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Abstract.  Model-driven engineering (MDE) seeks to raise the level of 
abstraction at which software systems are constructed.  While recent work has 
focused on high-level model-to-model transformations, less attention has been 
devoted to the final model-to-code transformation step.  This paper describes a 
practical framework that generates idiomatic code in four different object-
oriented languages, Java, C++, Eiffel and C#, starting from an intermediate 
model expressed as an XML parse tree.  Effort was directed towards ensuring 
that the generated systems executed with identical semantics.  The code 
generators are provided as an object-oriented framework, following a 
compositional strategy pattern, which is readily adapted for new target 
languages.  This framework constitutes the bottom tier in a future architecture 
for MDE by layered representational transformations. 
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1   Introduction

Model-driven engineering (MDE) is an ambitious, fast-developing strategy in 
software engineering for synthesizing software systems from high-level models that 
represent the abstract structure and behaviour of those systems.  Specific incarnations 
of the approach include the Object Management Group’s drive towards a Model-
Driven Architecture (MDA) [1], which explicitly integrates other OMG standards 
such as the Unified Modeling Language (UML) for its notation [2], the Meta-Object 
Facility (MOF) and Object Constraint Language (OCL) for bootstrapping its syntax 
and semantics [3, 4] and the rule-based graph-matching Query-Value-Transformation 
(QVT) strategy for its model transformations [5].  This standards-driven approach has 
the advantage of leveraging existing conceptual design architectures, but the 
disadvantage that it offers would-be adopters a very steep learning curve before they 
can master the wealth of dense technologies.

The work reported in this paper is in some ways a reaction to the large-scale, 
standards-driven approach, in that it seeks to demonstrate proofs of MDE using 
simple, available technologies such as XML and Java.  The over-arching ambition of 
the project, which is called ReMoDeL: Reusable Model Design Languages [6], is to 



develop a complete path of representational transformations, from high-level reusable 
business models to low-level system models and executable code, by a layered series 
of transformations, which bring different design constraints to bear at each level.  We 
consider it an open research question regarding what kinds of representations 
(models) should exist at each level, what kinds of system view they should represent 
and how the different views should be folded together (perhaps in the style of aspect-
oriented programming) to yield a consistent, executable system.  So, rather than posit 
the need for specific architectural layers top-down (such as the OMG’s CIM, PIM and 
PSM), we thought it more profitable to motivate models bottom-up, by identifying 
first what kind of content might be needed to support full, idiomatic code generation 
in a variety of popular object-oriented languages.

The result of this experiment was the specification for an abstract object-oriented 
programming model known as ReMoDeL OOP [7], not so much a domain-specific 
language as an annotated parse-tree stored as XML data (to be created from higher-
level models in the longer term).  The advantages of using XML were clear:  not only 
were there many existing tools available to parse and save the models, but also the 
content and structure of the OOP model could readily be adapted as the information 
requirements for full, idiomatic code generation were discovered.

As the OOP model stabilized, a particular architecture for code generation emerged 
as the “obvious” or most elegant strategy for building code generators for different 
programming languages.  The code generator framework was constructed in Java, 
consisting of a compositional hierarchy of generators, each having the specific 
knowledge to generate a fragment of the target code.  The framework exemplifies a 
fusion of the Strategy, Composite and Abstract Factory Design Patterns [8].  
Translation rules were expressed directly as imperative algorithms, encoded as the 
methods of the generators.  This is in marked contrast to other current work [9, 10, 
11], which emphasizes the development of novel declarative languages for graph-
based pattern matching and graph transformation, according to the agenda set by QVT 
[5].  Our decision was motivated by the desire to accomplish some significantly 
complex transformations via a more direct route.  In this way, effort was invested 
more in identifying interesting transformations, and less on expressing each 
transformation declaratively within a standard meta-modelling framework.

In the rest of this paper, section 2 discusses the notion of a Common Semantic 
Model for code generation in different object-oriented programming languages.  
Section 3 describes the generator framework and how this acts on the OOP model.  
Section 4 illustrates some examples of code generation in Java, Eiffel and C++.  
Section 5 concludes with a comparison between our approach and the contrasting 
approaches taken by ATL [9], Kermeta [10] and UML-RSDS [11].

2   Common Semantic Model

Models of software systems should have, in their own terms, a precise and 
unambiguous semantics, such that systems generated from them should behave in 
predictable ways, no matter in what language or on what platform they execute.  We 
therefore wanted to define a single, unambiguous operational semantics for the OOP 



model.  In support of this, we surveyed the kinds of language features offered in 
popular, strongly-typed object-oriented programming languages that contrasted 
strongly in style (in particular, Java, C++ and Eiffel) and tried to determine the largest 
overlapping subset of features that could either be directly supported, or simulated by 
smart code generation, in all of the intended target languages. 

This became the basis for the Common Semantic Model (CSM) for the core 
features of OOP, a safe zone in which models could be guaranteed to translate with 
the same operational behaviour into every target language.  OOP would also support 
an Extended Semantic Model (ESM), in which optional features might have realizable 
translations in a subset of the target languages, but not in all.  The CSM is in some 
ways the dual of Microsoft’s Common Language Infrastructure (CLI) model for the 
.NET platform [12], in that whereas the CLI defines the least superset of all language 
features supported by the .NET platform, the CSM defines the greatest common 
subset of the target languages’ features.

2.1   Dynamic Objects with Reference Semantics

We determined at the outset that the OOP model should support strongly typed 
objects, dynamic object creation and automatic recycling, coupled with reference 
semantics for all object variables.  This is standard in Java and C#, and the default in 
Eiffel.  To achieve the same in the C++ translation required a special treatment, since 
by default all variables have value semantics in C++.  The eventual C++ translation 
relies on a base library containing a reference-counted generic smart pointer, Ref<T>.  
All object references are translated as instantiations of this pointer type, which is 
specialized for each type T.  Smart pointers manage the lifetime of dynamic objects, 
which are created freely on the heap using the C++ new operator. 

OOP also supports a distinction between Basic types and Class types, but only 
from the viewpoint that the Basic types are atomic.  Instances of the canonical OOP 
types Integer or Decimal are considered first-class objects, but with immutable 
content.  This allows translations to optimise whether these types are implemented 
with value or reference semantics, and to perform automatic boxing and un-boxing 
(viz. promoting values to objects, demoting objects to values). 

