
A PROPOSAL FOR HARMONISING TYPES, INHERITANCE
AND POLYMORPHISM FOR OBJECT-ORIENTED

PROGRAMMING

A J H Simons and A J Cowling, Department of Computer Science, Regent
Court, University of Sheffield, 211 Portobello Street, SHEFFIELD S1 4DP.

1. INTRODUCTION

Object-Oriented Programming (OOP) has attracted a large following in
recent years. Goals for the paradigm have included bringing
computational implementations closer to abstractions (the HCI school,
exemplified by Smalltalk [1]), partitioning spaces of concepts (the AI
school, exemplified by CLOS [2]) and software engineering for reuse
and extensibility (the SE school, exemplified by Eiffel [3]). The present
trend is away from type-free or dynamically typed languages and
towards strong static typing, with some dynamic binding. Attempts to
provide formal typed models of OOP have been frustrated by the great
flexibility in languages that permit unrestricted redefinition of class
properties. The principal difficulty lies in devising a typed functional
algebra that conforms to the operational definition of OOP languages,
which are usually described in completely different terms.

We take the view that types, rather than restricting the usefulness of
an OOP language, provide an expressive framework for defining the
protocols of classes of object. Even languages that do not support
typing start from a strong notion of an intrinsic set of attributes and
operations that characterise a class. Concept spaces are defined by a
process of explicit differentiation of class attributes and operations.
The fact that the resulting class hierarchy often fails to conform to a
type-subtype hierarchy has been an embarrasment to OOP
practioners favouring the strongly typed approach [4,5]. The reasons
for this are complex, involving issues in inheritance and
polymorphism, but which, for the moment, we shall summarise as the
insufficient axiomatisation of abstract types when designing concrete
class specifications. It would seem self evident that a thorough-going
type model for OOP would provide enormous benefits from the
software engineering viewpoint. Programs would be demonstrably
type-secure and optimising compilers could exploit, wherever possible,
the static binding of operations to objects.

In the rest of this paper, section 2 presents a rationale for relating the
notions of class and type. Section 3 reviews classic approaches to the
mathematical definition of types. Section 4 considers strong and weak
inheritance and defines a space of inheritance schemes that conform
to strict subtyping under monomorphism. Section 5 introduces
polymorphism to the model, contrasting various interpretations of

2

Strachey's original insight and proposing a scheme which subsumes
parametric and some ad hoc polymorphism. Section 6 presents the
synthesis of the above arguments, assembling the full composite
model. We draw some conclusions on the future directions for
strongly-typed object-oriented languages in section 7.

2. CLASSES, TYPES AND ABSTRACTION

The observation that most class-based OOP languages fail to conform
to more mathematical treatments of types has led some to suggest
that objects might have 'class' and 'type' independently [6]. This view,
which is interesting, defines a universe of mappings from class
hierarchies into type hierarchies. The mappings are many-to-one,
corresponding to the notion that several different class structures
might satisfy the same abstract specification. One demonstration of
this is the choice facing the programmer whether to provide a new
class by subclassing (extending previous classes by inheritance) or
alternatively by composition (constructing a class from several
component classes), the outcome of which results in markedly
different inheritance graphs. In such a case, the resulting class may
end up with the same external interface (defined by the protocols for
its methods) no matter what the implementation. Generally, groups of
classes acting in concert (which we might compare with the notions of
a cluster [7] in CLU or system in Eiffel) may provide the same facilities,
as a group, while factoring out behaviours in completely different ways
among themselves. It is therefore possible, in the general case, for
relationships between individual classes and abstract types to be non-
homomorphic. This view treats the class as a module of
implementational convenience; which though formally lax does have
advantages. The decoupling of class from type enables, among other
things, a maximum reuse of implementation through inheritance, at
the expense of creating some idiosyncratic abstractions. In most OOP
systems, this economises on levels of indirection in structures and
levels of nesting in remote calls.

We shall develop a different view here, which attempts to relate
formally the notions of class and type, while preserving the possibility
of differences in implementation. We appeal to the philosophical
argument, in the first instance, that classes and types aspire to the
same goal, namely abstraction. Any move away from this position
seems to frustrate the aims of the HCI and AI schools in OOP, not to
mention the security of the software engineers. Smalltalk would
appear to have advocated the 'implementable abstraction' to a
generation of programmers more accustomed to arrays, variable
counters and (just emerging) record types. Flavors' [8] introduction of
multiple inheritance provided much stronger support for the
factorisation of common behaviour of objects; indeed one could argue
that concept differentiation in AI is precisely the same task as that
faced by designers of coerceable typing systems, a proposition
recognised as important by the designers of CLOS [9] but not fully
harmonised in its current specification.

A second philosophical argument is that type systems, as they are
implemented in most strongly typed languages today, are far from
complete in that they seldom venture to express relationships between
general, abstract types. To draw an ethical analogy, these languages
are not so much pure as fortunate that they have not been tempted.
The Algol-68 experiment [10] in implicit type coercion was a notable

3

exception, but proved to be theoretically so difficult that subsequent
languages ceded this hard-won territory. They cannot claim to hold
the high moral ground; they have hardly entered the battle yet. We
are convinced that any language that seeks to implement a truly
general system of abstract types will face exactly the same difficulties
encountered in class factorisation in OOP.

The real enemy in OOP is the kind of salesmanship that recommends
the solution to a new problem as 'simply' the extension of existing
classes. The argument of convenience is so beguiling that it masks
the genuine difficulty in deciding how to provide a certain package of
functionality in OOP. Indeed, it runs the risk (with apologies to Cox
[11], who meant this in a different sense) of being truly an evolutionary
approach to the development of software systems. Evolution implies
growth and adaptation under highly localised constraints, no sense of
destiny (unlike Dawkins' [12] biomorphs whose genetic pool is
interpreted by design and whose survival is determined by long-term
goals) and no sense of posterity. Anyone who, like the authors, have
progressed to depth five or more in the implementation of a
hierarchical class library, only to find that the previous 'simple'
extensions need to be reconfigured totally from the root to receive a
new application, will appreciate that there is no substitute for good,
abstract design. Classes are things that should be wrestled with,
argued over, survivors of the most rigorous scrutiny before they are
accepted into libraries. Like all good ideas that survive the test of
time, they are painful to come by and leave many casualties on the
way. This is where OOP's strength in rapid prototyping really wins
out; the point is never emphasised enough that most of the current
adaptations are meant to die out.

3. TYPES, SETS AND AXIOMS

Types may be considered minimally as schemes for interpreting bit
strings and their behaviour in a machine. Some argue strongly [13] for
their separate existence apart from computation, a view which we can
only endorse, since it supports our view that natural classificatory
activity is related to typing. Reynold's argument here is that types are
not constructed on sets of values, which would tie them too
specifically to one domain in computation; rather they are syntactic
disciplines for enforcing levels of abstraction. The same argument was
made earlier by Morris [14], who showed that in principle a type can be
represented, or implemented by a variety of sets; in this sense a set of
values is insufficient to determine a type.

The designers of the language Russell [15,16] favoured types as values in
a different sense, namely as elements of a universal Scott domain.
This well-known construct [17] for avoiding Russell's paradox permits
the admission of recursion, the admission of data types themselves as
values in the same value-space through the notion of a retract, a
function f : D  D such that f = f.f and, by using retracts as the single
operation for interpreting values in the universal space, a final algebra
semantics for the typed lambda calculus. This was elegant and
convenient, both for solving the typing problems associated with
recursion and providing by the same token a rationale for treating the
types so constructed as values in the semantics of the language, a
feature upon which they constructed a model of polymorphism.

4

Russell treats a data type as a set of operations specifying an
interpretation of values of a universal value space. This definition
describes in more detail what it means to be an abstraction, drawing
heavily on the algebraic specification approach of Guttag [18,19] which is
still generally practised. By appealing to the retract again, the 'types
as sets of operations' view can be shown to map onto the 'types as sets
of values' view, thereby demonstrating the greater generality of the
former view. This can be exemplified by the following inadequate
definition of a simple ordered type by the supposed enumeration of
the values which are members of the type:

SimpleOrdinal = {0, 1, 2, 3 ... }.

Another perfectly legitimate (and still indadequate) attempt at a
description of the simple ordinal type might be:

SimpleOrdinal = {a, b, c, d ... }.

