

The Abstract Semantics of Tasks and Activity in the
Discovery Method

Carlos Alberto Fernández y Fernández

Submitted in Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

The Department of Computer Science

The University of Sheffield, United Kingdom

February 2010

Abstract

Developing software is a complex activity supported by software engineering, a
discipline that is still immature in some respects. While the complexity of software
has been increasing over the years, the art of modelling software is still at an early
stage. Software is designed and developed without any guarantees about whether it is
going to work as desired. Design is based almost entirely on the experience of experts
and, for most production software, formally verifying the design is not a possibility
due to commercial pressure to finish the project.

One option for verifying software is to use formal methods to specify the software and
use the specification to detect design errors at an early stage. The problem here is
that, in many cases, developers are too busy producing and modifying software to
create additional artefacts that describe the software formally; or they may have no
experience in writing specifications using traditional formal methods. Instead,
developers may only be familiar with graphical design notations, such as UML, which
are used intuitively to capture aspects of the design, irrespective of whether these
models are consistent, complete, or have an unambiguous semantics.

It is our firm belief that the gap between semi-formal visual modelling notations and
precise formal specifications must be bridged. What is needed is a smaller and
simpler object-oriented notation than UML, that could be easier to learn and use in an
exact and repeatable way, to act as the basis for a completely formal treatment. This
thesis proposes an abstract syntax and denotational semantics for the hierarchical
decomposition of tasks and workflows, specifically in the Task Model of the
Discovery Method. The Discovery Method is an approach to systems analysis and
design, which adopts a restricted UML profile, focusing on minimalism and
consistency.

Task Flow and Task Structure diagrams are mapped onto the terms of an abstract task
algebra, a quotient algebra defined using an abstract syntax and axioms. The task
algebra is then mapped onto a denotational semantics, consisting of sets of traces of
events representing atomic tasks. The axioms of the task algebra support reasoning
about the equivalence of Task Structures and Task Flows. This is proven in the
denotational semantics, which maps everything onto sets of traces. In particular, the
behaviour of empty, abort and return events is modelled correctly, in the presence of
iteration and concurrency. A proof of concept is developed for model checking,
implemented in the Haskell programming language, within which equivalence and
temporal logic properties (in LTL and CTL) are checked.

As a result, any Task Model developed in the Discovery Method may be converted to
equivalent expressions in the task algebra, with a corresponding unambiguous
denotational semantics. Software developers need only use the precise, minimal Task
Structure and Task Flow diagram notations to develop a hierarchical Task Model with
a completely formal interpretation. After conversion to algebraic form, the designs
are amenable to automatic model checking of equivalence and temporal logic
properties. Such a facility supports the early validation of a design, establishing
whether it is consistent and complete.

i

Contents

CHAPTER 1: INTRODUCTION..1

1.1 BACKGROUND AND MOTIVATION ...1
1.2 GOAL OF THIS RESEARCH ...3
1.3 OBJECTIVES..4
1.4 HYPOTHESIS...4
1.5 THESIS STRUCTURE ..5
1.6 SUMMARY ..6

CHAPTER 2: FORMAL METHODS AND MODELLING TOOLS..7
2.1 INTRODUCTION...7
2.2 TOOL SUPPORT FOR Z, ALLOY AND OCL...8
2.3 Z ..9

2.3.1 An example: the birthday book ...10
2.3.2 Schema calculus ...12
2.3.3 Z tools ...13

2.4 ALLOY ...14
2.4.1 Signatures ...15
2.4.2 Declaration area...16
2.4.3 Formulas...17
2.4.4 Executing an analysis ...19
2.4.5 Metamodel ..21
2.4.6 Summary ...21

2.5 OCL...22
2.5.1 Syntax overview ..22
2.5.2 BirthdayBook example..23
2.5.3 Summary ...26

2.6 PROCESS ALGEBRA ..26
2.6.1 ACP...27
2.6.2 CCS...28
2.6.3 CSP...28

2.7 SUMMARY ..28
CHAPTER 3: OBJECT ORIENTED METHODOLOGIES AND THE DISCOVERY
METHOD 30

3.1 INTRODUCTION...30
3.2 A BRIEF OBJECT-ORIENTED HISTORY ..31
3.3 UML PROBLEMS ..32
3.4 DISCOVERY METHOD ...36

3.4.1 Business Modelling...38
3.4.2 Object Modelling ..39
3.4.3 System Modelling..42
3.4.4 Software Modelling...44

3.5 SUMMARY ..44
CHAPTER 4: THE INFORMAL SEMANTICS FOR THE TASK MODELS...........................45

4.1 THE INFORMAL SEMANTICS FOR THE TASK DIAGRAMS ..45
4.1.1 Task Structure Diagram ...45
4.1.2 Task Flow Diagram ..47

4.2 THE ALLOY APPROACH ..49
4.2.1 Methodology ...49
4.2.2 Abstract syntax ...49

ii

Contents

4.2.3 Checking visual models with Alloy ...51
4.2.4 Evaluating Alloy ...55
4.2.5 Conclusions on the Alloy approach ..56

4.3 FROM THE TASK FLOW DIAGRAM TO THE TASK ALGEBRA ..58
4.3.1 Sequence of tasks ..58
4.3.2 Selection ...59
4.3.3 Repetition..60
4.3.4 Parallel composition...61
4.3.5 The eating routine example...61

4.4 SUMMARY ..63
CHAPTER 5: AN ABSTRACT SYNTAX REPRESENTATION FOR THE TASK FLOW
MODEL 64

5.1 INTRODUCTION...64
5.2 THE ABSTRACT SYNTAX ..64
5.3 TASK MODEL CONSTRUCTIONS..66

5.3.1 Simple task..66
5.3.2 Empty activity ...67
5.3.3 Finished activity ...67
5.3.4 Sequential composition...67
5.3.5 Selection ...68
5.3.6 Parallel composition...69
5.3.7 Repetition..72
5.3.8 Encapsulation ...73

5.4 SUMMARY ..74
CHAPTER 6: THE SEMANTICS OF TASKS..75

6.1 INTRODUCTION TO TRACE SEMANTICS...75
6.2 TRACE SEMANTICS FOR TASKS ..76
6.3 THE TRACE DOMAIN ..77

6.3.1 The Trace Alphabet...77
6.3.2 Construction of Traces ...78

6.4 SEMANTIC FUNCTIONS OVER THE TRACE DOMAIN...79
6.4.1 Concatenation of Traces...79
6.4.2 Concatenated Product of Trace Sets...83
6.4.3 Interleaving of Traces...85
6.4.4 Distributed Interleaving of Trace Sets..91
6.4.5 Unpacking of Trace Sets ...93

6.5 INTERPRETING TASK ALGEBRA IN THE TRACE DOMAIN...94
6.5.1 Tracing Basic Elements ..95
6.5.2 Tracing a Sequence of Activity ...95
6.5.3 Tracing a Selection of Activity..99
6.5.4 Tracing a Parallel Composition of Activity ..101
6.5.5 Tracing a Repetition of Activity ..104
6.5.6 Tracing the Unpacking of Activity ..113

6.6 SUMMARY ..118
CHAPTER 7: SOUNDNESS FOR THE SEMANTICS OF TASKS..120

7.1 INTRODUCTION...120
7.2 SOUNDNESS..120

7.2.1 Sequential composition...121
7.2.2 Selection ...123
7.2.3 Parallel composition...124
7.2.4 Repetition..126
7.2.5 Encapsulation ...128

7.3 CONGRUENCE...131
7.3.1 Showing congruence for basic operators in the associative sequence axiom...............131

7.4 SUMMARY ..133
CHAPTER 8: THE TASK ALGEBRA IMPLEMENTATION..134

iii

Contents

8.1 INTRODUCTION...134
8.2 TASK ALGEBRA IMPLEMENTATION ...134
8.3 AN ELECTRONIC JOURNAL..138

8.3.1 Task Flow analysis ...138
8.4 OPERATIONS ON TRACES ..148

8.4.1 Set operations on traces..148
8.4.2 Model-checking with LTL ...149
8.4.3 Model-checking with CTL...150
8.4.4 An implementation of model-checking with LTL ..151
8.4.5 An implementation of model-checking with CTL..153

8.5 TESTS OF THE IMPLEMENTATION ..159
8.6 SUMMARY ..160

CHAPTER 9: CONCLUSIONS ..161
9.1 RESULTS...161
9.2 EVALUATION..162
9.3 FUTURE WORK..163

REFERENCES ...164
APPENDIX A: PROVING BASIC PROPERTIES ..175

A.1 ASSOCIATIVITY OF ⊗ ...175
A.2 DISTRIBUTION OF ⊗ OVER UNION...181
A.3 IDENTITY FOR ⊗ ...182
A.4 ASSOCIATIVITY OF // ..182
A.5 COMMUTATIVITY OF // ...187
A.6 DISTRIBUTION OF // OVER UNION..190
A.7 IDENTITY FOR //..191
A.8 DISTRIBUTION OF UNPACK OVER UNION...192

APPENDIX B: CONGRUENCE FOR THE SEMANTICS OF TASKS................................193
B.1 INTRODUCTION...193
B.2 SHOWING CONGRUENCE FOR SEQUENTIAL COMPOSITION...193

B.2.1 Showing congruence for basic operators in the associative sequence axiom...............193
B.2.2 Showing congruence for basic operators in the right distributivity of sequence over
selection axiom..195
B.2.3 Showing congruence for basic operators in the empty sequence axiom.......................199
B.2.4 Showing congruence for basic operators in the fail on sequence.................................202
B.2.5 Showing congruence for basic operators in the succeed on sequence axiom...............204

B.3 SHOWING CONGRUENCE FOR SELECTION..207
B.3.1 Showing congruence for basic operators in the associative selection axiom207
B.3.2 Showing congruence for basic operators in the commutative selection axiom216
B.3.3 Showing congruence for basic operators in the idempotent selection axiom218

B.4 SHOWING CONGRUENCE FOR PARALLEL COMPOSITION ..219
B.4.1 Showing congruence for basic operators in the associative parallel composition axiom
 220
B.4.2 Showing congruence for basic operators in the commutative parallel composition axiom
 222
B.4.3 Showing congruence for basic operators in the right distributivity of concurrency over
selection axiom..224
B.4.4 Showing congruence for basic operators in the instant synchronisation axiom...........227
B.4.5 Showing congruence for basic operators in the fail in parallel composition axiom.....229
B.4.6 Showing congruence for basic operators in the succeed in parallel composition axiom
 232

B.5 SHOWING CONGRUENCE FOR REPETITION...235
B.5.1 Showing congruence for basic operators in the unrolling one cycle of until-loop
repetition axiom ..235
B.5.2 Showing congruence for basic operators in the unrolling one cycle of while-loop
repetition axiom ..239

B.6 SHOWING CONGRUENCE FOR ENCAPSULATION...243

iv

Contents

B.6.1 Showing congruence for basic operators in the vacuous subtask axiom......................243
B.6.2 Showing congruence for basic operators in the coincident exit axiom.........................246
B.6.3 Showing congruence for basic operators in the vacuous selection axiom....................251

B.7 SUMMARY ..261
APPENDIX C: SOURCE CODE..262

C.1 TASK ALGEBRA..262
C.2 LTL..269
C.3 CTL ...272

v

List of Figures

Figure 2.1 Instance generated by the execution of the BusyDay predicate20

Figure 2.2. Counterexample generated by the execution of the DelIsUndo assertion.20

Figure 2.3. Metamodel for BirthdayBook..21

Figure 2.4. A possible representation of BirthdayBook ..23

Figure 2.5. BirthdayBook modelled in ArgoUML ..24

Figure 2.6. BirthdayBook modelled in USE...24

Figure 3.1 Thread, activation and stack-frame semantics focus bar [112]33

Figure 3.2 Procedural and non-procedural message flow...34

Figure 3.3 Mealy, Moore and UML state machines ..34

Figure 3.4 Equivalent UML models for concurrent substate machines [117].............35

Figure 3.5 Association and navigation in UML class diagram....................................36

Figure 3.6 Aggregation and generalisation for Data and Task Structure Diagrams....37

Figure 3.7 Initial and final states are real states...38

Figure 3.8 Notation for the State Diagram in the Discovery Method..........................40

Figure 3.9 Notation for Data Diagram in the Discovery Method41

Figure 3.10 Notation for Collaboration Diagram in the Discovery Method................42

Figure 3.11 Notation for the Collaboration Diagram in the Discovery Method.........43

Figure 4.1 Basic elements of Task Structure Diagrams...46

Figure 4.2 Structural relationships in the Task Structure Diagram46

Figure 4.3 Elements of the Task Flow Diagram ..47

Figure 4.4 Example showing parallel tasks (Modified from [129])48

Figure 4.5 General structure of the abstract syntax ...50

Figure 4.6 Task Structure Diagram elements ...51

vi

List of Figures

Figure 4.7 Circulation Task Structure Diagram..52

Figure 4.8 Encoding the Circulation Task Structure Diagram52

Figure 4.9 Loan Transaction Task Structure Diagram..52

Figure 4.10 Encoding the Loan Transaction Task Structure diagram53

Figure 4.11 Encoding the Task Structure model ..53

Figure 4.12 Empty predicate and exact scope specified for the run command54

Figure 4.13 Solution generated by Alloy..55

Figure 4.14 Two diagrams creating an inconsistent Data Model55

Figure 4.15 Abstract syntax metamodel ..57

Figure 4.16 Sequence of tasks in the Task Flow Model ...58

Figure 4.17 Selection in the Task Flow Diagram ...59

Figure 4.18 Binary selection in the Task Flow Diagram..60

Figure 4.19 Repetition in the Task Flow Model ...61

Figure 4.20 Parallel composition in the Task Flow Diagram61

Figure 4.21 Task Flow Diagram showing the process of doing dinner62

Figure 4.22 Until-loop repetition in the Task Flow Diagram63

Figure 5.1. State transition diagram for expressions a;(b+c) and (a;b)+(a;c)68

Figure 8.1. Structure of the Task Algebra implementation135

Figure 8.2. Reader Task Flow Diagram..139

Figure 8.3. Author Task Flow Diagram..141

Figure 8.4. Login Task Flow Diagram..141

Figure 8.5. Reviewer Task Flow Diagram..143

Figure 8.6. Editor Task Flow Diagram ..146

Figure 8.7. Tree representation of traces from diagram in Figure 8.4155

Figure 8.8 A partial tree representation of traces from diagram in Figure 8.5158

Figure 8.9 A partial tree representation of traces from an extract of the diagram in
Figure 8.5 ...159

vii

 List of Tables

Table 2.1 Classification of formal methods...8

Table 2.2 Comparison of Z tools ...13

Table 2.3. Some binary relations expressed in Alloy ..17

Table 8.1 Comparison between original Task Algebra syntax and the Haskell
implementation ..135

viii

Chapter 1:
Introduction

This chapter introduces the motivation behind the thesis, which is that software
engineering notations need formal semantics. Section 1.1 mentions some relevant
work related to the goal of formalising parts of the UML notations. Section 1.2
describes the overall goal of this research, which is to provide a complete formal
basis for a small task-based notation. Subsequently, the individual objectives of the
research, which include developing a formal semantics and model-checking tools, are
explained in section 1.3. Finally, an explanation of the structure of the thesis is
provided in section 1.4.

1.1 Background and motivation

Software Engineering is still a young discipline and, for some people, cannot yet be
considered a proper engineering discipline, because of the toleration of informal and
unregulated software development practices. This situation is probably also true in
other professional areas that have to deal with people. After all, people bring
uncertainty. Nevertheless, the problem is that this uncertainty is also brought to areas
that should be more formal and precise. As one would expect in any new discipline,
the processes, methods and tools for software development have been slowly but
incrementally improving since the late 1970s. Unfortunately, much of what has been
presented by way of “software design methods” has been anecdotal, based on the
intuitions of what practitioners hoped might work at the time; and only recently has
the field of empirical software engineering started to establish a proper evidential
basis for comparing different approaches. While this is normal for an area evolving
together with the techniques and technology, it should be expected that the more
established parts of the discipline should develop a more formal justification.

One area to which this most clearly applies is the area of software engineering tools,
which are used to create software designs and from which skeleton code may
sometimes be generated. These tools should ideally be based on a formal model,
which can guarantee mathematically that the tools can be trusted. Among the tool-
supported techniques used by software engineers, visual modelling has become more
important for medium and large software projects.

Visual modelling is the modelling of a computer program or larger software system
using graphical notations to develop a model, expressed as one or more diagrams.

1

Chapter 1: Introduction

The model is intended to capture the essentials parts of a system [1] and is used to
represent the business processes from a user-centred, or stakeholder’s perspective. It
contributes to the understanding of the business domain and helps later in the design
of the information system.

The Unified Modeling Language (UML) is at present the standard visual modelling
notation. At the time of writing, it provides thirteen different diagrams that can be
used to represent a software system from different aspects and perspectives [2, 3]. The
Unified Modeling Language (UML) [2] is an eclectic set of notations for modelling
object-oriented designs. Under the supervision of the Object Management Group
(OMG) since 1997, the notation set has grown larger and complex [3], to
accommodate the concerns of different stakeholders in business and industry. This
has led to some criticisms regarding the open-ended semantics and the lack of
direction given in modelling [6-8].

Problems with UML diagrams creating ambiguous representations are mentioned in
Chapter 3, although these can be summarized as legal UML diagrams having an
unclear meaning, even if they are considered valid according to [4]. Various attempts
to formalise parts of UML include the work of the Precise UML group (pUML) [5],
which aims to clarify the semantics of UML and create tools to support the rigorous
analysis of UML models. Jointly with IBM, pUML submitted a Meta-Modelling
Framework (MMF) [6] to the OMG as an alternative to the original UML metamodel.
Out of this work came the desire to create an Unambiguous UML, an idea partly
inspired by the Catalysis method [7]. The Unambiguous UML (2U) Consortium [8],
which grew out of pUML, submitted a full proposal for UML2.0 based on a set of
architectural principles.

Some of the work on formalising UML has proposed the use of formal languages such
as Z, which was used by Bruel and France [5] when they presented a transformation
from UML class diagrams to a Z specification. Kim and Carrington [9] presented a
formal mapping transforming UML class diagrams to a specification in Object-Z.

There are also different proposals to formalise UML using the Alloy formal language
[10, 11]. Naumenko proposes in [12] an alternative metamodel for UML inspired by
RM-ODP [13]. Bordbar and Anastasakis [14] propose a tool called UML2Alloy,
where a model is transformed from the UML metamodel to the Alloy metamodel. In
[15] Zito and Dingel model the UML 2 package merge operation with Alloy. Also,
there is a language called Aaree [16] that supports some object oriented and
imperative constructs and has a textual representation that can be translated into Alloy
to be analysed.

There is also related work on the development of model checkers and tools for UML.
However, the use of model checking to verify object-oriented models is still immature
and the integration with UML tools has until now been slow [17].

Some examples include the Hugo tool, which compiles UML state machines into a
format processed by the PROMELA model checker [17]. The USE tool (UML-based
Specification Environment) [18] allows UML diagrams to be annotated with
constraints written in OCL (the Object Constraint Language [19, 20]), after which the
validity of models may be checked, using predicates also written in OCL. The tool
verifies model instances against explicit predicates and implicitly against the

2

Chapter 1: Introduction

invariants defined in the model. Shen et al. [21] have proposed a toolset for static and
dynamic model checking of UML that, using Abstract State Machines, validates the
model with respect to the semantics of UML. ASM specifications of class diagrams
and object diagrams are checked. UMC (UML on the fly Model Checker) is a tool
designed by Gnesi et al. [22] that applies model checking to UML state machines.
Störrle [23] describes a denotational semantics for the Activity Diagrams of UML 2,
covering basic control flow and data flow using colored Petri-nets. XMF Mosaic is a
tool developed by Xactium [24], which supplies the full capabilities of executable
metamodelling for constructing and executing new language definitions. In addition,
the tool has a collection of plugins to support the construction of UML-like class
models, creating instances of these models and checking them against constraints.
Other plugins support the description of mappings between models, and an execution
environment for the operation of user-defined languages and tools as stand alone
images.

In any case, and in spite of the contributions made by the research mentioned above, it
is likely that UML will continue having many of the original problems that we
describe later in more detail, due in part because it needs to provide backward-
compatibility with its older characteristics, and due to the problem of its size. The
position defended here is that what is needed is a smaller and simpler object-oriented
notation, than can be easier to learn and use in an exact and repeatable way. This
notation should be supported by a formal language in order to represent its semantics
in a precise way, such that models could be verified against each other and the
specification of a system could be demonstrably consistent and complete. One
possible candidate for such a notation is the restricted UML profile adopted by the
“Discovery Method” [25, 26], which strives for minimalism and consistency.

1.2 Goal of this research

A requisite for developing model checkers is the ability to encode model diagrams in
a suitable abstract syntax, and from this to develop an abstract semantics [27].
Initially, after analysing the graphical notation deployed in the Discovery Method [25,
26] an approach to representing formally the whole notation was tried using the Alloy
language [15, 16], but already at the level of the abstract syntax this proved to be
difficult to model, even when the abstract syntax of the diagrams could be verified
(see Chapter 4). Later, a different approach was defined limiting the scope of the
formalisation to the Task Model1, and the goal was established as follows:

To provide an abstract syntax and denotational semantics for tasks and activities in
the Task Model of the Discovery Method.

Limiting the scope to the definition of tasks and activities has some advantages, such
as of having a simple representation of the Task Flow Diagram. In addition, because
Simons [28] defined “Task flow inversion”, a direct transformation between the Task
Flow Diagram and the State Diagram in the Discovery Method, it should be possible
to represent State Diagrams from the Discovery Method using the same semantics as

1 For this thesis, the term Task Model is used to include Task Structure and Task Flow models. The
Discovery Method also includes Narratives as part of the Task Model, but this was not considered in
this work so far, even when there is a correspondence between Narratives and these other diagrams.

3

Chapter 1: Introduction

that defined for the Task Flow Diagram. Finally, the Task Flow Diagram is closely
related to the Task Structure Diagram, imposing already within this more limited
project some useful restrictions on the correct construction of related diagrams, which
could be tested by the formalisations proposed in the rest of this work.

1.3 Objectives

For the accomplishment of the objective of the project, four objectives were defined
to specify the scope of the research. The objectives of this research were as follows:

• The definition of the abstract syntax should depict accurately the notion of
tasks and activities in the various task-modelling diagrams.

• The denotational semantics for the abstract syntax and its associated task
algebra should be defined in term of traces.

• Soundness and congruence of the proposed abstract syntax and the semantics
should be proved.

• In order to test the feasibility of the formal representation, an implementation
of the algebra should be built.

So far, the syntax of Task Flow diagrams has not been presented formally. Having an
abstract syntax is desirable, both because it offers a succinct textual representation of
the diagrams, and also because it serves as the basis for a formal definition of diagram
well-formedness. A task algebra will be constructed from the abstract syntax, by
introducing axioms over syntactic expressions that fall into the same equivalence
class (a quotient algebra). After this, a denotational semantics will be presented, in
which the meaning of all possible sequential and concurrent execution paths will be
given as sets of traces. The semantics will be formalised by a proof of soundness and
congruence. Soundness is a property which holds, when syntactic expressions that are
judged equivalent by the axioms are also trace-equivalent in the semantics. Finally,
an executable model of the task algebra is developed in the functional programming
language Haskell, in order to test the feasibility of the proposal.

Additionally an implementation of model-checking using LTL and CTL expressions
was also developed in order to take advantage of the task algebra implementation and
to show possible practical uses of the tools. A case study is presented in Chapter 8
depicting the use of the task algebra, and checking for LTL and CTL properties using
software written for this purpose.

1.4 Hypothesis

This research was originally motivated by the fact that software engineering notations
are often vague, in the sense that they are incomplete, or ambiguous and so are open
to different interpretations by software engineers. The hypothesis that is being
investigated by the programme of research described above is the following:

4

Chapter 1: Introduction

It is possible to give an unambiguous, formal interpretation to the diagrammatic
representation of tasks and activities in the Task Model of the Discovery Method, such
that:

• individual diagrams have a single, unambiguous procedural meaning and so
may be translated into workflow-based procedural programs;

• a design may be broken down according to different high-level design choices,
yet yield systems of diagrams that have equivalent meaning;

• questions may be formulated and tested about the validity of logical properties
within a system of diagrams, using temporal logic.

The benefit of providing software engineering notations with a fully formal abstract
syntax and semantics, whose properties are known and provable, is that software
engineers may then rely on the notations directly, with full confidence, without having
to understand the underlying formal semantics. While the scope of this research only
covers the Task Model in the Discovery Method, this notation is used in the early
analysis phase to capture and represent the customer’s requirements formally, which
is the necessary foundation for developing a sound software system. We therefore
anticipate that the work undertaken here will be of practical use for software
engineers using the Discovery Method to develop software systems.