2.2   Multiple versus Single Inheritance and Interfaces

Different target languages support different models of inheritance.  Whereas classes 
in Java and C# inherit from at most one superclass, but may satisfy multiple 
interfaces, C++ and Eiffel support multiple inheritance, with no need for distinct 
interface types.  The largest area of overlap was therefore to adopt the Java and C# 
viewpoint for the Common Semantic Model, and have the translations for Eiffel and 
C++ mimic the behaviour of pure interfaces (as found in Eiffel’s Marriage of 
Convenience code idiom [13]), using wholly abstract classes with deferred methods 
(in Eiffel) or pure virtual functions (in C++).  Every class in the OOP model may 
inherit from at most one concrete superclass, but may satisfy many abstract interfaces.  



Subclasses may override and redefine methods, so long as the redefined method’s 
signature matches the original method’s signature. 

In the Extended Semantic Model, it is possible to construct OOP models with 
multiple inheritance, so long as code generation is restricted to target languages 
supporting multiple inheritance (such as C++ and Eiffel).  In this case, a class should 
inherit the distributed union of the features of its parents.  It should merge identical 
declarations inherited multiple times (via fork-join paths in the class hierarchy), but 
force the designer to select how to combine non-identical inherited features, derived 
from a common abstract base feature, by explicit method combination.

2.3   Overloading Names and Dynamic Binding

Languages like Java and C++ support within-class overloading of methods and 
constructors, which are distinguished on the types of their arguments.  Eiffel requires 
every class feature (attribute, constructor or method) to be uniquely named within the 
class’s namespace.  The CSM adopts Eiffel’s position as the area of greatest common 
agreement.  No further resolution need be performed on the types of arguments when 
selecting methods; and it is easier to determine which methods are being redefined, 
when dynamic binding is required.  Duplicate names only occur in OOP when a 
method is being overridden in a subclass.  If translators had global access to the class 
hierarchy, this would allow the automatic detection of the need for keywords 
influencing the binding strategy [14], such as virtual (in C++), final (in Java) and 
redefine (in Eiffel).  Here, local translation units are assumed, with no global analysis.

2.4   Object Construction and Method Invocation

Target languages differ markedly in their style of object construction.  The two main 
groups include languages that treat constructors as initialisation methods called after 
object allocation (Eiffel, Delphi) and those that treat constructors as distinguished 
functions returning new objects (Java, C++, C#).  Eventually, special methods called 
Creators were designed for OOP, which were capable of being interpreted according 
to the preferred style of the target language.  Having unique names, they translate into 
the creation procedures and init-methods (of Eiffel and Delphi).  Having types, they 
translate into constructor functions (in Java, C# and C++). 

Creation expressions mimic the syntax for method invocation in OOP.  In the same 
way that a method invocation requires a target object (the receiver), but may 
sometimes omit the target, if the method is invoked implicitly on self, a creation 
expression in OOP expects a target variable to initialise, but may leave this implicit, 
in which case the result of creation is passed outward to the next enclosing 
expression.

Translators are free to choose the most efficient way to construct object fields 
(assignment in Java, but cheaper initialisation in C++).  Similarly, the way in which 
values are passed back to superclass constructors can be treated as renamed creation 
calls in Eiffel, super-invocation in Java and superclass constructor calls in C++.  In 
the Extended Semantic Model, multiple super-invocations are supported by naming 



each inherited super-object explicitly, so that all super-invocations may be suitably 
resolved against the correct parent.

2.5   Encapsulation, Namespaces and Sharing

Target languages differ in how they encapsulate classes at the package level and class 
members at the class level.  The greatest area of agreement was to adopt the three 
visibility levels private, protected and public for class members in the CSM, rather 
than offer selective visibility to different clients (as in Eiffel).  The ESM also supports 
package visibility for members, which translates directly in Java, but commutes to 
protected visibility in C++ with special friend access granted to classes in the same 
package.  A similar treatment for Eiffel can be applied using selective exports. 

Packages in OOP have unique names and locations.  The name translates directly 
into a namespace in C++, whereas the location identifier serves a similar role in Java 
and C#.  In Eiffel, package namespaces can only be simulated by prefixing class 
names with package names.  At package-level, the CSM allows classes to be declared 
public (exported from the package) or private (kept secret within the package), which 
in Eiffel must be folded in with feature visibility declarations.

When considering shared values and class constants, OOP supports only shared 
(static) fields in the CSM, but not static methods (invoked against class objects), since 
some languages do not support runtime class objects.  Interface types may declare 
constants as shared fields with initial values, implemented as static attributes in most 
languages and as once functions in Eiffel.

2.6   Assertions, Exception Handling and Recovery

One of the goals of the wider project is to have self-validation and testing procedures 
at every level of model transformation and code generation.  Part of this obligation 
involves run-time monitoring of the generated software’s correct behaviour.  For this, 
the CSM adopts Eiffel’s programming by contract metaphor [13], according to which 
software may only succeed completely, or fail gracefully, handing the failure back to 
the caller.  This decision was informed by a comparison of exception handling 
strategies [15], which convinced us that the Java and C++ try-catch model was open 
to abuse as an alternative kind of control structure. 

Correctness in OOP is monitored through Assert clauses, which, depending on 
their location at class-, signature- or code body level, are treated respectively as 
invariants, preconditions or postconditions.  Recovery may only clean up and fail 
gracefully, or reattempt the failed method and succeed.  This translates directly into 
Eiffel, but requires special treatments in other languages.  In Java, for example, a 
class invariant translates into a protected method, called in every other method that 
modifies object states.  Breaking a contract either raises an exception in the executing 
method (for invariants and postconditions), or in the caller (for preconditions).  This, 
together with the possibility of recovery, leads to interesting transformations that 
generate try- and catch-blocks, while-loops, if-statements and throw-statements.



3   The OOP Code Generation Framework

A generic model for object-oriented programming, called ReMoDeL OOP [7], was 
developed and cast into a dialect of XML, sufficient to capture the kinds of 
information required by the CSM and ESM (see section 2).  The generator framework 
was designed around the hierarchical structure of the OOP model, which conforms to 
a common meta-model, used by the whole ReMoDeL family of models.

3.1   Conceptual Design of the OOP Model
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Fig. 1.  Hierarchy of the major OOP concepts in the ReMoDeL family meta-model.  Terminal 
nodes correspond to XML elements used in OOP models to describe object-oriented programs.