More precisely, there is no such thing as the set of simple ordinals;
rather the type SimpleOrdinal denotes an abstraction that can be
realised by a variety of carrier sets (cf Reynolds). The more common
approach is to define SimpleOrdinal as the abstract type over which
the operations First() and Succ() are meaningfully applied:

SimpleOrdinal = ord . { First :  ord;
Succ : ord  ord ... }.

This definition is both more general and more precise than our
previous two attempts. Note that we are using a notational
construction to describe the apparent recursive definition of the type
SimpleOrdinal. The token ord is a placeholder for the type, awaiting its
full definition. Such definitions are usually regarded as being
existentially quantified. It would therefore not matter what we called
this token, since the meaning of the type would be the same.

It is commonly accepted that this kind of semantics for abstract data
types is still insufficient. Consider the following applications of
operations to instances of the type:

Succ(1)  1
Succ(b)  a

which still yield valid results according to the function signatures.
The relationships that hold between the instances of type
SimpleOrdinal are inadequately captured. For this, logical axioms are
necessary, so that we could write assertions such as:

x.SimpleOrdinal(x)  (Succ(x)  x)  (Succ(x)  First()).

This axiomatisation treats the type as a predicate over its instances,
where the type is further constrained by the relationships that hold
between (some of) its member functions. We shall therefore treat the
data type as a set of operations, that are constrained by a set of axioms.
Both the functional-algebraic and logical-axiomatic parts are
necessary to complete the specification of an abstract type.

Of course, in some contexts we do need to go further and require a
concrete type rather than an abstract one: that is, one in which a

5

specific carrier set (viz a set of instances, as above) has been chosen,
rather than any suitable carrier set being acceptable. Where concrete
types are required, however, there will generally be a 1-1 mapping
between the abstract types being specified and the particular concrete
types implementing them (as above). Confusion is unlikely to arise,
provided that we are consistent in working either in terms of the
abstract types or in terms of the concrete ones.

4. INHERITANCE AND SUBTYPING

In treatments of inheritance, a contrast is usually drawn between
essential and incidental inheritance [20], or strict and non-strict
inheritance [21]. Whatever the nomenclature, the strong variety of
inheritance implies at least a sharing of class specification, which we
would want to include the class's functional interface and class
axioms by which all subclasses should be bound. The weak variety of
inheritance implies only implementation sharing (opportunistic reuse
of code and declarations for storage allocation). The strong kind
usually occurs with some implementation sharing, since most
languages strive to map in a fairly straightforward way from abstract
datatypes onto their concrete counterparts. Some writers prefer to
segregate the two varieties, while others allow the stronger to
subsume the weaker, to varying degrees.

Anyone who has wondered how this can affect system design should
observe, in the geometrical shapes described in Figure 1, that the
hierarchy on the left is motivated from the viewpoint of domain
analysis, whereas the hierarchy on the right is the result of
incremental software development. From the abstract viewpoint,
rectangles and triangles are kinds of polygon. Functions defined for
polygons, such as translate, rotate, or reflect are valid for all subtypes,
in the sense that any instance of TRIANGLE could be substituted for
any instance of RECTANGLE in programs using only POLYGON's
functions. In contrast, the concrete parameterisation of a rectangle by
the two cartesian point objects that make up its opposing corners
leads to a natural extension of three points for a triangle and n points
for a n-vertex polygon. Readers who find the latter alarming should
be aware of the widespread practice of this kind of extension in OOP
(particularly Smalltalk).

POLYGON

TRIANGLE RECTANGLE

RECTANGLE

TRIANGLE

POLYGON

6

Figure 1: Contrasting Strong and Weak Inheritance

Such obvious and gross opportunistic development clearly invalidates
any subclass-subtype homomorphism; however the real temptation to
type-constrained OOP comes at a subtler level. Eiffel, for example,
strives to maintain hierarchies of classes corresponding to efficient
implementations of properly axiomatised abstract types. One such
subtree reflects our preferred design for polygonal shapes from Figure
1. Eiffel also has orthogonal exporting and inheritance mechanisms.
This means that a superclass may export a routine that is
subsequently hidden from clients of its subclasses. One example is
where the class POLYGON's routine for adding to its vertices is
subsequently hidden in RECTANGLE (which obviously cannot add to
its vertices). The result is a kind of 'selective inheritance' of exported
routines, which is clearly at variance with the notion of types being
defined by their functions. This is not so much an instance of the
recently popular 'type failure' problem [4], as an example of
implementation creeping into abstract design. Eiffel's POLYGON tries
too hard to be both an abstract class for all closed shapes and a
means of implementing polygons with an arbitrary number of vertices.
While such criticisms are easy to make, the issues are extremely
difficult to resolve practically, since enforcing proper abstraction
inevitably leads to a proliferation of classes.

We shall be making the argument that, where choices exist in how to
provide a package of functionality in a given set of terminal classes,
then a maximum priority should be given to proper analysis of the
domain. This will typically result in a greater trend towards software
reuse by composition and a reservation of inheritance to denote strict
subtyping relationships. This trend can only be strengthened by an
approach based on axiomatising class specifications, a theme to which
we shall return. First, we investigate under what conditions
inheritance may conform to subtyping.

Our intention is that the class-subclass relationship can be shown to
correspond, under certain restrictions, to a type-subtype relationship.
Cardelli and Wegner [22,23] have developed a simple model of classes-as-
types, based on the notion of record subtyping. Later, we shall show
that their scheme applies only to monomorphic types; or else to
polymorphic but non-recursive types.

They, along with others [24,25], formally treat an object as a record
whose components are functions representing methods. This model
also provides a simple transparent interpretation of access to storage
as the invocation of nullary functions delivering a result, ie:

CartesianPoint = { x : Integer; y : Integer }

is viewed as a record:

CartesianPoint = Rec {
x :  Integer;
y :  Integer
}

7

where x and y are nullary functions. In this notation, reflecting the
practice in OOP, the point-instance is not included as an argument to
x and y since these functions implicitly return unique values for the
object represented by the whole record.

In this simple algebra, the assignment of values to objects is side-
stepped by treating all modifications as returning new records,
thereby avoiding the issue of side effects:

CartesianPoint = Rec pnt . {
x :  Integer;
y :  Integer
moveBy : Integer x Integer  pnt;
equal : pnt  Boolean
}

Here, under the existential quantification of the token pnt, the
moveBy-operation is viewed as returning a new object of the same
type; the equal operation is defined to accept another argument of the
same type.

Cardelli identified several important rules for record subtyping, three
of which are summarised below. In this notation, 'A  B' denotes an
inclusive subtype relationship where A is the same type, or a proper
subtype of B. The same semantics apply whether A is an immediate,
or eventual subtype of B in a chain.

(1) Basic Record Subtyping Rule

{ x1:s1, ... xk:sk, ... xn:sn }  { x1:s1, ... xk:sk }

This rule says that if a record has fields xi in the types si, i = 1..n,
then in particular it has fields xi in the types si, i = 1..k. Therefore
any operation that can be meaningfully applied to records of type

{ x1:s1, ... xk:sk }

may also be meaningfully applied to records of type

{ x1:s1, ... xn:sn }.

In consequence, a record subtype may add monotonically to the fields
(or functions) provided by its supertype; ie it may never delete any.
This rule describes specialisation by extension; but fails to account for
the possibility of overriding inherited functions with more specific
versions.

(2) Covariance Rule for Function Result Types

 s1  t1, ... sk  tk

{ x1:s1, ... xk:sk }  { x1:t1, ... xk:tk }

This rule says that subtyping is preserved between records whose field
types enter into a subtype relationship. If fields are viewed as nullary
functions, then this rule applies to the result type of the functions.
This means that a record subtype may specialise monotonically in the

8

result types of its functions; ie it may never generalise in these, with
respect to its supertype.

Rules 1 and 2 may be combined by imposing rule 2's restrictions on
the first k fields of an extended subtype record { x1:s1, ... xk:sk, ...
xn:sn }.

(3) Contravariance Rule for Function Argument Types

 s'  s t  t'

s  t  s'  t'

The rule for function subtyping [26,27] says that for a function s  t to
be a subtype of another function s'  t', then the result types must
obey the covariant rule (as above) but the argument types must be
contravariant. This is indicated in the transposition of notation in the
hypothesis s'  s with respect to the terms in the rest of the rule. This
means that a record subtype may generalise monotonically in the
argument types of its functions; ie it may never specialise in these,
with respect to its supertype.