1.5 Thesis structure

This thesis consists of nine chapters, beginning with the present chapter 1, which
introduces the background and presents the main objective and goals of the research.
Chapter 2 will give an overview of formal methods and will include some small
examples, particularly in Z, OCL and Alloy, using these notations for formal software
modelling. This chapter will also provide an overview of process algebra.
Subsequently, chapter 3 will offer an overview of object-oriented methodologies and
UML, including a brief history of the object-oriented paradigm. Additionally, It
presents an introduction to the Discovery Method, explaining every phase of the
method generally. Afterwards, chapter 4 explains in detail the Task Model in the
Discovery Method, explaining the Task Structure and the Task Flow Diagram. In
addition, an experiment is conducted to check a large fragment of the Discovery
metamodel in Alloy. Finally, this chapter introduces the task algebra and the
relationship between the algebra and the Task Model. Chapter 5 depicts formally the
abstract syntax representation for the Task Flow Model. It defines the syntax and a set
of axioms constraining the definition. Subsequently, chapter 6 describes the
semantics for the abstract syntax as a set of traces. Chapter 7 proves the soundness of
the axioms for the abstract syntax presented in chapter 4. Some congruence
properties are demonstrated also in this chapter. Chapter 8 shows an implementation
of the proposed algebra in the Haskell language. This chapter also includes a case of
study where the task algebra is used and an example implementation of operations
applied over the trace semantics using set operations and temporal logic operations
such as LTL and CTL expressions. Chapter 9 presents the conclusions of this work.

Moreover, three appendices are included in this work. Appendix A shows the proof
of basic properties used to specify the semantics. Appendix B provides
demonstrations of all the required congruence properties. Finally, Appendix C

5

Chapter 1: Introduction

includes the Haskell source code for the tool implementations, which include: the
task algebra simulation, LTL model checking and CTL model checking tools.

1.6 Summary

Among current trends in software engineering, there are many attemps to formalise
parts of the UML notations. This research found that practicality was lacking as an
important aim in most of the proposals. This situation makes it difficult for the
modeller to learn how to understand the formal representations behind the models, in
order to gain any practical benefit from it. While a complete understanding of the
formal semantics behind software models is desirable, here we believe the formal
semantics should be relegated to the background; and visual modelling tools, being
based on the formal semantics, should be used to create precise models of software.

This chapter introduced the thesis, describing the background and motivation for this
project. Subsequently, the objective and goals of the research were explained.
Finally, an explanation of the structure of the thesis was provided. The next chapter
offers an overview of formal methods that were considered relevant to this research.

6

Chapter 2:
Formal Methods and Modelling
Tools

The previous chapter presented an introduction to this thesis. In this chapter, an
overview of formal methods is described with an emphasis on model based languages
(such as Z, OCL and Alloy), and process algebra languages. The next chapter will
discuss object-oriented methods and, in particular, the Discovery Method.

2.1 Introduction

Formal calculi for software construction have seen an increase in use over the last 25
years [29], but this form of representation has been used mainly in academia.
Although there are some accounts of their use in the industry (basically in critical
systems), the majority of the “real world” has for years been using visual modelling as
a kind of “semi-formal” representation of software.

A method is considered formal if it has well-defined mathematical basis. Formal
methods provide a syntactic domain (i.e., the notation or set of symbols of the
method), a semantic domain (like its universe of objects), and a set of precise rules
defining how an object can satisfy a specification [30]. In addition, a specification is a
set of sentences built using the notation of the syntactic domain and it represents a
subset of the semantic domain.

Spivey says that formal methods are based on mathematical notations and that “they
describe what the system must do without saying how it is to be done” [31], which
applies to the non-constructive approach only. Mathematical notations commonly
have three characteristics:

• Conciseness. They represent complex facts of a system in a brief space.

• Precision. The model can specify exactly everything that is intended.

• Unambiguity. The interpretation of the specification has to be the same if a
standard and well-understood language is used.

Essentially, a formal method can be applied to support the development of software
and hardware. Bogdanov et al. [29] make a classification of these, summarized in
Table 2.1.

7

Chapter 2: Formal Methods and Modelling Tools

Table 2.1 Classification of formal methods

Category Description Examples

Model-based
languages

Set theory and function spaces are used to
build models of system operations and of
the system data that is modified by the
operations. Constraints are expressed in
first-order logic.

Z, VDM, B,
Alloy, JML[32],
lambda calculus

Finite state-based
languages

Systems are modelled as finite state
automata, with the operations styled as
transitions from one state to the next. The
states are either high-level abstractions
over data, or control states.

Z, FSMs, SDL,
Statecharts, X-
machines

Process algebra
languages

Systems are modelled as collections of
independently-executing processes, which
synchronise to exchange data. Each
process is individually modelled as a
finite state automaton.

CSP, CCS, ACP,
LOTOS

Algebraic languages Systems are modelled as collections of
algebras, where an algebra consists of
sorts (sets), operation signatures and
axioms, describing the behaviour of an
abstract data type.

OBJ, Larch[10]

Although there are many formal methods, Z, Alloy and OCL have recently received
quite a lot of attention [5-10] and are most relevant to the work reported in this thesis,
so these will be the focus later in this chapter. Many of these have a long and
distinguished pedigree. The Z language has been in use for a long time in support of a
formal method for software specification. It has been defined in an ISO standard
since 2002 [33]. Alloy was a language emerging at the time of writing, which
claimed to be based originally on Z, but which was easier to use. Alloy is also
claimed to be syntactically closer to OCL than to Z [34]. Finally, OCL was chose
because of its relationship with the UML, where the attempt was to provide UML
diagrams with complementary text definitions to make precise UML models. These
three languages seemed initially to be a good choice to represent the abstract syntax
and semantics established in the objectives of this research. Alloy was investigated
first, because offered a simple language with a better tool support than Z and OCL.

The next section presents an overview of the kind of tool support available for some
of the formal methods introduced above.

2.2 Tool Support for Z, Alloy and OCL

Many formal methods have been supported with one or more tools. These, based on
the characteristics of each formal method, can be broadly categorized either as
theorem provers, or model checkers.

8

Chapter 2: Formal Methods and Modelling Tools

A theorem prover is a tool which takes a set of axioms and it tries to prove if the
whole set (extended with some theorem) is valid. Some known theorem provers are
HOL, Isabelle, and PVS. A problem mentioned by Simons in [35] is that if there are
too many axioms in a theory, the theorem prover will try to explore redundant
solutions, leading to an explosion in the search-space. Theorem provers must
frequently be guided towards solutions, through interaction with the user, who
identifies the most appropriate intermediate lemmas, or selects the appropriate proof
tactics.

On the other hand, a model checker simulates a model of the system by exploration,
analysing several state machines and these are compared automatically [36]. In this
area can be seen SMV, SPIN, and FDR among others. Temporal logic has been
applied to model checking from the early 1980s by Clarke and Emerson [37]. Model
checking has advantages over theorem provers, the most important being that the
procedure is completely automatic [38, 39], although it has the problem of state
explosion too. A model checker uses a model described by the user to discover
whether hypotheses are valid in the model. If the hypotheses are invalid, the model
checker can build counterexamples and display the execution traces that lead to these.

There is a slightly different, but related, category of tools such as the Alloy analyser
which is described as a “model finder”. Alloy works by finding models that form
counterexamples to assertions made by the user: “Its engine takes a formula and
attempts to find a model of it” [36]. Paradox by Claessen et al. [40] is another
program that implements techniques for finding finite models based on first order
logic, whilst model checking is commonly based on temporal logic.

2.3 Z

Z is a formal language based on set theory, function spaces and first order predicate
logic [41]. Two aspects of Z are different from classical set theory [42]: first, the sets
defined in Z are partitioned into different categories, i.e., they are disjoint (“the set
theory is a typed set theory”); the second aspect is the concept of the schema, where
we may define descriptions of objects that can be referenced in the whole model. The
schema representation can be used to describe the state of a system [43].

The Z language helps to describe a system in both its static and dynamic aspects [31];
in the first case Z can represent the states and the invariant relationships that are fixed
for all the states of the system; in the dynamic aspect, it can depict the operations, the
relationship between inputs and outputs, and the consequential changes of state.

Z has been one of the most popular formal languages to model systems, and for this
reason we can find several tools that use it in different levels [44, 45], although most
Z tools have historically only been able to check the syntax. There is an international
project “Community Z Tools” (CZT) proposed by Andre Martin in 2001 [46] that
aims to build “a set of tools for editing, typechecking and animating formal
specifications written in the Z specification language” [47]. Other languages like
OCL or Alloy are inspired by the Z language [7, 10].

9

Chapter 2: Formal Methods and Modelling Tools

2.3.1 An example: the birthday book

It is not the intention to give a complete treatment of Z, but just to include part of the
classical example by Spivey [31, 41] in order to identify some of the characteristics of
Z and other formal languages.

The BirthdayBook is a simple system that records birthdays of people and notifies
when some birthday comes about. For this example, two basic sets are needed:

[NAME, DATE]

The above introduces two sets, which are uninterpreted, in the sense that nothing else
is known about their elements. The sets are therefore completely abstract. Now, it is
possible to define the state schema of BirthdayBook as follows:

»_BirthdayBook ________________________________
Æknown: P NAME
Æbirthday: NAME ß DATE
«_______________
Æknown = dom birthday
–_______________________________________

A schema in the Z language consists of two parts, the first area is for declaration of
variables and the second is for predicates. In the BirthdayBook schema, there are two
variables (a set known and a function birthday) and one predicate. Variables of set-
types are used to represent collections, and variables of function-types are used to
represent maps, relationships between elements of different sets. The predicate
constrains known to be the domain of the function birthday. This is a state schema,
representing the data manipulated by the system.

The same schema style is used to represent both static aspects (data declarations) and
dynamic aspects (operation specifications). The operation to add a birthday to the
BirthdayBook is specified in the following schema:

»_AddBirthday________________________________
Æ∆BirthdayBook
Æname?: NAME
Ædate?: DATE
«_______________
Æname? ‰ known
Æbirthday' = birthday U {(name? å date?)}
–_______________________________________

The first line (∆BirthdayBook) is a Z short-hand for importing all the declarations of
the BirthdayBook schema into the AddBirthday schema. The delta-convention means
that two copies of all variables are imported, and by convention the unadorned
variables (known, birthday) denote prior states and the primed variables (known’,
birthday’) denote posterior states. The operation schema therefore makes a change to
the state of the BirthdayBook.

10

Chapter 2: Formal Methods and Modelling Tools

The second and third declarations define name and date as inputs to the operation.
Inputs are syntactically identified with a question mark at the end of their names.

In the predicate area, AddBirthday defines a precondition that we cannot add a name
previously registered in the BirthdayBook. The precondition must be satisfied for the
success of the operation. After that, as a postcondition, the next line declares what
happens if the precondition is satisfied: the birthday function now includes the new
maplet between name? and date?.

Although logically consistent, it is strictly unnecessary to add the following line to the
predicate area of the AddBirthday schema, to express that a new name is known:

known' = known ∪ name?

because this can be derived from the invariant defined in the BirthdayBook schema:

known = dom birthday

Consequently, it can be derived [31, 41], that after executing AddBirthday:

known’ = dom birthday’

In a similar fashion, the FindBirthday schema defines an operation to look up the date
of a person’s birthday in the BirthdayBook. The first line (Ξ BirthdayBook) is a Z
short-hand for importing declarations from BirthdayBook, similar to the delta-
convention, but with the additional constraint that primed and unprimed variables are
pairwise equivalent (an implicit predicate). So, the FindBirthday operation schema
makes no change to the state variables.

»_FindBirthday ________________________________
ÆΞBirthdayBook
Æname?: NAME
Ædate!: DATE
«_______________
Æname? e known
Ædate! = birthday (name?)
–_______________________________________

The second and third lines define an input name? and an output date!, where outputs
are identified syntactically by the exclamation mark at the end of their name. The
predicate area has two declarations. The first is a precondition that the sought name
must be in the known set. The second is a postcondition asserting that the output
date! corresponds to the result of the function birthday with the argument name?.
While pre- and postcondition predicates are not explicitly distinguished, it is clear that
postconditions are those predicates that refer to output variables, while preconditions
refer only to input variables.

Z has a particular semantic interpretation. In classical Z, operations are only well-
defined if the preconditions are satisfied; otherwise they are undefined, in the sense
that they could yield any arbitrary values. In some variants of Z, such as Object-Z, a

11

Chapter 2: Formal Methods and Modelling Tools

different blocking semantics is adopted, whereby operations are assumed to be
blocked, if their preconditions are not satisfied.

2.3.2 Schema calculus

The use of schemas helps us to build more complex specifications using modular
construction. For instance, Z supports schema inclusion, where a name of a schema
can be used in the declarations of another schema. There is also a set of operators for
combining different schemas logically, supporting the modular construction of system
specifications [42]:

Disjunction: The schema operator ∨ declares two schemas as alternatives. For
example:

A Í B ∨ C

where A stands for the declarations of B and C joined and their predicates disjoined.

Conjunction: We can combine two schemas with the schema operator ∧. For
example:

A Í B ∧ C

where A stands for the declarations of B and C joined and their predicates conjoined.

Negation: ¬ applied to a schema keeps the declaration and negates the predicate of
the schema. For example:

 ¬A

where the negation of the schema A implies negation its predicate.

Composition: ; specifies an operation as a composition of schemas. For example:

A ; B

depicts that A occurs, then B.

Quantification: Used for schemas when we need to quantify over the elements of a
schema. For example:

 Q d S

where if Q is a quantifier, d a declaration, and S a schema, then the quantified schema
is obtained from taking the components that are part of d and of S, and quantifying
with Q in the predicate part.

Decoration: ’ is used to describe the effect of an operation. For example:

A, A’

12

Chapter 2: Formal Methods and Modelling Tools

where A represents the schema before the operation and A’ the state of the A schema
afterwards (whose variables are also considered primed).

The schema calculus is used to construct robust schemas, each being the disjunction
of a regular schema and a complementary error schema, whose preconditions are the
negation of the regular schema’s preconditions. This ensures that system behaviour is
totally defined over all inputs and states; and takes error recovery into account. It is
also possible to check that the requirements are consistent, which is normally
achieved by showing that the constraints of the schema are satisfiable showing at least
an initial state; this is called an initialisation theorem. In addition, preconditions can
be used when there is interest in showing that the operations are never applied out of
their domain [43].

Preconditions can be used to describe a set of states that can be reached if the
operation schemas are properly defined. The preconditions can be simplified using
equivalences. Some of this work can be carried out with the support of theorem
prover tools.

2.3.3 Z tools

As shown in Table 2.2, it is possible to find Z tools that help in aspects such as
writing Z specifications (e.g., FuZZ that supports basically printing and type-checking
for Z specifications based on LaTex). Additionally, there exist tools such as CADiZ
and Z/EVES which provide visual editing of Z specifications and different levels of
analysis. Another kind of tools tries to represent the links between Z and object-
oriented notation [45]. This third category is more attractive and is relevant to the
research. It can be seen tools like RoZ [48], although RoZ only generates Z
specifications and uses Z/EVES in order to realize the consistency checks.
Additionally, Sun et al. [44] are working in techniques for XML representation of Z
and Object-Z on the web, and its transformations into UML diagrams. They
developed XML browsing facilities for Z and Object-Z and proposed some techniques
to project object-oriented Z models onto UML diagrams. Finally, Zeta is a tool partly
completed which uses Isabelle to perform theorem proving, but the project was
abandoned some years ago. CZT proposed by Andre Martin [46, 47]mentioned in
section 2.3. The software includes, for example, a Z markup language defined in
XML, a library in Java for Z annotated syntax trees, graphical Z editors and a Z
animation tool (ZLive) for evaluating expressions, predicates and schemas [47].

Table 2.2 Comparison of Z tools

 GUI Type-checking Theorem proving Integration with UML
or other OO notation

FuZZ X

CADiZ X X X

Z/EVES X X X

RoZ Using Z/Eves Using Rose

Zeta X X Using HOL-Z/Isabelle

CZT X X

13

Chapter 2: Formal Methods and Modelling Tools

2.4 Alloy

Alloy was developed by Daniel Jackson and the Software Design Group at the MIT
and a first version of the tool was released in 1997. Alloy is a language inspired
initially by Z [49, 50], although it has been changing from the original prototype. In
May of 2004 the version 3 of Alloy was released in beta phase, improving some
characteristics of the language and the analyser [51, 52]. At the end of 2006, Alloy
Analyser 4 was released with a small number of syntactic improvements and using the
new SAT-based model finder Kodkod [53].

In Jackson’s words [10] “Alloy is an attempt to combine the best features of Z and the
Object Constraint Language of UML in a lightweight notation. It takes UML's
emphasis on binary relations, and the expression of constraints with sets of objects
formed by 'navigations', but with Z's much simpler semantics.”

The essential idea about Alloy can be summarized as follows: a micro-model with
Alloy is built using signatures (i.e., a set of atoms) and formula paragraphs (i.e.,
predicates, functions, or assertions). Once the model has been compiled, every
assertion can be checked with the expectation of finding a counterexample. In other
words, the Alloy analyser looks for some instance of the micro-model that could be
generated in violation of the assertions. It is for this reason that Jackson says in [10]
that it is a refutation approach. If a counterexample is found, this means that the
model was not created properly (the model is invalid). If a counterexample is not
found, that does not mean that the model is necessarily correct. Alloy cannot prove
that a model is correct, since although it performs exhaustive searching, creating the
complete state-space of scenarios, it is limited by the number of exemplar instances in
the checked system [54]. One model without a counterexample means that Alloy
cannot find a counterexample in the scope specified, but there may still exist a
counterexample in a larger scope [10]. The effectiveness of this method is based on
the small scope hypothesis [55] that states that a high proportion of bugs tend to be
found in a small scope.

Another analysis option that Alloy can do is checking the consistency of a formula
[10]. Using a function or predicate, the Alloy analyser can try to generate an instance
of the model in conformity with the constraints [56]. Obviously, this only proves that
the model can generate valid instances, but nothing more can be affirmed from this.

Jackson [57] says that – in order to have simple semantics and a concise syntax -
Alloy does not distinguish between an atom a, a tuple (a), a set b that contains only
the atom, or a set b containing the tuple. Alloy deals entirely with relations; although
it consists additionally of atoms, which cannot be directly manipulated by the user.

Alloy is based on first-order logic and it can deal with quantifiers, polymorphism,
signatures, and subtyping. The main characteristics of Alloy are as follows [58]:

• Infinite model: A model described in Alloy is considered infinite because, in
contrast with traditional model checking, we do not specify the number of
components that this model can have.

14

Chapter 2: Formal Methods and Modelling Tools

• Finite scope check: Although the model is infinite, the analysis has to be
finite. We have to specify the scope of the model that we want to analyse. The
analysis is incomplete for the whole model, but complete for the scope: the
analyser always can find (if it exists) a counterexample for the specified scope.

• Automatic analysis: The Alloy analyser can generate examples and
counterexamples of our model automatically.

In the next sections, a general overview of the language is offered.

2.4.1 Signatures

Sets, called signatures, can be declared in way similar to how a program is written in
an object-oriented language. In Alloy, a set represents a unary relation. The simplest
declaration of a signature can be for example:

sig MySig {}

sig Name {}

sig Date {}

This defines basic sets named MySig, Name, and Date. Inside the curly braces
relations can be defined having the signature MySig as their domain:

sig MySig {

 fieldName1: fieldType1,

 fieldName2: fieldType2

}

where a field type can be another signature or a more complex expression and we can
refer to signatures still not defined. In this case, we are declaring two binary relations
called fieldName1 and fieldName2; where, for example, fieldName1 is a relation that
maps each MySig to some fieldType1.

Alloy supports two slightly different kinds of signature specialisation:

• A subtype signature;

• A subset signature.

Subtypes in Alloy are basically disjoint subsets of a given type, however two types
can still overlap if one is a subtype of the other (directly or indirectly). In contrast,
subsets in Alloy are overlapping subsets of a given type. Whereas a subtype may only
be created by disjointly specialising a given type or subtype, a subset may be declared
of any type, subtype or subset. Both subtypes and subsets may declare additional
fields (typically, relations) and transitively inherit all the fields of their parent types.
It is not possible to disjointly partition a subset signature.

15

Chapter 2: Formal Methods and Modelling Tools

2.4.1.1 Subtype signatures

A subtype signature can be extended using the keyword extends. This instruction
creates a subtype of the type of the signature extended, for example:

sig Y extends X { }

Y is considered a subtype of X and a type hierarchy can be created. If the signature X
is not extending another signature, X is a top-type signature, and its type is a top-level
type. The top-level types are the roots of the type hierarchy and these are mutually
disjoint sets. In the same way, two or more subtype signatures are disjoint unless one
extends the other. The main purpose of distinguishing disjoint subtypes from general
subsets is in order to increase the efficiency of the model finder.

2.4.1.2 Subset signatures

A subset signature is declared using the keyword in, and it is a subset of the signature
of its parent or parents. Actually, although in [52] Jackson mentions that a subset is
“a subset of the union of its parents”, in practice the syntax definition only permits
one parent signature.

Subset signatures can be declared as follows:

sig X, Y in Z { }

This means that both, X and Y are subsets of Z with the following constraints: Z may
be a subset or a subtype signature, X and Y are not necessarily disjoint, and the union
of X and Y are not necessarily equal to Z. Finally, it is important to say that subset
signatures (e.g., X or Y in this case) cannot be disjointly partitioned using the
“extends” keyword.

2.4.2 Declaration area

As mentioned briefly above, inside the curly braces of a signature we can declare
fields. A field can denote:

• A unary relation or set: It can be fixed with a multiplicity keyword: lone, one,
some, or set. If one is used, it is equivalent to omit the keyword and this
means that the variable will be a scalar or singleton set; lone means either a
singleton set or the empty set; the some keyword denotes a non empty set; and
set keyword represents zero or more elements in the set. Subsequently, for
example:

sig BirthdayBook {

 known: set Name

}

Here known is a field representing a set of the signature Name. For the
BirthdayBook signature, this means that known is a relation with zero or more

16

Chapter 2: Formal Methods and Modelling Tools

range elements from the Name type. Other multiplicity keywords lone, one or
some may be used in similar contexts, where desired.

• A binary relation: In this case the expression is formed by the arrow operator
->, and the multiplicity can be constrained in each side of the relation. Table
2.3 presents examples of binary relations.

Table 2.3. Some binary relations expressed in Alloy

Declaration Semantics

R: S -> T Relation (transition relation)

R: S -> one T total function from S to T

R: S one -> one T Bijection

R: S -> lone T Partial function

Continuing with the example, a field relation named date can be added to represent
the relation (a partial function) between the names of the BirthdayBook and their date
of birthday:

sig BirthdayBook {

known: set Name,

date: known -> lone Date }

2.4.3 Formulas

Formulas are specially constructed expressions to be checked in the model. They are
built with relational or logical expressions. The essential formulas that can be used in
Alloy are:

• Quantified expression: The meaning of this expression is obtained from the
use of a quantifier operator.

• Comparison formula: This is an expression constructed using comparison or
negation operators.

• Compound formula: It is formed by the combination of smaller formulas using
logical operators.

• Declaration formula: This kind of formula is used to put a multiplicity
constraint on an expression.

There are more types of formulas that can be used in Alloy such as: negated formula,
let formula, and sequence formula.

17

Chapter 2: Formal Methods and Modelling Tools

2.4.3.1 Formula paragraphs

By using formulas, constraints can be added to the model, organised around formula
paragraphs. There are four types of formula paragraphs.

• fact: To indicate that a property is maintained, the formula is declared as a fact
[32]. In other words, a fact must be true for any instance in the model. It
consists of an optional name and a set of formulas forming a constraint.

 Example:

fact OptionalName {

 all a: A | a in (B+C)

}

• pred: A predicate (pred) defines a property without imposing it as a permanent
constraint. This predicate can be applied where it is needed.

 Example:

pred AddBirthday(bb, bb’: BirthdayBook, n: Name,

d: Date) {

 bb’.date = bb.date ++ (n->d)

 // where ++ is the override operator.

}

This predicate adds a relation between a name and a date.

• assert: An assertion is a theorem about a specification or property that is
expected to hold in the model. The Alloy analyser can check the assertion
looking for a counterexample. For instance, if the predicate DelBirthday is
declared that specifies how is deleted a relation for a given name, the next
assertion could be done:

assert DelIsUndo{

 all bb1, bb2, bb3: BirthdayBook,

 n: Name,d: Date |

 AddBirthday(bb1, bb2, n, d) &&

 DelBirthday(bb2, bb3, n) =>

bb1.date = bb3.date

}

18

Chapter 2: Formal Methods and Modelling Tools

Where it is basically claiming that adding and deleting one record of the
birthday book is equivalent to a null operation. The idea is to be able to verify
that deleting a previously added birthday from the BirthdayBook leaves the
model in the original state, before the birthday was added. To do this,
declaring 3 instances of BirthdayBook: bb1 represents the initial state, bb2
represents an intermediate state, and bb3 represents the final state. To check
the assertion it is necessary to use the check command, which is shown in the
next section. An assertion is only checked in response to check-requests, while
a fact is always considered true.