Like all the models within the ReMoDeL family, the Object-Oriented 
Programming model (OOP) was designed according to a conceptual hierarchy, or 
ontology, in which similar concepts appear as siblings, derived from common parent 
concepts (fig. 1).  For example, all the elements representing object-oriented types 
(Basic, Class, Interface or Generic) specialise a common element Type, which is also 



a primary concept in other models, such as the Database and Query model (DBQ) 
[16], which offers a different, intersecting family of types (Basic, Record and Table).  
In this way, different sets of concepts may be present in different ReMoDeL models, 
but all concepts may be described within a common meta-model.

Our earliest modelling experiments built an explicit meta-model in Java, with 
classes corresponding to the abstract syntax tree (AST) nodes in fig. 1.  However, we 
found that this approach was fragile, due to the constant evolution of the conceptual 
ontology.  Eventually, we found it much quicker to build models directly in XML.  
The loss of strongly typed AST nodes was more than compensated by the ability to 
adjust the model frequently, as the need arose.  Essentially, this moved the burden of 
type checking from the AST onto the transformation tools.

3.2   Concrete Design of the OOP XML Syntax

The design of the XML language to express OOP was determined by the conceptual 
meta-model, in that this provided a rationale for choosing between XML elements or 
XML attributes to express the information in the model.  XML writing styles vary 
widely, with some preferring elements over attributes [17].  In this style, the 
declaration of a typed variable might appear as:

<Variable>
  <Name>count</Name>
  <Type>Integer</Type>
</Variable>

However, this makes it difficult to distinguish between primary and dependent 
concepts, since all are expressed equally as element nodes.  Furthermore, the saved 
format (of a realistically large model) is excessively vertical in presentation and 
somewhat harder for a human reader to check.  Instead, we restricted the use of XML 
elements to meta-model node concepts, and described dependent properties as XML 
attributes, in the style:

<Variable name=”count” type=”Integer”/>

This yielded a style in which contained elements really did correspond to logical 
substructure in the meta-model.  The main guidelines were therefore to distinguish 
structures that were logically contained (using element subtrees), from information 
that was either attributive, or cross-referenced other structures (using attributes).

Apart from this, Occam’s razor was applied to invent as few new elements as 
possible.  For example, the same Variable element was used to model both local 
variables and method parameters.  The same Assert element was used, within 
different contexts, to model invariants, preconditions and postconditions.  A single 
Select element was used to model both if-statements and multi-branching selection; 
likewise a single Iterate element to model both conditional and deterministic iteration.  
Since the OOP model is intended primarily for machine processing, it resembles an 
annotated parse tree, rather than the direct rendering of the syntax of a programming 
language into XML, such as JavaML [18].  The latter contains more elements as 
syntactic sugar and more levels of structure to partition definitions for the sake of 
human readers.  A larger working example of OOP is shown in section 4 below.



3.3   The Generator Framework Architecture

The architecture of the generator framework (fig. 2) was influenced directly by the 
hierarchical structure of the OOP model, which consists of Packages, containing 
Types (Class, Basic and Interface types), which in turn contain Members (Fields, 
Creators and Methods), which in turn contain Expressions (field initialisers, and body 
code sequences).
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Fig. 2.  The generator framework, with specialised components for Java generation.  Generators 
delegate to subcontractors responsible for handling the next level of detail in the OOP model.  
Generators for specific languages specialise the abstract classes in the framework, which share 
common resources, such as symbol tables.

The architecture of the framework exhibits a number of well-attested Design 
Patterns [8].  Following the Strategy Design Pattern, different generator subclasses 
apply different strategies for code generation in different target languages.  Following 
the Abstract Factory Design Pattern, specialised generators, such as 
JavaPackageGenerator, spawn a related family of language-specific generators (viz. 
JavaClassGenerator, JavaMemberGenerator and JavaCodeGenerator).  Following 
the Composite Design Pattern, the command to generate() propagates through a 
bespoke compositional hierarchy of delegate generators, specific to each target 
language.  The generators for C++, Eiffel and C# were provided in a similar way to 
the Java generators illustrated in fig 2.



3.4   Operation of the Framework

The root AbstractGenerator declares references to common resources that are 
eventually shared among many kinds of generator.  These include the current output 
stream and the language symbol table.  Every generator also refers to the OOP model 
segment it is translating.  The root SymbolTable declares the protocol for mapping 
canonical OOP type and operator names into types and operators in the target 
languages and is specialised for each target language.

PackageGenerator is the entry-point into the translation framework, in that 
specific subclasses initiate the translation of an OOP Package model, which is the 
main translation unit, into a given target language.  It is locally responsible for 
creating directory locations within which source files will be placed.  It will spawn 
one ClassGenerator delegate for each class, interface or other type found in the OOP 
Package model.  ClassGenerator is locally responsible for creating the file in which 
the generated source code will be placed, and for saving this file in the directory 
provided by its parent generator.  Specific subclasses generate the type declaration for 
a Class, Interface or Basic type in a given target language, including any 
dependencies on a superclass, interfaces and component types.  A ClassGenerator
will spawn one delegate MemberGenerator for each Field, Creator (see section 2.4)
or Method found in the OOP type model.

Each MemberGenerator subclass is locally responsible for translating the signature 
of each member and enforcing the consistency of visibility rules (e.g. public 
signatures in interface types).  It spawns CodeGenerators as needed, to translate 
expressions such as field initialisers, precondition sequences or code body sequences.  
CodeGenerator subclasses generate fully idiomatic, executable code in the chosen 
target languages.  Code generation assumes a small standard library for each target 
language, which maps the canonical OOP interfaces onto native classes.

4   Translations into Target Languages

A series of OOP models of increasing complexity were developed to validate the 
operation of the code generators [6].  These included:  Greeter, a “hello world” style 
main program; People, a library of person-classes related by inheritance; Finance, a 
library of banking concepts, demonstrating interfaces and assertions; and Sorting, a 
generic sorted list type with a binary sorting algorithm.  Generators were developed 
initially for Java and C++ and later for Eiffel and C#.

4.1   OOP SavingsAccount Example

The OOP Finance package model [6] provides a reasonably complete example that 
demonstrates most of the features of the code generators.  Altogether, it defines an 
enumerated type, Status, describing the status of an account; an interface type Asset
standing for the notion of value; an abstract class Account that satisfies the interface 
Asset; and a concrete class SavingsAccount that inherits from Account.  Listing 1 
shows a fragment of this model, depicting the SavingsAccount class:



List. 1.  A fragment of the OOP Finance package model, defining a SavingsAccount class.  A 
complete version of the Finance model may be viewed on the website [6].

