
A Multi-level Transformation from
Conceptual Data Models to

Database Scripts using Java Agents

Ahmad F Subahi and Anthony J H Simons
(A.Subahi , A.Simons}@dcs.shef.ac.uk

ReMoDeL: Reusable Model
Design Languages

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Outline

• Introduction
• Brief Description of ReMoDeL
• Case Study: Database Generator for MySQL
• Transformation Composition in ReMoDeL
• Conclusion and Q/A

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Outline

• Introduction
– Concept Definitions
– Styles of composition
– Units of modularity

• Brief Description of ReMoDeL
• Case Study: Database Generator for MySQL
• Transformation Composition in ReMoDeL
• Conclusion and Q/A

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Concept Definitions I

• Model-Driven Engineering (MDE):
– A software development methodology that uses models as the

first class entities in the development process (lifecycle).
– A model conforms to another model (metamodel).

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Concept Definitions II

• Model Transformations (MT):
– A program that takes models (inputs) and produces other

models (output).

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Code
Generation

Code
Visualisation

Refinement

Abstraction

Some Existing Approaches

• Styles of composition
– Heterogeneous composition, with glue code, or lifting and

grounding, e.g. UniTI (Vanhoof et al, 2007)
– Homogeneous composition, e.g. graph transformations in

extended UnQL/JSON (Hidaka et al, 2009)
• ReMoDeL has homogeneous XML graphs, exogenous models

• Units of modularity
– Standard scale, e.g. whole rules in (Kurtev et al, 2006)
– Large scale – e.g. module superimposition in (Wagelaar et al,

2008, 2010)
– Fine scale – e.g. composed CRUD operations (Goknil et al, 2008)

• ReMoDeL has fine-scale surgery of source, target graphs

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Outline

• Introduction
• Brief Description of ReMoDeL

– General aims and goals
– Example models: DBQ language
– Example framework: for database generation

• Case Study: Database Generator for MySQL
• Transformation Composition in ReMoDeL
• Conclusion and Q/A

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

ReMoDeL Overview

• A multi-view, multi-level MDE approach
– Multiple process, time, data, code models
– Intermediate representations, to support folding

• Shares some goals of OMG’s MDA
– Forwards transformation, traceability
– But liberal attitude to OMG standards

• Aims to develop a simpler proof-of-concept
– Use available technologies (Java rules, XML models)
– Use direct manipulation, imperative framework
– Develop a reference implementation (practical!)

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Database and Query Language

• DBQ: Database and Query Language
– One of several XML dialects used in ReMoDeL
– Defines conceptual and logical data schemas
– Supports logical and functional queries

• Supported concepts
– High level, e.g. record, field, association,

generalisation, aggregation
– Low level, e.g. table, field, primary/foreign key

• Model transformation goals
– Data normalisation (endogeneous/exogeneous)
– Database DDL script generation (exogeneous)

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

DBQ Conceptual Model - I

<Record name="Person">
<Field name="id" type="Natural" size="7" key="total"/>
<Field name="foreName" type="String" size="10" />
<Field name="surName" type="String" size="10" />
<Field name="age" type="Natural" range="{0-120}" default=“0"/>

</Record>

Record with fields (High-level)

Conceptual
Entity

Conceptual
Attribute Range

Constraints

Field Type Candidate Key

Unique
Name

Default
Value

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

DBQ Conceptual Model - II

Association with end-roles (High-level)

<Association name="Lives">
<Role name=“owner" type="Person" multiple="mandatory" />
<Role name="home" type="Address" multiple="mandatory" />

</Association>

Association

End Role

Multiplicity

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

<Table name="Item">
<Field name="specialOfferCode" type="Natural" size="12"
refer="SpecialOffer" />
<Field name="id" type="Natural" size="12" key="total" />
<Field name="unitPrice" type="Decimal" />

</Table>

Logical Table

Logical Field

Generated Foreign Key

Primary Key

Table with PK, FK fields (Low-level)

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

DBQ Logical Model

ReMoDeL Database Generator
• “Database Generator” Project

– First implementation of the ReMoDeL idea
– Possible component in the larger framework

• What the “Database Generator” does:
– Two-phase composition of translation, generation activity
– Selectively normalises a conceptual data model
– Generates executable DDL scripts, for different RDBMS