• fun: A function fun is similar to a predicate, but a function is like a template
for an expression. A function returns a value as an expression while a
predicate only can return true or false.

Another important aspect to remember is that assertions can be checked, while
predicates and functions can be instantiated or simulated.

2.4.4 Executing an analysis

Alloy has two commands to execute an analysis that implies constraint resolution:

• run. The run command specifies to the Alloy analyser that it should find an
instance in accord with a predicate or a function. The shortest form of the run
command only requires the name of the predicate or function, for example:

run BusyDay

BusyDay will be analysed in a default scope of three, bounding the size of the sets.
Furthermore, the bounds of the sets can be specified by specifying the numbers of
each type explicitly, in the command, for instance:

run BusyDay for 4 but 1 BirthdayBook

This indicates an analysis with a scope of 4 for each top-level signature, but at most
one for BirthdayBook.

In this case, BusyDay is a predicate that shows a situation when the birthday book has
more than one birthday on a particular day. BusyDay has been declared as follows:

pred BusyDay (bb: BirthdayBook, d: Date){

some cards: set Name | cards=(bb.date).d

 && !lone cards

}

As a result of executing run BusyDay, the Alloy tool generates a valid instance,
shown in Figure 2.1, where the case in which an instance of BirthdayBook has two
relations date which link to the same occurrence of day (Date0) through the instances
of name (Name0 and Name1) can be seen.

19

Chapter 2: Formal Methods and Modelling Tools

Figure 2.1 Instance generated by the execution of the BusyDay predicate

• check. This command is used to indicate that an assertion should be checked
by the Alloy analyser. Syntactically, the check command has the same options
as run.

check DelIsUndo for 3 but 2 BirthdayBook

DelIsUndo is an assertion that verifies whether adding one birthday and then deleting
it leaves the date relation in its original state. In this case, the assertion is not valid and
generates the counterexample shown in Figure 2.2. The counterexample shows the
case where, after adding one birthday, the BirthdayBook finish in the same state (bb1
= bb2) due to adding an existing date; thus deleting a record after adding it does not
guarantee that the BirthdayBook returns to its former state. Figure 2.2 shows this,
where the bb3.date is not the same as the bb1.date. Here, remembering the expression
of the assertion, bb1 represents the initial state of BirthdayBook, bb2 is the
intermediate state (after the birthday was added), and bb3 represents the final state of
BirthdayBook (when the birthday has been deleted). Therefore the counterexample is
saying that there is at least one case where adding and deleting a birthday does not
leave the model in the original state: if the name added existed previously in the
BirthdayBook, this and its date is overwritten, so deleting it makes the BirthdayBook
enter a different state from the initial one.

Figure 2.2. Counterexample generated by the execution of the DelIsUndo assertion.

In fact, the addBirthday predicate in Alloy differs from its equivalent Z schema
because the addBirthday schema rules out the possibility of adding the same name
twice. If it is desired to prevent the addition of the same name, it is necessary to
include the next constraint in the addBirthday predicate:

n !in bb'.known

20

Chapter 2: Formal Methods and Modelling Tools

Subsequently, the execution of the DelIsUndo assertion will not generate a
counterexample.

 easier than the previous implementation. The visualisation of the
graphs is quicker and it has a better presentation. Furthermore, it now includes a new
feature to present a metamodel based on the source code. The Figure 2.3 shows the
metamodel for the BirthdayBook; there, the relation known can be seen, from
BirthdayBook to Name, and the relation between the sets Name and Date
(BirthdayBook.date). It is relevant to note that every signature descends directly or
indirectly from univ, which represents the predefined universal type, as is shown in
Figure 2.3.

To conclude this section, it is important to say that neither the run nor check
commands directly execute an action, in the sense of executing a program. They only
act as an instruction to the compiler to identify what formula paragraphs should be
checked, within a particular scope.

2.4.5 Metamodel

The software that implements the Alloy analyser has been improved. The design of
the user interface is

Figure 2.3. Metamodel for BirthdayBook

Although Alloy was based originally on Z, it now contains features that distinguish it
er languages. While Z is defined in a classical set-based type system,

. An introduction to the Alloy analyser

2.4.6 Summary

from Z and oth
Alloy supports subtyping and overloading [59]
showing a little model was presented, based on the classic Z example of Spivey [41].

There are more characteristics of Alloy. A complete description can be seen in [36,
49] for the version 2, and in [52] and [58], which are the reference manual and tutorial
for the version 3, respectively.

21

Chapter 2: Formal Methods and Modelling Tools

2.5 OCL

The Object Constraint Language (OCL) is a formal language created with the
intention to support UML, giving the possibility to create constraints on a UML

is language is part of UML since version 1.1. OCL is
used in conjunction with UML and, like Alloy, avoids using mathematical symbols

ts, preconditions and postconditions on operations or as a query language
 a particular context and

<<precondition>>, and

ll the instances of this type. The keyword inv defines the OCL expression

sion>

Where p classifier, [name] indicates an
optiona on> represents the constraint
definiti

one of these) with an optional name. An optional keyword result
can be used to denote the result of the operation.

Additionally, OCL has primitive types, collection operations and predefined OCL

used in OCL to define how the value of a derived attribute or association is obtained.
The second one is used to define initial values for attributes and associations. The

model in a formal way [60]; th

[7], using a syntax similar to object-oriented languages.

OCL can be used essentially to specify invariants on UML classes, to describe
constrain
[19]. It is for this reason that OCL expressions are written in
for a UML stereotype such as <<invariant>>,
<<postcondition>>.

2.5.1 Syntax overview

If an OCL expression is specified as an invariant of a type, the OCL expression must
be true for a
to be an invariant constraint. The general syntax of the invariants can be seen as
follows:

context classifierContext inv [name]:

 <oclExpres

classifierContext re resents the name of a
l name for the invariant, and <oclExpressi
on.

On the other hand, precondition and postcondition expressions are attached to
operations that can be defined both in the same context:

context typename::operationName(param1 : Type1, …)

 : ReturnType

pre [name]: <oclExpression>

post [name]: <oclExpression>

Where the declaration of the context for the operation is similar to the declaration of
an operation for programming languages and preconditions and postconditions can be
declared (both or

types that can be used to constrain the UML models. On the other hand, OCL offers
the possibility of declaring a constraint as derivation rule, initial value, and body of
query operation, using the keyword derive, init, and body respectively. The former is

22

Chapter 2: Formal Methods and Modelling Tools

latter permits an expression (called the body expression) to specify the result of a
query operation2.

2.5.2 BirthdayBook example

Below, the same Birthdaybook example based on the original by Spivey[31, 41]
ed with the aim to formalise UML, showed before is presented. As OCL was creat

OCL expressions should be used in conjunction with UML diagrams. For the
example, a possible representation could be the showed in Figure 2.4, defining a
Birthdaybook class containing a map between the names and dates for the birthdays.
Clearly, assuming a declaration of the types NAME, and DATE.

k: NAME, v: DATE

Figure 2.4. A possible representation of BirthdayBook

To represent this in OCL, an OCL tool was used to check the constraints and their
correspondence with the UML diagram. A deeper analysis of OCL tools can be seen
in [61], where the authors present a brief description of the most important categories
of tools supporting OCL: syntactical analysis, type checking, logical consistency
checking, dynamic invariant validation, dynamic pre/postcondition validation, test

analysis and type checking), facilities of the tool,
capacity for dynamic validation, and OCL version supported.

USE3 and ArgoUML were chosen because of their support for OCL in connection
with the UML class diagram. USE was developed by Mark Richters [18, 63] at the
University of Bremen, and ArgoUML [64] is an open source project available from
1998. Neither USE nor ArgoUML support class templates, so the original design for
BirthdayBook could not be represented. Instead the function NAME ß DATE was
depicted as an association between NAME and DATE.

t varies and it was not possible to have
cts the model using

automation, and code verification and synthesis. In addition, Richters and Gogolla
[60] present a comparison between OCL tools based on the above categorisation. In
[62] a set of OCL tools are compared taking as criteria: degree of analysis capabilities
of each application (syntactic

Additionally, from tool to tool, the OCL suppor
exactly the same code for this little example. Figure 2.5 depi
ArgoUML, showing the relationships and the two operations addBirthday and
findBirthday from the example.

2 A query operation is an operation that does not change the state of the system.
3 Acronym of UML-based Specification Environment

23

Chapter 2: Formal Methods and Modelling Tools

Figure 2

The O
birthda

 date: DATE)

ludes(name)

E

B : self. known -> includes (name)

result->includes(self.known.birthday)

fore, the same example is represented in the USE tool. With USE,
ployed, declaring both as side
mentation for USE, in a similar

.5. BirthdayBook modelled in ArgoUML

CL constraints using ArgoUML are shown below. The roles known and
y are used directly since it was not possible to use the operations known() and

birthday() to represent the corresponding elements for the Z example. The OCL
constraints checked in ArgoUML are shown as follows:

context BirthdayBook::addBirthday (name: NAME;

pre : self. known->exc

post : self. known->includes(name)

context BirthdayBook::findBirthday (name: NAME): DAT

pre find

post findB_1 :

As it was said be
the operations known() and birthday() could be em
effect-free operations. The Figure 2.6 shows the imple
solution as was presented for ArgoUML.

Figure 2.6. BirthdayBook modelled in USE

24

Chapter 2: Formal Methods and Modelling Tools

Becau
model is represented in a textual way. Th

se USE has no GUI to allow the user to design the UML class diagram, the
e classes contain information about the

 but not about the associations, which must be specified
for the USE tool is shown as follows:

attributes and operations,
separately. The definition of the model

model BBook

class BirthdayBook

operations

 known(): Set(NAME)= self.known

 birthday(name: NAME): DATE =

 self.known -> collect(name).birthday ->

 any(self.known -> collect(name).birthday->size=1)

 addBirthday (name: NAME, date: DATE)

 findBirthday (name : NAME) : DATE

end

class NAME

end

class DATE

end

-- Relationships

association aDate between

 NAME [*]

 DATE [1] role birthday

end

composition names between

 BirthdayBook [1]

 NAME [*] role known

end

Lastly, the constraints used for the model are shown below. It can be seen that
known() and birthday() are used because both operations were declared as side effect-
free, adding an OCL expression to the declaration of the operations.

25

Chapter 2: Formal Methods and Modelling Tools

-- Constraints

constraints

context BirthdayBook

 inv: self.known->includesAll(self.known())

context BirthdayBook::addBirthday (name: NAME, date:
DATE)

 pre : self. known()->excludes(name)

 post : self. known()->includes(name)

context BirthdayBook::findBirthday (name:NAME) : DATE

 pre : self.known()->includes(name)

 post : result = self.birthday(name)

2.5.3 Summary

Since the creation of OCL a number of problems have been identified. In [65, 66]
there have been mentioned for example problems with the definition of types, meta
types, and expression types. Additionally, the author mentioned some restrictions to
combine types for the creation of complex types, problems with the undefined value
that, in opinion of Gogolla and Richters, are too strong for some cases and unclear for

 treated as false or true for a Boolean value?). Additional
eported in [67] such as incompleteness of concepts (there is not full

2.6 P

The term process algebra or process calculus is used to define an axiomatic approach
for o
says a p
model mmon concepts in the different process algebras
are process (sometimes called agent) and action [71]. A process can be seen as any
con rr
someth
conjunction with other actions, using particular operations defined by the algebras.

others (e.g. is undefined
troubles were r
support for all the UML diagrams) and the possibility of creating ambiguous
expressions. Finally, problems of representation can be appreciated even in this little
example. The majority of the tools only support a subset of the UML diagrams, and
additionally the support for OCL can be different from one tool to the next. Another
problem is the poor semantic definition of OCL [68], which makes it difficult to
interpret in an equivalent way for the different tools.

rocess Algebra

pr cesses. There is not a unique definition for processes although Baeten [69]
rocess refers to the behaviour of a system. Process Algebras have been used to

concurrent systems [70]. Co

cu ent system with behaviour based in discrete actions. An action is considered
ing that happens instantaneously and it is atomic. An action is expressed in

26

Chapter 2: Formal Methods and Modelling Tools

Some o
Pi-Calc as coined by Bergstra and Klop in the paper
[72] where the Algebra of Communicating Processes (ACP) was presented. The

contrasting calculus of Communicating Sequential Processes (CSP) was proposed by
CCS, the Pi-calculus was later proposed by

esses is an algebra proposed in 1982 when
Bergstra and Klop wanted to research a question about unguarded recursive equations

 combination of instantaneous atomic actions and
rocesses. These operators are

n or sequencing, uses the symbol ⋅
ple, a⋅b⋅c indicates that

fore action b and action b happens before action c.

ccur but not both of them.

ency is represented with the interleaving || and left-merge operator ||

f the principal process algebras comprise ACP, CCS, CSP, and more recently
ulus. The term process algebra w

Calculus of Communicating Systems (CCS) was proposed by Milner [73]. The

Hoare [74]. An extension and revision to
Milner [75].

2.6.1 ACP

The Algebra of Communicating Proc

[69]. The algebra is defined using a
algebraic operators, in order to generate a variety of p
used to represent union, concatenation and concurrency:

• Concatenation, also known as compositio
and represents the order of the actions. For exam
action a happens be

• Union is used to specify a choice between actions, using the symbol + to
represent the union. For example, a+b represents that action a or action b can
o

• Concurr ,
 || q allows all possible interleavings of actions in the processes p and where p

q, whereas p || q always prefers the first action of p before the first action of
q and otherwise behaves like ||.

These operators satisfy the following axioms (for all a ∈ Action, and x,y,z
∈ Process):
 x+y=y+x

 x+(y+z)=(x+y)+z

 x+x = x

 (x⋅y)⋅z = x⋅(y⋅z)

 (x+y)⋅z=x⋅z+y⋅z

 x || y = (x || y) + (y || x)

 (a.x) || y = a.(x || y)

 (x+y) || z =(x || z)+(y || z)

 a|| y=a⋅y

As was mentioned, these axioms just expressed the concatenation, union and
concurrency (via the left-merge operator). These axioms represent the Basic Process
Algebra, which was later extended to include communication as presented by Bergstra
in [76].

27

Chapter 2: Formal Methods and Modelling Tools

2.6.2 CCS

Even though the Calculus of Communicating Systems was presented by Milner in

 actions represent the transitions
from a state to other [71]. The rules and axioms in CCS are provided as laws.

1973, it was not until 1980 that he published the book [73] that is now considered the
definitive reference on CCS. In CCS a process is represented by a number of states
representing the possible lines of action that can be realised. The states of the process
are presented as dots (usually open dots), while the

In CCS, 0 (nil) represents the most basic process, representing halting, or deadlock.
CCS also provides an action prefixing operator, where a.P denotes that an action a can
be prefixed to a process P to denote sequential composition of a and P. An action can
be interpreted as an input or output communication on a port. By convention, a
denotes input and a denotes output.

The choice operator proposed by Milner in CCS is +. It is commutative, associative
and idempotent. Additionally, the CCS operator | represents parallel composition,
where, for instance, the expression P|Q depicts two processes running in parallel.
Communication between two processes happens when there is an action a in one
process and a complementary action a in the other one.

 actions using a prefix operator , such that x P denotes

2.6.3 CSP

CSP was proposed by Hoare in [77], initially without a formally defined semantics.
Later a semantic model was proposed based on trace theory [78]. A new model was
proposed and CSP changed its name to Theoretical CSP (TCSP) [79], which later was
called again CSP.

The trivial element in CSP is the event, which is defined as instantaneous and
indivisible. Events are notated in lowercase, for instance x, y, z. are events in CSP.
Processes are notated in uppercase. There are also primitive processes such as STOP
and SKIP to represent basic predefined behaviours.

CSP builds processes from
a process formed by prefixing the process P with the event x. CSP has two choice
operators, for external and internal choice. The external choice operator , is defined,
such that (x P) , (y Q) denotes a choice between two processes, according to
whether the environment supplies the event x or y, after which one of P or Q executes,
respectively. The internal choice operator È makes a nondeterministic choice and
may refuse events from the environment. A response is only mandatory if all prefixes
are available. Concurrency is represented by the interleaving operator |||, such that P
||| Q denotes a nondeterministic choice between all possible interleavings of the
actions of P and Q. The synchronising operator ||A forces its operands to synchronise,
such that P ||A Q forces synchronised communication between P and Q on all the
events in A.

2.7 Summary

Formal methods have been adopted widely and probably this tendency will continue
in the future. But, this adoption has been slow and essentially only in critical systems.

28

Chapter 2: Formal Methods and Modelling Tools

A number of problems are commonly mentioned when people talk about formal
methods, for example: difficulty of use, the lack of tools to help the developers to
build software, and that use of formal methods implies much additional work. In fact,

preconceived ideas that people have about formal

a more complicated language [83]. Whilst OCL tools can evaluate
lloy can search instances and counterexamples in

rges spaces. This is because the analysis made by OCL tools and Alloy is different.
or OCL tools, users give an instance and the OCL tool checks if it satisfies the
onstraints, evaluating each subexpression to know if the constraint is valid [54]. So
hile Alloy performs a bounded exhaustive analysis of models, OCL tools have only
een featured for parsing and simulation of their OCL models [84]. In addition, Alloy
ems to be easier to use for developing declarative models.

On the other hand, OCL depends on UML notations for part of its representation and
Alloy is independent and it is based completely on textual keywords. Wallace [84]
predicted a visual layer representation for Alloy in order to facilitate the generation of
models. Until now, the Alloy analyser tool can create a visual metamodel similar to
the typical class diagram, but this is created from the Alloy code and the opposite
process is not possible.

Process Algebras are used to model concurrent systems. Common concepts in the
different process algebras such as process and action could be used to represent
similar concepts in software modelling. This is the approach this project uses and is
initially presented in Chapter 4.

In this chapter, an overview of formal methods was described with an emphasis on
model based languages and process algebra languages. Examples of Z, Alloy and
OCL were presented in order to identify the basic capabilities of the languages. The
next chapter will discuss object-oriented methods and, in particular, the Discovery
Method.

it is possible that some of these opinions are subjective, sometimes overestimating the
difficulty and in other occasions underestimating the utility of formal methods. These
problems, which had been mentioned initially by Hall [80] and later by Bowen [81,
82], are essentially caused by
methods.

Additionally, certain formal methods that are in common use have been presented.
Originally the idea about OCL was to create a less intimidating formal language for
users than other formal languages such as Z, but conceptually it results almost
certainly
constraints for given instances, A
la
F
c
w
b
se

29

Chapter 3:
Object Oriented Methodologies and
the Discovery Method

This chapter is presents a brief history of object-oriented methods and some problems
that UML has had. An introduction to the Discovery Method is presented in its four
phases: Business Modelling, Object Modelling, System Modelling, and Software
Modelling. Chapter 4 will focus in the task models used in the Business Modelling
phase.

3.1 Introduction

Object–oriented notations are commonly used in software design. So far the most
used notation is UML. The acceptance of UML has been a success in the sense of
merging the principal competing of object-oriented notations, but the problem of
expensive mistakes in software is still there. This is in part because UML does not
resolve any of the essential problems in software development. There still exists a big
difference between the model, the code, and the real users’ specifications. On many
occasions, a model in UML is understood in different ways by different people in the
development team.

UML is not the only object-oriented notation with these kinds of problems, but it is
for now the most popular. Nonetheless, it is believed that it should be a more precise
language. In addition, UML does not have good semantic representation. In fact, the
semantics in UML are not really formal semantics; they are more like a meta-model
that describes how a UML model should be constructed to be well-formed
syntactically, and does not give the meaning of the UML notation [1-3].

There exist other less general notations, oriented to particular types of systems and
having fewer ambiguity problems. The Discovery method [25, 26] is an object-
oriented method mainly used for business modelling. It uses simple notations, some of
them similar to UML notations, observing the original purpose for which the
notations were conceived.

This chapter mentions the common problems found in UML and gives a description
of the Discovery Method and its concern to offer a more concise working notation. In
the next section, this chapter mentions briefly the history of object-oriented methods;
section 3.3 mentions some of the problems identified when working with UML; the
last section (3.4) explains the Discovery method.

30

Chapter 3: Object Oriented Methodologies and the Discovery Method

3.2 A brief object-oriented history

In the 1980’s, object-oriented programming (OOP) began to be used by software
companies, but it was not until the end of this decade that several methodologies for
object-oriented analysis and design emerged as a consequence of the old structured
methodologies not integrating properly with the OOP style. In fact, in the history of
object-oriented methodologies (OOM), three generations can be identified [85, 86].

The first generation originated in the late 1980s. In this generation, generally
individuals or small groups devised the methods. In 1988, Sally Shlaer and Steve
Mellor published their methodology with the name of Object-oriented Systems
Analysis [87]. The Smalltalk community at Portland, Oregon contributed with the
Class-Responsibility-Collaboration (CRC) technique in 1989 [88], and
Responsibility-Driven Design in the same year [89, 90], based both on the behaviour
of the objects. 1991 was a prolific year for OOM: Peter Coad and Ed Yourdon [91,
92] presented their own approach. In the same year, working in the research
laboratories of General Electric, Jim Rumbaugh et al. [93] published the Object
Modeling Technique (OMT). Additionally, the first version of Booch’s methodology
was published [94].

The second generation is identified from the early 1990s. These methods were still
authored by small groups but ideas from other methods were taken. Ivar Jacobson,
working for Ericsson, introduced the concept of Use Cases (1992) and his method was
known as Objectory [95], which afterwards became the basis for the Rational Unified
Process. The second versions of the methodologies of Booch and Rumbaugh (Booch
94, OMT-2) are more similar; for instance, Booch 94 [96] adds the concept of
relationships and state graphs and OMT-2 [97] eliminates the data flow diagram from
the functional model. Other important methods from this generation are Fusion [98,
99], MOSES [100], and BON [101].

The third generation of methodologies was generated in the mid-1990s from larger
collaborative groups. In 1994, Rumbaugh left General Electric and he joined Booch in
Rational Software in order to work initially on an “unified method”. The next year,
Rational Software bought Objectory SA and Jacobson came to work with them. In
1996 they proposed the Unified Modeling Language (UML) [1]. The final document
of UML was submitted to the Object Management Group (OMG) in September of
1997 and in November of the same year was accepted as standard. However, UML
was only a set of notations without an associated process.

Another approach that was submitted to the OMG in the same period was OPEN [86,
102] (Object-oriented Process, Environment and Notation). OPEN laid emphasis on
the whole development process, rather than just the notation, but the OMG did not
accept this proposal. OPEN provides flexibility: derived from the OPEN metamodel-
based framework, an OPEN process can be tailored to suit individual domains or
projects taking into account personal skills, organizational culture and requirements
peculiar to each industry domain. OPEN [103] was initially created by the fusion of
methods as MOSES [100], SOMA [104], Firesmith [105], and Synthesis [106], and
more recently with ideas from BON [101], Ooram [107], and UML.

One problem with OPEN or other eclectic development methods (such as RUP [1]),
which offer general guidance and a plan of possible activities to be carried out at

31

Chapter 3: Object Oriented Methodologies and the Discovery Method

various points in the software lifecycle, is the necessity to be skilled in using the
method with the intention of identifying the better techniques that can be used for a
specific project. In reality, these methods focus more on the over-arching
management process [85] than on the detailed technical process, which means that the
business management aspects of building a system tend to dominate other concerns
[108]. On the other hand, we should not ignore the technical process [86]; this
includes all the classic design techniques from conventional Software Engineering,
from requirements to implementation, using techniques and notations to develop
object-oriented systems.

3.3 UML problems

The UML can be seen as an eclectic collection of diagrams representing different
points of view of a model. Supporters of UML say that the benefit for the designer is
that he can choose the diagram he needs for his design, having some degree of liberty
to interpret these diagrams. But this freedom might be considered as a lack of
direction, and could be the result of the lack of unified semantics in UML [109]. In
fact, Booch [110] said the current UML specification does not restrict graphical
formats and “there really is no ‘illegal’ UML graphical syntax”. In UML 2.0, it is
possible to define “UML profiles”, which may specify both extensions to the syntax,
or restrictions on the possible uses of diagrams in particular models [111]. In
particular, it is possible to define custom syntax, provided that this can be explained
as stereotypes of basic elements within the UML metamodel.

Simons and Graham highlight how UML’s two strengths are also its greatest
weaknesses [112]. On the one hand, UML is eclectic, adopting model notations from
many other approaches, without considering fully how these models fit together, nor
what kinds of development process they should support. To this extent, UML is a
political, rather than technical, compromise. On the other hand, UML is universal, in
the sense that the same diagrams are used in every stage of the software lifecycle,
with the consequence that the level of detail in each diagram can vary widely; and
different developers may interpret the same diagrams differently.

