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Abstract.  A comparative study was conducted into three Java unit-testing tools 
that support automatic test-case generation or test-case evaluation:  Randoop, 
JWalk and µJava.  These tools are shown to adopt quite different testing meth-
ods, based on different testing assumptions.  The comparative study illustrates 
their respective strengths and weaknesses when applied to realistically complex 
Java software.  Different trade-offs were found between the testing effort re-
quired, the test coverage offered and the maintainability of the tests.  The con-
clusion evaluates how effective these tools were as alternatives to writing care-
fully hand-crafted tests for testing with JUnit.

1   Introduction

Software testing is an essential part of ensuring software quality and verifying correct 
behaviour.  However, writing software tests is often an uninspiring and repetitive task 
that could benefit from automation, both in the selection and execution of test cases 
and in the evaluation of test results.  Automatic tools may save time and effort, by 
generating tests that exercise the software more thoroughly than hand-crafted tests and 
may even find faults that human testers would never think of checking.  Yet, how 
should the overall quality of an automatically-generated test set be judged against a 
carefully thought out hand-crafted test suite?

This paper reports the result of an experiment in comparing three radically different 
Java testing tools:  Randoop [1], JWalk [2] and µJava [3].  Section 2 outlines the 
different testing assumptions and methods followed by each tool, and develops a 
qualitative framework for mutual comparison.  Section 3 describes how each tool 
performed on JPacman [4], a realistically complex Java software system, for which 
comprehensive JUnit [5] tests also exist.  Section 4 concludes with a summary of 
findings and evaluates the relative strengths and weaknesses of each tool, compared 
against hand-crafted testing using JUnit.



2   Testing Tools and Techniques

Three different testing techniques (and their associated tools) were chosen for the 
comparison.  They were chosen to be as unalike as possible, to reveal possibly inter-
esting contrasts.  Each testing tool employs a different testing approach and is based 
on different underlying testing assumptions.

2.1   Feedback-directed Random Testing with Randoop

The Randoop tool [1] generates random tests for a given set of Java classes during a 
limited time interval, which is preset by the tester.  The test engine uses Java’s ability 
to introspect about each class’s type structure and generates random test sequences 
made up from constructors and methods published in each test class’s public interface.  
The testing philosophy is based on random code exploration, which is expected at the 
limit to reveal (possibly) all salient properties of the tested code.  Randoop has suc-
cessfully discovered long-buried bugs in Microsoft .NET code [6] and detected unex-
pected differences between Java versions on different platforms [7].

In order to check meaningful semantic properties, the tool requires some prior 
preparation of the code to be tested [7].  Firstly, classes under test (CUTs) are instru-
mented with Java annotations, to guide the tool in how to use certain methods during 
testing.  For example, @Observer directs the tool to treat the result of a method as a 
state observation, whereas @Omit directs the tool to ignore non-deterministic me-
thods and @ObjectInvariant directs the tool to treat a method as a state validity 
predicate.  Given this information, the tool may construct meaningful regression tests 
that observe salient parts of the CUT’s state.  Secondly, the tool recognizes certain 
contract-checking interfaces as special.  Testers may optionally supply contract-
checking classes, which implement these interfaces, and so are treated as test oracles, 
which are executed upon the randomly-generated objects.  Predefined contracts typi-
cally check the algebraic properties of the CUT, such as the idempotency of 
equals(), or the consistency of equals() and hashCode(), but testers may  in 
principle supply their own arbitrary contracts [7] (but see 3.1).

The feedback-directed aspect refers to the tool’s ability to detect certain redundant 
test sequences and prune these from the generated set.  In practice, this refers to test 
sequences which extend sequences that are already known to raise an exception [1].  
Since it makes no sense to extend a terminating sequence, the longer sequences are 
pruned.  Retained tests are exported in the format expected by JUnit [5].  Randoop
classifies all randomly generated tests into regression tests (which pass all contracts) 
and contract violations (which do not) and discards tests which raise exceptions.