So far, we have distinguished types only by their function signatures.
As we observed above, this fails to capture the full semantics of types.
America [28] notes, for example, that signature information alone is not
sufficient to distinguish a STACK from a QUEUE. Axioms are needed
to describe the LIFO property of STACKs and the FIFO property of
QUEUEs with respect to their otherwise identical push and pop
signatures. From the observation that an object can be considered as
a machine with a state and behaviours (Meyer [3]), the role of axioms
is to ensure the integrity of an object's state and the correct
functioning of its behaviours.

A consensus view is that axioms may be classified under the headings
data type invariants (Hoare [29]), pre-conditions and post-conditions
(Jones [30]). Invariants describe the permanent semantic properties of
a type, such as the intrinsic ordering of a sorted list. Post-conditions
describe time-varying semantic properties of a type and ensure the
correctness of an object's state after the execution of one of its
behaviours, such as the presence of an element in a set after it has
been added. Pre-conditions are a consequence of partial functions
which cannot be applied to all members of the domain, such as empty
stacks to which the pop and top functions may not strictly be applied.

Finding ourselves in agreement with America and Meyer, we include
the following subtyping rules for axioms, which mimic in their form
the rules given above for functions. In this notation, 'A  B' denotes
an entailment relationship such that satisfying axiom A automatically
entails the satisfaction of axiom B. B may either be equal to A, or
some less stringent condition whose satisfaction is entailed by that of
A.

(4) Basic Axiom Subtyping Rule

{a1, ... ak, ... an}inv  {a1, ... ak}inv

This rule says that if a type satisfies axioms ai, i = 1..n, then in
particular it satisfies axioms ai, i = 1..k. Therefore any type whose

9

invariant properties satisfy all n axioms will necessarily satisfy the
first k axioms. This means that a subtype may add monotonically to
the set of invariant properties of its supertype; ie it may never remove
axioms. By the same reasoning, a subtype may add monotonically to
the set of postconditions on functions inherited from its supertype.

(5) Covariant Entailment Rule for Invariants and Postconditions

 b1  a1, ... bn  an

{b1, ... bn}post  {a1, ... an}post

This rule says that subtyping is preserved between types whose
invariant and variant semantic properties enter into an entailment
relationship. If the satisfaction of each axiom ai is entailed by the
satisfaction of the corresponding bi then the subtype satisfies at least
all the axioms of its supertype. This means that a record subtype's
invariants and postconditions may become monotonically stricter; ie
they may never become less strict than those declared in the
supertype.

Rules 4 and 5 may be combined by imposing rule 5's entailment
restrictions on the first k axioms of an extended set {a1, ... ak, ...
an}post.

(6) Contravariant Entailment Rule for Preconditions

 b1  a1, ... bn  an

{b1, ... bn}pre  {a1, ... an}pre

This rule says that subtyping is preserved between types whose pre-
conditions enter into a contravariant entailment relationship. This is
indicated in the reversal of the entailment symbol '' with respect to
the subtype symbol ''. This means that a record subtype's
preconditions may become monotonically less strict; ie they may never
be stricter than those declared in the supertype.

These rules define a space of possible treatments of inheritance which
may be seen to preserve strict notions of type in the language
concerned. At the most stringent end, a language might be so
committed to the uniqueness of types that it forbids inheritance
altogether, as in CLU (Liskov [7]). Inheritance is such a powerful
notion, however, that abandoning it seems a waste of expressive
power, a failure of nerve. Inheritance is now correctly recognised as
the single unique feature of all truly object-oriented languages [31];
CLU might be described more accurately as a 'class-based' language
[32,33]. The greatest single formal advantage inheritance offers to
programming languages is the ability to represent relationships
between generalised, abstract types.

A second possibility is to permit only the inheritance of abstract
specifications. Emerald [34] is one such language in which
implementation reuse is by composition. Emerald supports an
attractive intuitional model where the specification of a composite
class declares the types of component necessary to complete it. Type
conformity among alternative component implementations is
supported.

10

A third possibility is to permit implementation sharing where this does
not invalidate type conformity. Such an approach maximises the
benefits of the 'open-closed' principle (Meyer [3]) whereby completed
classes are nonetheless open to further modification through
subclassing.

The degree to which an object-oriented language treats inheritance as
a kind of subtyping relationship corresponds to the progressive
introduction of the rules described above. The first rule describes
those languages that forbid explicit overriding but permit extensions.
The second rule describes those languages which allow some
redefinition of attribute types and function results according to a
restricted scheme, such as Eiffel. A language which obeys the third
rule is Trellis/Owl [35]; many languages, including Eiffel, break it. This
third result is counter-intuitive for OOP: it states that methods which
take additional formal arguments must generalise, rather than
specialise the typing of these when they are redefined, if subtyping is
to be preserved in the subclass. Such a facility is almost useless in
practice.

Eiffel is one of the few languages which gives first-class status to
axioms. It treats them as executable specifications checked at run-
time. Eiffel obeys our rules 4 to 6, justifying the covariant and
contravariant entailment rules in terms of Meyer's 'programming by
contract' metaphor. All services that are guaranteed by one class
must also be guaranteed by its descendent classes, therefore the post-
condition on which the success of a service depends must not be
weaker, but may be stronger. This is analogous to a supplier agreeing
to deliver a product to a better specification than was demanded by
the client. On the other hand, all messages which one class
understands must also be understood by its descendants, therefore
the pre-condition on which acceptance of a message is contingent
must not be stronger, but may be weaker. This is analogous to a
client agreeing to accept terms less strict than those originally drawn
up with the supplier.

So far, we have only covered the relationship between inheritance and
subtyping for simple monomorphic record types. The model described
above is still inadequate to account for the operational behaviour of
object-oriented languages in the context of polymorphism. We
address this issue later.

5. CLASSICAL AND OBJECT-ORIENTED APPROACHES TO
POLYMORPHISM

Polymorphism is a mechanism for expressing type compatibility. The
earliest references to the term come in the theoretical writings of
Strachey [36]. Here and in his subsequent work [37,38] he recognises two
kinds of polymorphism which he calls parametric polymorphism and ad
hoc polymorphism. Most of the subsequent research into polymorphic
types has stemmed from Strachey's insight and uses his terminology,
although we suspect that different authors take slightly different
interpretations of Strachey's original observations. We shall, no
doubt, do likewise below.

11

In Strachey's terms, a parametric polymorphic function is one that,
upon different occasions, accepts arguments of different types and
behaves in a semantically uniform way on each call, notwithstanding
the type of the arguments supplied. The idea is that some functions
perform identical, generic operations, no matter what the type of their
argument(s). This kind of polymorphism is known as genericity in
languages like Ada and Eiffel.

By contrast, an ad hoc polymorphic function is one that, upon different
occasions, accepts arguments of different types and may behave in a
semantically non-uniform way on each call, depending on the type of
the arguments supplied. The idea is that some function names may
be used to invoke different operations, appropriate to the type of their
argument(s). This kind of polymorphism is widely known as
overloading, from the ability to overload names with multiple
meanings.

We are insisting here on the notion of semantic uniformity as the
prime criterion for distinguishing between the two kinds of
polymorphism. Reynolds ([13], p 519) only appears to be taking the
most extreme interpretation of Strachey when he declares that

'a parametric polymorphic function behaves in the same way for
all types, while an ad hoc polymorphic function may have
unrelated meanings for different types.'

The notion in question is what is meant by 'all types'. We can only
conceive of a few programming operations to which this literally
applies: for example, declaration of, assignment to and obtaining the
address of a static variable; or any operation that treats with a datum
as though it were merely a bit-string in computer memory.

If we take the usual interpretation of Strachey's definition, 'all types'
refers to the arbitrary typing of some primitive element out of which a
new, generic type is constructed. Parametric polymorphic functions
may then be defined for the generic type which behave in the same
way regardless of the type(s) out of which it is constructed. The
ubiquitous example cited here is the notion of a Stack. Whether the
Stack contains integers, reals, characters or any other arbitrary type
of element, the operations push, pop, clear and top have the same
semantics; but these operations may of course only be applied to
objects that conform to the generic type Stack.

Tennent [39] developed the notion of a formal type parameter (from
which, intuitively, we get the term parametric), starting from a set of
principles for the design of programming languages. These principles
include procedural abstraction, completeness and correspondence.
Procedural abstraction demands that any sequence of in-line
statements can be abstracted over and made into a procedure, called
from any part of the program. Completeness demands that all data
types are first-class citizens (Strachey's term) in a language.
Correspondence demands that any in-line declaration can be
parameterised with no loss of uniformity or expressive power.