In [1, 34, 35] the authors present a collection of problems detected in the use and
misuse of UML 1.3 by developers, classified in terms of consistency, ambiguity,
adequacy, and cognitive recognition problems. In the articles [112, 113], the authors
report problems with the <<include>> and <<extend>> relationships; where, for
instance, developers use <<extend>> to represent exceptions and alternatives, but the
semantics of <<extend>> does not handle these cases, since the <<extend>>
relationship is considered only an insertion and the flow of control returns to the point
after the call. Both these authors [113] and Lano et al. [114] observe that the logical
dependencies implicit in these use case relationships can result in complex control
flow. Even the original authors and leading exponents of UML seem to disagree in
some fundamental details about use case relationships, as was apparent at the
OOPSLA panel session on use cases [115] when Jacobson said that the old <<use>>
was a kind of generalisation, and Cockburn said it represented functional
composition (see also [113]). It is clear that <<include>> is meant to be composition
in UML 2.0. However, composing use cases eventually breaks the desired granularity
of a use case as “a single complete interaction of the user with a system that delivers a
result of observable value” [95]. It is also clear that <<extend>> is meant to be an

32

Chapter 3: Object Oriented Methodologies and the Discovery Method

insertion of optional behaviour in UML 2.0. However, the direction of dependency,
from the inserted case to the case that is being extended, runs counter to logical
dependency, in which the behaviour of the whole depends on the behaviour of its
parts [113, 114]. Perhaps in recognition of these problems, the original UML authors
admitted that it was not considered possible to forward-engineer the control structure
of systems from use cases [2]. Use cases may describe behaviour but not how this
behaviour is implemented.

Elsewhere in UML, diagrams do not support the development of logically sound
control structures as much as might be expected. In sequence diagrams, Simons and
Graham mention some problems with the use of focus bar [112]. They indicate, to
begin with, that the consistent use of the focus bar obviates the need for return arrows.
Figure 3.1c shows the proper use of the focus bars with stack-frame semantics, in
which it is clear that control returns to the calling block upon termination, whilst
Figure 3.1a shows a second process thread semantics as was allowed in UML 1.1, in
which each object encompasses its own thread of control and can only communicate
through synchronisation (the message arrows therefore have a different meaning from
invocation). However, Figure 3.1b depicts the misuse of the focus bar since it does
not represent any sensible invocation semantics; unfortunately, it is a common
mistake made by developers. The option to omit focus bars altogether means that
sequence diagrams are little more than timing diagrams and have no procedural
interpretation. An additional problem in sequence diagrams, mentioned by the
authors, is that the idea of a normal course with its extensions only works for simple
examples and multi-branching control logic is difficult to visualise. UML 2.0 has
addressed this by introducing better control structures, which encapsulate logical
fragments of a diagram corresponding to alternatives, loops, and even external
diagrams [111].

Figure 3.1 Thread, activation and stack-frame semantics focus bar [112]

The UML interaction diagrams (sequence and communication4) use two types of
messages, procedural and non-procedural (They are also called nested flow control
and flat flow control, respectively).The notation is shown in the Figure 3.2. While the
procedural arrow has the semantics of method invocation, the non-procedural arrow is
used as a kind of workflow in a flowchart because it represents the linear progression
from step to step, without consideration for calls, returns and nested flows of control
[2].

4 Called collaboration diagram in UML 1.x

33

Chapter 3: Object Oriented Methodologies and the Discovery Method

Figure 3.2 Procedural and non-procedural message flow

There are also inconsistencies with state and activity diagrams [112]. For instance, in
practice, developers do not know if the initial pseudostate is really a true state, or
simply a label identifying the intial transition to the first “real” state. Similarly, it is
not clear whether the final pseudostate represents an accept state, in the sense of a
Mealy machine, or a halt state after the last “real” state, in which the object is
destroyed, or unreachable. Furth

a) procedural b) non-procedural

ermore, both the initial and final pseudostates
function as connectors for joining state machines to substate machines. In this case,

xity of the UML statechart arises because it is based on the Harel

the pseudsostates are not really states, but points midway along the initial, and final
transitions to the substate machine.

Some of the comple
statechart [116], which is a combination of Mealy and Moore state machines. Figure
3.3 depicts the difference between these different approaches, contrasted with
statechart notation.

evA/actA

evB/actB
a) Mealy state machine

evA

evB
b) Moore state machine

act

S1 S2 S1 S2

evA/actA

evB/actB
c) UML state machine

S1
entry / action
do/activity
exit/action

S2
entry / action
do/activity
exit/action

Figure 3.3 Mealy, Moore and UML state machines

In their original formulation, Mealy and Moore machines are apparently similar, in
that states are quiescent and actions take place on the transitions, but whilst in the
Mealy approach (Figure 3.3a) the triggered action depends on the transition taken, in
the Moore state machine the triggered action depends on the reached state (Figure
3.3b). This makes it possible to adopt a different view, in which the action appears to
take place in the state instead of on the transition. Once states are no longer
quiescent, they become procedural, having a different kind of semantics, with the
need for initialisation and self-termination. Since the standard states in UML
statecharts are now potentially quite complex procedures, the UML statechart
identifies as independent elements the initial and the final pseudostate. Actions may
be triggered on the transitions, as in a Mealy machine. But it is also possible to have

34

Chapter 3: Object Oriented Methodologies and the Discovery Method

internal operations in the states, only distantly inspired by the Moore machine,
considering entry and exit events (and their activities), and internal transitions (such
as the do/activity, which is commenced upon entry to the state, but which can be pre-
empted by any exit transition) which represent transitions that do not change the state

of quiescent states and active procedures. These could be
shown as substate machines without this extra notation. Also, the UML statechart

ased on Petri
nets, as well as a representation for concurrent composite states. Both of these
notations denote the same concurrent semantics, so only one is strictly necessary.

of the state machine. The final result is that, at this level, UML statecharts are more
similar to the flowchart than to the original concept of state machine.

Some redundant constructions, such as state entry and exit actions, are notionally
admitted to support the Moore machine viewpoint, but could be replaced by ordinary
actions on transitions. This would obviate the need for special “internal transitions”,
which replicate standard re-entrant self-transitions, but which do not trigger the state
entry and exit actions. The pre-emptable do activity that is carried out within a state
tends to blur the notions

allows the violation of state-encapsulation by crossing the boundary of a superstate
with entry and exit arcs.

Simons [117] comments on a redundancy issue with statechart diagram notation,
namely that statecharts allow concurrent transitions (i.e., fork and join) b

These cases are respectively exemplified in Figure 3.4a and Figure 3.4b.

Figure 3.4 Equivalent UML models for concurrent substate machines [117]

In the use of class diagrams, Simons and Graham identify certain problems with
decisions made during early stages [112]. For example, almost all the class diagrams
created in the analysis phase have an excessive influence on the design. Something
similar happens with the associations, which commonly are transferred from analysis
to design producing poorly-coupled models. In addition, another interesting problem
they identify is that the class diagram mixes up the notion of associations (Figure 3.5
(a)), that strictly describe data dependency, with functional dependencies, drawn as
navigations (Figure 3.5 (b)) that strictly describe modular coupling. The class
diagram may therefore confuse data dependency and functional dependency in the
same model, preventing the developer from seeing how to transform a model into a
more optimised design.

35

Chapter 3: Object Oriented Methodologies and the Discovery Method

1 1 *

 (b)

(a)

Figure 3.5 Association and navigation in UML class diagram

 kinds of transformations are intended for

using a simple and
semantically clearer notation based on UML, but changing some models where this is

appropriate for a given design
technique; transformation, a rejection of the “seamless” pressing of analysis models

and analysing the requirements in order to reach a decision about
the scope of the contract and costing. Object Modelling is the next phase and here the

 kinds of transformations are intended for

using a simple and
semantically clearer notation based on UML, but changing some models where this is

appropriate for a given design
technique; transformation, a rejection of the “seamless” pressing of analysis models

and analysing the requirements in order to reach a decision about
the scope of the contract and costing. Object Modelling is the next phase and here the

Whilst the notion of an association is inherited from the Entity-Relationship
Modelling [118], the navigation arrow represents a functional dependency similar to
the relationship expressed in Responsibility-Driven Design [119]. An Entity-
Relationship diagram is used to optimise data dependency, by a process of converting
all bidirectional many-to-many associations into simple many-to-one associations. A
collaboration graph (in Responsibility-Driven Design [90]) is used to optimise
functional coupling, by combining paths along which objects communicate with each
other to access common services. Different

Modelling [118], the navigation arrow represents a functional dependency similar to
the relationship expressed in Responsibility-Driven Design [119]. An Entity-
Relationship diagram is used to optimise data dependency, by a process of converting
all bidirectional many-to-many associations into simple many-to-one associations. A
collaboration graph (in Responsibility-Driven Design [90]) is used to optimise
functional coupling, by combining paths along which objects communicate with each
other to access common services. Different
each model. Using both notations at the same time can be confusing, preventing the
designer from seeing how to progress the design, or making it logically impossible to
transform the design.

3.4 Discovery Method

The Discovery Method is an object-oriented methodology proposed formally in 1998
by Simons [25, 26]; it is considered by the author to be a method focused mostly on
the technical process. From version 1, Discovery has been

each model. Using both notations at the same time can be confusing, preventing the
designer from seeing how to progress the design, or making it logically impossible to
transform the design.

3.4 Discovery Method

The Discovery Method is an object-oriented methodology proposed formally in 1998
by Simons [25, 26]; it is considered by the author to be a method focused mostly on
the technical process. From version 1, Discovery has been

considered appropriate. In addition, it is consistent with the process model of OPEN
[120], and has been tested in a number of industrial projects by MSc students at the
University of Sheffield. The simple and unambiguous Discovery notation makes it an
appropriate option to work with.

There are four overriding principles of the Discovery Method: direction, the need to
have an intellectually linked sequence of design activities and products; selectivity,
the desire to choose only those notations that are

considered appropriate. In addition, it is consistent with the process model of OPEN
[120], and has been tested in a number of industrial projects by MSc students at the
University of Sheffield. The simple and unambiguous Discovery notation makes it an
appropriate option to work with.

There are four overriding principles of the Discovery Method: direction, the need to
have an intellectually linked sequence of design activities and products; selectivity,
the desire to choose only those notations that are

into design artefacts, but embracing traceable model transformations; and
engagement, the desire to increase the bandwidth of communication between the
customer and developer through clear notations and appropriate activities. In
addition, the Discovery Method is organized into four phases; Business Modelling,
Object Modelling, System Modelling, and Software Modelling5.

In the Business Modelling phase, the idea is to get knowledge of the context of the
system, capturing

into design artefacts, but embracing traceable model transformations; and
engagement, the desire to increase the bandwidth of communication between the
customer and developer through clear notations and appropriate activities. In
addition, the Discovery Method is organized into four phases; Business Modelling,
Object Modelling, System Modelling, and Software Modelling5.

In the Business Modelling phase, the idea is to get knowledge of the context of the
system, capturing

5 These phases were called Task Modelling, Object Modelling, System Modelling, and Language
Modelling in [25, 26]

36

Chapter 3: Object Oriented Methodologies and the Discovery Method

aim is to identify objects and modular units of design. For the third phase, System
Modelling, it is needed to analyse the cross boundary and internal dependency
(coupling and cohesion, respectively) and identify the natural subsystems. The last
phase is Software Modelling, where work in the translation of designs into code in
some specific programming language has to be done.

Contrary to UML, the Discovery Method tries to delay the creation of objects in the
early stages, due to the fact that initial objects tend to persist throughout the rest of the
design, introducing an early bias in the perception of the system and affecting the
evolution of the project. The Discovery Method is based on techniques and notations
mostly taken from existing methods, however it selects and evaluates each chosen

 an

mbols consistently among different models will
make it easier to comprehend the diagrams and eliminates confusing and complicated
notations.

UML and Harel statecharts where, as it was mentioned before, entry and exit actions

technique and notation carefully, in order to use it for its single and original purpose.
In this way, each successive analysis or design model is formed gradually from
previous models.

Additionally, the Discovery Method uses the elements of its simplified notation in a
consistent way, throughout the method, for example, if a symbol has a particular
meaning in one kind of diagram, this symbol will have the same meaning in other
diagrams, and wherever this symbol is used in other parts of the method. A clear
example can be seen in the symbols for aggregation and generalisation, where these
concepts have the same semantics in the Data Model and in the Task Structure Model,
as shown in Figure 3.6. It eliminates the confusing <<include>> d <<extend>>
used by UML in the Use Case diagram, showing a consistent behaviour for these
structural relationships. Using the sy

Figure 3.6 Aggregation and generalisation for Data and Task Structure Diagrams

The Discovery Method only has quiescent states in its State Model. The method does
not consider it suitable to treat the states as active processing stages; in opposition to

Major task

Subtask 1 Subtask 2

Generic
task

Variant 1 Variant 2

Generic
object

Variant 2 Variant 1 Subobject 2 Subobject 1

Major object

37

Chapter 3: Object Oriented Methodologies and the Discovery Method

are executed in the states, generating a kind of flowchart and not a statechart. The
UML notation is slightly altered so that initial and final states are seen to be first-class
states, rather than pseudostates. It is also more sensitive in distinguishing between
fina c
appreci

l a cept- and reject-states, using an independent symbol for each option. We can
ate the notation in Figure 3.7.

Initial State Accept State Reject State

.7 Initial and final states are real states Figure 3

The i
origina
notatio
models
each m chniques out of

 contract and a plan for incremental delivery of the system.

 fixed choices, but allows him or her to express the

 D scovery Method deploys various design techniques, which are used in their
l intended context, which results in adopting subsets of simplified UML
ns for different model specifications, but providing a greater linkage between
 and adding clear semantics. Each technique is used for a single purpose and
odel is built systematically, avoiding misapplication of the te

their proper context as is frequent in other methodologies.

3.4.1 Business Modelling

The Business Modelling is the initial phase of the Discovery Method. In this phase,
the goal is to explore and represent the requirements of the customer in a structured
model of the business context where the system will work. The main activity is to
identify the tasks that are part of the model, proposing an improved system in terms of
business tasks and supporting the objectives of the client. It is also important in this
phase to draw up a

This phase consists of interviews, domain analysis, task analysis, and contract
planning. Interviews are conducted by the “developer”, a term denoting a person or a
group of people from the software house, with the “customer”, a term denoting the
commissioning manager and potential users of the system. Interviews should use a
non-directive technique. Discovery suggests three procedures for this objective:

• Free Exploration is the least directive technique and here the developer does
not lead the customer to
most pressing business needs.

• In a second technique, called Bluesky Wishlists [121], the customer identifies
the major stakeholders and their extreme preferences for the system. This
technique should help to identify competing forces and, consequently, to
recognise the possible constraints.

• The third technique is Iterative Prompting. It is a task-centred exploration
trying to find the decomposition of tasks and their dependency. The customer
should lead the discussion while the developer helps him using simple “wh-”
questions (i.e., what?, who?, how?, why?, when?, where?). This technique
was first used by Ian Graham [104] for task-centred analysis.

Task analysis, as a part of Business Modelling, consists of the three techniques Task
Sketching, Narrative Modelling, and Task Modelling.

38

Chapter 3: Object Oriented Methodologies and the Discovery Method

Task sketching may be done by using Task Structure Sketching or Task Flow
Sketching. Task Structure Sketching is recommended to identify business tasks at a
coarse scale. A task should capture an obvious business task rather than detailed

tructure Diagram is useful for representing tasks and
their structural relationships such as aggregation and generalisation, which are

ructure Diagram and Task Flow Diagram are
explained in detail in chapter 4.

ons and
postconditions affecting the task are included.

g is the Discovery procedure
for grouping tasks into more abstract tasks (or supertasks). There are two basic

Business Modelling
phase are used to identify candidate objects in the business domain. In this stage, the

system processes. The Task S

explained later.

Additionally, Task Flow Sketching is a technique recommended to capture
information about the order of execution of the tasks. Two sequential tasks are shown
to be in a relationship by using a transition arrow that describes the control flow.
Choice between tasks can be represented by diamonds splitting the flows, while an
exception may be represented by a half-diamond splitting the normal flow from the
exceptional flow. Identification of actors and their relationship with the tasks may
also be done here. The Task St

Narratives are used to describe the task of a business model. They are described by
the customer but recorded by the developer. A narrative has to identify its purpose
and the elements (actors and objects) that are part of the task. The description of the
flow may include alternatives and exceptions. In addition, the preconditi

Engaging in more detailed Task Modelling is the last part of the Business Modelling
phase. Basically this consists of Thematic Clustering, Logical Task Restructuring, and
establishing Alternative Task Flows. Thematic Clusterin

criteria for clustering: either by identifying tasks with a common goal, or identifying
task with common actors and objects participating in a task. Task Restructuring is
applied to improve the task structure design, mainly looking to reduce task
dependency and isolate actors with many task participations. Finally, Alternative
Task Flows is a procedure where the developer describes flows from the viewpoint of
a particular object or actor.

3.4.2 Object Modelling

In the Object Modelling phase, the task descriptions from the

analysis model, created in the Business Modelling phase and expressed as tasks, is
transformed into a design model, expressed as collaborating objects. Object modelling
is only partly an analysis activity where the object concepts are discovered in the
business domain. Most of the activity in this phase is considered a design activity,
with the invention of metaphors to denote units of software [122]. It is also in this
phase that the developer creates decentralised component-based architectures and
identifies patterns of collaboration.

The input for this phase is the business model, i.e., a set of task specifications. Object
modelling uses Responsibility-Driven-Design (RDD) [89, 123] in a bottom-up
approach for identifying object concepts and their responsibilities. The input for the
Object Modelling phase is the specification of the main business tasks. This phase
produces a set of candidate objects, their collaborations and responsibilities.

39

Chapter 3: Object Oriented Methodologies and the Discovery Method

The architecture of business systems is modelled commonly as a three-layer structure,
although this is not mandatory in the Discovery Method. The first layer, devoted to
user interface modelling, is guided by the roles identified for the business

akeholders and the business tasks that they carry out.

siness logic
Gatekeeper

t business processes and can be translated into software.

if this is defined. Where the event is not sufficient to select a

used only when the next state cannot be determined from the event and

Figure 3.8 Notation for the State Diagram in the Discovery Method

st

The middle layer is used to represent the logic of the business. Bu
concepts are identified because they are mentioned in the narratives.
objects (another term used in the Discovery Method) are those objects with state that
capture the business logic and are used to allow or prevent the execution of a task.
Gatekeeper objects are often found as concepts named in the preconditions of the
narratives. Task flow diagrams are drawn for each gatekeeper object, which helps the
developer to describe how the object participates in the tasks. State Diagrams for the
gatekeeper objects can be made by inverting the nodes and transitions of the Task
Flow Diagrams. Gatekeeper state diagrams are important because they help to
represen

State Diagrams in the Discovery Method are traditional Mealy-style finite state
machines formed by states and transitions, where initial and final states are real “first
class” states. States are connected by transitions. A transition denotes the change from
one state to another when a particular event takes place. The event could trigger an
associated activity
unique transition in a state, transitions may also be guarded. A guard is a Boolean
condition, which must be true for the transition to fire. The guards on events are
preconditions. All guards in a set of preconditions must be mutually exclusive and
exhaustive. There are two kinds of final states: reject- and accept states. An accept
state represents the normal termination of the state diagram’s execution. On the other
hand, a reject state means a failure in the execution, specified by events and
conditions defined in it. A diamond is used to denote a conditional branch in a
transition,
preconditions before the transition is fired. Each branch is guarded by a
postcondition. Such guards are also mutually exclusive and exhaustive Boolean
conditions; they are always depicted between square brackets. See Figure 3.8.

Accept State

Initial State

State

 event [cond]
 / activity

event
 / activity

event
/ activity

event
/ activity

[cond]

[¬cond]

Reject State

precondition: test guard
before firing

poscondition: test
guard after firing

40

Chapter 3: Object Oriented Methodologies and the Discovery Method

The last layer is where the data model is represented. Data storage concepts are
determined according to the needs of the business system. Typically, these consist of
information concepts but gatekeeper objects are also major candidates, since they
record the state of a business process. The data model can be constructed by using
either Object-Association Modelling (OAM) or Event-Driven Design (EDD) [124,
125]. The aim of both approaches is transforming the data to a normalised set of
tables.

As mentioned before, the output of this phase is a set of candidate objects. Each
object should have a limited function and depend on other collaborator objects to
achieve its responsibilities. The developer should write Object Role Cards, similar to
CRC cards [123], to record the responsibilities, collaborators and attributes of the
candidate objects.

The Discovery Method does not use a single class diagram to model relationships
between the types of candidate object concepts. Instead, there are two separate
models, the Data Model, which consists of record types related by associations, and
the Collaboration Diagram, which consists of functional classes linked by
collaborations, drawn as navigable associations. The notation is based on UML’s
class diagram notation but attempts to keep things simple using a reduced number of
elements.

Figure 3.9 and Figure 3.10 show the most common elements used in both the Data
Model and the Collaboration Diagram respectively.

Figure 3.9 Notation for Data Diagram in the Discovery Method

41

Chapter 3: Object Oriented Methodologies and the Discovery Method

Most elements are familiar from UML notation. The symbol for an interface type is

difference
between abstract Goals (which have dashed ellipsoid outlines) from concrete Tasks

drawn differently, as a dashed box, like the dashed shaft of the realisation arrow,
instead of the normal box with the <<interface>> stereotype. This is part of the
Discovery Method’s UML profile, which extends the allowed notation in certain
ways. The reason for this change is to notate the difference between abstract and
concrete concepts uniformly. Dashed outlines are also used to notate the

(which have solid outlines).

As can be seen in Figure 3.10, the Collaboration Diagram is very similar to the Data
Diagram, but it shows not vague associations. This diagram represents only
unidirectional connections remarking how messages are sent from class to class.

Figure 3.10 Notation for Collaboration Diagram in the Discovery Method

3.4.3 System Modelling

The System Modelling phase has the aim of identifying the optimal system
architecture, discovering natural layers and subsystems, helping to modularise the
design of the system, consequently facilitating the reduction of the strongly coupled

ntributes to the

graph of object roles. Additionally, the System Modelling phase co
construction or maintaining of a framework. If a previous framework exists, the recent
design of the system has to be merged with this framework.

For this phase the input is a set of object roles. Object roles are highly coupled by
collaboration with other roles. Object roles that are densely coupled should be
decoupled as part of the activities for this phase. Each object role can be potentially a

42

Chapter 3: Object Oriented Methodologies and the Discovery Method

class or an interface and their responsibilities have to be balanced. The output for the
system modelling phase is the optimal design and a specialised framework.

System modelling seeks to create a general picture of functional dependency among
the candidate classes using the collaboration diagram proposed by Wirfs-Brock et al.
[90] where the candidate classes that have a relationship of dependency are linked by
an arrow. This diagram is not the same thing as the old UML diagram with the
homonymous name, which now, since UML 2.0, is called the Communication
Diagram instead. Figure 3.11 shows the Collaboration Diagram notation for the
Discovery Method. A Collaboration Diagram is a graph showing the communication
paths among classes. A collaboration arrow is used to represent a functional
dependency, which means, in practical terms, that an object of the source class sends
a message to another object of the destination class. The arrow points to the class
receiving the message. In the figure, class A has a functional dependency on classes B,
C, and D, while class B and D have a dependency on class C. Functional dependency
can be weak or strong. A strong functional dependency may evolve into a permanent

, i.e., into a directed association or composition
relationship, implemented using a reference. Part of the activity in System Modelling

ns. Typically, this
transformation process produces instances of recognisable design patterns [126],
promoting a high-quality, generic and decoupled design for the system [125]. At this
point the design of the system is considered to have the maturity of a white-box
framework. It consists of many levels of specialisation, with plug-in points for new
classes, which expect to override some of the general methods provided for the
system. If some pre-existing framework has already been developed, the current

relationship between the classes

is designed to discover which collaborations are robust and should be encoded this
way. Other collaborations will disappear after system transformation.

Figure 3.11 Notation for the Collaboration Diagram in the Discovery Method

Another important activity is to apply three kinds of design transformations based on
[90]: the aggregation transformation, server generalisation, and client generalisation.
With each transformation the flow of control changes and the object role cards have to
be updated. These transformations tend to identify new intermediate abstractions and,
in consequence, reduce the number of direct collaboratio

Class A

Class B

Class C

Functional
dependency

Class D

43

Chapter 3: Object Oriented Methodologies and the Discovery Method

system is compared against this. At this point the developer has to decide whether it
ystem to the optimal design, or adapt the system to the
choice is taken after considering how mature the pre-

s are converted into explicit typed interfaces. A black-box
framework is less flexible to adaptation, but safer for type checking the inserted
omponents.

.4.4 Software Modelling

n
concepts, presented as code idioms. Responsibilities for the classes are implemented

ethods. References between classes can be implemented as references if
e connections are long-term, or, for short-term references, using method arguments.

he pre- and
ble assertions

is better to deliver the current s
pre-existing framework. This
existing framework is. A framework usually starts to stabilise after three or more
systems of the same kind are built [Simons, pers. comm.]. Once the framework has
stabilised, it is possible to convert it in a black-box framework. This is one in which
the plug-in point

c

3

The aim of the Software Modelling phase is to transform the system design obtained
in the last phase into source code in an object-oriented language. The election of the
programming language is dependent on the non-functional requirements or the
availability of existing frameworks.