2.2   Lazy Systematic Unit Testing with JWalk

The JWalk tool [2] generates bounded exhaustive test sets for one CUT at a time, 
using specification-based test generation algorithms that verify the detailed algebraic 
structure, or high-level states and transitions of the CUT.  The tool constructs a test 



oracle incrementally, by a combination of dynamic code analysis and some limited 
interaction with the tester, who confirms or rejects certain key test results.  Once the 
oracle is constructed, testing is fully automatic.  If the software, and implicitly its 
specification, is subsequently modified, JWalk only prompts to confirm altered prop-
erties.  However, the tool does not perform regression testing so much as complete 
test regeneration from the revised specification [8].  This explains the lazy epithet, 
whereby a specification evolves in step with changes made to the code and stabilizes 
“just in time” before testing (c.f. lazy evaluation).  The tool could prove a useful addi-
tion to agile or XP development, which expects rapid code change and otherwise has 
no up-front specification to drive the selection of test cases [9].

Fig. 1.  JWalk Tester being used to exercise all methods of the class jpacman.model.Cell to a 
depth of 3, in all distinct interleaved combinations.  The test summary tab displays the number 
of tests executed.  Obscured tabs for each test cycle to depths 0, 1, 2 and 3 list all test se-
quences and test outcomes

In contrast with Randoop, test sequence generation is entirely deterministic, based on 
a filtered, breadth-first exploration of the CUT’s constructors and methods, since 
JWalk exploits regularity to predict test equivalence classes, so reducing the number 
of examples to be confirmed by the tester.  Like Randoop, JWalk prunes longer test 
sequences whose prefixes are known to raise exceptions.  Furthermore, JWalk can also 
prune sequences whose prefixes end in observers (which do not alter the CUT’s state) 
and whose prefixes end in transformers (which return the CUT to an earlier state).  
The tool detects these algebraic properties of methods automatically and does not 
require any kind of prior code annotation [10].  It retains the shortest exemplars from 
each equivalence class and uses these to predict the results of longer sequences.



The JWalk tool can be run in different modes which inspect the CUT’s interface, 
which explore (basically, exercise) the CUT’s methods, or which validate the method 
results with respect to a test oracle.  Likewise, test sequences may be constructed 
following different test strategies, ranging from breadth-first protocol exploration (all 
interleaved methods), to smarter algebraic exploration (all primitive constructions and 
observations), to high-level state-space exploration (all high-level states and transi-
tions).  JWalk regenerates and executes all tests internally, producing test reports [2] 
and does not export JUnit tests for execution outside the tool.  Following the testing 
philosophy, exported regression tests would progressively lose their ability to cover 
the state-space at a geometric rate, as the tested software evolved [8].

2.3   Mutation Testing with Java

Fig. 2.  The Java tool, seeding mutations in the class jpacman.model.Cell.  The traditional 
mutants viewer tab displays the original source (above) and modified source (below), in which 
the mutant AOIU_1 (arithmetic operator insertion, unary) has been introduced.  Obscured tabs 
include the mutant generator and the class mutants viewer

The Java tool [3] assumes the prior existence of a test suite, created by some other 
means, for testing multiple classes in a package.  Mutation testing is intended to eva-
luate the quality of the test suite by making small modifications, or mutations, to the 



tested source code and determining whether the tests can detect these mutants.  A test 
which detects a mutation is said to “kill” the mutant; and a successful test may kill 
more mutants than weaker tests, whereas a mutant that is never detected may reveal 
the need for more tests, or that the mutation is benign, or that it cancels out another 
mutation (“equivalent mutants” [11]), or simply that the code branch containing the 
mutant has not been covered by any of the tests.

The testing philosophy is purely code-based, in contrast to the specification-based 
or regression-based approaches of the other two methods.  The testing method as-
sumes, in the limit,  that mutations will mimic all possible coding errors, by introduc-
ing every possible kind of fault into the original source code.  Tests which kill the 
mutants will also reveal unplanned errors in the source code.  Twelve traditional mu-
tants include variable and value insertions, deletions, substitutions, operator replace-
ment and similar changes to code at the method-level [12].  Twenty-nine special mu-
tants are devised to handle class-level mutation, based on a survey of common coding 
errors, such as access modifier changes, insertion and hiding of overrides, changes to 
member initialization, specialization or generalization of types and typecasts, and 
insertion and deletion of keywords static, this and super [13].

The testing regime also requires test harness classes, which encapsulate the hand-
crafted test suites to be run after every mutation series.  These are ordinary classes 
whose methods are named: test1(), test2(), etc. and which return strings.  The 
testing tool is able to compare string-results before and after mutation, to determine 
which tests were affected by the mutations.  Though similar in essence, these test 
suites are not in the same format as that expected by JUnit.