It is a short step from here to propose that types themselves can be
abstracted over and parameterised. An even simpler example, using
Eiffel syntax, illustrates this:

12

class ARRAY [T] export
lower, size, upper, item, put ...

feature
...
item (i : INTEGER) : T is

-- value at array index i
...
put (value : T; i : INTEGER) is

-- assign value to array at index i
...

end -- class ARRAY [T]

The element-type of the array has been abstracted over and
parameterised. It is represented by the formal type parameter T. Any
type which eventually instantiates the parameter T must be the same
type for all T in the declaration. This means that a static type checker
could ensure that a call of the form:

j : INTEGER;
string1 : ARRAY [CHARACTER];
...

string1.put (j, 3);
...

would be flagged as an error at compile time, since it attempts to
instantiate T simultaneously with the types INTEGER and
CHARACTER.

We prefer to view generic types like ARRAY [T] as unary type
constructors, rather than actual types. This is exactly how such a
declaration would be treated in Milner's approach to polymorphism [40]
adopted by Burstall et al for the language Hope [41]. A Hope
polymorphic function declaration such as

map : (alpha  alpha) # list alpha  list alpha;

is considered to contain incomplete type information; the label alpha
is a syntactic entity abstracting over all types in a static fashion. The
map function is not fully specified until the variable parts are fully
specified. This occurs when the compiler encounters a static call to
the function, at which time the various arguments are examined and
their intended use verified. This is done by propagating the types of
the actual arguments into the function's expressions to check for
consistency.

The strict form of parametric polymorphism insists that the type
parameter can be satisfied by any actual type. This is seen as
important to preserve the independence of the generic type's
operations. Such a view rules out the possibility of constructions like
SORTED_LIST [Q  COMPARABLE], where Q is a bounded formal type
parameter ranging over all those types which have an intrinsic
ordering defined over them. We take the view that this generalisation
is a valid one. We shall assume, for the moment, that bounded type
variables are generally admissible.

Our argument here centres on two points. Firstly, the notion of
independence is relative to the level of abstraction at which you view

13

the generic type. The closer you get to the implementation, the more
dependent it is seen to be. For example, a declaration ARRAY [T]
needs to know how large in bytes T is, in order to allocate arrays, or to
compute offsets into arrays. Secondly, the general form of parametric
polymorphism may be shown to preserve the important property of
semantic uniformity. In our example, we can express this as a
dependency relation of the form:

The function Insert behaves in a semantically uniform manner
over all possible instantiations of SORTED_LIST [Q 
COMPARABLE] iff all ordering functions (such as < and >)
behave in a semantically uniform manner over all permissible
instantiations of Q  COMPARABLE.

By contrast, an overloaded function name may come to have unrelated
meanings for different types. A function denoted by the plus-sign '+'
might add integers and reals, perform OR on boolean values, compose
functions, concatenate two strings and append two lists. There is no
reason why these operations should be pairwise semantically related.
The overloading rule in C++ [42] simply requires two static occurrences
of an overloaded function name to be distinguishable on the basis of
either the number, or types of arguments supplied. The compiler will
ensure that the appropriate run-time code is inserted for those
arguments and types.

We prefer to view overloading as defining a union of types. From this,
we determine that overloading is undisciplined in two ways. Firstly, it
allows the arbitrary extension of the union type. The union is
extended every time a function, defined over a new type, is added to
the overloaded name. The notion of an unbounded type seems at
variance with the notion of typing as a classificatory activity.
Secondly, there is no guarantee that semantic uniformity will be
preserved pairwise across the set of functions denoted by the
overloaded name. Addition and appending clash on at least one
axiom, namely the commutativity of arithmetic.

These properties have led many to ban any kind of overloading from a
type-consistent treatment of polymorphism. Unrestricted overloading
is clearly too powerful a mechanism. However, if we examine the use
to which overloading is put in computer languages in general, we often
find a surprising degree of semantic consistency within overloaded
names. This is in large part due to the designer's intuitions, since it is
not enforced by the language.

Overloaded names may happen to contain subsets of functions for
which a common semantics may be constructed. In our example
above, we might define axioms for addition, common to reals and
integers, calling these the properties of the polymorphic type
NUMBER; equally we might define axioms for appending, common to
lists and strings, calling these properties of the polymorphic type
SEQUENCE.

We wish to abstract out and constrain the polymorphic type of object
over which some commonality in names and behaviour is defined. In
this respect, we share the goals of the designers of Russell [15, 16],
Alphard [43], Euclid [44] and CLU [7]. Accordingly, we require a
bounded polymorphic type which enforces a level of abstraction over
the common features of its subtypes and provides for them a

14

restricted type-compatibility. We permit REAL and INTEGER to be
subtypes of polymorphic NUMBER; likewise LIST and STRING are
subtypes of polymorphic SEQUENCE (cf Common Lisp). Of course, we
have not yet determined what kind of mathematical modelling would
be adequate to capture the semantics of such a polymorphic type; at
this point we are merely postulating that such types exist.

In some cases, successful type factorisation will reduce the need for
overloading. For example, a set of comparison functions defining a
SIMPLE_ORDINAL polymorphic type might be implemented over binary
values one byte long and therefore be directly applicable to instances
of CHARACTER and SMALL_INTEGER. Generally though, bounded
polymorphic types will only be able to express the functional-algebraic
interface and axiomatic specification for operations. In such a
scheme, the concrete types REAL and INTEGER will almost certainly
have separate, overloaded functions for addition; likewise the concrete
types STRING and LIST for appending, as an almost inevitable
consequence of their implementation differences.

A bounded polymorphic type describes behaviour that has a common
semantics for all its subtypes. This provides a rationale for permitting
some overloading in a type-consistent treatment of polymorphism.
Any subtype is free to re-implement features, provided that it satisfies
the functional and axiomatic algebra for subtyping.

Our discussion begs the question whether the kind of type-consistent
polymorphism we are proposing for object-oriented languages falls
into the category of parametric or ad-hoc, in Strachey's terms. In fact,
it is something different again, but which bears similarities (on
occasion) with both of these views. We find it helpful here to consider
separately the mechanisms for implementing polymorphism in a
programming language and the mathematical machinery necessary to
describe such polymorphism formally.

From the implementation viewpoint, the distinction between
parametric and ad-hoc is often signalled by the ability to define
literally one generic function operating on a family of related types, as
against a need to overload the function name with several different
definitions. A true generic function accesses only that part of a data
structure that is common to the entire family of types. Thus, the
parametric polymorphism in typed functional languages based on a
common list-cell representation for all kinds of typed lists bears a
strong similarity with the inheritance-bounded polymorphism in
object-oriented languages based on the shared record-structure
included in all descendants. Overloading, by contrast, is seen as a
necessary consequence of data types having a mutually exclusive
representation.

However, concentrating on the mechanisms whereby polymorphism is
provided in a language can sometimes cloud the issue. For example,
Ada's generic packages must be explicitly instantiated before use and
a compiler may therefore duplicate all generic functions for each
separate instantiation in the target code. In consequence, genericity
is provided by a kind of implicit overloading: generic functions do not
really exist since they are expanded by the compiler.

Considering polymorphism from a more mathematical viewpoint, the
only important concern is the notion of abstraction over types. If we

15

accept that inheritance-bounded polymorphism (sometimes known as
inclusion polymorphism, a phrase coined by Cardelli and Wegner in
[23]) follows some kind of systematic pattern of relationships between
types, then we would expect to be able to express this using one or
more type parameters. A key goal is to uncover the role played by
type parameters in the object-oriented approach.

In the traditional approach to parametric polymorphism, a
polymorphic type is declared by specifying the common parts of the
structure and abstracting over the differences that remain (such as
the element-type in a list or array). In the object-oriented approach,
the opposite is true. A class defines a space of possible types bounded
by the inheritance hierarchy and is, in this sense, an incomplete type
specification. A class abstracts over the shared specification of all its
potential descendants. Several contrasts with the traditional form of
parametric polymorphism may be observed.

If we consider that a polymorphic type represents an incomplete
specification of a family of types sharing some structure and
behaviour, we may note firstly that the type parameter ranges over the
unknown, disjoint parts of structure in the traditional form; whereas
it ranges over the known, common parts of structure in the object-
oriented form. Secondly, the type parameter is typically
unconstrained in the traditional form; whereas it is necessarily bound
by a partial specification in the object-oriented form. Finally, the
parameter is explicit in the traditional form, whereas it is usually
implicit in the object-oriented form. We might also add that the free
generic type parameters in typed functional languages, Ada and Eiffel
exploit more the idea of structural equivalence, an implementation
concern, whereas the bounds imposed by inheritance in the object-
oriented languages exploit more the idea of behavioural similarity,
indicating a predominant concern with specification.