The classes, interfaces and attributes of the design are translated to the language
almost directly, but it is also possible to do particular translations of some desig

by several m
th
Pre- and post-conditions are coded like executable assertions. T
postconditions defined in the narratives should be codified into executa
in order to preserve the semantics of the operations.

Three kinds of testing are suggested to be used with diagrams in the Discovery
method: protocol testing using state diagrams, flowgraph testing using narratives or
communication diagrams, and acceptance testing.

3.5 Summary

In the previous chapter an introduction to formal methods was provided. In this
chapter, a brief history of object-oriented methods was presented and some of the
problems associated with UML were identified. An introduction to the Discovery
Method was offered, organised according to its four phases: Business Modelling,
Object Modelling, System Modelling, and Software Modelling. The next chapter will
focus on the task models used in the Business Modelling phase.

44

Chapter 4:
The Informal Semantics for the Task
Models

The previous chapter gave an introduction to object-oriented methods and compared
the Discovery Method with other methods. In this chapter, the informal semantics for
the Task Structure and Task Flow Diagrams are explained, as well as an introduction
to the approximation used to define the formal semantics. Additionally, the possibility
of using Alloy to define and verify the abstract syntax on the diagrams in the
Discovery Method is explored. This approach was previously published in [127].

4.1 The informal semantics for the Task Diagrams

The Business Modelling phase is task-oriented. A task is defined in the Discovery
Method as something that “has the specific sense of an activity carried out by
stakeholders that has a business purpose” [Simons, pers. comm.]. This task-based
exploration will lead eventually towards the two kinds of Task Diagrams: The Task
Structure and Task Flow Diagrams.

The Task Model in the Discovery Method consists of the Task Structure diagram and
the Task Flow diagram. The former is used to represent structural relationships
between tasks: aggregation and generalisation. In contrast, the Task flow diagram is
able to depict workflow relationships between tasks. Both diagrams have a number of
limited correspondences [Simons, pers. comm.]. A set of generalisations in the task
structure is only consistent with a selection between the specialised tasks in a Task
Flow diagram. In addition, having an aggregation of tasks in a Task Structure

nd parallel composition of
these tasks in a Task Flow diagram.

k and another. He also will recognise the
stakeholders involved with the tasks and these will be presented as stick figures,
known as actors. The difference between a stakeholder and an actor is that, whereas a

diagram is consistent with sequence, selection, repetition a

Two different approaches were used in this research to represent these diagrams.
While Alloy is presented here to represent Task Structure diagrams, for the Task Flow
diagrams a denotational semantics approach is used.

4.1.1 Task Structure Diagram

Based on the interviews, the developer discovers a collection of tasks and identifies
the relationships between one tas

45

Chapter 4: The Informal Semantics for the Task Models

stakeholder is a specific person with a unique set of priorities about the way the
eventual system should operate, an actor relates to one formal role played by one or

ity ranging from a small-grained use case, up to
a large-grained business process. Actors that participate in tasks are drawn as stick
fi res; and participating objects as rectangles. Relationships between actors or

elationships between actors or objects with

Figure 4.2 Structural relationships in the Task Structure Diagram

more stakeholders in the system. The notation used for the Task Diagrams in the
Discovery Method is simple. The elements are taken from the UML but are presented
in a more concise and consistent form that is, in some parts, unique to the Discovery
Method. Figure 4.1 shows the elements used to relate tasks with actors and objects in
the Task Structure Diagram.

A task is represented as a labelled ellipse, using the UML notation for use cases, but
standing for all kinds of business activ

gu
objects with tasks can be represented. R
tasks are called participation, drawn as a simple straight line linking the elements. It
indicates that the actor or object is involved with the task. In the case the actor or
object is not just involved but also responsible for the task, this is shown with a small
filled circle drawn at the task-end of the relationship. This is known as ownership.

Figure 4.1 Basic elements of Task Structure Diagrams

The elements mentioned above can be insufficient if a more detailed diagram is
required. The Task Structure Diagram utilises the generalisation and aggregation
relationships, the two main structural relationships in UML, to define structural
relationships between tasks. Aggregation and generalisation are used with the same
meaning, avoiding the confusing structural relationships in UML use cases shown in
Chapter 3. Figure 4.2 shows the generalization and aggregation notation in the Task
Structure Diagram.

Major task

Subtask 1 Subtask 2

Generic
task

Variant 1 Variant 2

aggregation

generalisation

Task 1

Task 2

object

Actor

ownership

participation

46

Chapter 4: The Informal Semantics for the Task Models

Aggregation, represented with a diamond arrowhead, indicates a major task divided
into smaller sub-tasks. Aggregation specifies a whole-parts relationship where the
whole indicated by the diamond arrowhead is formed by an encapsulated set of parts,
at the other end of the relationship. Generalisation, presented using a triangle
arrowhead, depicts a general task on the side of the arrow, and specialised tasks at the
other end of the relationship. Generalisation describes a general-specific relationship
where a more general abstract task generalises over a collection of more specific
concrete tasks.

4.1.2 Task Flow Diagram

At some point during the process of identifying the tasks and structural relationships
for the different actor viewpoints in the model, it will also be necessary to represent
workflow relationships. The workflow is represented in the Discovery Method using
the Task Flow Diagram. It depicts the order in which the tasks are realised in the
business, expressing also the logical dependency between tasks. While the notation
used in the Discovery Method is largely based on the Activity Diagram of UML, it
maintains consistently the labelled ellipse notation for tasks. Figure 4.3 shows the
notation for the Task Flow Diagram.

f the Task Flow Diagram

n arrow indicating the direction of the flow. A choice is

iven for each

flowcharts and state diagrams. There is also a particular kind of end identified as fail.

Task 1

Figure 4.3 Elements o

[cond]

Tasks are connected by a
represented by a diamond; and an exception, a special case of a choice, is represented
using a half-diamond symbol. The full diamond is used to split the flow in two or
more alternative flows, whereas the half-diamond symbol represents the choice
between continuing the normal flow or branching to the exceptional flow. Whereas
mutually exclusive and exhaustive guard conditions must always be g
branch of a standard choice, only the failure condition need be notated in an
exceptional choice, where the continuation condition is understood to be the logical
complement. Start and end symbols are the standard icons used elsewhere in

Task 2

Task a Task b

Task y Task x

flow fork

choice

Task I

join

start

Task II

success

failure
exception

[cond] [¬cond]

47

Chapter 4: The Informal Semantics for the Task Models

Fail is notated as a circle crossed by a diagonal line and represents, in the Discovery
Method, exit with failure from the process described by the diagram. By contrast, the
traditional end symbol represents exit with success from the current diagram.

rk and join symbols are common to different notations used for
flow and state diagrams. A comparison of different statecharts can be seen in [128].

. The transition from the join to the next element
is only taken when all the subflows have finished successfully. Forks and joins have

 a corresponding join symbol closing the parallel tasks

Log bug is executed in the second flow. Each flow may finish

Finally, the Task Flow Diagram in the Discovery method allows the representation of
parallel tasks. This representation in the diagram is necessary because business
processes, just like other kind of processes, are sometimes independent from other
processes and, consequently, could be performed concurrently. The Task Flow
Diagram employs the fork and join symbols to delimit two or more potentially
parallel flows. The fo

A fork is a transition with one source task and multiple target tasks. A join is a
transition from multiple source tasks to one target task. When a fork transition is
taken, all of the target tasks after the fork transition are understood to begin
simultaneously. Tasks in each subflow are executed sequentially, assuming there are
no more parallel tasks defined, but the interleaved order of execution of each
concurrent subflow is undetermined

to be balanced: for each fork
section should exist. Figure 4.4 shows the use of parallel tasks in a Task Flow
diagram. After the task Get bug report terminates, two parallel flows are initiated in
the diagram. Fix bug and Rollout new release are task executed sequentially in one
flow, while
independently and the execution of the Notify client task can be made just after the
two flows have synchronised in the join fork.

Fix bug

Rollout new
release

Log bug

Figure 4.4 Example showing parallel tasks (Modified from [129])

Notify client

Get bug report

48

Chapter 4: The Informal Semantics for the Task Models

A particular feature of the workflow model supported by the Discovery Method is the
interaction of concurrent flows and task exit points. Both early success and early
failure in one of several concurrent flows may result in the pre-emption of the other
flows, a feature, which must later be e semantics.

4.2 The Alloy approach

Different ques ed u covery
Method. Chapter 2 me e of the formal methods considere s research.
In that chapter Alloy [34, 50], a language originally inspired by Z and based in first-
order logic [49], was mentioned. In an initial experiment, Alloy was utilised to
represent the abstract syntax of diag l of the Discovery Method and the
abstract syntax tree was used to check so
were jud din t d to the rules of the abstract syntax.
An abstract syntax tree for all the di the Meth nerated
(see Fig

4.2.1 Methodology

he abstract syntax was determined by examining each design model used in the
ach model element and the constraints

e property of being directed

Successive versions of the ab on were tested by proposing
che berate counterexamples which encoded
violations of desired properties of the abstract syntax, for example that an Object is a
com s) of itself, recursively. When these were checked,
All w ected syntactic violation, indicating that the
abstract syntax did not yet encode sufficient invariant properties to rule out

 use of Discovery and Alloy, used as a

 modelled in th

techni could be us
ntions som

 to formalise the notation sed by the Dis
d in thi

rams used in al
me exam

hey conforme
agrams in

ple concrete m

Discovery

odels [127], which

od was ge
ged accor

ure 4.15).

g to whether

T
Discovery Method in turn, then describing e
upon that element. Initially, there was some freedom to develop either a single
abstract syntax, or a collection of syntaxes, one for each type of model.

Alloy contains certain built-in predicates that were useful when checking properties of
the abstract syntax. For example, some models had th
acyclic graphs (DAGs). Provided that a relation could be constructed to generate the
transitive graph, the built-in dag() constraint could be applied to this expression.

stract syntax specificati
ck assertions in Alloy, to check deli

po ition (exclusive aggregation
oy ould sometimes not detect the exp

malformed diagrams.

Later, when checking diagram instances against the abstract syntax, the model
checking strategy was switched from using a refutation approach to using a predicate
satisfaction approach, whereby diagram instances were encoded as predicates and the
Alloy analyzer had to satisfy one instance of each predicate, to indicate that a diagram
was valid. The reasons for this change are described in the evaluation of using Alloy
as a diagram-checking tool below.

4.2.2 Abstract syntax

The experiment was geared toward the
supporting formal method, with the aim of defining the formal representation for
Discovery.

49

Chapter 4: The Informal Semantics for the Task Models

The abstract syntax for the notations of the Discovery Method was coded in Alloy
with the aim of facilitating the mapping between the notation and the semantic
domain [27]. The refutation approach was used to test the specification. The abstract

antics [130], which
edness is

rammatical level using a BNF specification, but Alloy was
act syntax and looking for an appropriate
Discovery and experimenting with the model

ntax for the five principal
ct, State and Collaboration
 naturally from the diagram

 combined for each model to have single
h shared properties. A similar strategy for

UML has been recommended by the 2U group in their UML 2.0 proposal [131].

System view

syntax model also included well-formedness rules or static sem
 Discovery models. Checking for well-formgovern the correctness of

traditionally made at a diag
used, trying to define the whole abstr

of representation of the model instances
checking supported by Alloy.

The project involved the construction of a unified abstract sy
Discovery models (Task Structure, Task Flow, Obje

ss rules derivedmodels), which includes well-formedne
tions. The abstract syntaxes werenota

definitions of the common elements wit

Evans et al. actually propose two abstract syntaxes to support all the concrete syntax
of UML [132], separating the abstract syntax describing structure from that describing
behaviour. Figure 4.5 shows the chosen abstract syntax architecture, with four layers:
the System view, the Model view, the Diagram view and the base level for the
elements of Discovery notation.

The System view gives a complete representation of a specification, formed by a
collection of models in the Discovery Method. This view includes at most one model
of each kind and maintains the relationships between the different models. The Model
view is used to define the different models supported by Discovery. At this level,
each model has n diagrams and the Model view maintains the consistency between
these different diagrams.

Model view

Task Task Flow Data Model State Model Collaboration
Model Structure Model

Model

Diagram view

sk Flow Data Model Task Ta
diagramStructure

diagrams
s diagrams

State model
diagrams

Collaboration
diagrams

Model elements

Figure 4.5 General structure of the abstract syntax

without concern for their interrelation,
grams use the appropriate elements

The Diagram view specifies single diagrams
since the purpose at this level is to ensure that dia

50

Chapter 4: The Informal Semantics for the Task Models

of Discovery’s notation. The lowest level is used to specify all the relevant elements

am separately.

• Each model independently.

• The whole system specification.

4.2.3 Checking visual models with Alloy

Visual models are modelled in the abstract syntax and checked using the predicate
satisfaction approach mentioned in section 4.2.1. The abstract syntax model supports
the definition of generic syntax constraints, together with the specific constraints

hile the Alloy representation may

ture in Alloy. The reasons for

gramView{

of the Discovery notation and their basic relationships.

With this layering of models and diagrams, it is possible to check, at different levels
of detail:

• Each diagr

relating to a particular diagram, model or system. W
be checked for all three views shown in Figure 4.5, the Diagram view must always be
included, since this declares the relevant primitive elements. The strategy followed is
to encode the general constraints for each type of diagram in one Alloy signature, and
then to encode a specific diagram as a subtype signa
this are discussed below in section 4.2.4.

Figure 4.6 shows the signature TaskStDiagramView, defining the general properties of
a Task Structure Diagram in Alloy. This basically declares the sets of elements that
can possibly be part of the diagram. The relationships among these elements are
defined at the lowest level of the abstract syntax graph (see the metamodel in Figure
4.15).

sig TaskStDiagramView extends Dia
 task: set Task,
 goal: set Goal,
 gen: set Generalisation,
 real: set Realisation,
 agg: set Aggregation – Composition,
 comp: set Composition,
 actor: set Actor,
 obj: set Object - AssociationClass,
 parti: set Participation
}
Figure 4.6 Task Structure Di amagr elements

y encode a specific Task Structure Diagram, such as the
e 4.7. The corresponding Alloy

ents the diagram instance, is given in Figure
 This signature extends the basic TaskStDiagramView signature. Signature

properties of the base

Given the above, we ma
sketch of a Library’s circulation system in Figur
signature sCirculationTS, which repres
4.8.
extension means that the derived signature has all of the
signature, similar to the notion of inheritance in object-oriented programming. In the
upper declaration area, the particular elements of the diagram are declared. These are
all expressed in terms of diagram element types inherited from the generic signature.

51

Chapter 4: The Informal Semantics for the Task Models

In the lower predicate area, constraints are defined on the declared elements. One
constraint is used to specify the aggregation relationship, linking tasks to their
corresponding source or target tasks in the structure. A similar constraint is created to
define the participation linking the actor and the top-level task.

Circulation

Overdue Loan Transaction

Reader Services

Figure 4.7 Circulation Task Structure Diagram

sig sCirculationTS extends
 TaskStDiagramView {
 part circulationTask, overdueTask,
 loanTransactionTask: task,
 readerServicesActor: actor,
 part p: parti,
 circAgg: agg
}{
 // Aggregation
 circulationTask in circAgg.head and
 overdueTask + loanTransactionTask
 in circAgg.tail
 #circAgg.tail=2
 // participation
 circulationTask in p.tact and
 readerServicesActor in p.user
}
Figure 4.8 Encoding the Circulation Task Structure Diagram

The abstract syntax for further Task Structure Diagrams may be specified. Figure
4.9, for example, shows a diagram that represents a more detailed elaboration of one
of the tasks in the Task Structure diagram given in Figure 4.7. Eventually, the two
independently-created diagrams should be made consistent within the same Task
Structure model.

Figure 4.9 Loan Transaction Task Structure Diagram

52

Chapter 4: The Informal Semantics for the Task Models

The corresponding signature sLoanTr
 similar way as bef

ansactionTS is shown in Figure 4.10. The
ore, but this time describes a

s enough information to check each diagram
rm to the legal syntax of a Task
ng to treat them as part of the same
r. To achieve this, a new Alloy

odel view, within which the two
Loan Transaction task).

nds

specification is constructed in a
ad of an aggregation relationship. generalisation inste

With these two definitions, there i
separately, to demonstrate that they each confo

ore interestiStructure Diagram. However, it is m
Task Structure model and check them togethe
specification must be constructed, representing the M

 (the diagrams are merged on their common element

sig sLoanTransactionTS exte
 TaskStDiagramView {
 p loanTransactionTask, issart ueTask,
 dischargeTask: task,
 borrowerActor: actor,
 p: parti,
 loanGener: gen
}{
// generalisation
loanTransactionTask in loanGener.head
 and issueTask + dischargeTask in
 loanGener.tail
#loanGener.tail=2
// participation
loanTransactionTask in p.tact and
 borrowerActor in p.user
}
Figure 4.10 Encoding the Loan Transaction Task Structure diagram

Figure 4.11 shows the signature sCirculationModel, representing a particular Task
Structure model for the whole circulation subsystem, which merges the above
diagrams consistently. The signature extends a generic TaskStModel signature

s to the model, there is
ich elements are common to both diagrams. For instance, the

st clause in Figure 4.11 defines the fact that the intersection between the tasks from
the Circulation Task diagram and the Loan ransaction diagram is equal to the Loan

(whose detail is not given here) and specifies that the diagrams sCirculationTS and
sLoanTransactionTS are part of the model. All the information pertaining to the
Model view is inherited from TaskStModel and the individual diagrams were specified
above in the Diagram view, so apart from linking the diagram
only a need to assert wh
la

 T
Transaction task.
sig sCirculationModel extends TaskStModel {
}{
sCirculationTS in tm
sLoanTransactionTS in tm
sCirculationTS.loanTransactionTask
 = LoanTransactionTS.loanTransactionTask
sCirculationTS.task & sLoanTransactionTS.task
 = sLoanTransactionTS.loanTransactionTask
}
Figure 4.11 Encoding the Task Structure model

53

Chapter 4: The Informal Semantics for the Task Models

Having defined a particular Task Structure model consisting of two Task Structure
diagrams, it is possible to check the consistency of these against the rules of the
abstract syntax. In the following, the second of the two checking strategies is used,
instantiating a predicate, rather than the model refutation approach. If Alloy cannot
find a valid instance, this will mean that our model does not conform to all the syntax
constraints defined for the Discovery notation. Figure 4.12 illustrates the Alloy code
that is executed to validate the model. This consists of a dummy predicate
circulationModel() which is run for an exactly-specified scope, within which Alloy
must find all the elements of the model. The scope is an enumeration of each element

smaller scope Alloy cannot
t in a larger scope Alloy will create additional

valid with the whole abstract syntax, but not equivalent

and relationship used in the model under test. In a
generate a valid instance, whils
elements, making the instance
to our model. Indicating the exact scope is necessary if satisfaction is to be
interpreted as validating the model. However, this also has the useful effect of
limiting the state space searched by Alloy for a valid instance.
pred circulationModel(){}
run circulationModel
 for 1 but
 exactly 1 Model,
 exactly 1 TaskStModel,
 exactly 1 sCirculationModel,
 exactly 2 DiagramView,
 exactly 2 TaskStDiagramView,
 exactly 1 sLoanTransactionTS,
 exactly 1 sCirculationTS,
 exactly 4 Relationship,
 exactly 2 Structure,
 exactly 1 Generalisation,
 exactly 1 Aggregation,
 exactly 2 Participation,
 exactly 7 Node,
 exactly 5 StateAndTask,
 exactly 5 TaskActivity,
 exactly 5 Task,
 exactly 2 Actor,
 0 Transition,
 0 TaskFlowElement,
 0 Member
Figure 4.12 Empty predicate and exact scope specified for the run command

When the above run command is executed, Alloy finds the unique instance, indicating
that our example is in fact consistent with the Discovery abstract syntax. What Alloy
does is to satisfy the empty predicate (a trivial task in itself) in conjunction with
making the particular diagram and model specifications consistent with the general
syntax specifications, within a scope that only has one possible solution, if any. Alloy
presents its result either as a graph of linked signature instances (similar to the
metamodel graph in Figure 4.15), or as a browseable tree (as shown in Figure 4.13).

Figure 4.13 shows the tree view generated by Alloy for the example presented above,
whose structure can be inspected interactively if you want to examine the result. The

54

Chapter 4: The Informal Semantics for the Task Models

fact that Alloy finds an instance at all demonstrates that the example is valid. If no
result is returned, this means that the tested model is invalid.

Figure 4.13 Solution generated by Alloy

Figure 4.14 illustrates a second interesting example, for which we would expect no
consistent solution to be found by Alloy. It is possible to verify that the individual
exemplar diagrams (a) and (b) are syntactically correct in the Diagram view, but when
both diagrams are included within the same data model in the Model view, Alloy
cannot find a valid instance. This is because the Z class is defined as a component of
two different classes in the same model, something which violates the specification
for a UML composition, which requires the composed elements to be uniquely-owned
parts of the whole.

Figure 4.14 Two diagrams creating an inconsistent Data Model

4.2.4 Evaluating Alloy

While Alloy is very effective in modelling and analysing simple, lightweight formal
specifications written in a Z-like style, this experiment found that it is more difficult
to use as the basis for model checking the syntax and static semantics of a design

X

Z

Y

Z

(a) (b)

55

Chapter 4: The Informal Semantics for the Task Models

notation. At various times, the construction of the specification was forced into work-
ehaviour of the analyzer. The following gives a

 kinds of relationship, with a

xes for the different model types were

s notation. This initially fostered a meta-modelling style of

quence of

ted against generated instances of

he diagram
e was set to generate exactly one instance of each
gram, a brute force approach to ensure that Alloy did

n was able to find single instances of
consistently-merged diagrams. The attempt to find an instance of mutually

ugh no useful information could be
reported about the detected inconsistency.

syntax for the notation of the Discovery Method were presented. This section
described how the experiment used different approaches to design the abstract syntax

arounds to constrain the searching b
flavour of some of the unexpected discoveries while modelling in Alloy.

Initially, a separate abstract syntax for each type of model used in the Discovery
Method was developed. Therefore, for example, the Task Structure model had
distinct generalisation and aggregation relationships from those in the Data model,
although in the Discovery Method these are each single
uniform semantics across all model types. This meant that the Alloy signatures for
Generalisation and Aggregation were short and the scopes, within which model
instances were checked, were quite small. However, when models of different types
were combined, this required a set of translations from one abstract model syntax to
another.

In the second version, all the abstract synta
unified, such that a single Aggregation relationship existed for all types of model.
This was more in keeping with the philosophy of the Discovery Method. However,
the Alloy signature for Aggregation was made more complicated by the need to assert
extra constraints that it either related two Tasks, or two Objects and not one of each.
Alloy lends itself to creating hierarchies of disjoint subtypes in its abstract syntax,
using the extend
construction, whereby all syntax elements descended from a common ModelElement
root, similar to the MMF [6]. However, this had the unexpected conse
requiring vastly larger scopes within which to search for model instances, since Alloy
interprets all scope instructions as relating to the base instances in any tree. As a
necessity, the syntax tree was broken down into a series of shorter trees (see Figure
4.15), losing the abstraction over all model elements.

Once the abstract syntax had been fully validated using check assertions, Alloy
representations of diagram instances were developed. Initially, a diagram instance
was represented as an Alloy predicate, to be evalua
the abstract syntax. Eventually, this proved to be unwieldy, requiring the repetition of
constraints whenever a part of the predicate referenced the same sub-elements in the
diagram. In the second version, diagram instances were constructed as subtypes of
the canonical abstract syntax types, a strange but economical encoding, which
avoided such repetition of constraints. The eventual predicate to check was then
trivial (empty), since all the analyser had to do was find one instance of t
itself. To control this, the scop
model element present in the dia
not over-generate elements of the diagram. If the search to satisfy the trivial predicate
generated a single matching instance of the diagram, then this represented success in
satisfying the abstract syntax. The executio

inconsistent diagrams failed, as expected, altho

4.2.5 Conclusions on the Alloy approach

To summarise this section, experiences using the Alloy analyzer to check an abstract

56

Chapter 4: The Informal Semantics for the Task Models

and to represent the diagram instances in Alloy, commenting on the naturalness, or
otherwise, of the chosen encodings.

Figure 4.15 Abstract syntax metamodel

57

Chapter 4: The Informal Semantics for the Task Models

A complete example of a valid model for Discovery (a Task Structure model) and the
result generated by Alloy were illustrated, showing that the basic approach is feasible.
The time taken to validate larger models with an exact scope is in the order of
minutes. In addition, a counter-example of an invalid model (a Data model) was
illustrated, for which Alloy correctly found no instance.