2.4   Experimental Framework and Hypothesis

The experiment outlined above was to investigate how well each of the three testing 
tools performed, compared to an expert human tester.  The hypothesis was that the 
tools might speed up certain aspects of testing, but not fully replace a human tester, 
although they might make his/her job somewhat easier.

The software chosen for the test target was JPacman [4], a Java implementation of 
the traditional Pacman arcade game, developed at TU Delft as a teaching example.  
The source consists of 21 production classes, amounting to 2.3K SLOC [13].  The 
package is attractive, since it comes with a comprehensive JUnit test suite, consisting 
of 60 test cases (15 acceptance tests for the GUI; 45 unit tests for the classes).  These 
were carefully hand-crafted, following Binder’s guidelines [14] to cover all code 
branches, populate both on-boundary and off-boundary points, test class diagram 
multiplicities and test class behaviour from decision tables and finite state machines.  
The test code amounts to about 1K SLOC.

It was difficult to find a framework in which the three disparate testing approaches 
could be compared systematically.  We considered using code coverage as an un-
biased, verifiable criterion, easily measured using the tool Emma [15].  However, 
Java does not actually generate unit tests and JWalk’s tests were not easily accessible 
to Emma.  The mutation scores of Java might provide a rough derived indication of 
how much of the code was covered by the hand-crafted tests.  Nonetheless, simply 



counting how much code executed was not a very sophisticated measure of test effec-
tiveness (was the tested code actually correct?)

Time spent on testing was also considered, since one of the main benefits of auto-
mated testing is to reduce this overhead.  Unfortunately, no measurements were avail-
able for the time spent on constructing the hand-crafted JUnit tests; against this, it was 
hard to estimate impartially the time taken to learn the different testing tools (reading 
online guides and papers).  Simply measuring the time taken to run the tests was also 
considered a poor indicator of how effective the tests were, and was also biased, since 
Randoop generates tests up to a preset time limit.

For this reason, the comparison between the testing methods is eventually qualita-
tive, focusing mostly on the types of fault, or change, that the tools could detect.  Fur-
ther points of distinction were the amount of extra work the tester had to invest when 
using the tools; and the maintainability of any further generated software.

3   Testing Experiments

Each of the tools Randoop, JWalk and Java were downloaded and installed.  They 
were used to test classes from the jpacman.model package, part of the JPacman
[4] software testing benchmark developed by TU Delft.  Comparisons were drawn as 
detailed above; qualitative code coverage and time estimates are also given, where 
systematic measures were not otherwise readily available.

3.1   Randoop Testing Experiment

Easy both to install and to use, the Randoop tool randomly generates interleavings of 
methods with randomized input values, bounded by time, not depth.  The tool was 
executed in its default configuration (using the built-in contract checkers), setting time 
limits of 1 second, 10 seconds and 30 seconds.  The initial experiment aimed to dis-
cover how thoroughly the JPacman model classes were exercised purely by random 
execution of the jpacman.model package.  Coverage measures were extracted 
using Emma for the regression test suite generated by Randoop (viz. disregarding the 
contract violation suite).  When using a setting of 10 seconds, the generated tests ex-
ercised 49.2% of the code, which only increased slightly to 50.5% using the longer 
setting of 30 seconds.  A shorter setting of 1 second only covered 39.9% of the same 
package (see fiig. 3), possibly indicating that 30 seconds was a useful limit.

One of the attractions of Randoop is the automated generation of a full regression 
test suite [1].  This can be helpful when working on a project that has no tests what-
soever and for which it is crucial to preserve current behaviour when making changes 
to the code.  However, the kinds of property preserved by these tests were those de-
termined randomly by the tool, arbitrary observations that happened to hold when 
Randoop was executed, rather than specific semantic properties of the application.  If 
an application is faulty, there is no way of knowing whether these tests monitor correct 
behaviour; they merely grant the tester the ability to detect when the behaviour later 
changes.