We may now define a space of languages and operations by their
incorporation of some or all of five different kinds of polymorphism.
We shall refer to these kinds of polymorphism more from a
mathematical modelling perspective than according to the ways in
which they are commonly constructed in programming languages:

(1) Universal Polymorphism: is exhibited by type-free languages
and those operations that are applicable literally to any type (such as
declaration and assignment). Universal type parameters may range
freely over all types; and for each type in question the type parameter
abstracts over the whole extent of the type.

Our use of the term universal is distinct from the sense in which it is
employed by Cardelli and Wegner (op cit) where they use it to classify
traditional parametric and object-oriented inclusion polymorphism
apart from the more ad-hoc varieties of name overloading and type
coercion. Their choice of term is motivated by the idea that the set of
types which may eventually instantiate the parameter is potentially
infinite. We agree with this assertion, yet prefer to use universal to
denote a type parameter which ranges freely (unlike inclusion) over
the whole extent (unlike parametric) of the abstracted types.

(2) Bounded Polymorphism: is a generalisation of the above, which
defines bounded type parameters ranging over some set of types
which share a subset of their abstract specification. Again, the type

16

parameter ranges over the whole extent of each type in the family of
types; but unlike the universal parameter postulated above, it may
only be instantiated by types satisfying certain constraints (the bound
in question).

This is the kind of polymorphism exhibited originally by the language
Russell [15, 16] whose explicit type parameters could only be satisfied
by types meeting the constraints imposed by a set of function
signatures. Russel's approach went hand-in-hand with a view of
types as values which could be inspected like any other value.
Strictly, the run-time inspection of types is only necessary in
languages which permit dynamic binding of functions to arguments.

Object-oriented languages exhibit this kind of polymorphism
operationally through the inheritance of common operations; or else
through the planned overloading of a family of functions which satisfy
a common set of axioms, usually because they descend from a
common abstract or virtual function prototype. The type parameter is
usually implicit, ranging over the full extent of each type in some
family of types. The bound on the parameter is expressed as a node
in a type hierarchy, whose purpose as an abstract type is to confer its
specification upon all its descendent nodes. As a result, this kind of
polymorphism has also been referred to as inclusion polymorphism
since it may yet bear a direct relationship with inclusion in the single-
sorted algebras [47].

Again, we use the term bounded in a slightly different sense from that
found in Cardelli and Wegner, where the term is used to describe the
constraints on a particular type capable of receiving objects of more
than one type. We assert that the bounds apply to a type parameter
(ie a higher-order entity) whose self-referential and recursive structure
must also be preserved when it is instantiated by actual types.

Finally, our term bounded polymorphism is more general than
inclusion, in that it may be used to describe bounded parameters in
languages without inheritance and which therefore do not
(necessarily) support systematic sets of relationships among partially-
described types.

(3) Universal Construction: is the creation of type constructors
whose element type(s) are parameterised. Type parameters therefore
abstract over only a part of the extent of the whole constructor
concerned, but are allowed to range freely over all types as candidates
to complete this part. This is what other authors have traditionally
referred to as parametric polymorphism. Such a scheme is provided in
strongly typed functional languages such as Hope, Standard ML and
Miranda. This kind of polymorphism is known as genericity in Ada
and Eiffel, where the type-constructor is known as a generic type. The
term generic arises from the fact that the type-constructor may be
used to create a family of semantically related types; the complete
family is constructed as the result of instantiating the formal
parameter(s) by all possible actual types.

As we have observed above, the existence of the universal parameter is
only possible because certain properties are required to be possessed
by all types. This aspect is usually implicit, although it is expressed
explicitly in Ada in the notion of attributes for types.

17

The combination of universal construction and bounded
polymorphism may lead to interesting complexities. In a strongly
typed functional language which only has the former variety, the
instantiation of the parameter in LIST [T] by an actual type P typically
restricts the elements of such a list exclusively to objects specifically
of type P. In strongly typed object-oriented languages that have both
varieties of polymorphism, the instantiation of the parameter is
considered to impose a further bound on the list element-type such
that it is assignment-compatible with all those objects whose type is P
or a proper subtype of P. Among other things, this allows the
construction of heterogenous lists, whose elements may arbitrarily
belong to different subtypes of P, since they all satisfy the bound
imposed by P. We believe that this combination therefore is the formal
equivalent of bounded construction, described below.

(4) Bounded Construction: is a generalisation of the above, which
defines type constructors whose element types are parameterised in a
restricted way, such that all those types satisfying the bounded
parameter share a subset of their abstract specification. This is the
kind of polymorphism present in Alphard, CLU and all languages
committed to a view of type-identifiers as syntactic entities rather than
full values in the Russel sense. Bounded parametric polymorphism
was introduced explicitly in the second major released version of Eiffel
[45] where it is known as constrained genericity. Here, the family of
types is constructed as a result of instantiating the formal
parameter(s) by all those actual types that are subtypes of the bound.

Bounded construction is a generalisation in the sense that it permits
the declaration of a larger set of type-constructors than universal
construction, since the additional constructors may now be seen to
depend on some property of their element-type(s), something which in
theory was excluded before. Constructors such as SORTED_LIST [T 
COMPARABLE] are now possible, where the bound on T is expressed
as another type whose operations any type instantiating T must at
least supply. The instantiation of the parameter leads to homogenous
lists of a constrained type in functional languages; and may still lead
to heterogenous lists in object-oriented languages.

(5) Arbitrary Union: is the free union of types where these share no
commonality that can be axiomatised; or share operations for which
the functional or axiomatic specifications clash. This accounts for the
remaining applications of overloading not covered under bounded
polymorphism.

This kind of polymorphism may also cover certain styles of explicit
coercions between types provided in some languages. Arbitrary
coercion may, or may not, lead to sets of types being related which
otherwise would have mutually exclusive semantic interpretations.

All kinds of polymorphism except the fifth variety may be incorporated
in a type-consistent treatment of class inheritance. Any language only
need implement varieties 2 and 4, since varieties 1 and 3 are limiting
cases of these, respectively, where the bound is drawn at the root
node of the type hierarchy in order to encompass all types.

This is still not the whole story, however. We shall want to examine
further the role of the type parameter, especially where it abstracts
over the whole extent of a type, in the context of inheritance and

18

polymorphism. In particular, we shall want to revise again the
algebra devised in section 4 above to encompass parameterised
recursive and re-entrant structures.

6. INTERACTIONS BETWEEN TYPES, INHERITANCE AND
POLYMORPHISM

The first thing to consider in our composite model is the practical
effect of requiring inheritance to conform to behavioural subtyping.
What models of inheritance are sufficient to handle a fully axiomatised
and abstract treatment of types?

If you consider the domain of abstract types as an infinitessimally
divisible continuum reaching from the most general to the most
specific, then particular types are represented by fixed points in this
domain. A polymorphic type is not a fixed point, but rather a sub-
space in this domain, bounded by an upper limit; this limit is a fixed
point representing the most general type that can satisfy the bound.
There is a type-compatibility relationship between polymorphic types
and all fixed points falling within their bound. There is also a very
similar relationship between abstract types and concrete types which
implement them; but for the moment we will focus on abstract types.

Now, there are many possible selections of fixed points within the type
domain which may prove to be of practical use. There is no
requirement for any particular type to have a 'canonical' status or an
a priori right to be represented, provided that the correct
homomorphisms exist between the fixed points selected for use as
specific types and those used to represent upper bounds on
polymorphic types.

However, it is consistent with our approach to demand that any new
functionality be introduced at single fixed points in the domain. If
this were not so, the fixed points selected by the programmer would
represent sub-optimal expressions of type for the task in hand. The
consequence of this is that there should be no duplicate introduction
of functions in an optimal, type-consistent inheritance graph. In an
object-oriented language that adheres to this formal requirement,
functions are typically introduced at one class in the hierarchy and
are directly applicable to all eventual descendants. Where this is not
physically possible, due perhaps to a mutually exclusive
implementation among the descendent classes, then a full axiomatic
specification for some set of overloaded functions may be introduced
at a common (partly) abstract ancestor class.