Additionally, impressions of Alloy as a candidate tool for checking the consistency of
multiple diagrams in software engineering notations were given. The feeling is that
this is perhaps not an ideal deployment of Alloy. The searching behaviour of the

o be carefully controlled. The notion of a single hierarchy of
 abstract syntax specification was abandoned, since this gave

4.3 From the Task Flow Diagram to the Task Algebra

In order to give a formal representation for the Task Flow Diagram, the following
chapter will present a Task Algebra, which is first introduced here. The Task Algebra
syntax is a straight translation from the Task Flow Diagram, the abstract
representation is almost a direct copy of the diagram notation. There are structures
for every basic structure allowed in the Task Flow Diagram: sequence, selection,
parallelism, and repetition. Additionally encapsulation is considered as a formal
structure for delimiting the scope of the diagrams.

The syntax for this algebra and its axioms will be explained in detail in chapter 5,
followed by the semantics in chapter 6. In this section, the correspondence between
the Task Flow Diagrams and the Task Algebra is explained by comparing simp

idea is to introduce the algebra as well as
tween the diagram and the algebra is.

el is {a; b; c}.

constraint solver had t
model elements in the
rise to underconstrained instance generation.

As was mentioned above, even when we were able to represent the Task Structure
model in Alloy, the results were not what we expected. In addition, in the objectives
of the research it was established that we wanted to represent the semantics for the
Task Flow diagrams in term of traces, so a process algebra style suited better for this
kind of diagram.

le
examples with the algebra notation. The
showing how clear the translation be

4.3.1 Sequence of tasks

Figure 4.16, for instance, depicts a sequence of tasks. The equivalent expression in the
Task Algebra for the task mod

c a b

Figure 4.16 Sequence of tasks in the Task Flow Model

58

Chapter 4: The Informal Semantics for the Task Models

As can be seen, the start and end elements of the diagram have no direct
representation because they are implicit from the scope of the curly brackets. While in
the Task Flow Diagrams, order of execution of the tasks is specified by the arrows, in
the Task Algebra the order of execution in sequences depends of the position of the
task name in the expression. Tasks are executed from the left to the right and
separated by semicolons.

4.3.2 Selection

Figure 4.17 depicts the choice among three tasks a, b, and c. This figure shows the
selection symbol that can be used when two or more choices are needed. Guards are
mutually exclusive and exhaustive. The Task Flow Diagram showed in Figure 4.17
may be presented in the Task Algebra as the following expression: {a+b+c}. As can
be seen, the selection is represented by the symbol ‘+’, and the conditions are not
represented in the algebra.

al

 diagonal

[p ^ ¬q ^ ¬r]

a b c

[¬p ^ q ^ ¬r]

[¬p ^ ¬q ^ r]

Figure 4.17 Selection in the Task Flow Diagram

The binary selection in Figure 4.18 is also represented with the symbol ‘+’. The
guards in the binary selections are also mutually exclusive and exhaustive and, in
consequence, one of the guards could be omitted. Figure 4.18a shows a norm
binary selection where in case of p the task a could be reached, and task b could be
reached if ¬p. {a+b} is the matching representation of Figure 4.18a in the Task
Algebra. Figure 4.18b introduces the fail symbol using a small circle with a
line crossing it. This symbol represents the exit with failure of the execution in the
flow. {φ + x} is the matching representation of Figure 4.18b in the Task Algebra,
where φ is for fail in the algebra. The fail symbol is employed in association with the
half-diamond utilised to represent exceptions.

59

Chapter 4: The Informal Semantics for the Task Models

[p]

Figure 4.18 Binary selection in the Task Flow Diagram

It was mentioned before that guards have no direct representation in the abstract
syntax, because they are initially not relevant. The same could be argued about the

, which might initially be encoded implicitly in the structure of
s. However, it is later found necessary to represent end symbols

ram, φ represents a failure in the execution of the flow from that point and
beyond. This means that even if the diagram is part of another diagram, no further
tasks are executed after a failure.

4.3.3 Repetition

Repetition is shown in Figure 4.19 in the form of until- and while-loop. Like in the
selection, the guard is implicit and there is not direct representation. Figure 4.19a
shows the repetition of the task a until p was false. Its corresponding expression in
the Task Algebra is µx.(a ; ε + x). The while-loop is shown in Figure 4.19b and its
representation in the algebra is µx.(ε + a ; x). In the Task Algebra, ε represents the
empty activity.

start and end symbols
algebraic construction
explicitly, because of the different behaviour of normal exit and failure. Fail is used
to specify an end inside a context, but gives additional information about the global
failure of the execution of the flow. A normal end is considered as success and, if it is
necessary to include it explicitly in the expression, the σ symbol called succeed is
used. The σ symbol is needed if there is a requirement to represent a race-condition
(multiple parallel threads with one of them expecting to win); also is useful to express
an unary selection using the binary selection from the algebra. However, probably the
most important difference is that, while σ indicates the success of the execution of the
actual diag

a b x

[p]

(a) (b)

[¬p]

60

Chapter 4: The Informal Semantics for the Task Models

a

[p]
[¬ p]

a

[p]

[¬ p]

(a) Until-loop (b) While-loop

Figure 4.19 Repetition in the Task Flow Model

4.3.4 Parallel composition

Parallel composition is shown in Figure 4.20. The diagram depicts two sequential
compositions executing in parallel. The Task Algebra expression for this Task Flow
Diagram is {(a; b) || (c; d)}.

In the next section, an example is depicted with its equivalent expression in the Task
Algebra.

 routine example

tion from the Task Flow Diagram to the Task

Figure 4.20 Parallel composition in the Task Flow Diagram

4.3.5 The eating

In order to appreciate the transla
Algebra an example is shown in Figure 4.21. The diagram represents the flow of
tasks for having dinner and choosing between cooking it in the house or going out.

a

d

c

b

61

Chapter 4: The Informal Semantics for the Task Models

chooseDinner

Figure 4 e proc

As can be seen, th m
concurrent tasks. Almost all of this infor represented in the Task
Algebra s that a not ra are the guard
conditions on each branch. The expression in the Task Algebra may be as follows:

e bracketing

kets:

{ chooseDinner;(goHome;((findRecipe; getIngredients;
cook) || setTable)) + (chooseRestaurant; orderMeal); eat

f tasks and affects the scope of the
behaviour of early exit tokens success, and fail, which jump to the nearest boundary.

.21 Task Flow Diagram showing th ess of doing dinner

e diagram uses a co bination of sequences, a choice, and
mation can be

. The only element re translated into the algeb

chooseDinner;(goHome;((findRecipe; getIngredients; cook)
|| setTable)) + (chooseRestaurant; orderMeal); eat

In this case, it is important to mention that expressions in the Task Algebra are right-
associative but parentheses are allowed where this is considered necessary. In this
example, the sequence of three tasks (findRecipe, getIngredients, and cook), being
part of the parallel composition, is grouped using parentheses. The sam
approach is used to cluster the tasks on each side of the selection operator. Start and
exit with success are implicit but the scope of the enclosing task (which we shall call
Dinner) is specified explicitly using curly brac

}

The use of curly brackets defines the boundary o

findRecipe

getIngredients

cook

setTable

chooseRestaurant

orderMeal

eat

[eat in] [eat out]
goHome

62

Chapter 4: The Informal Semantics for the Task Models

Therefore, the behaviour of an expression enclosed in curly brackets will typically
differ from one which is not so enclosed. The other effect of bracketing flows in this
way is to define larger composite tasks. Now, supposing that the expression above is
bracketed, this may be named as a compound task called Dinner and then used as part
of another Task Flow Diagram, as shown in Figure 4.22.

the tasks:
inner. The execution of the sequence is guaranteed at least
ure is an until-loop setting the condition at the end. The

.

mmary

hapter explained the informal semantics for the Task Structure and Task Flow
Diagrams, as well as an introduction to the approximation used to define the formal

ally the abstract syntax and chapter 6
will explicate the formal semantics for the Task Flow Diagrams in the Discovery
Method.

Dinner

Breakfast

Lunch

[¬ alive]

Figure 4.22 Until-loop repetition in the Task Flow Diagram

The diagram above uses the repetition structure containing a sequence of
Breakfast, Lunch, and D
once because the struct
alternative construction, a while-loop, it is also allowed by the Task Flow Diagram.
The corresponding expression for Figure 4.22 in the Task algebra should be:

µx.((breakfast; lunch; dinner); ε+x)

The sequence has to be between parentheses because the syntax, explained in detail in
the next chapter, is defined for one Activity and the right-associativity will derive in a
syntax error for no atomic tasks

4.4 Su

This c

semantics. Additionally, an experimental approach using Alloy to define and verify
the abstract syntax of the diagrams in the Discovery Method is discussed, but this
approach was eventually abandoned, due to problems in restricting the scope of the
analyzer. The next chapter will present form

63

Chapter 5:
An Abstract Syntax Representation
for the Task Flow Model

The previous chapter presented the informal semantics for the Task Structure and
Task Flow Diagrams. In this chapter the abstract task algebra for the Task Flow
Model is presented. The definition of the task algebra is initially depicted in Backus
Naur form. Subsequently, the set of axioms constraining the initial definition are
given and some examples are provided in order to show how the algebra works as
expected for basic elements. The abstract task algebra is based in simple and
compound tasks using operators such as sequence, selection, and parallel
composition. Repetition is defined with recursion in the form of while- and until-
loops.

5.1 Introduction

A simple task in the Discovery Method [4, 5, 63] is the smallest unit of work with a
business goal. In this context tasks are categorised as simple and compound tasks. A
simple task is the minimal representation of a task in the model. A compound task can

internal atomic steps of
the simple tasks are not relevant for the Task Flow Model and for that reason this

ation is not present in the abstract sy

d on to simple tasks and compound tasks, th
definition of three instantaneous events. These may compound task in
the abstract syntax.

5.2 The Abstract Syntax

The basic elements of the abstract syntax are the simple task, which is defined using a
ctivity; and the

success σ and failure φ symbols representing a finished activity.

be formed by either simple or compound tasks in combination with operators defining
the structure of the Task Flow Model.

Simple tasks are understood to consist of a series of steps and therefore are always
considered to be intervals, from a temporal perspective. The

inform ntax representation.

In ad iti e abstract syntax also requires the
 form part of a

unique name to distinguish from others; ε representing the empty a

Simple and compound tasks are combined using the operators that construct the
structures allowed in the Task Flow Model. The basic syntax structures for the Task

64

Chapter 5: An Abstract Syntax Representation for the Task Flow Model

Flow Model are sequential composition, selection, parallel composition, repetition,
and encapsulation:

• Selection is represented with the symbol ‘+’ and it means that there is a choice
between the operands.

• Parallel composition defines the simultaneous execution of the elements in
the expression. It is represented by the symbol ‘||’.

• Repetition allows the reiteration of an expression in the form of an until-loop
and while-loop structure. It is represented using the µx fixpoint.

• Finally, encapsulation is used to group a set of tasks and structures. This
constructs a compound task and is represented using curly brackets ‘{‘ ‘}’.

:

 -- a single task
 | Activity ; Activity -- a sequence of activity
 | Activity + Activity -- a selection of activity
 llel activity
 | µx.(Activity ; ε + x) -- until-loop activity

| µx.(ε + Activity ; x) -- while-loop activity

Task::= Simple mple task
| { Activity } -- encapsulated activity

A task can be either a simple or a compound task. Compound tasks are defined

xecution of the structure inside it. Curly
brackets are used in the syntax context to represent diagrams and sub-diagrams but
also have implications for the semantics that will be explained later. Also, parentheses

• Sequential composition defines the chronological order of execution for a
task or a group of tasks from the left to the right and ‘;’ is used as the operator.

The abstract syntax has the following definition in Backus Naur form

Activity ::= ε -- empty activity
 | σ -- succeed

| φ -- fail
 | Task

| Activity || Activity -- para

 -- a si

between brackets ‘{‘ and ‘}’, and this is also called encapsulation because it
introduces a different context for the e

can be used to help comprehension or to change the associativity of the expressions.
Expressions associate to the right by default.

The abstract syntax represents in a simple way every basic structure used for the Task
Flow Diagram. For instance, supposing three tasks a, b and c; a sequence composition
of these elements can be specified as follows:

cba ;;

Which means the execution of a, then b, and then c. The selection operator ‘+’ should
be used for representing the choice among tasks:

cba ++

65

Chapter 5: An Abstract Syntax Representation for the Task Flow Model

The concurrent execution of these three tasks may be represented using the parallel
composition operator ‘||’:

cba ||||

Meanin terminatg that a, b and c are executed simultaneously and may e in any order.
Finally, the repetition operator works either as an until-loop or a while-loop. The
difference between each repetition is, as can til-loop structure

etition:
 be supposed, that the un

guarantees at least one execution of the activity in the rep

);.(xax +εµ

Repetition is modelled using recursion. In the example above, µx binds x to the
expression (a;ε+x), where a occurs at least once and, if under the choice of x, the
expression is expanded (i.e. the expression is repeated recursively, x being the fixed-
point of bound by µ.) The next example shows a while-loop:

);.(xax +εµ

As in the until-loop, µx binds x to the expression (ε+a; x), but the choice is put in
front of the expression to be repeated.

5.3 Task M

Just as can be composed, basic
def s in the abstra ct syntax
d can ich, to accomplish an
accurate representation of the diagram syntax, has to be limited by axioms. The
a yntax lgebra.

e
or the expressions; whilst an Activity is formed

nce, selection parallel composition, and

nted with ε, success
with σ and fail using φ. The fact that simple tasks cannot be vacuous activities is

odel Constructions

 the graphical structures of the Task Flow Model
inition ct syntax may form complex expressions. The abstra

efinition be considered like a Universal Algebra wh

bstract s definition and its axioms form an Ideal or Quotient A

5.3.1 Simple task

As it was explained before, a simple task is the minimal representation of a task in th
abstract syntax with significance f
using a combination of operators (seque
repetition), simple tasks, empty activity, end with success and end with fail. Empty
and finished activities are vacuous activities. Empty is represe

formalised in the next axioms:

(sp.1) σφε ≠∧≠∧≠•∈∀ aaaSimplea

(, yaActivityzySimplea
(sp.2)

xyxazya
zyaz

+≠∧≠∧);.()||(
)();≠•∈∀•∈∀ +≠∧

εµ

Simple tasks are different from succeed, fail tasks
represent processes with interval duration different from pty

t are c

and empty activities because simple
 zero. Succeed, fail and em

activi ies onsidered instantaneous events.

66

Chapter 5: An Abstract Syntax Representation for the Task Flow Model

5.3.2 Empty activity

As was said before, the symbol ε is used to represent the empty activity. It is needed
r and ε is used to characterise the empty

bination with the selection operator e
en doing something or nothing.

a set of axioms must be defined to
interpret the meaning of the empty activity when it is a part of other kinds of

necessary to represent situations when an activity should
terminate before the normal end. The abstract syntax representation allows two kind
of finished activity: succeed and fail. Succeed is e
within an expression, returning the control to l
is used to represent the termination of all tasks, and the failure is propagated to the

σ and φ are considered instantaneous events. Similar to the empty activity, the

because the selection is a binary operato
branch, where in com it is used as the choic
betwe

As a result of the existence of this element,

expression. These rules are specified within each operator description.

5.3.3 Finished activity

The finished activity is

 us ful to represent an early exit from
 the higher scope. On the other hand, fai

higher levels.

finished activities have an effect in many operator constructions, and they will be
defined later.

5.3.4 Sequential composition

Sequential composition is defined as the consecutive execution of activities, from the
left to the right. Tasks are separated by ‘;’. For example:

));(;(;;;; dcbadcba ⇔

The intuitive meaning is that first a will be executed, then b, and so on until the task
d. Parentheses can be used to group elements but the meaning is not altered
whatsoever. An associative axiom is defined to support this notion. Axioms for
distribution, empty sequence and finished activity are also defined. Commutativity
and idempotence properties are not considered for sequences:

(s.1) cbacbaActivitycba);;();(;,, ⇔•∈∀ -- associative sequence

(s.2));();();(,, cbcacbaActivitycba •∈∀

(s.3)

+⇔+ -- right distributivity of sequence
over selection

aaaActivitya ⇔⇔•∈∀ ;; εε

(s.4)

-- empty sequence

φφ ⇔•∈∀ aActivitya ; -- fail on sequence

(s.5) σσ ⇔•∈∀ aActivitya ; -- succeed on sequence

le (s.2) defines that a right sequence is distributed over a left selection. Left
ction is not allowed because, as in ACP [69, 133],

 sequence distribution changes the point where the choice is made. It follows that:

Ru
distribution of sequence over sele
left

67

Chapter 5: An Abstract Syntax Representation for the Task Flow Model

);();()(;,, cabacbaActivitycba +≠+•∈

ecause th expr c), initially a is executed and then the choice
ee b and c is made; while in the expression (a;b)+(a;c) the choice is first and

fterward a is executed. The difference in the branching position can be easily
reciated in Figure 5.1.

5.1. State ransiti r expressions a;(b+c) and (a;b)+(a;c)

pty and finished activities may coexist in an expression, in which case the rule
s.3) is c nfluent with rules (s.4) and (s.5) (i.e., the expression can be reduced in
nother way a d may interact. All posible basic cases where these rules can be used

confluently are shown as follows:

∀

B in e ession a;(b+
betw n
a s
app

a
a a

b c b c

b) (b) ()

F t on diagram foigure

Em
(o
a) n

a) φ;ε

 ⇒ φ -- by applying (s.3) or (s.4)

b) σ;ε

⇒ σ -- by applying (s.3) or (s.5)

5.3.5 Selection

The selection of activities is perfor at hoice
among a group of activities, for instance:

med with the ‘+’ oper or. It represents the c

))((dcbadcba +++⇔+++

Intuitively each branch is evaluated from the left to the right. Guards are implicit and
are not represented in the syntax. The guards are suppose usive
and exhaustive. When a guard is satisfied the left activity is executed and the right
b ch ise the left activity is discarded and the next guard is
verified. Logically, the last guard does not need to be checked and the order in which
the branches are considered is irrelevant.

The ‘+’ operat ved in the se antics in the mbol
‘↓’, which was included to represent the commit point for a selection. This is already
a simplified version of the selection, where the guard conditions are not present but
mentioned as a future extension for the algebra. Even so, we think this approach

d to be mutually excl

ran is discarded, otherw

or will be preser m form of a commit sy

68

Chapter 5: An Abstract Syntax Representation for the Task Flow Model

represents better the flow of tasks, making clear where the selection happened. Figure
5.1 above presented a case where the difference in the branching position can be seen.

(sel.1)

The axioms defined for the selection operator are:

cbacbacbaActivitycba ++⇔++⇔++•∈∀)()(,,

-- Associative selection

(sel.2) abbaActivityba +⇔+•∈∀ , -- commutative selection

(sel.3) aaaActivitya ⇔+•∈∀ -- idempotent selection

In the case of the empty activity, it is also possible to reduce the expression if both

ts (right or left) is ε, then the selection has no reductions. ∀a ∈ Activity, the
following expressions are irreducible:

sides have the empty activity by the idempotent rule (sel.3). But, if just one of the
elemen

a ε+ -- irreducible selection of empty activity or activity

The same applies to the finished activities, where the selection between any of the

φ + a -- irreducible selection of fail or activity

σ

ε + σ -- irreducible selection of empty activity or succeed

As described above, selection interacts with sequences and the right distributivity
axiom may be applied. Its interaction with parallel composi

Parallel composition is defined as the simultaneous execution of all its tasks and it is

a || b || c || d ⇔ a || (b || (c || d))

Intuitively it expresses that the elements a, b, c, and d are initiated at the same time
and executed simultaneously. The end of any of th stic. Like the
last operators, a set of axioms are defined:

cbac

finished activities or a general Activity has no reduction:

 + a -- irreducible selection of succeed or activity

ε + φ -- irreducible selection of empty activity or fail

tion is shown below.

5.3.6 Parallel composition

represented with the operator ‘||’. An example is the expression:

 em is non-determini

(p.1))||(,, baActivitycba)||(||||•∈∀ ⇔

(p.2) -- Commutative composition

-- Associative parallel composition

abbaActivityba ||||, ⇔•∈∀

69

Chapter 5: An Abstract Syntax Representation for the Task Flow Model

(p.3))||()||(||)(,, cbcacbaActivitycba +⇔+•∈∀

-- right distributivity of concurrency over
selection

(p.4) aaActivitya ⇔•∈∀ ε|| -- instant synchronisation

(p.5) φφ ⇔•∈∀ ||aActivitya if a ≠ σ -- instant failure

σσ ⇔•∈∀ ||aActivitya(p.6) -- instant success

istribution is derived by
applying (p.1) and (p.3):

The associative and commutative axioms (p.1, p.2) reflect the nondeterministic order
of concurrent activity. Also, it is possible to do right and left distribution of
concurrent composition over selection, but only the one axiom is necessary. Right
distribution over selection is defined in (p.3) and left d

)||()||()(||,, cabacbaActivitycba +⇔+•∈∀ -- left distribution of concurrency
over selection, by axiom

 too in combination with
parallel compo , (p.5) and (p.6) define instant synchronisation, fail
and succeed respec .4) performs the elimination of ε whether it is on
the right or the left of the parallel operator, (p.5) and (p.6) establish that any activity
in parallel composition with fail or succeed is equivalent to ju

 the simultaneous execution of simple activities (i.e.
le task and an Activity means that the single task could

rom
er

the tasks. The decision of having priorities on some elements prevents our algebra
from satisfying the interleaving semantics. In particular, we can say the algebra does

a||b = (a;b) + (b;a)

where a and b can be any valid symbol in the algebra. With the non-interleaving
a tics the difference between the elements can be represented.

Logically, this set of rules is confluent, which can be easily proved. The specific cases
involving the symbols σ, φ and ε can be resolved using any of the rules defined for

 (p.1) and (p.3)

In both, the axiom and the derived rule, simultaneously may occur any of the activity
elements a, b or c.

The use of instant events such as ε, σ and φ may occur
sition. Axioms (p.4)

tively. Whilst (p

st itself. Although the
parallelism is resolved as
concurrency between a sing
occur at any time among all the simple actions of such Activity), Succeed and fail are
considered as instantaneous events and they have priority over the elements of the
Activity. In addition, succeed has a major priority than fail, therefore in the case of a
parallel composition between these two elements succeed will prevail (p.6). Succeed
and fail are considered as instantaneous since it was wanted to differentiate them f
a time consuming task, for this reason it was necessary to give them preference ov

not satisfy the expression:

sem n

each symbol to work with parallel composition. All posible basic cases where these
rules are used confluently are shown as follows:

70

Chapter 5: An Abstract Syntax Representation for the Task Flow Model

a) φ ||ε
 ⇒ φ -- by (p.4)
or
 φ ||ε
 ⇒ ε || φ -- by (p.2)
 ⇒ φ -- by (p.5)
b) ε ||φ
 ⇒ φ -- by (p.5)
or
 ε ||φ
 ⇒ φ ||ε -- by (p.2)
 ⇒ φ -- by (p.4)

c) σ ||ε
 ⇒ σ -- by (
or

p.4)

 σ ||ε
 ⇒ ε ||σ -- by (p.2)
 ⇒ σ -- by (p.6)
d) ε ||σ
 ⇒ σ -- by (p.6)
or
 ε ||σ
 ⇒ σ ||ε -- by (p.2)
 ⇒ σ -- by (p.4)

The next ones are examples involving instantaneous events showing equivalent
expressions:

babababaActivityba ||||||)||(||||)||(, ⇔⇔⇔•∈∀ εεε

-- by (p.1) and (p.4)

aaaActivitya ⇔⇔•∈∀ |||| εε -- by (p.2) and (p.4)

φφφ ⇔⇔ aaa |||| •∈∀ Activity if a ≠ σ -- by (p.2) and (p.5)

σσσ ⇔ -- b⇔•∈∀ aaActivitya |||| y (p.2) and (p.6)

•∈∀ ||(, aActivityba φφφφ ⇔⇔⇔ ||||)||(||||) babab

if a ≠ σ ∧ b ≠ σ -- by (p.1) and (p.5)

σσσσ ⇔⇔⇔•∈∀ ||||)||(||||)||(, bababaActivityba -- by (p.1) and (p.6)

bababaActivityba +⇔+⇔+•∈∀)||()||(||)(, εεε -- by (p.3) and (p.4)

φφφφ ⇔+⇔+•∈∀)||()||(||)(, babaActivityba

if a ≠ σ ∧ b ≠ σ -- by (p.3) and (p.5)

71

Chapter 5: An Abstract Syntax Representation for the Task Flow Model

5.3.7 Repetition

Repetition of tasks is defined
abstract syntax are constructed using recursion. The u
Activity followed by an option of continuing or repeating x

 as an until- and while-loop. The structures in the
ntil-loop is formed by an
:

);.(xax +εµ

Intuitively it can be seen that the Activity is repeated as long as ε is not chosen. When
ε is chosen (i.e. the end state of the recursion function is reached) the recursion
terminates, which means that the next activity outside of the until-loop may be
executed. The choice of the fixed-point x results in expanding unrolling the
expression.