A potential disadvantage of Randoop was the high cost of test code maintenance.  
The regression tests generated in 30 seconds ran to some 96K lines of test code, com-
prising 400 test cases.  Some of these used just under 100 variables, with opaque gen-
erated names like var1, var2, … varN, making any deep understanding of the test 
programs impossible.  Another limitation of Randoop was the inability to control 
values supplied as arguments to tests (which were randomized), making it impossible 
to guarantee equivalence partition coverage on inputs.

Fig. 3.  Instruction coverage (basic bytecode blocks) computed by Emma, for the methods of 
all production classes contained in the jpackman.model package, for all regression tests gener-
ated in 30 seconds by Randoop in its default contract-checking configuration

One potential way to force testing of explicit semantic properties was to use the an-
notation mechanism (see 2.1).  We found that @Observer and @Omit annotations 
could be added to the tested source code and processed by Randoop; however, poten-
tially the most useful annotation was @ObjectInvariant, since the JPacman
source code already contained many class invariant() methods, which we could 
have identified for the tool.  Unfortunately, the distributed version of the tool we ob-
tained did not appear to process this annotation properly.  Ironically, the JPacman
source code already had many conditionally-compiled Java assert() statements 
which could be checked by “turning on assertions” at compile-time, but which threw 
fatal exceptions when violated, terminating the test run.  One future suggestion for 
Randoop is that it could be made to detect Java assert() statements and convert
these into invariants that could be automatically checked by the tool.  We imagine 
these could be copied from the source and inserted as the code body of check-methods 
in automatically synthesized contract-checkers.  We attempted to find out how to write 
custom contract-checkers, but the software distribution contained no explicit docu-
mentation on how to do this.  Randoop is available from the project website [16].

3.2   JWalk Testing Experiment

JWalk version 1.0 was easy to install and understand, greatly helped by the compre-
hensive instructions given on the project website [17].  The distribution contained two 
testing tools and a toolkit for integrating JWalk-style testing with other applications, 



such as a Java editor.  We used the standalone JWalkTester tool, which uploads and 
tests one CUT at a time.  The tool could be run in one of three test modes, coupled 
with one of three test strategies.

The simplest mode was the inspect-mode, which merely described the public inter-
face of the CUT, listing its public constructors and methods.  When coupled with the 
algebra-strategy, this also described the algebraic structure of the CUT, identifying 
primitive, transformer and observer methods.  When coupled with the state-strategy, 
this also identified the high-level states of the CUT, where these could be determined 
from state predicates normally provided by the CUT (e.g. isOccupied() for the 
class jpacman.model.Cell).  The tool executed the CUT silently for 1-3 seconds 
to discover state and algebra properties by automatic exploration.

In the explore-mode, the tool exercised the CUT’s constructors and methods to a 
chosen depth, displaying the results back to the tester in a series of tabbed panes, 
organized by test cycle, corresponding to sets of sequences of increasing length.  
When coupled with the protocol-strategy (see fig. 1), exhaustive sequences were con-
structed starting with every constructor, followed by all distinct interleavings of me-
thods.  The test reports for the protocol exploration strategy were rather too long to 
review by hand for CUTs with > 10 methods;  fig.1 gives the test summary for jpac-
man.model.Cell, a class with one constructor and eight methods, which produced 
585 distinct test cases, and did not benefit from any pruning of sequences due to prefix
exceptions, since the code did not throw any exceptions.

List. 1.  Test summary for jpacman.model.Cell generated by JWalk in exploration-mode, using 
the algebraic testing strategy and with the maximum depth set to 3

Test summary for the class: Cell
       Test class: Cell

        Test strategy: Algebraic exploration
        Test depth: 3
Exploration summary:
        Executed 9 test sequences in total
        Discarded 576 redundant test sequences
        Exercised 9 successful test sequences
        Terminated 0 exceptional test sequences

When coupled with the algebra-strategy, some seriously effective pruning took 
place (list. 1).  The retained tests consisted of set-up sequences of primitive operations 
(constructors and certain irreducible methods), followed by any single method of 
interest, such as a programmer might wish to write by hand.  The pruning rules elimi-
nated redundant sequences whose prefixes contained observers (access methods that 
did not modify the CUT’s state) or transformers (methods returning the CUT to a 
state that had already been visited).  The presented test sets were far shorter and much 
easier to review.  The summary report illustrates how only 9 tests of the 585 created 
by breadth-first exploration were eventually retained for their discriminating value.