Immediately, we can establish that this requirement cannot be met in
languages that only have single inheritance, or a tree-like
specialisation hierarchy. An example of this is exhibited in the
Collection hierarchy in Smalltalk/V [46], in which the add: method is
implemented variously for sets, bags, extrinsically ordered collections
and intrinsically sorted collections. The common semantics of add:
require the target collection to be extensible and to ensure that an
element is present after it is added. However, the single inheritance
scheme of Smalltalk/V chooses to partition the space of collections on
the basis of whether the collection can contain multiple occurrences of
an element, or whether the collection is indexable.

19

Smalltalk/V has no way to express the commonality of an extensible
collection. In practice, Smalltalk/V defines a protocol for add: for all
collections, but derails the application of this in the non-extensible
classes (formally the equivalent of deleting a function). To obtain a
distinction between fixed and extensible collections would require
either a different partitioning of the hierarchy (with similar attendant
problems), or an alternative inheritance scheme.

Multiple inheritance, or a graph-like specialisation hierarchy, resolves
the problem due to partitioning, since it allows multiple abstract
behaviours to be combined in descendent classes. It would be
possible, for example, to define ExtensibleCollection and
UniqueCollection as joint parents of Set. IndexedCollection and
FixedCollection may likewise be joint parents of Array; and further
pairwise combinations could give rise to unusual classes such as a
BoundedSet or ExtensibleArray. Operationally, this is the kind of
design approach recommended in Flavors, Eiffel and CLOS.

From a type-theoretic viewpoint, multiple inheritance of behaviours
permits a finer-grained factorisation of notions of type. Minimally, the
introduction of a single function or axiom would require a new, more
specialised type; and this illustrates that our notion of type-space is
quantal in functions and axioms. In practice, programmers select
only a few of the many possible fixed points in the type domain,
revealing for the first time, rather than introducing, sets of useful
functions and axioms at these points.

Given a multiple inheritance scheme, it is desirable to define functions
as generally as possible, so that these may apply polymorphically to
all descendent classes. This practice is in fact enforced by our
requirement to introduce novel packets of functionality strictly at
single points in an optimal inheritance graph. Of course, we should
like the polymorphic application of such generic functions to be type-
correct, but we have not yet demonstrated that this is the case.

We need to examine the interaction between inheritance and
polymorphism. As Canning, Cook and others have noted [47, 48] the
straightforward Cardelli-Wegner record subtyping model does not
quite encompass the operational behaviour of OOP languages in
situations where functions are being invoked polymorphically. The
simple algebra we have been using so far merely models specific types
and their sub-types, rather than generalised polymorphic types. The
effect of this is demonstrated in the following two examples (adapted
from Canning).

Consider a simple, recursively defined type supplying an operation to
move screen-relocatable objects:

Moveable = Rec mv . { move : Integer x Integer  mv }

Given that the types Square and Triangle can be derived as subtypes
of Moveable, we should like move also to apply to these and return
arguments of the correct types. However, interpreting the result as a
type-bounded variable gives us the wrong answer: the function move
applies to squares and triangles but always returns an object of the
specific type Moveable. The algebra does not force the function's
result type to mirror its polymorphic target. This problem is repeated

20

and subtly compounded when the recursively defined type appears on
the left hand side of function signatures:

Comparable = Rec comp . { < : comp  Boolean }

Here, we should like Integer and Character to be subtypes of
Comparable, inheriting the < operation. However, if our
understanding is that < should always compare its target with an
argument of the same specific type, this is not what we obtain under
record subtyping:

Character = Rec char . { ...; < : Comparable  Boolean; ... }

which says that the inherited function compares with any type
conforming to Comparable. Alternatively, if we were to override the
inherited function deliberately with the one we really want, the
subtyping relationship which establishes this:

{ ...; < : Character  Boolean; ... }  { < : Comparable  Boolean }

would in turn require Comparable  Character by the contravariance
rule, which is precisely the opposite of what we intended. This
manifestly prevents us from deriving Character  Comparable, unless
in fact Character = Comparable. Canning et al. [47] refer to these
cases as positive recursion and negative recursion in the definition of
types. They show that Cardelli-Wegner bounded quantification strictly
does not provide the same degree of flexibility in the presence of
recursion as it does for non-recursive types.

Curiously enough, this problem is solved in the functional languages
by treating all polymorphic references as type parameters (syntactic
abbreviations for sets of actual types) bound throughout the
expressions in which they appear. A simple denotational semantics
can be constructed to handle ML-style polymorphism [49]. Of course,
the functional languages do not require the kind of complex
machinery needed in object-oriented languages for correct type
inference under inheritance; this is because they do not generally
make strong claims about systematic sets of relationships existing
between types. However, it is intuitively apparent that some kind of
subtyping relationship must exist between polymorphic type
constructors and their family of instantiations.

The formal solution for object-oriented languages lies in treating class
identifiers not literally as bounded types (declaring containers capable
of receiving more than one kind of object), but as type-bounded
parameters (syntactic abbreviations for some inclusive, ie non-disjoint,
set of types). In fact, object-oriented languages must interpret class
identifiers in two quite distinct senses; we shall return to this below.

Interpreting a class identifier as a bounded parameter has the
following intuitive meaning: instead of denoting an actual, possibly
quite general, type, it denotes a space of types satisfying a bound.
This means that instead of treating a function like move as belonging
to the type Movable, we need to treat it as belonging to some space of
types constructed from Moveable, expressed using a parameter
satisfying the bound imposed by Movable. Provided we can do this,
objects of the actual type Moveable, or for that matter Square and

21

Triangle, can be shown to be type-compatible with the parameterised
construction.

In object-oriented languages, there is a difficulty in constructing a
quantification for type parameters which binds the type variable(s)
both in the body of the type definition and in the expression denoting
the type-bound itself. This problem is not apparent until you examine
what should happen in the context of recursively defined types; and is
precisely the situation uncovered by Canning et al. above. They call
their solution F-bounded quantification, where the F stands for a
typing function constraining the type parameter, but which contains
the parameter itself (see Canning et al. [47] for a full derivation). The
functional bound (F-bound) is constructed by working backwards
from the desired conclusion - we desire a parameter t such that:

t  F[t] . s(t)

22

where s stands for some set of function signatures describing the F-
bound and which may include the parameter t. This permits the
declaration of polymorphic typing functions of the form:

F-Moveable[t] = { move : Integer x Integer  t }

F-Comparable[t] = { < : t  Boolean }

which describe polymorphic type spaces rather than fixed-point types.
The signatures of these typing functions now properly reflect the true
underlying nature of polymorphic types as type-constructors, since
they contain a parameter requiring instantiation.

Actual types are derived by the application of these polymorphic
typing functions to specific types, during which process the type
parameter is replaced. By this substitution, we can show that:

F-Moveable[Square] = { move : Integer x Integer  Square }

F-Moveable[Triangle] = { move : Integer x Integer  Triangle }

and if we wish to define the specific types Square and Triangle as
having further unique behaviours in addition to being moveable:

Square = Rec sqr . { ...; move : Integer x Integer  sqr; ... }

Triangle = Rec tri . { ...; move : Integer x Integer  tri; ... }

we thereby demonstrate that:

Square  F-Moveable[Square],
Triangle  F-Moveable[Triangle] ... etc

Integer  F-Comparable[Integer],
Character  F-Comparable[Character] ... etc

In consequence, the application of move defined for F-Moveable is in
fact type-correct for Squares and Triangles; also Characters or Integers
may be compared pairwise using F-Comparable's function <. This
construction solves the polymorphic typing problem for recursive
types; it captures the notion of adding functions to a (polymorphic)
type while preserving the recursive structure of the type for all
instantiations of the type parameter. Canning et al note that F-
bounded quantification is closely related to inclusion for single-sorted
algebraic signatures.

7. CONCLUSION: CLASSES, TYPES, INHERITANCE AND
POLYMORPHISM

We now come to the place where we have to decide what we
understand by the notions of class and inheritance.

Earlier, we remarked on the view held by some that objects have class
and type separately, if not independently. Although we do not support

23

this view, we agree that an informal and undisciplined use of classes
presupposes such a view. Instead, we intend to bring the notions of
class and type much closer together.

Attempts to describe the notion of class formally are frustrated by the
conflicting requirements on the semantics of class obtained by
inspecting the uses to which classes are commonly put in most OOP
languages. Operationally, a class may serve three different purposes
(Cox, [11]): to act as a template for creating the objects which are its
instances; to act as a shared data structure storing values accessible
by all its instances; and to provide the message-interface for all its
instances. The first two roles concern the implementation of objects,
the last concerns the specification of behaviour.