<Class name="SavingsAccount">
  <Inherit from="Finance" location="example.finance">
    <Class name="Account"/>
  </Inherit>
  <Employ from="People" location="example.people">
    <Class name="Person"/>
  </Employ>
  <Assert contract="balance in credit" when="always">
    <Operator symbol="noLessThan" type="Boolean">
      <Identifier name="balance" type="Integer
        scope="object"/>
      <Literal value="0" type="Integer"/>
    </Operator>
  </Assert>
  <Creator name="makeWith" type="SavingsAccount"
      visible="public">
    <Variable name="holder" type="Person"/>
    <Variable name="amount" type="Integer"/>
    <Sequence type="Void">
      <Invoke method="openWith" implicit="true">
        <Identifier name="holder" type="Person"/>
        <Identifier name="amount" type="Integer"/>
      </Invoke>
    </Sequence>
  </Creator>
  <Method name="deposit" type="Void" visible="public"
      override="true">
    <Variable name="amount" type="Integer"/>
    <Assert contract="account currently active" 
        when="before">
      <Operator symbol="equals" type="Boolean">
        <Identifier name="status" type="Status"
            scope="object"/>
        <Literal value="active" type="Status"/>
      </Operator>
    </Assert>
    <Assert contract="positive deposit amount" when="before">
      <Operator symbol="moreThan" type="Boolean">
        <Identifier name="amount" type="Integer"/>
        <Literal value="0" type="Integer"/>
      </Operator>
    </Assert>
    <Sequence type="Void">
      <Assign type="Integer">
        <Identifier name="balance" type="Integer" 
            scope="object"/>
        <Operator symbol="plus" type="Integer">
          <Identifier name="balance" type="Integer" 
              scope="object"/>
          <Identifier name="amount" type="Integer"/>



        </Operator>
      </Assign>
    </Sequence>
  </Method>
  <Method name="withdraw" type="Integer" visible="public"
      override="true">
    <Variable name="amount" type="Integer"/>
    <Assert contract="account currently active"
        when="before">
      <Operator symbol="equals" type="Boolean">
        <Identifier name="status" type="Status" 
          scope="object"/>
        <Literal value="active" type="Status"/>
      </Operator>
    </Assert>
    <Assert contract="positive withdrawal amount"
        when="before">
      <Operator symbol="moreThan" type="Boolean">
        <Identifier name="amount" type="Integer"/>
        <Literal value="0" type="Integer"/>
      </Operator>
    </Assert>
    <Sequence type="Integer">
      <Assign type="Integer">
        <Identifier name="balance" type="Integer"
          scope="object"/>
        <Operator symbol="minus" type="Integer">
          <Identifier name="balance" type="Integer"
            scope="object"/>
          <Identifier name="amount" type="Integer"/>
        </Operator>
      </Assign>
      <Return type="Integer">
        <Identifier name="amount" type="Integer"/>
      </Return>
      <Rescue retry="true">
        <Assign type="Integer">
          <Identifier name="balance" type="Integer"
            scope="object"/>
          <Operator symbol="plus" type="Integer">
            <Identifier name="balance" type="Integer"
              scope="object"/>
            <Identifier name="amount" type="Integer"/>
          </Operator>
        </Assign>
      </Rescue>
    </Sequence>
  </Method>
</Class>

This illustrates the style of the XML syntax used in the programming language-
neutral OOP model. The SavingsAccount class depends on two other classes, the 
inherited superclass Account, from the same package, and Person, which it employs 



from a different package.  It has a creator makeWith that creates a SavingsAccount by 
invoking the inherited method openWith, supplying a Person holder and Integer
amount as arguments.  It has an invariant asserting that the balance is always in credit.  
The methods deposit and withdraw override abstract versions inherited from Account.  
Each of these has a number of preconditions, asserting that the SavingsAccount is 
currently active, and that the amount is positive.  The method bodies respectively add, 
or subtract the amount from the balance.  Whereas deposit returns no result, withdraw
returns the amount withdrawn. Withdraw also provides a rollback facility in its 
rescue clause, in case deducting the amount from the balance breaks the invariant.

Each method and creator body consists of a single Sequence expression, containing 
further expressions.  All expressions are typed (expression types are resolved by the 
process that builds the OOP model) – this gives the flavour of an annotated parse tree 
and allows human readers to validate the initial models by inspection.  Identifiers also 
carry scope information (a field has object scope; the default scope is local), 
permitting the reuse of the same names for both object fields and method arguments.

4.2   Translation from OOP into Java

The translation of the OOP model from listing 1 into the Java programming language 
is given in listing 2.  This shows a number of obvious mappings to Java, but also 
illustrates a highly sophisticated treatment of assertions, explained below.  The major 
achievement is in creating fully idiomatic Java code that faithfully executes the 
desired model semantics (see section 2).  Any Java comments appearing in listing 2 
were inserted by the generators, to highlight particular decisions.

When generating the illustrated code fragment, a JavaClassGenerator declares the 
Java package identifier for the SavingsAccount class based on the package's location.  
It inserts import statements only for those types that come from outside the current 
package.  It generates the inheritance relationship with Account.  It then delegates to a 
separate JavaMemberGenerator to generate each member.

List. 2.  Translation of the OOP fragment corresponding to a SavingsAccount class into the 
Java programming language.  This illustrates in particular the intelligent processing of 
assertions and recovery by the generator framework.

/**
* SavingsAccount : generated on Tue Dec 07 22:58:15 GMT 2010 
* by ReMoDeL.
*/

package example.finance;

import example.people.Person;

class SavingsAccount extends Account {

  public SavingsAccount(Person holder, int amount) {
    openWith(holder, amount);
  }



  protected void assertInvariant() {
    super.assertInvariant();
    if (balance < 0)
      throw new BrokenContract("balance in credit");
  }

  public void deposit(int amount) {
    if (status != Status.ACTIVE)
      throw new BrokenContract("account currently active");
    if (amount <= 0)
      throw new BrokenContract("positive deposit amount");
    balance = balance + amount;
    assertInvariant();  // Check before exit.
  }

  public int withdraw(int amount) {
    if (status != Status.ACTIVE)
      throw new BrokenContract("account currently active");
    if (amount <= 0)
      throw new BrokenContract("positive withdrawal amount");
    int methodAttempts = 2;  // Including 1 retry attempt(s).
    while (methodAttempts > 0) {
      try {
        balance = balance - amount;
        assertInvariant();  // Check before returning.
        return amount;
      }
      catch (BrokenContract broken) {
        balance = balance + amount;
        if (--methodAttempts == 0)
          throw broken;  // Fail.
      }
    }
  }
}

The Java constructor is created using the type information in the OOP creator to 
name the constructor.  Each method name is generated from the OOP method name, 
and the OOP type is used to determine the result type.  Canonical OOP types are 
mapped to suitable Java types using a JavaSymbolTable – canonical Integer maps to 
int, but canonical Natural (an unsigned type) maps to a long int in Java (which has no 
unsigned types) to ensure that 32 bit unsigned numbers may be represented.