• Model transformation approach
– Java agents responsible for different levels of model detail
– Delegate to sub-agents; request context from super-agents
– Transformation rules are methods, suitably ordered and named
– Visitor pattern traverses, modifies nodes of XML graphs

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

The Architecture I

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

ReMoDeL Database Generator
Composition of two transformations

The Architecture II
Model-to-Model Transformation Phase

Conceptual data model into Logical data model

Transformation
control

Delegate
Task

Request
Context

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Java Agents

The Architecture III
Model-to-Code Transformation Phase

Logical Data Model to MySQL DLL Script

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Other Database Engine

Language-Specific Generator

Common Generator

Rationale

• Two stage transformation is appropriate, because
– Data normalisation strategies independent of DDL

script generation
– Different SQL constructs supported in target DDLs

• Model translation step
– Full normalisation for traditional RDBMS
– Selective denormalisation (esp. generalisation, strong

aggregation) for improved performance
• Code generation step

– Oracle supports field range constraints
– MySQL only supports if-added triggers

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Outline

• Introduction
• Brief Description of ReMoDeL
• Case Study: Database Generator for MySQL

– Kinds of mapping rules supported
– Examples of model-to-model transformation
– Examples of model-to-code generation

• Transformation Composition in ReMoDeL
• Conclusion and Q/A

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Online Ordering System

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

M-to-M

1-to-1

Aggregation

Composition

Generalisation

M-to-1

General Mapping Rules

Conceptual DBQ Concepts Logical DBQ Concepts

Record Table

Field Field

One-to-One Association Merged Table (Merging rule)

Many-to-Many Association Linker Table (Splitting rule)

Many-to-One Association Foreign key

Generalisation (disjoint) Flattened Table (Flat subclass rule)

Generalisation (overlapping) Tables (fully normalised; fat superclass?)

Aggregation (Weak Aggregation) Foreign key

Composition (Strong Aggregation) De-normalised Table (Aggregating rule)

Transformation Order
public class SchemaTranslator extends AbstractTranslator {

private Element target;

public SchemaTranslator(Element source, PackageTranslator parent) {
// Install source model

super(source, parent);
target = new Element(source.getName());

}

public Element translate() throws TreeException {
target.setAttribute("normal","true");

// The order of translation
translateOneToOneAssoc();
translateOneToManyAssoc(); // private methods of
translateGeneralAggreg(); // this SchemaTranslator
translateManyToManyAssoc();
return target;

}

Step 1: Merging Records

Schema
Translator

Record
Translator

Re-naming and
Merging

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

<Record name="Person">
<Field name="id"

type="Natural"
size="7" key="total"/>

<Field name="foreName"
type="String" size="10"/>

<Field name="surName"
type="String" size="10"/>

<Field name="age"
type="Natural"
range="{0-120}"
default=“0"/>

</Record>

<Record name="Address">
<Field name="postCode"
type="String" size="7"
key="partial"/>

<Field name="unitNo"
type="Natural" size="5"
key="partial"/>

<Field name="street"
type="String" size="30"
key="partial"/>

<Field name="city"
type="String" size="20"/>

</Record>

Tree Surgery Example
public class RecordTranslator extends AbstractTranslator {

// source model is an Association, target is a Table
private void translateOneToOneAssoc() throws TreeException {

Element major = getRoleType(getMajorRole(model));
Element minor = getRoleType(getMinorRole(model));
target = new Table(major.getName());
for (Field field : major.getChildren(“Field”))

target.addContent(field.clone());
for (Field field : minor.getChildren(“Field”)) {

Field renamed = field.clone();
renamed.setValue(“name”, mergeName(

minor.getValue(“name”),
renamed.getValue(“name”)));

target.addContent(renamed);
}
...
getParent().addTable(target); // API of SchemaTranslator

} ...