As we observed above, the behaviour of a type is defined by its
functional and axiomatic specification. If we therefore treat external
behaviour as the primary structuring mechanism for a space of
classes, then we may show that classes conform in some way to types
and inheritance relates more to behavioural subtyping than to the
incremental extension of data storage cells. This last point is
extrememly important - a class is not, first and foremost, a description
of objects with identically-named attributes, rather it describes objects
with similar behaviour. Given our argument so far, we cannot yet
insist that classes are types; nor that inheritance is subtyping.

Our view of classes may seem to have a lot in common with the so-
called abstract data types (ADTs) created in module-based languages
such as Modula-2 and Ada. In these languages, great emphasis is
laid on the external interfaces of ADTs, which describe (at least) the
functional specification of types. However, we disagree in points of
detail with the terminology and design approach taken in these
languages. To clarify our use of terms, we shall note these points of
disagreement.

Firstly, the word 'abstract' in the widespread use of the term abstract
data type to denote a software component whose internal nature is
partially concealed is strictly a misnomer. Such types are not
abstract, they are in fact concrete since they are fully implemented. It
would be better to refer to such constructions as encapsulated data
types, where encapsulation includes both the notions of information
hiding (the client programmer need not know about the internal
details of a type's implementation) and protection (the client
programmer may not tinker with the internal details of a type's
implementation). In contrast, a properly abstract datatype provides a
functional and axiomatic specification for that type's behaviour and
absolutely no implementation.

Secondly, the mechanism governing the visibility of objects and
operations in these languages relates not to types themselves, but to
modules (in Modula-2; called packages in Ada). A module is simply a
syntactic arrangement of datatype declarations and operations,
without any obvious theoretical status. There is no requirement to
devote a module to the implementation of a single encapsulated data
type; in practice modules may contain several related data types. The
fact that modules are in competition with types for control over levels
of abstraction mitigates against a full and proper expression of type.

24

Thirdly, there is no serious attempt in these languages to establish
systematic sets of relationships between types and generalised types.
Ada has genericity and a complicated set of rules governing type
coercion; Modula-2 renounces even the small amount of overloading
available in Pascal. But otherwise there is no systematic notion of
type compatibility, specialisation by extension, specialisation by
restriction or progressive reification. These languages preclude the
existence of homomorphisms between types and generalised types.

Needless to say, our understanding of the notion of class encompasses
a spectrum from the fully abstract types to the fully concrete types,
together with a systematic set of relationships among generalised
polymorphic types constructed from actual types. Each type should
have full and sole control over its own visibility. We cannot yet
complete our definition of class until we have considered both
inheritance and polymorphism.

Inheritance is usually taken to mean the same thing as specialisation.
If B is a subclass of A, then B may specialise A by extension (it may
add new functions) or by restriction (it may enforce stricter axioms,
such as only permitting a subset of the original underlying value
space); consequently A is said to generalise B in the sense that A
subsumes B. A particular application of specialisation is reification,
for example where an abstract type PLANAR_POINT offering
specifications for the functions {x, y, theta, rho} is specialised by the
alternative implementations given in CARTESIAN_POINT and
POLAR_POINT. This gives us an operational definition of inheritance,
but fails to explain what it is, in a formal sense.

The question remains: what are we to understand by the terms
specialisation and generalisation? Have we simply replaced inheritance
by another label? These terms arise from the AI community in
connection with prototypes and cognitive theories of learning
(chunking, hierarchical clustering). Often, specialisation is mistakenly
compared with the stricter mathematical notion of subtyping; or else
aspires to a 'semi-formal' version of the same thing. Fortunately, we
are able to dispense with hopeful ignorance and construct a proper
definition for specialisation, based on an understanding of
polymorphic types. We shall summarise our argument so far.

Earlier, we experimented with a model of inheritance as record
subtyping. This was done by gradually introducing constraints on
what kinds of extensions and overriding were permissible in
descendent classes, in order to ensure that they were still subtypes of
their ancestors. We noted later that the relationships we had
established were between fixed-point, monomorphic types. The record
subtyping model did not extend sufficiently to cover either languages
with polymorphism or languages with recursive types. Finally, we
introduced a polymorphic typing function constructed around a
parameter linked with an actual type, demonstrating that this
produced type-consistent results under inheritance and
polymorphism.

Having reached a similar point in the argument, other authors have
stopped to consider how this discovery apparently drives a wedge
between classes and types, reasoning in the following way: two types A
and B may both satisfy the same F-bound, such that A  F[A] and B 
F[B], and yet may not be in a subtype relation with each other -

25

neither A  B, nor B  A. This means that an F-bounded function
may be applied to (ie inherited by) objects with incomparable types,
showing that the inheritance hierarchy is distinct from the type
hierarchy.

We think that this is looking in the wrong direction! Surely, the most
important discovery here is that a systematic approach to
constructing truly polymorphic types has been devised. For every
actual type, at whatever level of generality, a corresponding
polymorphic type may be constructed by abstracting over the body of
this type using a parameter bounded by a function. Furthermore,
there appears to be a simple inclusion relationship between
polymorphic types (ie the spaces occupied by polymorphic types in the
type domain contain other sub-spaces representing more constrained
polymorphic types). This is indicated in that the sets of parameterised
functions defining the related F-bounds turn out to be supersets and
subsets of each other. Finally, a straightforward subtyping
relationship exists between polymorphic types and all actual types
that produce valid instantiations of the parameter.

To suggest therefore that inheritance is a weak notion because it does
not conform to subtyping between simple fixed-point types is a
nonsense. There was so little mileage to be had from that idea
anyway; it would be difficult even to construct a type-correct
polymorphic application of plus on a simple subrange of Integer, and
still retain the subtype relationship. Or, to put it another way, the
focus of a truly general theory of types is surely the construction of
relationships between general spaces in the type domain and not the
limited links that can be established between fixed points. Pursuing
this prospect, Canning et al. relate F-bounded quantification to some
family of F-coalgebras, using the Breazu-Tannen semantics-by-
translation approach [50]. Observing that the recursive type Rec t.F[t]
may be regarded as a particular F-coalgebra, they suggest that F-
bounded polymorphism involves quantification over a category whose
objects are properly regarded as generalisations of the recursive type
Rec t.F[t].

Strict inheritance is therefore a much grander notion than some
authors might lead you to believe - subtyping among parameterised
type-constructors, interpreted formally as subsumption among
categories. Inheritance is principally a relationship among type-
constructors, extending finally to actual types.

As a consequence of this, we need to interpret the occurrence of class
identifiers in object-oriented languages in two distinct senses.
Typically, a class identifier may be used to denote a fixed-point type
on the one hand; or a polymorphic type constructor on the other
hand. The interpretation that we should choose is usually apparent
from the context; however there are also some interesting issues that
arise as we pursue this. In conclusion to our article, we shall discuss
some of the implications of our approach to the interpretation of class
identifiers.

Class hierarchies are always open-ended, subject to further
subclassing. This means that any class description potentially
denotes a bounded polymorphic type-space under the class
concerned, for which the actual class is the most general fixed-point
type satisfying the bound. Therefore all class identifiers used to type

26

function signatures should really be considered formally as bounded
parameters to be instantiated later by actual types. An examination of
the operational behaviour of current object-oriented languages allows
us to infer that a single underlying parameter is what is usually
intended. The instantiations of a single parameter t in:

F-Comparable[Character] = { < : Character  Boolean }

F-Comparable[Integer] = { < : Integer  Boolean }

allow us to compare like with like in a polymorphic way:

3 < 4;
'a' < 'd';

and this is usually the intention in object-oriented languages.
However, a single underlying parameter does not admit of the
possibility of mixed-type calls:

'a' < 102;
10 < 'c';

This is because a single parameter cannot be uniformly instantiated
by a mix of types. To allow this, we would have to declare, in the
polymorphic typing function, all of the parameters that were to be
included in the F-bound:

F-Comparable[p,q] = { < : q  Boolean }

where p and q might be instantiated by distinct types both satisfying
the F-bound. Of course, whether this is appropriate or desirable in a
language will depend on the underlying implementation of distinct
comparable types and may involve some

27

implicit coercions, or the application of a polymorphic hashing-
function in every call to <.

Object-oriented programs manipulate objects created from specific
type templates; so it is clear that the moment an object is created
(using an expression such as 'new' or 'Create') then the polymorphic
space denoted by the class is projected onto a fixed-point type, in fact
the most general type satisfying the F-bound. In the vast majority of
cases, this describes the required behaviour. A class could therefore
be described as a polymorphic type with a default fixed-point
instantiation.