The until-loop has only one axiom specifying the unrolling of the recursions on the
loop:

(r.1));.(;);.(xaxaxaxActivitya ++⇔+•∈∀ εµεεµ

-- unrolling one cycle of until-loop repetition

This rule can be applied as many times as necessary resulting possibly in an infinite
option to continue or repeat: repetition of the activity and the

...));.(;(;);.(;);.(⇒+++⇒++⇒+ xaxaaxaxaxax εµεεεµεεµ -- by (r.1)

Additionally, there are three special cases where the expression may be reduced, those
ones when any of the instantaneous events is involved. In one case an until-loop
containing just the empty element ε can be reduced just to ε :

εεεµεεεεεεµεεεεµ ⇒⇒+++⇒++⇒+ ...));.(;(;);.(;);.(xxxxxx

-- by (r.1) and (s.3)

The reduction of empty sequences can be made by the axiom (s.3). The recursion
keeps going infinitely or finishes when the ε in the selection is chosen.

On the other hand, if the activity in the until-loop contains just φ or σ, the expression
may be reduced and the recursion is eliminated:

φεφµεφεφµ ⇒⇒++⇒+ ...);.(;);.(xxxx -- by (r.1) and (s.4)

σεσµεσεσµ ⇒⇒++⇒+ ...);.(;);.(xxxx -- by (r.1) and (s.5)

As the examples above show, it is possible to reduce the until-loop using the axioms
(s.4) or (s.5) already defined.

Alternatively, the while-loop is formed by the option of doing an Activity followed by
repeating x, or the option of finishing the execution of the loop:

);.(xax +εµ

72

Chapter 5: An Abstract Syntax Representation for the Task Flow Model

As the until-loop, the while-loop has only one axiom specifying the unrolling of the
recursions on the loop:

(r.2));.(;);.(xaxaxaxActivitya ++⇔+•∈∀ εµεεµ -- unrolling one cycle

of while-loop repetition

Applying this rule as many times as necessary results in an infinite repetition of the
option to finish the loop or doing the activity and repeat:

...));.(;(;);.(;);.(⇒+++⇒++⇒+ xaxaaxaxaxax εµεεεµεεµ -- by (r.2)

Additionally, there are three special cases where the expression may be reduced, those
ones when any of the instantaneous events is involved. The while-loop containing just
the empty element ε can be reduced just to ε :

εεεµεεεεεεµεεεεµ ⇒⇒+++⇒++⇒+ ...));.(;(;);.(;);.(xxxxxx

-- by (r.2) and (s.3)

The reduction of empty sequences can be made by the axiom (s.3). The recursion
keeps going infinitely or finishes when the ε in the selection is chosen. Finally, in the
cases where the activity in the while-loop contains only the symbol φ or σ, the
expression may be reduced and the recursion is eliminated:

φεφεµφεφεµ ++⇒+ .(;);.(xxx +⇒⇒ ...); x -- by (r.2) and (s.4)

σεσεµσεσεµ +⇒⇒++⇒+ ...);.(;);.(xxxx -- by (r.2) and (s.5)

5.3.8 Encapsulation

The encapsulation of tasks is used to isolate an Activity from the rest of the expression
giving it a scope and a name. It is built by using curly brackets “{ }” around the
Activity. Consequently, {act} represents the encapsulation of the Activity act. But, the
real importance of encapsulation is denoting the scope of a compound task to limit the
effect of σ and φ, which represent early exit.. A more detailed example could be:

{ }{ }{ }5;4;32;1 aaaaa +

Supposing a1, a2, …, a5 are simple tasks, in that case the expression also could be
expressed as a set of compound tasks:

let { }32 aaX +=

let { }4;;1 aXaY =

{ }5;aY

Using encapsulation is a way of abstracting the representation of a complex task flow
and treating it as a single task (i.e. a subtask, part of another larger task), in the same

73

Chapter 5: An Abstract Syntax Representation for the Task Flow Model

way that a complex diagram can be divided into different sub-diagrams to facilitate
comprehension.

As mentioned above, when a succeed event occurs in an expression, this corresponds
to an early exit from the scope of the enclosing task. The normal flow of control
resumes at the task boundary. A different result is obtained when a fail event occurs in
the expression. In this case, the fail event is promoted to the higher level, beyond the
immediate task boundary. All the usual axioms apply to activity that is encapsulated
within a task. Some additional axioms describe the specific effects of σ at the task
boundary:

(e.1) }{}{ εεσ ⇔⇔ -- vacuous subtask

}{};{ aaActivitya ⇔•∈∀ σ (e.2) -- coincident exit

(e.3) εσ +⇔+•∈∀ }{}{ aaActivitya -- vacuous selection

(e.4) { }φ φ⇔ -- promotion of fail

(e.5) { ; } { };a Activity a aφ φ∀ ∈ • ⇔ -- promotion of fail in sequence

(e.6) { } { }a Activity a aφ φ∀ ∈ • + ⇔ + -- promotion of fail in selection

The vacuous subtask axiom (e.1) denotes that succeed alone within curly
brackets is equivalent to the empty activity because succeed has no influence outside

 is next to the right bracket, it has no effect and may
f a sequence (e.2). The axiom (e.3) promotes the

he curly brackets.

Additio rallel composition and repetition, since the
transformations can be derived from the existing ones:

of its scope. Similarly, if succeed
be removed even forming part o
selection outside of the encapsulation area changing succeed for ε. Basically it
establishes that a selection between an activity and succeed is equivalent to the choice
of that activity within brackets and nothing (ε).If fail is alone within the curly
brackets, it is promoted to the higher level by the axiom (e.4). The axiom (e.5)
denotes the promotion of fail when this is next to the left bracket in a sequence.
Finally, the axiom (e.6) promotes the selection and fail outside t

nal axioms are not required for pa

εσ ⇔•∈∀ }||{aActivitya -- by (p.5) and (e.1)

σµ εε ⇔+)}; x -- by (r.1), (s.5) and (e.1) .({ x

5.4 Summary

This ch
the Dis sk algebra is based on simple and compound
tasks structured using operators such as sequence, selection, and parallel composition.
Rec s
present
express complex, Task Flow diagrams. The definition
of the denotational semantics for this algebra, giving the semantics in terms of traces,

apter presented the abstract syntax representation for the task flow model in
covery method. The abstract ta

ur ion and encapsulation are also considered. The axioms of the algebra were
ed as well as a set of examples showing a combination of basic elements in the
ions denoting simple, and more

is depicted in the next chapter.

74

Chapter 6:
The Semantics of Tasks

The previous chapter described task diagrams formally in terms of an abstract task
algebra, modelling all the syntactic constructions that may occur in task diagrams. In

through denotes all possible execution paths. The
trace semantics may be used to prove the soundness of the axioms in the task algebra.

this chapter, constructions in the algebra are given a simple denotational semantics
in terms of traces. The meaning of a system of tasks is given as a set of traces, in
which a single trace is a symbolic string denoting one possible execution path

 the system and the set of traces

They may also be used to show when syntactically different systems of tasks have the
same underlying behaviour. Congruence properties are also demonstrated for the
algebra.

6.1 Introdu an ics

by a process [134]. Simple trace theories for systems describe all the execution paths
through race theories are more often used to describe the behaviour
of conc
the con m an extended
alphabe
refusals [134]. The wor
the mo e theori [137, 138]. Trace theories often include a
descrip belled transit tate automaton
whose transition labels are the same ymbol . The es of a
system stri s em ed as aths through the
automa The races a sys under ood to lude all

ction to Trace Sem t

Trace theories were originally developed as semantic models of executing processes.
A trace is a symbol string, where each symbol represents an atomic action executed

 a system [135]. T
urrent systems in terms of all possible interleavings of the atomic actions of
current processes [136]. The symbol strings may be drawn fro
t of symbols that also includes distinguished identifiers representing halting or

k of Mazurkiewicz is generally acknowledged as the basis for
re sophisticated trac es
tion of the underlying la ion system (LTS), a finite s

 s s collected in the traces trac
 are those symbol ng itt all possible transition p
ton are explored. t of tem are usually st inc

partial paths through the automaton. A subset of these, known as the complete traces
of a system, contains those paths describing the complete execution of the system.

Trace theories form the basis for many process calculi. Hoare’s theory of
Communicating Sequential Processes (CSP) uses a simple model, whose semantics is
based on traces and interleaving [78, 79]. Processes are sequentially executing
blocks, which may be composed serially or in parallel. Parallel processes are
modelled as a choice between all possible serial interleavings of their respective
atomic actions in interleaving semantics. However, in this work we are presenting a
non-interleaving semantics because we want just a subset of the traces that all
possible interleavings would generate. This subset is the result of the behaviour

75

Chapter 6: The Semantics of Tasks

required for three particular elements in the traces: commit, succeed and fail symbols.
As it will be seen below, these symbols do not behave as normal elements in the
trac .
the tw
Comm lso forms the basis for the
mo s
Proces
basis of whether one process can synchronise with another for the exchange of
informa
in t m
generat
and
pres c

When j
to syste e traces. Where systems have looping or recursive behaviour, the

the equivalence of
nstructions can be

ries.

s

three m able to prove the soundness of the axioms of
the abs is, constructions in the task algebra that were
deemed equivalent by assertion mu be shown to produ e iden traces in the
semant f tasks
exhibit ystem
describ action
are esse itional
propert

 used to give the meaning of the operators in

es The equivalence between two systems is judged in terms of the equivalence of
o sets of traces derived from each system [134]. Milner’s theory of
unicating Concurrent Systems (CCS) [73], which a

re ophisticated π calculus [75], assumes a much higher degree of concurrency.
ses are concurrent at a fine-grained level and execute atomic actions on the

tion. Equivalence is judged not just in terms of the observable traces, but also
er s of the structure of the underlying labelled transition systems, which

ed the traces. The stronger equivalences, known as simulation, bisimulation
 congruence, are needed because of the way in which processes synchronise in the
en e of nondeterministic choice.

udging equivalence on the basis of traces, it is common to restrict judgements
ms with finit

traces are potentially infinite. It is sometimes possible to judge
infinite trace systems using fixpoints, if the same fixed-point co
derived in both systems. However, there are difficulties combining both the unrolling
of recursion and the interleaving semantics of concurrency, since this yields an
infinite and non-repeating pattern in the traces. In CSP, there are restrictions on the
combination of these operators [78]. In CCS [73] and π [75], recursion is converted
into the infinite (concurrent) replication of a process. The semantics are given using
the same mechanism that interprets concurrency and synchronisation, which are
primitive in Milner’s theo

6.2 Trace Semantics for Task

When considering what kind of theory to use for the semantics of tasks in the
Discovery Method, it seems appropriate initially to use a trace model similar to that
used in CSP, since the task algebra developed in chapter 5 is similar in character to
CSP. The main differences are in the meaning of atomicity and the special treatment
given to the early exit from a task. The chosen semantic model must be able to satisfy

ain concerns. The first is to be
tract task algebra. To achieve th

st c tical
ic model. The second concern is to be able to prove when two systems o
 equivalent behaviour. Here, a system of tasks is understood to mean a s
ed in a hierarchy of task abstractions, where the chosen levels of abstr
ntially arbitrary. The third concern is to be able to prove strong compos

ies for the task algebra, such as congruence.

A denotational semantics in terms of sets of traces is presented in three parts. Firstly,
the semantic domain of traces is described in section 6.3, including the alphabet of
atomic symbols and trace constructions. Secondly, a set of semantic functions is
presented in section 6.4. These functions are used to manipulate traces and sets of
traces in the semantic domain. The kinds of function include trace concatenation,
trace interleaving, the concatenated product of trace sets and the distributed
interleaving of trace sets. A special function is also given to unpack the traces of an
encapsulated task. These functions are

76

Chapter 6: The Semantics of Tasks

the syntactic domain, which were described in chapter 5. Finally, the main trace
function is presented as a set of mapping functions in section 6.5, one for each type of

 in the syntactic domain. These functions translate an algebraic structure
in the syntactic domain, representing a system of tasks, into a set of traces in the
semantic domain, representing all possible complete executions of these tasks.

Small examples of each fu ct eir intended usage. A fuller
treatment of the soundness of the axioms of the algebra from chapter 4 is presented in
the following chapter 7. Likewise, proofs of the equivalence of systems of tasks are
given. Finally, congruence properties ar onstrated in chapter 7 and
appendix B. The c antics is
capable of describ
system su

race Domain

The chosen trace domain is the infinite set of all traces, constructed according to the
rules des of all lengths from zero to infinity,
consistin et. The trace domain consists of all

traces of all possible lengths. This domain is partially ordered under all
presenting all shorter execution paths) and also under all suffixes

(representing all path completions). Either of these properties ensures that the trace
domain is an ideal [139].

6.3.1 The Trace Alphabet

The trace alphabet inclu iers, representing the
names of that a simple task is the smallest
unit of syntactic analysis, a ctivity on the same scale

 in UML. The individual actions, which would correspond to the internal
steps of a use case, are not analysable in this model). To this alphabet are added three
distingu nting special semantic elements.

S

ymbols have the following meaning:

• The distinguished symbo commit symbol, meaning commitment to a
choice. This symbol is inserted into a trace at a selection point, to indicate that
a paths were discarded.

istinguished symbol σ is the succeed symbol, meaning early return with
success. This symbol is inserted into traces where an activity pre-empts all
others with immediate success.

• The distinguished symbol φ is the fail symbol, meaning early return with
failure. This symbol is inserted into traces where an activity pre-empts all
others with

The com mmitment
to a choice is made at a different point in each trace, notwithstanding all the other

construction

n ion are given, to illustrate th

e also dem
urrent chapter presents the semantics of tasks. The sem

ing all possible executions of a system of tasks and whether the
cceeds or fails as a whole.

6.3 The T

cribed below. Traces are strings
g of symbols drawn from an alphab

constructed
prefixes (re

des the (potentially infinite) set of identif
 all the simple tasks to be analysed. (Recall

nd represents a unit of business a
as a use case

ished symbols, represe

ymbol ::= Identifier ∪ {↓, σ, φ}

The special s

l ↓ is the

particular path was chosen and other

• The d

 immediate failure.

mit symbol is needed to distinguish pairs of traces in which the co

77

Chapter 6: The Semantics of Tasks

elements of the two traces being pairwise equal. This is useful to restrict the
application of distributive laws to state contexts in which the choice condition can be

nd prevents the migration of the choice point outside this context. The
succeed and bols both have the effect of short-circuiting the analysis of the
activity in which they appear. Whereas succeed returns from the current activity to
the next higher level, fail returns from the current activity to the top level and halts the
execution of the system of tasks. These symbols interact in the rules for

g traces and unpacking traces. Both symbols σ and φ are used also in the
 algebra for the syntax domain and, as with the identifier’s names, are

overloaded for the semantic domain.

6.3.2 C

tructed from the empty trace and a cons operator,
 infix dot, which adds a symbol to the head of a trace:

Trace ::= <> | Symbol . Trace

It is assu cannot be defined in terms of other
ay be represented in a deconstructed way using infix cons, or

e prettily as a sequence of symbols in angle brackets:

∀a, b : Symbol •
 empty trace
 the singleton trace a
 a.b.<> = a. = <a, b> e ab

In the following treatment, both kinds of notation are used interchangeably. Given
tax, some example traces and their intuitive meanings are given below:

∀a, b : Identifier •
 <> the empty trace (1)
 <σ> exit to higher level (2)
 <φ and terminate (3)
 a, b in order (4)
 <a, (5)
 <a (6)

<a, ↓, b> do a, then commit to b (7)
<↓, a, b> commit to a, b (8)

N es (2) and (3) above are pairwise distinct, likewise cases
(5) and (6). The t level, whereas φ exits from the
whole system. Cases (4) and (5) locally behave in an identical way, but are in fact
globally oncatenation with another trace
<a>, their difference would be observable.

uished by the different position of the commit ↓. In (7) the state context
for the choice is not available until after a, but in (8) this context is available before a.

It is important to say that the universe of possible traces is limited by the mapping
functions n into traces by using the appropriate

evaluated; a
 fail sym

concatenatin
abstract task

onstruction of Traces

Traces in the trace domain are cons
written as an

med that cons is primitive and so
operations. Traces m
displayed mor

<> the
a.<> = <a>

 the length 2 trac

the above syn

> halt
<a, b> do

b, σ> do a, b and return
, b, φ> do a, b and halt

ote how the meanings of cas
 effect of σ is to exit from the curren

distinct. If these traces were extended by c
Note how the meanings of cases (7) and

(8) are disting

, translating the syntactic expressio

78

Chapter 6: The Semantics of Tasks

semantic functions. However, in order to prove completeness we need to specify
explicit constraints on particular cases of traces that are not allowed:

• Contiguous commits in a trace. The commit symbol ↓ is merged for all
contiguous occurrences, therefore traces containing more that one ↓ such as
(< e not valid.

• The succeed symbol not occurring at the end of a trace. The succeed symbol
represents son traces of the form of
(Trace.σ.Trace) are not valid.

il symbol not occurring at the end of a trace. Just like the succeed
symbol, the fail symbol represents end with fail of a trace and therefore traces
of the form of (Trace.φ.Trace) are also not valid.

• One trac ned above, the commit symbol
represents th ing to be a trace of

rm of (Trace.↓.Trace) for each option represented in the task algebra

6.4 Semantic Functions over the Trace Domain

In this section the s anipulating the traces for the
semantic functions are not used arbitrarily
and they are employed by the mapping functions. There are semantic functions for

 of traces, concatenated product of trace sets, interleaving of traces, and
distributed interleaving of trace sets. Additionally, semantic functions for unpacking
trace sets are presented.

6.4.1 C

tion # is defined to concatenate two traces. The # function is the basis
for many other semantic functions described in later subsections. In general, this
appends all of argument 2 onto the end of argument 1. Special treatment is required
to handle occurrences of ↓, σ and φ at the head of a trace. It is assumed that traces are
in canoni l fo , suc d φ are always found as the last elements in a trace.

_ # _ : Trac

<
 trace = <σ> (tc2)
trace = <φ> (tc3)

<↓ t = ↓.rest (tc4)
<↓> # a.rest = ↓.a.rest , a ≠ ↓ (tc5)
a. ≠ σ, a ≠ φ (tc6)

 and tc6 define the empty trace <> as a left and right identity under
concatenation. This is an expected property of concatenation. Cases tc2 and tc3
define σ a a left zero, eliminating any trace on the right. This causes the
semantic translation of any sequence to short-circuit as desired, resulting in early exit.
Cases tc4 rrences of ↓, such that all contiguous

treated as a single commit. This property is needed when resolving
er parallel composition.

↓, ↓>, <↓, ↓, ↓>, <↓, ↓, ↓, ↓>…) ar

 end with success of a trace and for this rea

• The fa

e with commit for option. As mentio
e commitment of a choice, therefore there is go

the fo
expression.

emantic functions are defined m
 domain. As mentioned before, the semantic

concatenation

oncatenation of Traces

An infix func

ca rm h that σ an

e → Trace → Trace

> # trace = trace (tc1)
<σ> #
<φ> #

> # ↓.res

rest # trace = a.(rest # trace), a

The cases tc1

nd φ as

 and tc5 merge all contiguous occu
commits are
distribution ov

79

Chapter 6: The Semantics of Tasks

Examples using the trace concatenation function are shown as follows:

Example 1:

∀ Idenzyx :,, ><><• zyxtifier #,

><><⇒ zyx -- by tc6 .()#

)#.(. ><<> zyx -- by tc6 ⇒

 -- by tc1 <⇒ zyx .. >

zy⇒< >x , -- cons operator

Example 2:

Identifierx :

,

><<> x# •∀

⇒< x > -- by tc1

E

: Identifierx

xample 3:

<>>< #x •∀

)#.(<><>⇒ x -- by tc6

<>⇒ .x -- by tc1

>⇒< x -- cons operator

Example 4:

<><>#

⇒<> -- by tc1

Example 5:

><><•∀ yxIdentifieryx ,#:, φ

>⇒< φ -- by tc3

Example 6:

><><•∀ φ#: xIdentifierx

)#.(><<>⇒ φx -- by tc6

><⇒ φ.x -- by tc1

>⇒< φ,x -- cons operator

80

Chapter 6: The Semantics of Tasks

Example 7:

<>>< #φ

⇒< >φ -- by tc3

Example 8:

><<> φ#

>⇒< φ -- by tc1

Example 9:

><>< φφ #

>⇒< φ by tc

Example

xr #

 -- by tc5

 -- cons operator

Example 11:

 -- by tc6

,x -- cons operator

Example 12:

 -- cons operator

E

-- 3

 10:

><<↓>•∀ Identifiex :

<⇒↓ x. >

⇒<↓ x, >

<↓>><•∀ #: xIdentifierx

)#.(<↓><>⇒ x

<↓>.x -- by tc1 ⇒

⇒< ↓>

<><↓>#

<>⇒↓ . -- by tc5

⇒<↓>

xample 13:

<↓><>#

81

Chapter 6: The Semantics of Tasks

⇒<↓> -- by tc1

 -- by tc5

Example 14:

><<↓> φ#

><⇒↓ φ.

>⇒<↓ φ, -- cons operator

Example 15:

<↓>>< #φ

>⇒< φ -- by tc3

Example 16:

 -- by tc4

 --

><↓<↓>•∀ xIdentifierx ,#:

><⇒↓ x.

>⇒<↓ x, cons operator

Example 17:

><><•∀ yxIdentifieryx ,#:, σ

>⇒< σ -- by tc2

Example 18:

><><•∀ σ#: xIdentifierx

)#.(><<>⇒ σx -- by tc6

><⇒ σ.x -- by tc1

>⇒< σ,x -- cons operator

Example 19:

<>>< #σ

>⇒< σ -- by tc2

Example 20:

<<> >σ#

82

Chapter 6: The Semantics of Tasks

>⇒< σ -- by tc1

le 21:

><

Examp

>< σ

>⇒< σ -- by tc2

σ #

Example 22:

><<↓> σ#

><⇒↓ σ. -- by tc5

>⇒<↓ σ, -- cons operator

Example 23:

<↓>>< #σ

>⇒< σ -- by tc2

4: Example 2

><>< φσ #

>⇒< σ -- by tc2

e 25:

Exampl

><>#< φ σ

>⇒< φ -- by tc3

Concatenated Product of Trace Sets

In e tics deal in sets of traces, representing multiple execution paths,
rather than single rac rsion of concatenation is provided for sets of traces.

s con nated product, written as the infix function ⊗, which appends every
trace in argumen 2 end of every trace in argument 1, using the simple

atenation function # defined in section 5.4.1 above to concatenate each distinct
pair of traces.

_ ⊗ _ : {Trace} → {Trace} → {Trace}

seta ⊗ setb = {a # b | a, b ∈ seta, b ∈ setb } (cp1)

The defin n by comprehension on all pairs of traces a, b from the two
argument sets. If either , the comprehension yields ∅, showing that

 is a left and right zero. The singleton set containing the empty trace {<>} is a left
and right identity resu ing in e to the other argument.

6.4.2

 general, th seman
 t es. A ve

Thi is the cate
t onto the

conc

∈ Trace, a

ition cp1 is give
 seta or setb is ∅

∅
, lt no chang

83

Chapter 6: The Semantics of Tasks

Ex ma ples showing the trace concatenation function for sets:

mple 1:

:,, >

Exa

},{}{ <><⊗><•∀ zyx

#{ >

xIdentifier zy

#, <><><> x }<⇒ zyx -- by cp1

 -- by tc

>

},,,{ ><><⇒ zxyx

Example 2:

{}{:, },><⊗<>•∀ xIdentifieryx < y

>

}#,#{ ><<>><<>⇒ yx -- by cp1

{ }, <> yx -- by tc

Example 3:

:,

<⇒

}{}{ , <>⊗>> <<•∀ yxIdentifieryx

<>>< }#,# <>> yx -- by cp1 {<⇒

},{ ><><⇒ yx -- by tc

Example 4:

<>

 -- by cp1

 -- by tc

Example 5:

{},{ ⊗<><> }

}#,#{ <><><><>⇒

}{<>⇒

},{}{:, ><><⊗><•∀ yxIdentifieryx φ

}#,#{ ><><><><⇒ yx φφ -- by cp1

}{ ><⇒ φ -- by tc

Example 6:

}{},{:, ><⊗><><•∀ φyxIdentyx ifier

#{ }#, ><><><><⇒ φφ yx -- by cp1

><> },,, φφ yx -- by tc {<⇒

84

Chapter 6: The Semantics of Tasks

Example 7:

:, ><><⊗∀ yxId tifiyx

 -- by c

Example 8:

<↓>⊗><><• yxifier

 -- by cp1

 -- by tc

xample 9:

},{}{<↓>•en er

}#,#{ ><<↓>><<↓>⇒ yx p1

},,,{ ><↓><↓ yx -- by tc ⇒

:,∀ Identyx }{},{

}#,#{ <↓>><<↓>><⇒ yx

},,,{ ↓><↓><⇒ yx

E

:, },{}{ ><><⊗><• yxentifier∀ Idyx σ

}#,#{ ><><><><⇒ yx σσ -- by cp1

}{ ><⇒ σ -- by tc

Example 10:

:, }{},{ ><⊗><><•∀ σyxentifier Idyx

><><> }#,#{ <> σσ yx -- by cp1 <⇒

},,,{ ><><⇒ σσ yx -- by tc

6.4.3 In

The semantics of concurrency is given by interleaving the traces of the composed
tasks. However, this is not understood in ic
actions ot atomic in this
sense, but execute over an interval of time. Concurrent tasks literally overlap in the
semantics. They are initiated at a single instant, but may terminate at different
instants. This justifies the interleaving treatment, on the grounds that all tasks assert
state properties on completion, which may enable other tasks. So, the moment of task
termination is what governs further control flow decisions, and it is these moments
that are i

An infix function ~ is defined gs of two traces,
returning the set of all interleaved combinations. This function is biased to resolve

on between events and intervals in favour of the events. So, empty
traces and any artefactual activity, such as commit, succeed and fail, are instantaneous
events, which always pre-empt simple tasks, which are intervals. Competition among

terleaving of Traces

the usual way as the interleaving of atom
 (as in CSP [78]). Even the smallest analysable tasks are n

nterleaved.

to compute all possible interleavin

any competiti

85

Chapter 6: The Semantics of Tasks

simple tasks is resolved by comp mpetition
among events is resolved by a priority rule.