The processing of assertions goes through a number of stages, which are encoded 
as algorithms of the various generator classes.  Firstly, the class invariant assertion is 
picked up by the JavaClassGenerator and transformed, via a model-to-model 
transformation, into a protected method, having the standard name assertInvariant()
and a boilerplate code body that invokes the super-invariant, to which the invariant 
assertions are added.  This method is passed to a JavaMemberGenerator like any 
other method, whose body is processed by a JavaCodeGenerator.

When translating any assertions, a JavaCodeGenerator performs another model-to-
model transformation, to convert the positive assertion of each contract property into 
a guard against violating that property, in which event an exception should be raised.  



This transformation improves the idiomatic quality of the generated Java (rather than 
simply wrap the assertion with a layer of negation), and constructs the logical 
negation of the original asserted expression.  This replaces inequality operators by 
their logical complement, applies de Morgan’s law to Boolean operator expressions 
and simply negates any Boolean-valued method invocation.

The next step of the algorithm relies on the states of the JavaCodeGenerator as it 
processes expressions in a method body Sequence.  If it encounters an assignment that 
alters object states (assigns to variables with object scope), this raises an obligation to 
check the class invariant before the method terminates.  In the normal course, an 
invocation of assertInvariant() is placed last in the method body (see deposit in listing 
2).  However, if the generator encounters a return-statement, the obligation to check 
the invariant must be discharged immediately (see withdraw in listing 2), before the 
return expression.  When processing multiple returning branches of a Select
expression, the generator may reset multiple times.

The last layer of sophistication encodes Meyer’s programming-by-contract [13] 
rule in Java.  Any method that attempts to recover from failure (see withdraw) has a 
rescue-clause in OOP, containing the rollback code to restore the object’s stable state.  
The JavaCodeGenerator wraps the protected method body in a try-block, with the 
rollback code placed in the catch-block.  If the rescue-clause specifies that the method 
may be reattempted (by default once), then a while-loop is created around the try-
catch construction.  The method may nonetheless fail again after cleaning up (as is 
likely in this example), in which case the Java exception is passed back to the caller.  
Following the programming-by-contract rule, broken preconditions raise exceptions 
in the caller, whereas broken postconditions (here, the invariant check) raise an 
exception in the executing method [13].

4.3   Translation from OOP into Eiffel

The assertion handling behaviour described above is native to Eiffel, which expresses 
this directly in its require, ensure and invariant clauses.  However, other aspects of 
the model have to be encoded specially in Eiffel, in order to obtain the semantics 
agreed in the CSM (see section 2).  In particular, this requires a more sophisticated 
handling of package namespaces, member visibility and access methods.  Listing 3 
illustrates the translation of the OOP model into Eiffel.

The EiffelPackageGenerator examines all the dependencies expressed by each of 
the types in the package on other types, and from this creates an Eiffel Configuration 
File, an XML file used by the Eiffel compiler, directing it to import specific clusters 
(sets of classes) and identifying the system root (the entry point).  While a cluster is 
analogous to a package, Eiffel does not support the notion of package namespaces:  
clusters exist in a flat namespace.  To distinguish classes from different OOP 
namespaces, the EiffelClassGenerator prefixes all class names by their logical 
package names (following idiomatic “Eiffel case” conventions [13]), such that the 
OOP class SavingsAccount becomes FINANCE_SAVINGS_ACCOUNT. 



List. 3.  Translation of the OOP fragment corresponding to a SavingsAccount class into the 
Eiffel programming language.  This illustrates in particular the special treatment for package 
scoping and access methods, which are not natural idioms in Eiffel.

note
  description: "SavingsAccount"

author: "ReMoDeL"
  date: "Wed Dec 08 18:33:18 BST 2010"

class
  FINANCE_SAVINGS_ACCOUNT

inherit
  FINANCE_ACCOUNT
    redefine
      deposit,
      withdraw
    end

create
  make_with

feature {ANY} -- Public members

  make_with (holder: PEOPLE_PERSON; amount: INTEGER) is
    do
      initialise
      open_with(holder, amount)
    end

  deposit (amount: INTEGER) is
    require else
      account_currently_active: status = status_active
      positive_deposit_amount: amount > 0
    do
       balance := balance + amount
    end

  withdraw (amount: INTEGER): INTEGER is
    require else
      positive_withdrawal_amount: amount > 0
      account_currently_active: status = status_active
    local
      retry_attempts: INTEGER  -- Initial value 0
    do
      balance := balance – amount
      Result := amount
    rescue
      balance := balance + amount
      if retry_attempts < 1 then
        retry_attempts := retry_attempts + 1
        retry
      end



    end

invariant
  balance_in_credit: balance >= 0

end

Eiffel requires all redefined methods to be declared in the class header.  This is 
accomplished by the EiffelClassGenerator, which detects the override attribute in the 
OOP method models.  Initially, we had hoped to detect method overriding without 
needing a model attribute; however, this would potentially have required a global 
analysis of other OOP packages outside the current compilation unit [14].

Eiffel’s idiom for enumerated types is to create, within a class, a set of uniquely 
named integer constants.  An EiffelClassGenerator will have translated the OOP 
Status type into the Eiffel class FINANCE_STATUS, which enumerates the constants: 
status_active, status_closed and status_frozen.  This class is inherited by the parent of 
the current class, FINANCE_ACCOUNT, and so transitively by the current class.

An EiffelMemberGenerator handles each of the OOP models for field, creator or
method members handed down by the EiffelClassGenerator.  The members are sorted 
into batches of different visibility levels.  Public visibility is encoded by exporting the 
features to ANY, private visibility by exporting to NONE and protected visibility by 
exporting the feature to its owning class, whence it is also visible in subclasses.

