared with the stricter mathematical notion of subtyping; or else 
aspires to a 'semi-formal' version of the same thing.  Fortunately, we 
are able to dispense with hopeful ignorance and construct a proper 
definition for specialisation, based on an understanding of 
polymorphic types.  We shall summarise our argument so far.

Earlier, we experimented with a model of inheritance as record 
subtyping.  This was done by gradually introducing constraints on 
what kinds of extensions and overriding were permissible in 
descendent classes, in order to ensure that they were still subtypes of 
their ancestors.  We noted later that the relationships we had 
established were between fixed-point, monomorphic types.  The record 
subtyping model did not extend sufficiently to cover either languages 
with polymorphism or languages with recursive types.  Finally, we 
introduced a polymorphic typing function constructed around a 
parameter linked with an actual type, demonstrating that this 
produced type-consistent results under inheritance and 
polymorphism.

Having reached a similar point in the argument, other authors have 
stopped to consider how this discovery apparently drives a wedge 
between classes and types, reasoning in the following way: two types A
and B may both satisfy the same F-bound, such that A  F[A] and B 
F[B], and yet may not be in a subtype relation with each other -
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neither A  B, nor B  A.  This means that an F-bounded function 
may be applied to (ie inherited by) objects with incomparable types, 
showing that the inheritance hierarchy is distinct from the type 
hierarchy.

We think that this is looking in the wrong direction!  Surely, the most 
important discovery here is that a systematic approach to 
constructing truly polymorphic types has been devised.  For every 
actual type, at whatever level of generality, a corresponding 
polymorphic type may be constructed by abstracting over the body of 
this type using a parameter bounded by a function.  Furthermore, 
there appears to be a simple inclusion relationship between 
polymorphic types (ie the spaces occupied by polymorphic types in the 
type domain contain other sub-spaces representing more constrained 
polymorphic types).  This is indicated in that the sets of parameterised 
functions defining the related F-bounds turn out to be supersets and 
subsets of each other.  Finally, a straightforward subtyping 
relationship exists between polymorphic types and all actual types 
that produce valid instantiations of the parameter.

To suggest therefore that inheritance is a weak notion because it does 
not conform to subtyping between simple fixed-point types is a 
nonsense.  There was so little mileage to be had from that idea 
anyway; it would be difficult even to construct a type-correct 
polymorphic application of plus on a simple subrange of Integer, and 
still retain the subtype relationship.  Or, to put it another way, the 
focus of a truly general theory of types is surely the construction of 
relationships between general spaces in the type domain and not the 
limited links that can be established between fixed points.  Pursuing 
this prospect, Canning et al. relate F-bounded quantification to some 
family of F-coalgebras, using the Breazu-Tannen semantics-by-
translation approach [50].  Observing that the recursive type Rec t.F[t]
may be regarded as a particular F-coalgebra, they suggest that F-
bounded polymorphism involves quantification over a category whose 
objects are properly regarded as generalisations of the recursive type 
Rec t.F[t].

Strict inheritance is therefore a much grander notion than some 
authors might lead you to believe - subtyping among parameterised 
type-constructors, interpreted formally as subsumption among 
categories.  Inheritance is principally a relationship among type-
constructors, extending finally to actual types.

As a consequence of this, we need to interpret the occurrence of class 
identifiers in object-oriented languages in two distinct senses.  
Typically, a class identifier may be used to denote a fixed-point type 
on the one hand; or a polymorphic type constructor on the other 
hand.  The interpretation that we should choose is usually apparent 
from the context; however there are also some interesting issues that 
arise as we pursue this.  In conclusion to our article, we shall discuss 
some of the implications of our approach to the interpretation of class 
identifiers.

Class hierarchies are always open-ended, subject to further 
subclassing.  This means that any class description potentially 
denotes a bounded polymorphic type-space under the class 
concerned, for which the actual class is the most general fixed-point 
type satisfying the bound.  Therefore all class identifiers used to type 



26

function signatures should really be considered formally as bounded 
parameters to be instantiated later by actual types.  An examination of 
the operational behaviour of current object-oriented languages allows 
us to infer that a single underlying parameter is what is usually 
intended.  The instantiations of a single parameter t in:

F-Comparable[Character] = { < : Character  Boolean }

F-Comparable[Integer] = { < : Integer  Boolean }

allow us to compare like with like in a polymorphic way:

3 < 4;
'a' < 'd';

and this is usually the intention in object-oriented languages.  
However, a single underlying parameter does not admit of the 
possibility of mixed-type calls:

'a' < 102;
10 < 'c';

This is because a single parameter cannot be uniformly instantiated 
by a mix of types.  To allow this, we would have to declare, in the 
polymorphic typing function, all of the parameters that were to be 
included in the F-bound:

F-Comparable[p,q] = { < : q  Boolean }

where p and q might be instantiated by distinct types both satisfying 
the F-bound.  Of course, whether this is appropriate or desirable in a 
language will depend on the underlying implementation of distinct 
comparable types and may involve some 
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implicit coercions, or the application of a polymorphic hashing-
function in every call to <.

Object-oriented programs manipulate objects created from specific 
type templates; so it is clear that the moment an object is created 
(using an expression such as 'new' or 'Create') then the polymorphic 
space denoted by the class is projected onto a fixed-point type, in fact 
the most general type satisfying the F-bound.  In the vast majority of 
cases, this describes the required behaviour.  A class could therefore 
be described as a polymorphic type with a default fixed-point 
instantiation.

However, there are a few cases where this projection does not account 
adequately for the operational behaviour of object-oriented languages.  
This is where the fixed-point type of the object to be created has to be 
determined dynamically, for example during a cloning or deep-copying 
operation.  Typically, object-oriented languages have a special syntax 
to denote this case.  In Smalltalk, you can reason about types at 
runtime:

theCopy := self class new.

whereas in Eiffel, there is a mechanism to anchor the type of the copy 
to the type of the current object:

theCopy : like Current;
theCopy.Create(...);

It turns out that this special syntax is necessary because of the 
default interpretation given to class identifiers used to type object-
creation expressions.  In our formal model, the dynamic nature of the 
result-type of a copying operation is apparent in the parameter:

F-Copyable[t] = { copy :  t }

Perhaps a better approach would be to admit explicit F-bounded 
parameters into the syntax of object-oriented languages, in order to 
make cases like this and the above example of mixed-type 
polymorphic calls less ambiguous.  This is the challenge to the next 
generation of developers of object-oriented languages.
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