When coupled with the state-strategy, exploration drove the CUT into each of its 
identified high-level states, then constructed sequences corresponding to the switch-1, 
switch-2 etc. transition coverage, up to the chosen depth.  CUTs with no natural state 



predicates had one Default state (tests were then identical to protocol exploration).  
CUTs with predicates generated varying numbers of high-level states, corresponding 
to the product of Boolean outcomes of the predicates [2].  The illustrated class had 
four states:  Default, GuestInvariant, Occupied and GuestInvariant&Occupied.

The third and last mode was the validate-mode, in which JWalk created a test 
oracle interactively (list. 2).  Here, the tool prompted the tester to confirm or reject the 
outcomes of selected sequences by a single button click in a pop-up window.  When 
compared with the time taken to write similar unit tests, this was very quick:  scanning 
a sequence and deciding whether the outcome was correct typically took 1-2 seconds.  
However, the process of being continually presented with such sequences was even-
tually wearing, and potentially tedious when testing to any great depth.  However, this 
was mitigated somewhat when JWalk predicted the outcomes of longer sequences 
using rules derived from learning the CUT’s algebraic structure.  Once an oracle had 
been generated, modifying the code resulted in the tool prompting only for novel 
combinations of methods, or sequences with altered outcomes, to be verified.  So, the 
testing effort was only substantial in the first validation run, making this method scal-
able.  JWalk could make more productive use of exceptions thrown by the CUT than 
Randoop – the tool could learn the difference between a fault and a violated precondi-
tion that was part of the CUT’s specification.  Validation could be combined with any 
of the three test strategies (protocol, algebra, state) described above.

List. 2.  Oracle learned for jpacman.model.Cell generated by JWalk in the validation mode, 
using the algebraic strategy, to a maximum depth of 2 

new(1,2,Board#1)=Cell#1
new(1,2,Board#1).getX()=2
new(1,2,Board#1).getY()=1
new(1,2,Board#1).guestInvariant()=true 
new(1,2,Board#1).getInhabitant()=null
new(1,2,Board#1).isOccupied()=false
new(1,2,Board#1).cellAtOffset(5,6)=null
new(1,2,Board#1).getBoard()=Board#1
new(1,2,Board#1).adjacent(Cell#1)=false

A downside to using this tool was where the automatically synthesized argument 
parameters turned out to be useless for exhaustively testing a CUT that needed to be 
set up in a specific way.  JWalk has a default strategy for synthesizing constructor and 
method arguments based on choosing values from monotonically-increasing sequences
[2].  This helps to grow distinct algebraic structures [10], but proved to be quite unin-
telligent in cases that required careful argument selection.  For example, the tool re-
peatedly generated a game board of dimension 1 x 2, then attempted to retrieve the 
cell at location (3, 4), which raised the same exception again and again.  For this ap-
plication, we were obviously interested in the correct retrieval of cells from their posi-
tions on the board, which required a specific set-up of the classes involved.

Fortunately, this could be addressed by implementing a custom generator (list. 3).  
This is a tester-supplied class, conforming to the CustomGenerator interface, 
which takes over control of how to synthesize values of given types.  The illustrated 



generator produces int values in a custom order that allows game boards and cells to 
be constructed and retrieved more intelligently, when they are exercised by JWalk.  
Clear instructions are given how to do this on the website [17].  

List. 3.  Custom generator class created by the tester.  This synthesizes integer argument values 
in a predetermined order, suitable for exercising  jpacman.model.Board more effectively than 
using the default integer sequence

import org.jwalk.GeneratorException;
import org.jwalk.gen.CustomGenerator;
import org.jwalk.gen.MasterGenerator;

public class BoardGenerator 
                    implements CustomGenerator {
  private int count = 0;
  private int[] values = 
        {5, 10, 3, 5, 0, 0, 4, 9, -1, -1, 5, 10};

  public Boolean canCreate(Class<?> type) {
    return type == int.class;
  }

  public Object nextValue(Class<?> type) 
                throws GeneratorException {
    if (type != int.class)
      throw new GeneratorException(type);
    if (count == values.length)
      count = 0;
    return Integer.valueOf(values[count++]);
  }