Step 2: Field Renaming

<Table name=“Person">
<Field name=“id" type="Natural" size="7" key="total"/>
<Field name=“foreName" type="String" size="10"/>
<Field name=“surName" type="String" size="10"/>
<Field name=“age" type="Natural" range="{0-120}" default=“0"/>
<Field name=“addressPostCode" type="String" size="7"unique="true"/>
<Field name=“addressUnitNo" type="Natural" size="5" unique="true"/>
<Field name=“addressStreet" type="String" size="30" unique="true"/>
<Field name=“addressCity" type="String" size="20"/>

</Table>

Person table
after merging
fields from
Address

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Schema
Translator

Record
Translator

Step 3: Flatten Inheritance

<Table name="Customer">
<Field name="personId" type="Natural" size="7" key="total"/>
<Field name="personForeName" type="String" size="10"/>
<Field name="personSurName" type="String" size="10"/>
<Field name="personAge" type="Natural" range="{0-120}" default=“0"/>
<Field name="personAddressPostCode" type="String" size="7" unique="true"/>
<Field name="personAddressUnitNo" type="Natural" size="5" unique="true"/>
<Field name="personAddressStreet" type="String" size="30" unique="true"/>
<Field name="personAddressCity" type="String" size="20"/>
<Field name="id" type="Natural" size="7" unique="true"/>
<Field name="details" type="String" size="250"/>
</Table>

Schema
Translator

Record
Translator

New PK

Customer table after
flattening fields from
inherited Person table

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Old PK

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

MySQL
Schema Gen

MySQL Table
Gen

MySQL
Field Gen

CREATE TABLE Customer (
personId INT(7) NOT NULL,
personForeName VARCHAR(10),
personSurName VARCHAR(10),
personAge INT DEFAULT 0,
personAddressPostCode VARCHAR(7) UNIQUE,
personAddressUnitNo INT(5) UNIQUE,
personAddressStreet VARCHAR(30) UNIQUE,
personAddressCity VARCHAR(20),
id INT(7) UNIQUE,
details VARCHAR(250),
PRIMARY KEY(personId));

CREATE TRIGGER customerCheck BEFORE INSERT ON Customer
FOR EACH ROW
IF (NEW.personAge < 0 OR NEW.personAge > 120) THEN
SET NEW.personAge = DEFAULT;

END IF;

Combined Table

PK

Trigger for check
constraint

Step N: Code Generation

Sample Code I

public class MySQLSchemaGenerator extends SchemaGenerator {

public void generate() throws TreeException, IOException
{

try {
openFile(getTypeName() + "DB.sql");
createDatabase();
writeTables();
writeTriggers();
closeFile();

}
}

Sample Code II
public void writeTable() throws TreeException, IOException
{

write("CREATE TABLE "+ getTypeName()+ " (");
if(!hasPKeyFields)
{
write(" autoField INT UNSIGNED NOT NULL AUTO_INCREMENT,");
}
writeFields();
if(hasPKeyFields)

writePrimaryKeys();
else
{ write(" PRIMARY KEY(autoField)"); }
if(hasFKeyFields)
{

write(",");
writeForeignKeys();

}
write(");");

}

Outline

• Introduction
• Brief Description of ReMoDeL
• Case Study: Database Generator for MySQL
• Transformation Composition in ReMoDeL

– Linear composition of transformations (external)
– Hierarchical compositions of agents (internal)

• Conclusion and Q/A

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

External Composition

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Linear Composition (2-Phase)

ReMoDeL Database Generator Framework

Separation
between

Translation and
Generation steps

Generate code
from a detailed

intermediate
model

No Glue code

Internal Composition - I
Hierarchical Composition

Model-to-Model Transformation Component

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Internal Composition - II
Hierarchical Composition

Model-to-Code Transformation Component

Outline

• Introduction
• Brief Description of ReMoDeL
• Case Study: Database Generator for MySQL
• Transformation Composition in ReMoDeL
• Conclusion and Q/A

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

Thank you … !

Questions

© 2011, Subahi & Simons, Department of Computer Science, University of Sheffield

	A Multi-level Transformation from Conceptual Data Models to Database Scripts using Java Agents
	Outline
	Outline
	Concept Definitions I
	Concept Definitions II
	Some Existing Approaches
	Outline
	ReMoDeL Overview
	Database and Query Language
	DBQ Conceptual Model - I
	DBQ Conceptual Model - II
	DBQ Logical Model
	ReMoDeL Database Generator
	The Architecture I
	The Architecture II
	The Architecture III
	Rationale
	Outline
	Online Ordering System
	General Mapping Rules
	Transformation Order
	Step 1: Merging Records
	Tree Surgery Example
	Step 2: Field Renaming
	Step 3: Flatten Inheritance
	Step N: Code Generation
	Sample Code I
	Sample Code II
	Outline
	External Composition
	Internal Composition - I
	Internal Composition - II
	Outline
	Slide Number 34