Creation procedures in Eiffel are named after the OOP creator names (c.f. Java, 
which uses the creator types).  All creation procedures invoke initialise first, which 
performs default field initialisation (in OOP, Fields may be declared with default 
initial values).  This version of initialise was defined in the deferred (abstract) parent 
class FINANCE_ACCOUNT, to set the inherited status field to status_closed, but is 
first invoked in the effective (concrete) subclass.

The translation of OOP Fields and Methods poses a more sophisticated problem in 
Eiffel.  Whereas the coding idiom in many target languages is to prevent external 
access to fields and control public access via “get”-methods, the natural idiom in 
Eiffel is to provide read-only attributes.  Eiffel has no need for separate access 
methods.  The EiffelMemberGenerator therefore has to block code generation for all 
OOP methods commencing with “get”.  Instead, when generating an attribute, it must 
determine, via its parent EiffelClassGenerator, whether any related public access 
method was supplied, in which case the attribute’s export status is changed to ANY (so 
long as the class is also exported from its package – see section 2.5 above).

Later, EiffelCodeGenerators must take this into account when invoking OOP 
access methods.  The “get”-method invocation is replaced by a direct access to the 
read-only public attribute.  This may be further complicated by rules governing valid 
preconditions in Eiffel, which insists that all tested expressions in preconditions use 
exported features of the class.  For this reason, the export status of a read-only 
attribute may change, to allow it to be tested in a precondition.



4.4   Translation from OOP into C++

In the C++ translation, occurrences of each OOP class identifier are rendered either as 
a C++ class identifier (appearing after new in object creation expressions), or as an 
instantiation of the smart pointer Ref<T> (for all typed variable declarations).  Apart 
from this, the other main difference from Java is in the generation of a separate C++ 
header file and C++ source code file for each implemented class type (enumerated 
and interface types only need header files).  However, there are further sophisticated 
aspects of the translation that generate fully idiomatic C++ code styles.

List. 4.  Translation of the OOP fragment corresponding to a SavingsAccount class into a C++ 
header file:  SavingsAccount.h.  This illustrates the intelligent processing of type dependencies, 
the use of namespaces and the generation of smart pointers.

/**
* SavingsAccount : generated on Fri Dec 10 14:12:15 GMT 2010 
* by ReMoDeL.
*/

#ifndef SAVINGS_ACCOUNT_H
#define SAVINGS_ACCOUNT_H

#include "Account.h"

namespace Finance {

    class Person;

    class SavingsAccount : public Account {
    public:
        SavingsAccount (Ref<Person> holder, int amount);
        virtual ~SavingsAccount ();
    protected:
        virtual void assertInvariant ();
    public:
        virtual void deposit (int amount);
        virtual int withdraw (int amount);
    };

} // namespace Finance

#endif

Listing 4 illustrates the translation of the OOP model into a C++ header file.  To 
avoid multiple inclusions of the same header file, the CplusHeaderGenerator wraps 
the contents of the file in a C++ conditional compile instruction.  The treatment of 
dependencies between the SavingsAccount class and other types is subtle:  any 
inherited type (such as Account in listing 4) must be fully defined before the 
SavingsAccount type, so is imported using the #include directive.  The same applies to 
any satisfied interface types, or used enumerated types (transitively, the superclass 
header file Account.h includes both Asset.h and Status.h).  By contrast, any other 



referenced class type need only be declared forward (such as Person in listing 4).  
This strategy not only reduces the number of file inclusions (increasing compile-time 
efficiency for the C++ compiler), but also is absolutely necessary where classes have 
circular usage dependencies.  When generating #include directives, the generator 
must take into account the relative locations of all the included files with respect to 
the current file’s location (c.f. in Java, where a relative path from the package root is 
assumed).  In listing 4, the inherited Account class is in the same package directory, 
so is included using a short pathname.  In listing 5, the referenced Person class is 
included via a longer pathname that must navigate up the directory tree, out of the 
Finance package, and down the tree into the Person package.

The OOP package identifier Finance is used to define a C++ namespace, within 
which all types belonging to the package are scoped.  This later has implications on 
how types from outside the package are imported and on how types from this package 
will be used elsewhere.  Listing 5 shows how the forward-declared Person type is 
eventually bound to the Person type obtained from the People package, via a using
declaration inside the current package.

List. 5.  Translation of the OOP fragment corresponding to a SavingsAccount class into a C++ 
source code file: SavingsAccount.cc.  This illustrates the selective generation of class identifiers 
or smart pointers, the inclusion and qualification of a component from another package, the 
scoping of local methods and the special treatment of field names.

/**
* SavingsAccount : generated on Fri Dec 10 14:12:15 GMT 2010 
* by ReMoDeL.
*/

#include "SavingsAccount.h"
#include "..\..\example\people\Person.h"

namespace Finance {

  using People::Person;

  SavingsAccount::SavingsAccount(Ref<Person> holder, 
     int amount) {
    openWith(holder, amount);
  }

  SavingsAccount::~SavingsAccount() {
  }

  void SavingsAccount::assertInvariant() {
    Account::assertInvariant();
    if (my_balance < 0)
      throw Ref<BrokenContract>(
        new BrokenContract("balance in credit"));
  }

  void SavingsAccount::deposit(int amount) {



    if (my_status != ACTIVE)
      throw Ref<BrokenContract>(
        new BrokenContract("account currently active"));
    if (amount <= 0)
      throw Ref<BrokenContract>(
        new BrokenContract("positive deposit amount"));
    balance = balance + amount;
    assertInvariant();  // Check before exit.
  }

  int SavingsAccount::withdraw(int amount) {
    if (my_status != ACTIVE)
      throw Ref<BrokenContract>(
        new BrokenContract("account currently active"));
    if (amount <= 0)
      throw Ref<BrokenContract>(
        new BrokenContract("positive withdrawal amount"));
    int methodAttempts = 2;  // Including 1 retry attempt(s).
    while (methodAttempts > 0) {
      try {
        my_balance = my_balance - amount;
        assertInvariant();  // Check before returning.
        return amount;
      }
      catch (Ref<BrokenContract> broken) {
        my_balance = my_balance + amount;
        if (--methodAttempts == 0)
          throw broken;  // Fail.
      }
    }
  }
}  // namespace Finance

The CplusHeaderGenerator generates the class declaration, which in listing 4 
includes the base class Account in the inheritance list.  When an OOP class also 
satisfies further OOP interfaces, the generated C++ inheritance list includes further 
class names, denoting the abstract interface types.  These must be prefixed by virtual 
public, to ensure that only one copy of each interface type is inherited, since it is 
technically possible to create fork-join paths among specialised interfaces, causing an 
abstract base interface to be inherited multiple times, via different paths.