  public void setOwner(MasterGenerator generator) {
  }  // nullop
}

The intention is that all special set-up arrangements can be handled using custom 
generators.  However, we felt that this was not the most elegant solution – it requires 
at least as much skill as that needed to write hand-crafted JUnit tests, since the tester 
must be aware of equivalence partitions and the order in which values are synthesized.  
So, we would not recommend this testing method for CUTs that require equivalence 
partition testing to achieve significant coverage of their behaviour (although JWalk
sometimes covered equivalence partitions accidentally, by virtue of choosing different 
values for arguments in longer method sequences – see also 4.1).  One future sugges-
tion for JWalk is that it could be made to explore the space of arguments to each me-
thod, trying to discover which values qualitatively altered the behaviour of the CUT 
(c.f. equivalence partition testing).  This would have to be done carefully, so as not to 
increase the burden of confirmations on the tester.

However, we do find JWalk extremely useful for testing all possible interleavings 
of methods, and for identifying the minimal complete test sets needed to exercise all 



the states and transitions of the CUT.  JWalk calculates the required test sets in a frac-
tion of the time that it takes to do this manually; so the testing effort for using this tool 
is very low.

3.3   Java Testing Experiment

Version 3 of Java was downloaded from the project website [18] and installed, 
though not without some difficulty, since the instructions were quite hard to follow 
and occasionally omitted details.  A somewhat clearer guide was found in the appen-
dices of [11].  Notwithstanding the website’s claim that the software had been up-
graded to support versions of Java later than 1.4, we encountered problems when 
using the tool with the JPacman source code.  Very little diagnostic output was pro-
vided to the tester, apart from a generic “cannot parse” message, when the tool en-
countered unfamiliar syntax.  After much investigation, we determined that Java
could not handle the syntax for generic classes (this issue is mentioned on the web-
site), nor could it handle Java 1.5 annotations.  The parser had been objecting to the 
labels @Observer, @Omit etc., with which we had previously annotated the JPac-
man sources.  Furthermore, the parser did not recognize assert() statements, with 
which the source code was liberally sprinkled!  All source files had to be re-written to 
eliminate assertions and conform to Java 1.4 syntax.  

Fortunately, Java proved fairly easy to work with after this.  First, mutations were 
introduced into the source code.  All possible mutants were selected (both traditional 
statement mutants and the special class syntax mutants) and introduced into all classes 
in the jpacman.model package.  The user interface (see fig. 2) allowed the tester 
to compare the original and mutated versions of the source code.  In the illustrated 
example, an introduced unary increment has been applied to a variable, in the expecta-
tion that this might later cause tests to fail.  A complete count of the numbers of mu-
tants introduced for each class is shown in table 1.

Table 1.  All classes in the jpacman.model package, associated with their numbers of method-
and class-level mutants that were generated and inserted into the source by Java.

Class Method-level Class-level
Board 167 9
Cell 154 15
Engine 81 5
Food 28 1
Game 147 9
Guest (abstract) (abstract)
Monster 0 0
Move (abstract) (abstract)
MovingGuest (abstract) (abstract)
Player 49 5
PlayerMove 36 9
Wall 0 0



For the tests, we wanted to rely on the hand-crafted JUnit tests supplied with the 
JPacman distribution.  However, since Java predates JUnit by some years, the ex-
pected format of the tests was slightly different, so these also had to be rewritten.  
Whereas JUnit expects tests to assert Boolean properties and catches test failures 
using Java’s exception-handlers, Java expects tests to return an indicative String, 
which is used when comparing the results of tests on the original and mutated code.  
This process is known as “killing mutants”; and was conducted using the Java GUI, 
which allowed the tester to select a CUT and run its associated unit test suite.  Now, 
despite the fact that JPacman supplies some 45 unit tests, not every class in the 
jpacman.model package had an associated unit test suite, resulting in automatic 
zero mutant killing scores for some classes.  This is more a reflection on the design of 
the hand-crafted tests, than it is on Java.  