However, there are a few cases where this projection does not account
adequately for the operational behaviour of object-oriented languages.
This is where the fixed-point type of the object to be created has to be
determined dynamically, for example during a cloning or deep-copying
operation. Typically, object-oriented languages have a special syntax
to denote this case. In Smalltalk, you can reason about types at
runtime:

theCopy := self class new.

whereas in Eiffel, there is a mechanism to anchor the type of the copy
to the type of the current object:

theCopy : like Current;
theCopy.Create(...);

It turns out that this special syntax is necessary because of the
default interpretation given to class identifiers used to type object-
creation expressions. In our formal model, the dynamic nature of the
result-type of a copying operation is apparent in the parameter:

F-Copyable[t] = { copy :  t }

Perhaps a better approach would be to admit explicit F-bounded
parameters into the syntax of object-oriented languages, in order to
make cases like this and the above example of mixed-type
polymorphic calls less ambiguous. This is the challenge to the next
generation of developers of object-oriented languages.

28

REFERENCES

[1] A Goldberg and D Robson (1983), Smalltalk-80: The Language
and its Implementation, Addison Wesley.

[2] S E Keene (1989), Object-Oriented Programming in Common Lisp,
Addison Wesley and Symbolics Press.

[3] B Meyer (1988), Object-Oriented Software Construction, Prentice
Hall.

[4] W Cook (1989), 'A proposal for making Eiffel type-safe', Proc.
ECOOP-89, 57-70. Reprinted in Computer Journal 32(4), 305-
311.

[5] B Meyer (1989), 'Static typing for Eiffel', Internal Report, July,
Interactive Software Engineering Inc.

[6] A Snyder (1986), 'Encapsulation and inheritance in object-
oriented programming languages', Proc. ACM Conf. on OOPSLA-
86, 38-45.

[7] B H Liskov (1981), CLU Reference Manual, Lecture Notes in
Computer Science 114, Springer Verlag.

[8] D A Moon (1986), 'Object-oriented programming with Flavors',
Proc. ACM conf. OOPSLA-86, published as SIGPLAN Notices,
21(11), November 1986, 9-16.

[9] D Bobrow, L DeMichiel, R Gabriel, G Kiczales, D Moon and S
Keene (1988), The Common Lisp Object System Specification:
Chapters 1 and 2, Technical Report 88-002R, ANSI X3J13
standards committee document.

[10] A van Wijngaarden, B Mailloux, J Peck, C Koster, M Sintzoff, C
Lindsey L Meertens and R Fisker (1975), 'Revised report on the
algorithmic language Algol 68', Acta Informatica 5, 1-236.

[11] B J Cox (1986), Object-Oriented Programming - an Evolutionary
Approach, Addison Wesley.

[12] R Dawkins (1984), The Blind Watchmaker, Penguin.

[13] J C Reynolds (1983), 'Types, abstraction and parametric
polymorphism', in: Information Processing 83, ed. R E A Mason,
North-Holland, Amsterdam, 513-523.

[14] J H Morris (1973), 'Types are not sets', Proc. ACM Symposium on
Principles of Programming Languages, Boston, 120-124.

[15] A Demers, J Donahue and G Skinner (1978), 'Data types as values:
polymorpism, type-checking, encapsulation', Proc. 5th ACM
Symposium on Principles of Programming Languages, 23-30.

29

[16] A J Demers and J E Donahue (1979), 'Revised report on
Russell', TR 79-389, Department of Computer Science, Cornell
University, Ithaca, NY.

[17] D S Scott (1976), 'Data types as lattices', SIAM J. Computing,
5(3), 523-587.

[18] J W Guttag (1975), 'The specification and application to
programming of abstract data types', Technical Report CSRG-59,
University of Toronto, September.

[19] J W Guttag (1977), 'Abstract data types and the development of
data structures', Comm. ACM 20(6), 396-404.

[20] M Sakkinen (1989), 'Disciplined inheritance', Proc. ECOOP-89,
39-56.

[21] W W Y Pun and R L Winder (1989), 'A design method for object-
oriented programming', Proc. ECOOP-89, 225-240.

[22] L Cardelli (1984), 'A semantics of multiple inheritance', in:
Semantics of Data Types, Lecture Notes in Computer Science 173,
Springer Verlag, 51-68.

[23] L Cardelli and P Wegner (1985), 'On understanding types, data
abstraction and polymorphism', ACM Computing Surveys 17(4),
471-522.

[24] W Cook (1989), A Denotational Semantics of Inheritance, PhD
Dissertation, Brown University.

[25] P Canning, W Cook, W Hill and W Olthoff (1989), 'Interfaces for
strongly typed object-oriented programming', Proc. ACM Conf. on
OOPSLA-89, 457-467.

[26] J C Mitchell (1984), 'Coercion and type inference', in: Proc. 11th
ACM Symp. on Principles of Programming Languages.

[27] L Cardelli (1988), 'Structural subtyping and the notion of power
type', Proc. 15th ACM Symp. on Principles of Programming
Languages, 70-79.

[28] P America (1987), 'Inheritance and subtyping in a parallel
object-oriented language', Proc. ECOOP-87.

[29] C A R Hoare (1972), 'Proof of correctness of data
representations', Acta Informatica 1, 271-281.

[30] C B Jones (1986), Systematic Software Development using VDM,
Prentice Hall.

[31] B Stroustrup (1987), 'What is object-oriented programming?,
Proc. ECOOP-87, pub. as BIGRE 54, 51-70.

30

[32] P Wegner (1987), 'The object-oriented classification paradigm',
in: eds. B Shriver and P Wegner, Research Directions in Object-
Oriented Programming, MIT Press.

[33] P Wegner (1987), 'Dimensions of object-based language design',
Proc. ACM Conf. on OOPSLA-87, pub. as ACM Sigplan Notices 22,
ed. N Meyrowitz, 168-182.

[34] R K Raj and H M Levy (1989), 'A compositional model for
software reuse', Proc. ECOOP-89, 3-24. Reprinted in Computer
Journal 32(4), 312-322.

[35] C Shaffert, T Cooper, B Billis, M F Kilian and C Wilpolt (1986),
'An introduction to Trellis/Owl', Proc. First ACM Conf. on Object-
Oriented Programming Systems, Languages and Applications, 9-
16, Portland Oregon, September (1986).

[36] C Strachey (1967), Fundamental Concepts of Programming
Languages, Oxford University Programming Research Group,
(originally lecture notes, Int. Summer School in Comp. Prog.,
Copenhagen, August 1967).

[37] C Strachey (1973), Varieties of Programming Languages, Oxford
University Programming Research Group.

[38] R Milne and C Strachey (1976), A Theory of Programming
Language Semantics, Chapman and Hall.

[39] R D Tennent (1981), Principles of Programing Languages,
Prentice Hall.

[40] R Milner (1978), 'A theory of type polymorphism in
programming', Journal of Computer and System Sciences 17,
348-375.

[41] R M Burstall, D B MacQueen and D T Sanella (1980), 'Hope: an
experimental applicative language', CSR-62-80, Department of
Computer Science, University of Edinburgh.

[42] B Stroustrup (1986), The C++ Programming Language, Addision
Wesley.

[43] W Wulf, R London and M Shaw (1976), 'Abstraction and
verification in Alphard: introduction to language and
methodology', USC/ISI Research Report 76-46, June.

[44] B Lampson, J Horning, R London, J Mitchell and G Popek
(1977), 'Report on the programming language Euclid', Sigplan
Notices 12(2).

[45] B Meyer (1992), Eiffel: The Language, Prentice Hall, 200-204.

[46] Digitalk (1986), Smalltalk/V - Tutorial and Programming
Handbook, Digitalk Inc.

31

[47] P Canning, W Cook, W Hill and W Olthoff (1989), 'F-bounded
polymorphism for object-oriented programming', Proc. 4th Int.
Conf. on Functional Programming Languages and Computer
Architecture, Imperial College, 11-13 September, 273-280.

[48] W Cook and J Palsberg (1989), 'A denotational semantics of
inheritance and its correctness', Proc. ACM Conf. on OOPSLA-89,
433-443.

[49] A Ohori (1989), 'A simple semantics for ML polymorphism', Proc.
4th Int. Conf. on Functional Programming Languages and
Computer Architecture, Imperial College, 11-13 September, 281-
292.

[50] V Breazu-Tannen, T Coquand, C Gunder and A Scedrov (1989),
'Inheritance and explicit coercion', Proc. IEEE Symp. on Logic in
Computer Science, 112-133.