The CplusSignatureGenerator creates the signatures for the declared members.  
Listing 4 illustrates how members are grouped according to their visibility.  This is 
achieved through the state machine of the generator, which emits a new visibility 
specifier, whenever the visibility level is changed.  This allows members to be 
generated in the same order as they appeared in the OOP model.

All methods in the C++ translation must be prefixed as virtual, since any method 
could later be overridden in a subclass (the decision to use package-based compilation 
units makes it impossible to perform a global analysis of dynamic, versus static 
binding [14]).  A destructor is automatically added to the list of members to be 
generated for the class, as boilerplate.  Technically, none of the generated classes 
manages further dynamic memory directly; this is performed by the smart pointers, 



such as Ref<Person> in listing 4.  However, in idiomatic C++ programming style, it 
is usual to see "default" automatic destructors declared explicitly.

Listing 5 demonstrates how a CplusClassGenerator generates the source code for 
the C++ implementation file.  The coding style is very similar to the Java example in 
listing 2, apart from the special generation of smart pointers.  This is seen especially 
in the throwing and catching of exceptions, where the thrown object must be a 
Ref<BrokenContract> for the catcher to recognise this type.

The CplusMemberGenerator prefixes each defined member with the name of the 
owning class, to scope the member appropriately.  The processing involved can be 
more complex if the owning class is generic (yielding a template class declaration in 
C++), in which case type parameter names must first be obtained from the parent 
CplusClassGenerator.  OOP field members are renamed in C++ by prefixing with the 
tag “my_”, to distinguish these from method parameter names, which may have the 
same canonical OOP name.

The CplusMemberGenerator handles constructor definition in a particular way, to 
implement the default initial value declarations for OOP fields.  A table of default 
initial values is created for the class, and each generator then emits the C++ 
initialisation syntax for these in every constructor, but permits explicit construction 
arguments to override these default values.  Default values were provided for 
my_holder, my_balance and my_status in the default base constructor Account(), 
which is invoked implicitly by SavingsAccount(Ref<Person>, int) in listing 5, which 
overrides these with a new value for the holder and initial balance.

The CplusCodeGenerator functions in a similar way to the JavaCodeGenerator
(parts of the algorithm are shared in the generator class hierarchy).  One difference is 
seen in the way that super-methods are invoked (see assertInvariant() in listing 5).  
This requires access to the context two levels up in the related CplusClassGenerator, 
to discover the immediate base class of the current class.  Some further optimisations 
of the generated C++ may yet be possible, for example the boilerplate destructor in 
listing 5 could be declared inline in listing 4.  Inlining is a tricky issue in general, 
since moving methods to the header file might break the rules that generate efficient 
forward declarations.

4.5   Translation from OOP into C#

The principles of translation from OOP into C# are almost identical to those applied 
to the Java translation, except for trivial differences, where C# follows a syntax style 
closer to C++.  The C# translation also supports namespaces, like the C++ translation.  
For reasons of space, the C# example is not elaborated further here.  

5   Comparison with Other Approaches

The state of the art in Model-Driven Engineering is evolving rapidly, with much work 
being carried out by large software companies and tool vendors.  For commercial 
reasons, few details of this work are publicly available, apart from strategic overviews 
[19].  A considerable number of position papers have appeared on how the OMG’s 



MDA proposal could be made to work, focusing either on aspects of pattern-driven 
transformation [20] or on the overall plan of work necessary to realise MDA [21]. 

Tool vendors seek to appear “MDA-compliant”, where in practice this often means 
(no more than) the kind of skeleton code generation that CASE tools have achieved 
for over a decade.  While some tools can capture complete information for full, 
idiomatic code generation, this is often done via the filling of endless property boxes, 
or the drawing of UML Sequence Diagrams, which offers no higher abstraction than 
writing the source code.  The best tools offer round-trip engineering, in which full 
source code is parsed and later may be visualised either as diagrams or text, with 
editing operations affecting a common model (such as EiffelBench in the 1990s, 
renamed EiffelStudio since 2001 [22]).  Such features are excellent in a programmer’s 
IDE, but do not, in our opinion, constitute Model-Driven Engineering.

5.1   Meta-CASE and Meta-Modelling Approaches

The earliest complete working example of fully general model-to-code transformation 
of which the authors are aware was achieved by the tool XMF Mosaic, currently the 
property of Ceteva [23]. This tool, originally developed in Java, but later recompiled 
from its own self-describing models, offered users the ability to create their own 
domain-specific languages (DSLs) in either graphical or textual format (or both).  
XMF Mosaic supported the creation of domain-specific editors, with which users 
could develop their own models, which compiled down to executable systems.  XMF 
Mosaic is therefore perhaps best characterised as a meta-CASE tool.

The tool was based around a core abstract programming language XOCL, an 
extended version of OCL [4] that also included state-modifying statements.  The 
process of creating a DSL was complex:  it involved defining a syntax for the 
language, a graphical mapping to diagram elements in the style of UML (if desired), 
an underlying semantics for the models (in XOCL), and rules for how the models 
should be translated into executable code (in XOCL).  While the major building 
blocks of the DSL could be constructed rapidly as instances of a MOF-style 
metamodel [3], considerable effort had to be invested by the designer in creating rules 
for well-formedness, and translation rules that described how model elements should 
be executed.  As a consequence, while the customised DSL editors were of 
considerable value to their end-users, and raised the level of abstraction at which they 
developed software systems, the process of designing the DSL was best left to expert 
architects, who understood the full capabilities of the XMF Mosaic tool.

MDE tools will eventually have to be much simpler for end-users to understand, 
customise and use.  It is our belief that the majority of information systems may be 
described by just a few kinds of standard, abstract model, representing different 
functional, structural and time views of the system.  Different constraints naturally 
apply within each model (for example, the normalisation of data schemas from 
conceptual data models can be fully automated [16]), and also affect how these 
models should be “folded together” to produce the system.  This kind of information 
could be captured as part of the translation architecture, and need not be exposed to 
end-users as something they should have to design or customise.