Table 2.  Percentages of mutants killed for classes in the jpacman.model package that had an 
associated hand-crafted unit test suite in JPacman, contrasted with traditional block coverage 
scores for the same hand-crafted unit tests

Class Method-level Class-level Coverage
Killed Total Score Killed Total Score Block Instr

Board 108 167 64% 5 9 55% 39%
Cell 109 154 70% 7 15 46% 46%
Engine 1 81 1% 0 5 0% 47%
Game 31 147 21% 0 9 0% 49%
PlayerMove 0 36 0% 0 9 0% 50%

For those classes which had a unit test suite, the mutant killing rates are illustrated 
in table 2.  The higher the percentage score, the better the hand-crafted unit tests were 
in killing mutants.  This is presumed to correlate strongly with the ability of the same 
tests to detect similar subtle mistakes made by the programmer in the source code.  
The scores are fairly high for the Board and Cell classes (especially for method-
level mutations), which is not surprising, since the JUnit tests were properly conceived
as complete unit tests for these classes.  However, the tests for Game and Engine did 
not provide anything like exhaustive coverage of all transitions between states, so their 
mutant killing scores are very low.  When comparing these scores with the traditional 
block instruction coverage achieved by the same test sets, it is clear that the hand-
crafted tests were still far from complete.

Mutation testing with Java clearly highlighted where there was scope for im-
provement in the hand-crafted tests supplied with the JPacman software.  However, 
the time and effort invested by the tester was exceedingly high, since all the code and 
all the tests had to be converted to Java 1.4.  Having to maintain multiple versions of 
the same code purely for the sake of testing with Java is not really feasible and 
means that using the current version of the tool is impractical for realistic, modern 
Java systems.  A version of the tool, called MuClipse, has subsequently been devel-
oped as a plugin for the Eclipse IDE, but is still not yet able to process Java 1.5 and 



1.6 language features [19].  So, an obvious future suggestion for Java is that the tool 
be rapidly updated to deal with the latest version of the Java language.

4  Conclusions

Each of the tools Randoop, JWalk and Java had its own strengths and weaknesses, 
offering support to testers in different areas.  In our opinion, none of the tools were 
quite ready to take over completely from human-written test cases for the more sophis-
ticated kinds of set-up; however, they were frequently better than humans in ensuring 
test completeness in areas where tests are tedious to write, or particular cases are hard 
to discover.  Interestingly, none of the tools could be forced to make use of self-
specification provided in the tested software through invariant() methods; and 
none of the tools could be expected to interact with Java’s low-level assert() me-
chanism, since this is designed to terminate execution upon failure.

4.1   Test Coverage

Randoop was expected to cover the majority of the instructions in the tested code, 
simply by the expectation that random testing, in the limit, eventually covers every 
possibility.  What was surprising here was that this did not seem to be the case when 
instruction coverage was measured using Emma.  For most of the classes in the 
jpacman.model package, instruction coverage seemed to approach a limit of 
around 50% (fig. 3).  This seems to indicate a limitation in random testing that could 
only be overcome by smarter choices of argument values to trigger particular cases.

The instruction coverage offered by JWalk could not be measured in the same way 
with Emma, since JWalk did not export a test suite that could be run with Emma inter-
posed between that and the JVM.  Instead, statement coverage can be estimated by 
considering the high-level state spaces of the CUTs.  In other reported work, coverage 
of the state-space routinely reached 100% [20].  The weakness of JWalk is in its cov-
erage of equivalence partitions.  One would not expect all argument-triggered 
branches to be selected, where argument values are synthesized in monotonic se-
quence.  However, because JWalk interleaves methods in all combinations, in the limit 
these appear in different orders where the supply of arguments occurs in the right 
order to trigger different branches, making coverage better than expected.  The main 
limitation is where the initial set-up must be special, for which custom generators are 
required (and recommended by the documentation [17]).

By itself, Java itself does not have an instruction coverage measure.  However, it 
seeded faults that were detected between 0-70% of the time by the JUnit tests.  This 
means that 30-100% of the mutants needed further tests to eliminate them, showing 
that Java could provide a good indication of missing coverage.  Looking at the hand-
crafted JUnit tests, they routinely only covered 40-50% of the instructions of the 
CUTs in any case (see table 2), showing that the hand-crafted tests were still signifi-
cantly incomplete, a useful warning to JUnit testers!