5.2   Model-to-Model Transformation Approaches

Influenced by the MDA agenda set by the OMG [1], much recent effort has been 
invested in the Query/Value/Transformation (QVT) approach [5].  At the time of 
writing, QVT is only concerned with model-to-model transformations.  In this 
approach, model transformation rules are expressed as a pair of related graphs, 
mapping from the prior to the posterior model state.  According to [20], the rules’ 
antecedents may contain positive patterns that must match in the model graph and 
negative patterns that may not match.  The rules’ consequents may contain structures 
to be inserted, indicate structures to be deleted or modified, and highlight structures 
that should remain unchanged.  Eventually, the QVT rule language itself should also 
be describable within the MOF metamodel [3].  

One early concrete realisation of this approach is the Eclipse-hosted ATL project 
[9].  This uses a combination of declarative languages to achieve pattern-driven 
transformations.  MOF-style class diagrams are expressed as metamodels in KM3, a 
textual syntax for declaring meta-types and their relationships.  The KM3 (Kernel 
Meta-Meta-Modelling) language conforms to the Eclipse ECore framework, a Java 
implementation of EMOF (the essential MOF [3]), in the sense that metamodels may 
be implemented directly as instances of ECore types. Instances of KM3 meta-types, 
known as models, are expressed in XML according to the OMG XMI schema [24].  A 
third language, ATL (ATLAS Transformation Language), is used to describe the 
transformations from one model to the other.  Rule expressions in ATL refer to source 
and target elements, whose types are given in the respective KM3 metamodels for the 
source and target.  Rules may require further “helper” functions, which are written in 
OCL [4].  Rules map each source element to the appropriate target element, by 
matching source model elements to the rule guard patterns and firing the rules to build 
the target model.  This achieves the declarative QVT-style model transformation, but 
at the cost of introducing multiple novel languages.  Nonetheless, the ATL website [9] 
has an impressive selection of case studies.  ATL supports only model-to-model 
transformations; and a separate translation procedure using MOFScript is required to 
convert target models to native text.

A more direct approach is taken by the Triskell group in the design of their 
metamodelling language, Kermeta [10].  This has the flavour of a high-level object-
oriented language, enriched with OCL-style constraints and set comprehensions.  
Kermeta is a single, uniform language that is used to represent both models (as object-
oriented structures) and model transformations (as imperative algorithms).  Built on 
top of the Eclipse framework, Kermeta is also designed to conform to the EMOF
metamodel [3] realised in the Eclipse ECore implementation.  It styles itself as an 
"extension to MOF", adding executable behaviour to the MOF static structures.  Since 
model transformations are encoded in an imperative style, Kermeta is closer to XOCL 
than to ATL's pattern-driven transformations.  Though it can be criticised as "just 
another programming language", its tight integration with Eclipse offers the 
possibility of model creation and manipulation through Eclipse’s visual editors.  Like 
XMF Mosaic, abstraction only comes through the libraries developed by experts. 

A formal approach to specifying declarative QVT-style transformations is 
currently being developed at Kings College, London using a tool that acts on UML-
RSDS [11], a controlled subset of UML specialised for reactive systems design, 



whose semantics can be described using Real time Action Logic (RAL).  UML-RSDS 
supports UML Class Diagrams, State Machine Diagrams and OCL.  The approach 
taken to model transformations specifies preconditions and postconditions on the 
source and target models, and constraints on the translation rules, which are naturally 
expressed in OCL as dependent quantifications (s  source, t  target).  This is 
perhaps the most abstract approach, which is both mathematically elegant and also 
offers the prospect of proving the correctness of transformations.

What emerges from all of these QVT-inspired approaches is how much machinery 
is required to define even a simple declarative transformation.  Considerable effort is 
invested in defining EMOF-conforming models and rule-based languages for pattern-
driven transformations.  The eventual vision of deriving QVT rules themselves from 
first principles out of core MOF concepts (a rule can be seen as a kind of map) only 
adds to this machinery.  We believe that this route to MDE, while worthy, will be 
slow and hampered by the weight of its own infrastructure.

5.3   The ReMoDeL Layered Transformation Approach

In the work reported here, we exposed a lightweight approach to MDE that uses well-
known, available technologies, such as Java and XML.  Rather than invest effort in 
defining further novel transformation languages, we wanted to show that interesting 
and subtle transformations could be performed using a simple object-oriented 
framework for model transformation and code generation, acting on flexible models 
expressed directly in XML.  Our long-term interest is in discovering what kinds of 
model representations and what kinds of transformations might best support the 
complete MDE cycle, from business analysis to executable systems.

In contrast with the other approaches reported above, we started with the final 
model-to-code transformation step.  This was partly by way of ensuring that we 
would always have an “existence proof” of working generated systems, which 
executed with a known operational semantics; and partly in order to bootstrap the 
content of the lowest-level model, ReMoDeL OOP, needed to generate idiomatic, 
object-oriented software.  The code generation step described in this paper is still only 
one small step, translating from an abstract model of object-oriented programming 
into executable code in four contrasting languages (Java, C++, Eiffel and C#).  But, as 
earlier sections have shown, there are many subtle issues involved in generating 
software for different platforms and languages that executes in an identical way.

The experience of crafting the generation algorithms was also informative.  In 
general, idiomatic code generation is not a simple mapping from source to target 
models.  While some of the generation rules were pattern-driven transformations (e.g. 
transforming the invariant into a method; or inverting the logic of assertions in 
preparation for exception guards), others were complex, state-based transformations 
that required a re-structuring of the logical content (e.g. determining when and how to 
invoke the class invariant method in Java; or fusing access methods and attributes in 
Eiffel).  While some transformations required access just to local information, others 
required access to contextual information further afield (e.g. examining preconditions 
and access methods before deciding the export status of Eiffel attributes; or looking 
up the correct class scope for a C++ super-method invocation).



We believe that, for MDE to deliver on the promise of designing systems at an 
abstract level, model transformation tools must be smart enough to synthesise the 
missing details, rather than require designers to supply these via customisation 
interfaces.  This is much more than simply inserting boilerplate designs or code for 
particular target architectures.  We expect there to be standard solutions that result 
from "folding together" abstract models of the processing, data and time views of the 
system.  Working out how to weave these models together is still an open research 
question.  It depends critically on the particular representations chosen for each 
model, and the kinds of constraint that these expose.  Eventually, we envisage a 
layered system of gradual transformations, from model-to-model and model-to-code, 
which exploits different constraints at each transformation step, analogous to the 
representational transformations used in computer vision [25].
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