4.2   Testing Effort

Randoop was the easiest tool to use out-of-the-box, since it could be used to test all 
the classes in the package with little set-up.  To get Randoop to measure sensible 
properties of the code required some effort to place @Observer annotations in the 
source. The @Omit tag was used less, and the @ObjectInvariant tag did not 
seem to work as expected.  Randoop was the best tool for generating a regression test 
set from scratch, where no prior test-set existed.  However, Randoop was not so useful 
for generating conformance tests, since while a mechanism was provided for identify-
ing salient properties of the code, no clear mechanism existed for inducing which 
semantic properties of the application should hold.  No documentation was provided 
to help the tester design and upload custom contract-checkers.

JWalk was also very easy to use out-of-the-box and was the only tool that did not 
require any special treatment of the source code.  It worked directly with compiled 
Java class files; and seemed to work with different Java versions (up to 1.6).  Howev-
er, it tested each class one-by-one, which took longer than Randoop.  On the other 
hand, JWalk could identify useful semantic properties of the tested classes without 
further assistance, and gave the tester the option to decide which of these were correct 
or incorrect observations.  JWalk was definitely the most effective way to develop a 
conformance-testing oracle, far outperforming the time taken to develop hand-crafted 
JUnit tests, by at least fifty-fold according to [20].  Although constructing the oracle 
could become tedious for a large class, the amount of testing effort invested always 
paid off, because the tester knew what s/he was getting in terms of relative complete-
ness of coverage for the testing effort invested.

Unfortunately, Java required an unreasonable amount of testing effort, both in 
terms of the expected need  to create and supply suitable tests by other means, but also 
by the unreasonable effort needed to translate the source code to the earlier version 
1.4 of Java (pre-generics and annotations).  Mutation testing really only makes sense 
in the context of an existing test suite that is being maintained, perhaps in response to 
changes to the tested source, to help identify gaps in test coverage.  The more recent 
version MuClipse [19] can now accept tests in JUnit format.

Despite taking many, many times longer to develop, hand-crafted JUnit tests were 
sometimes the best way to execute particular properties of an application that required 
complicated set-up and tear-down [5] procedures.  Manual testing was, for these cas-
es, more straightforward than designing custom generators for JWalk.

4.3   Test Set Maintenance

Randoop was the only tool that exported tests in the JUnit format for external main-
tenance (JWalk did not export its tests; Java expected pre-existing tests).  These tests 
were classified into:  regression tests, and contract-violating tests.  The tests were not 
really designed to be maintained independently from the tool.  Firstly, automatic vari-
able naming (using up to 100 variables) meant that tests of any significant complexity 
were impossible for a human tester to comprehend.  Secondly, the random nature of 
each test (a random set-up before either: a randomly observed property, or built-in 



contract-check) meant that it was impossible to tell which tests fell into the same equi-
valence classes, viz. which ones might be redundantly checking the same properties in 
the code.  It might be more appropriate for a tester using Randoop to maintain sets of 
contract-checkers, and rely on the tool to regenerate tests on demand.

JWalk was theoretically biased towards exporting only the learned specification 
(the test oracle), on the grounds that the fault-detection ability of exported and inde-
pendently-maintained tests degrades at a geometric (rather than linear) rate, as the 
production software evolves [8].  The test oracle is a good indication of what the tool 
has learned about the algebraic structure of the CUT.  The tool always regenerates
tests internally, according to filtered, breadth-first exploration, using the oracle to 
detect and prune out redundant tests in the same equivalence-class as an existing test.  
Each test is therefore guaranteed to test a unique property of the CUT.  Furthermore, 
JWalk immediately adapts its internal test sets to changes made in the production 
code, making JWalk overall the best tool at maintaining its own test sets.

As stated above, Java is designed to help maintain the quality of an existing test 
set and this is its proper role.  It is very useful at hypothesizing faults that a test set 
cannot yet detect, and offers a measure (in terms of the mutant-killing index) of how 
good an individual test might be [19].  Apart from this, it is not clear whether this
correlates strongly with other measures of non-redundancy in test sets derived from 
specifications (c.f. JWalk).

Finally, hand-crafted JUnit test are relatively easy to comprehend and so are easy 
to maintain from that standpoint.  However, the Java experiment showed how weak 
the effectiveness of these tests was, despite the fact that they had been carefully con-
structed [13] to follow sound principles of test design [14].  Elsewhere, it has been 
shown that human test maintainers both miss important properties to test, especially 
the negative properties that a system should not exhibit, and redundantly test the same 
properties repeatedly, in JUnit test suites [20].
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