_ ~ _ : Trace → Trace → {Trace}

<> ~ trace = {trace} (ti1)
trace ~ <> = {trace} (i2)
<σ> ~ trace = {<σ>} (ti3)
tr (ti4)
<φ> ~ trace = {<φ>}, trace ≠ <σ> (ti5)
trace ~ <φ> = {<φ>}, ti6)
↓.rest ~ trace = {<↓>} ⊗ (rest ~ trace), trace ≠ <σ>, trace ≠ <φ> (ti7)
tr e ≠ <σ>, trace ≠ <φ> (ti8)
a.as ~ b.bs = ({<a>} ⊗ (as ~ b.bs)) ∪ ({} ⊗ (bs ~ a.as)),

 a ≠ σ, a ≠ φ, a ≠ ↓, b ≠ σ, b ≠ φ, b ≠ ↓ (ti9)

Cases ti1 and ti2 describe the instant synchronisation of an empty trace on the left and
ght, yie ing a singleton trace set containing the other trace. Cases ti3, ti4, ti5 and
6 descr e pr -emption on the left and right, exiting the composition with instant

ess or failure. Cases ti4, ti5 assert that success always takes priority over failure.
e four cases are confluent with cases ti1 and ti2. The cases ti7 and ti8 deal with

commit on the left and right, resolving in favour of the commit event, unless the other
trace is a pre-emptive exit. These cases are confluent with cases ti1 and ti2. All
posible b are used confluently are shown as follows:
a)

uting all possible termination orders. Co

t

ace ~ <σ> = {<σ>}

trace ≠ <σ> (

ace ~ ↓.rest = {<↓>} ⊗ (rest ~ trace), trac

ri ld
ti ib e
succ
Thes

asic cases where these rules
 <>~<>

⇒ {<>} -- by ti1
or:
<>~<>

⇒ {<>

-- by ti2
b

}
) < σ >~<>

⇒ {< σ >} -- by ti2
r: o

 < σ >~<>
⇒ {< σ >} -- by ti3

b) <>~< σ >
{< σ >} -- b⇒ y ti1

or:
 <>~< σ >

⇒ {< σ >} -- by ti4
)c < φ >~<>

φ >} -- by ti2 ⇒ {<
or:
< φ >~<>

⇒ {< φ >} -- by ti5
d) <>~< φ >

⇒ {< φ >} -- by ti1
or:
<>~< φ >

⇒ {< φ >} -- by ti6

86

Chapter 6: The Semantics of Tasks

e)
 -- by ti1

 -- ti8
-- ti1 or ti2

<>~<↓>
 }{<↓>⇒
or:

)~(}{ <><>⊗<↓>⇒
)(}{ <>⊗<↓>⇒

<>} by cp1 -- ⇒ {<↓>
⇒ {<↓>} -- by tc5

f) <↓>~<>
 {<↓>⇒ }
or:

<⊗<↓⇒ ti7
-- ti1 or ti2

-- by ti2

)~<>>> --(}{
)(}{ <>⊗<↓>⇒

⇒ {<↓># <>} -- by cp1
 -- by

The gene first element is not one of the events
handled ossible interleavings. The priority rule
stablishes a ranking among events: σ > φ ↓, which was chosen to avoid having to
ompute further interleavings.

Example

Example 1:

<⇒ x -- by ti1

Example 2:

 --

 -- by ti1 or ti2

Example 4:

x~

 }{<↓>⇒ tc5

ral case ti9 deals with traces whose
in earlier cases, and computes all p

e >
c

s showing combination of basic elements are presented below:

><<>•∀ xIdentifierx ~:

{ }>

><•∀ ~: xIdentifierx <>

}{ ><⇒ x by ti2

Example 3:

}{~ <><>⇒<>

><><•∀ Identifierx : φ

>{<⇒ }φ -- by ti5

Example 5:

><><•∀ : Identifierx φ~x

87

Chapter 6: The Semantics of Tasks

}{ ><⇒ φ -- by ti6

Example 6:

><>< φφ ~

 }{ ><⇒ φ -- by ti5 or ti6

Example 7:

><><•∀ yxIdentifieryx ~:,

))~(}({))~(}({ ><<>⊗><∪><<>⊗><⇒ xyyx -- by ti9

}){}({}){}({ ><⊗><∪><⊗><⇒ xyyx -- by ti1

},{},{ ><∪><⇒ xyyx -- by cp

},,,{ ><><⇒ xyyx -- union

Example 8:

><><•∀ zyxIdentifierzyx ,~:,,

))~(}({)),~(}{(><><⊗><∪><<>⊗><⇒ xzyzyx -- by ti9

}(({}({)),~(}({ ><⊗><∪><<>⊗><⇒ zyzyx
))))~(}({))~(>

<<>⊗><∪><<>⊗ zxx -- by ti9

(({}({}),{}({ ><⊗><∪>{} <⊗> }))){}({})<⊗><∪><⊗><⇒ zxzzyx
 -- by ti1

 -- by cp

>

xy

})),{},({}({},,{ zxxzyzyx ∪⊗∪⇒

}),,,{}({},, <><⊗><∪> zxxzyzyx -- union {<⇒

},,,,,{},,{ ><><∪><⇒ zxyxzyzyx -- by cp

},, >,,,,,,{ <><><⇒ xzyzyx union

Example

><•∀ yxIdentifieryx ,~:,

><><⊗ xy -- by ti8

yxxy

 -- by ti9

zxy --

 9:

<↓ >

)~(}{<↓>⇒

)))~(}({))~(}(({}{ ><<>⊗><∪><<>⊗><⊗<↓>⇒

88

Chapter 6: The Semantics of Tasks

({}){}(({}{ <∪><⊗><⊗<↓> xy })){} ><⊗>⇒ yx -- by ti1

 -- by cp

><><⊗ yxxy -- union

 -- by cp

Example 10:

 -- by ti7

><<>⊗><∪><<>⊗><⊗> xyyx

 -- by ti9

(({}{ ><⊗><∪><⊗<↓⇒ xyy -- by ti1

⊗<↓>⇒ -- by cp

><><⊗ xyyx -- union

><↓> xyyx -- by cp

Example 11:

}),{},({}{ ><∪><⊗<↓>⇒ yxxy

},,,{}{<↓>⇒

},,,,,{ ><↓><↓⇒ yxxy

><><↓•∀ yxIdentifieryx ~,:,

)~(}{ ><><⊗<↓>⇒ yx

{<↓⇒)))~(}({))~(}(({}

} ⊗><> x })){}({}){

}),},({ ><∪>< xyyx }{

},,,{}{<↓>⇒

},,,,,{<↓⇒

<>~<↓>

 }{<↓>⇒ -- by ti1

<><>⊗> -- ti8

-- ti1 or ti2

 -- by cp

Example 12:

Or:

{<↓⇒)~(}

)(}{ <>⊗<↓>⇒

 }{<↓>⇒

<↓>~<>

 }{<↓>⇒ -- by ti2

Or:

89

Chapter 6: The Semantics of Tasks

)~(}{ <><>⊗<↓>⇒ -- ti7

<>⊗ -- ti1 or ti2

> -- by cp

Example 13:

 -- by ti1

Example 14:

)(}{<↓>⇒

 }{<↓⇒

><↓<>•∀ xIdentifierx ,~:

},{ ><↓⇒ x

<>><↓•∀ ~,: xIdentifierx

},{ ><↓⇒ x -- by ti2

Example 15:

><↓><•∀ xIdentifierx ,~: φ

}{ ><⇒ φ -- by ti5

Examp

∀ : Idex

le 16:

<><↓• φ~, xntifier >

 }{ ><⇒ φ -- by ti6

Example 17:

><↓><↓•∀ yxIdentifieryx ,~,:,

),~(}{ ><↓><⊗<↓>⇒ yx -- by ti7

))~(}({}{ <><⊗<↓>⊗<↓>⇒ y >x -- by ti8

({ ><<><∪ y

}))~(}(({}({}{ ⊗>><<>⊗><⊗<↓>⊗<↓>⇒ xxy))))~(
 -- by ti9

}))){}({}){}(({}({}{ ><⊗><∪><⊗><⊗<↓>⊗<↓>⇒ yxxy

-- by ti1

})),{},({}({}{ ><∪><⊗<↓>⊗<↓>⇒ yxxy -- by cp

}),,,{}({}{ ><><⊗<↓>⊗<↓>⇒ yxxy -- union

90

Chapter 6: The Semantics of Tasks

},,,,,{}{<↓>⇒ ><↓><↓⊗ yxxy -- by cp

>yx -- by cp

Example 1

xr ~

},,,,,{ <↓><↓⇒ xy

8:

∀ Identifiex : ><><• σ

}{ ><⇒ σ -- by ti3

Example 19:

><><•∀ σ~: xIdentifierx

}{ ><⇒ σ -- by ti4

Example 20:

><>< σσ ~

}{ ><⇒ σ -- by ti3 or ti4

6.4.4 Distributed Interleaving of Trace Sets

ing of all
possible pairs of traces from each set. This is the infix function // for distributed
interlea on to the concatenated product in section 5.4.2, the
difference is that this function’s result must be flattened by taking the distributed

terleaving of trace sets by set comprehension.
ces

 traces. The comprehension collects a
set of sets. The result is flattened using ∪. If either seta or setb is ∅, the
compre wing that ∅ is a left
and right zero. The singleton set containing the empty trace {<>} is a left and right
identity umen

In general, the semantics deal in sets of traces rather than single traces. A version of
interleaving is provided for trace sets, describing this as the interleav

ving. Similar in constructi

union of the resulting trace sets.

_ // _ : {Trace} → {Trace} → {Trace}

seta // setb = ∪{ a ~ b | a, b ∈ Trace, a ∈ seta, b ∈ setb } (di1)

The case di1 defines the distributed in
For each distinct pair of traces a, b in the argument sets, it computes the set of tra
resulting from the simple interleaving of those

hension collects {∅} and distributed union yields ∅, sho

, resulting in no change to the other arg t.

Examples with the trace interleaving function for sets:

Example 1:

},//{}{:,, ><><><•∀ zyxIdentifierzyx

}~,~{ ><><><><⇒ zxyxU -- by di1

91

Chapter 6: The Semantics of Tasks

}},,,{},,,,{{ ><><><><⇒ xzzxxyyxU -- by ti

},,,,,,,{ ><><><><⇒ xzzxxyyx

Example 2:

}//{},{:,∀ yx <>><><• yxIdentifier

}~,~{ <>><<>><⇒ yxU -- by di1

}}{},{{ ><><⇒ yxU -- by ti

},{ ><><⇒ yx

Example 3:

},//{}{:, ><><<>•∀ yxIdentifieryx

}~,~{ ><<>><<>⇒ yxU -- by di1

 -- by ti

}}{},{{ ><><⇒ yxU

},{ ><><⇒ yx

Example 4:

}//{},{:, ><><><•∀ φyxIdentifieryx

}~,~{ ><><><><⇒ φφ yxU -- by di1

 }}{},{{ ><><⇒ φφU -- by ti

}{ ><⇒ φ

Example 5:

},//{}{:, ><><><•∀ yxIdentifieryx φ

}~,~{ ><><><><⇒ yx φφU -- by di1

 }}{},{{ ><><⇒ φφU -- by ti

<⇒ }{ >φ

Example 6:

∀ zyx

><><↓> zx -- by di1

},//{},{ ><><><↓• zyxIdentifier :,,

~,{ <><↓⇒ yxU }~,,

92

Chapter 6: The Semantics of Tasks

,,<↓ x }},,,,,{},,,,{{ ><↓><↓><↓>⇒ xzzxzyyU -- by ti

Examp

},,,,,,,,,,,{ ><↓><↓><↓><↓⇒ xzzxzyyx

le 7:

//{},{:, }>><•∀ >< < σyxIdentifieryx

~{ >

~, <><> }<><⇒ σσ yxU -- by di1

 <⇒ {{ }}{}, ><> σσU by ti --

}{ ><⇒ σ

Example 8:

},//{}{:, ><><><•∀ yxIdentifieryx σ

}~,~{ ><><><><⇒ yx σσU -- by di1

 }}{},{{ ><><⇒ σσU -- by ti

}{ ><⇒ σ

Example 9:

}//{}{:, ><><•∀ φσIdentifieryx

}~,~{ ><><><><⇒ φσφσU -- by di1

 }}{},{{ ><><⇒ σσU -- by ti

{ }><⇒ σ

6.4.5

In theories dealing with type abstracti rning information hiding and
the dua revealing are sometimes called packing and unpacking
rules, respectively [140]. The task semantics requires an unpacking rule to remove
the abstraction boundary from around an encapsulated task, while preserving the
intended boundary seman cs f the p events σ and φ. The main goal of the
unpacking function is to ensure that the effects of σ are only felt up to the task
boundary gated up to the top level. An auxiliary
function e a boundary to outside the boundary:

lift <> = <> (li1)
lift <σ> = <> (li2)
lift a.as = a.(lift as), a ≠ σ (li3)

Unpacking of Trace Sets

on, the rules gove
l notion of information

ti o re-empting

, but the effect of φ should be propa
lift is defined to lift a trace from insid

lift : Trace → Trace

93

Chapter 6: The Semantics of Tasks

This has the effect of stripping σ from the ends of a trace, but allows all other traces
to proceed unaffected. In particular, a trace of the form: <a, b, c, σ> will be reduced
to: <a, b, c> at igher o will be able to combine with other traces.
However, a trace of the form: <a, b, c, φ> will propagate upwards unchanged, such
that any attem to co trace with others will eliminate the other traces.

The general unpacking function for a trace set, unpack, is defined as the set
comprehension:

unpack : {Trace} → {Trace}

unpack seta = { lift a | a ∈ Trace, a ∈ seta } (up1)

This basically lifts every trace in the argument set. Later, unpack is used on the set of
traces c bstraction boundary of this task
is removed. Its normal and pre-empting traces are lifted to the higher level. Whereas
normal traces and at pr ith success will generate normally
terminating traces at th leve es that pre-empt with failure will be
transmitted unchanged to the higher level, such that failure will occur at this level
also. Eventually, the tra ining failures will rise to the top level, indicating all
those execution paths at cau the s sks to fail.

Example

the h level and s

pt mbine this

omputed from a constructed task, before the a

traces th e-empt w
e higher l, all trac

ces conta
th se ystem of ta

 1:

•∀ Identifierzyx :,, unpack {<x, y>, <z>}

⇒ {<x, y>, <z>} -- by up1

Examp

unpac x, φ>

Example 3:

-- by up1

ast examples can be seen how identifiers and φ are passed directly to the higher
level, w g a set of traces σ is eliminated
by the function

6.5 Interpreting Task Algebra in the Trace Domain

The last part of the simple semantics described as a translation function, or
mapping ssion in the algebra into a set of traces
in the trace dom

“_‘ : Activity → {Trace}

le 2:

•∀ Identifierx : k {< φ>, < }

⇒ {<x, φ>, <φ>} -- by up1

•∀ Identifierx : unpack {<x, σ>, <σ>}

⇒ {<x>, <>}

In the l
hile the example 3 shows that where unpackin

lift (li2).

 of tasks is
function, that maps a syntactic expre

ain. The meaning of a syntactic expression is denoted by:

94

Chapter 6: The Semantics of Tasks

where “ ‘ indicates application of the trace function to the syntactic expression, t
yield a set of traces, w

o
hich is the denotation of the expression’s meaning. This tracing

function is defined piece-wise over every construction case in the syntactic domain.
In the following, the tracing function for each case is given separately.

6.5.1

The basic elem al elements that can be represented in the traces.
Each of these functions generates a singleton:

“ε‘ = {<>} (tb1)

∀x : Simple ∪ {σ, φ} • “x‘ = {<x>} (tb2)

Here, the elements σ and φ are presumed to exist in both the syntax and semantic
domains. le tasks exist in both the syntax and
semantic domains.

6.5.2 Tracing a Sequence of Activity

uences defines the mapping function for a sequence by applying the
concatenated product of trace sets. Tracing a sequence is solved by the concatenation

artial traces of the sequence:

s1)

Where both “a “ trace functions mapping activities to sets of traces.
These functions have to be resolved before calculating their product. Below, the
possible combinations of tom c trace for sequences are exemplified.

Sequence educing each element to its equivalent
identifier. Subsequently the trace concatenation semantic function is applied.

x; y‘

 fi “x‘ ⊗ “y‘ -- by ts1

Tracing Basic Elements

ents are the minim

 Similarly, the identifiers for simp

Trace of seq

of the p

∀a, b : Activity • “a ; b‘ = “a‘ ⊗ “b‘ (t

‘ and b‘ are also

 a i s in traces

 of Simple Task elements is made r

•∈∀ Simpleyx, “

}{}{ ><⊗><⇒ yx -- by tb2

⇒ {< x ># < y >} -- by cp1

⇒ {x.(<># < y >)} -- by tc6

⇒ {x. < y >} -- by tc1

⇒ {x,y} -- cons operator

nce of a Simple Task with an empty trace results in just the Simple Task, with
ε working as the identity element, it is either on the left or on the right of the Simple
Task. Empty trace on the right:

A seque

95

Chapter 6: The Semantics of Tasks

•mple “x; ε‘

 fi “x‘ ⊗ “ε‘ -- by ts1

∈∀ Six

⊗><⇒ }{ x “ε‘ -- by tb2

}{}{ <>⊗><⇒ x -- by tb1

⇒ {< x ># <>} -- by cp1

{x.(<># <>)} ⇒ -- by tc6

{x. <>} -- by tc1 ⇒

⇒ {< x >} -- cons operator

 fi “ε‘

Empty trace on the left:

•∈∀ Simplex “ε; x‘

 fi “ε‘ ⊗ “x‘ -- by ts1

 }{ ><⊗ x -- by tb2

}{}{ ><⊗<> x -- by tb1 ⇒

<⇒ {<># x >} -- by cp1

nce of a Simple Task element with succeed results in the two elements
concatenated if succeed

x; σ‘

}{ ><⇒ x -- by tc1

A seque
 is on the right side:

•∈∀ Simplex “

 fi “x‘ ⊗ “σ‘ -- by ts1

><⇒ ⊗} “σ‘ { x -- by tb2

}{}{ ><⊗>< σx -- by tb2 ⇒

⇒ {< x ># < σ >} -- by cp1

⇒ {x.(<># < σ >)} -- by tc6

⇒ {x. < σ >} -- by tc1

},{ >< σx -- cons operator ⇒

96

Chapter 6: The Semantics of Tasks

But, if succeed is on the left side, the mapping function should return the singleton σ:

 fi

 fi “σ‘ ⊗ {< x >}

•∈∀ Simplex “σ; x‘

 “σ‘ ⊗ “x‘ -- by ts1

-- by tb2

}><{}{ ⊗> x<⇒ σ -- by tb2

⇒ {< σ ># < x >} -- by cp1

}{ ><⇒ σ -- by tc2

In the sequence of the empty activity and succeed, ε also works as the identity
element:

“ε; σ‘

 fi

“σ‘ -- by tb1

 “ε‘ ⊗ “σ‘ -- by ts1

⊗<>⇒ }{

{}{ }><⊗<>⇒ σ -- by tb2

⇒ {<># < σ >} -- by cp1

}{ ><⇒ σ -- by tc1

“σ;ε‘

 fi

And succeed on the left:

 “σ‘ ⊗ “ε‘ -- by ts1

⊗><⇒ }{ σ “ε‘ -- by tb2

}{}{ <>⊗><⇒ σ -- by tb1

⇒ {< σ ># <>} -- by cp1

}{ ><⇒ σ by tc2

 the empty trace:

 fi “ε‘ ⊗ “ε‘

 --

A sequence of empty activities is equivalent to

“ε;ε‘

 -- by ts1

97

Chapter 6: The Semantics of Tasks

{ }{} <>⊗ <>⇒ -- by tb1

 by cp

-- by tc1

A sequence of succeeds ter applying the trace
concatenation semantic function:

“σ; σ‘

 ⇒ {<># <>} -- 1

}{<>⇒

results in the singleton σ af

 fi “σ‘ ⊗ “σ‘ -- by ts1

}{}{ ><⊗><⇒ σσ -- by tb2

⇒ {< σ ># < σ >} -- by cp1

}{ ><⇒ σ -- by tc2

Fail has the same behaviour as succeed in a sequence. For instance, a sequence of a
simple task and fail:

∈ Simx •∀ ple “x; φ‘

 fi “x‘ ⊗ “φ‘ -- by ts1

⊗><⇒ }{ x “ -- by tb2 φ‘

}{}{ ><⊗><⇒ φx -- by tb2

⇒ {< x ># < φ >} -- by cp1

⇒ {x.(<># < φ >)} -- by tc6

⇒ {x. < φ >} -- by tc1

},{ ><⇒ φx -- cons operator

Some significant examples are the ones when succeed and fail are together in the

“σ; φ‘

 fi “σ‘ ⊗ “φ‘

expression:

 -- by ts1

}><{}{ ⊗><⇒ φσ -- by tb2

⇒ {< σ ># < φ >} -- by cp1

98

Chapter 6: The Semantics of Tasks

}{ ><⇒ σ -- by tc2

And the other way around:

“φ; σ‘

 fi “φ‘ ⊗ “σ‘ -- by ts1

}{}{ ><⊗><⇒ σφ -- by tb2

⇒ {< φ ># < σ >} -- by cp1

}{ ><⇒ φ -- by tc3

efines the mapping function for the choice between two set of

∀
 (ta1)
 ⊗ (“a‘ ∪ “b‘) (ta2)

Tracing a ted product of the singleton containing
the commit symbol h operand. There exists a special
case considering the idem
mapping function defines only the trace of one activity if a is equal to b. This allows
the idempotent behaviour in the next expressions:

“x‘ -- by ta1

The condition for idempotence is defined using a syntactic equivalence where a
selection is considered idempotent if two activities, such as a and b, are the same; as it
was defined in the chapter 4.

The idem ce is shown in the next example:

“ε + ε‘

“ε‘ -- by ta1

 -- by tb1

With succeed the difference is that it is mapped to σ:

6.5.3 Tracing a Selection of Activity

Trace for selection d
traces:

a, b : Activity • “a + b‘ = if (“a‘ = “b‘)
then “a‘
else {<↓>}

 selection is defined as the concatena
with the union of the traces of eac

potent axiom (sel.3) defined in the last chapter. The

•∈∀ Simplex “x + x‘

⇒

}{ >< x -- by tb2 ⇒

potence of the empty sequen

⇒

}{<>⇒

99

Chapter 6: The Semantics of Tasks

“σ+ σ‘

“σ‘ -- ⇒ by ta1

}{ ><⇒ σ -- by tb2

Simple “x + y‘

 by ta2

 -- by iii

 -- union of traces

The choice between two different simple tasks is presented in the next example:

∈∀ yx, •

⊗<↓>}{ “x‘ ∪ “y‘ --⇒

}{}{}{ ><∪><⊗<↓>⇒ yx

},{}{ ><><⊗<↓>⇒ yx

⇒ {<↓># < x >,<↓># < y >} -- by cp1

pty activity:

mple “x + ε‘

><⊗<↓>⇒ x y tb1 and tb2

 -- union of traces

},,,{ -- by tc5

The choice between a simple task and an em

><↓><↓⇒ yx

∈∀ Six •

⊗<↓>}{ “x‘ ∪ “ε‘ -- by ta2 ⇒

}{}{}{ <>∪ -- b

},{}{ <>><⊗<↓>⇒ x

⇒ {<↓># < x >,<↓># <>} -- by cp1

 -- by tc5

In a similar way, the choice between a simple task and succeed results in a trace with

x‘ ∪ “σ‘ -- by ta2

},,{ <↓>><↓⇒ x

x and a trace with σ, both preceded by a commit:

•∈∀ Simplex “x + σ‘

⊗<↓>⇒ }{ “

}{}{}{ ><∪><⊗<↓>⇒ σx -- by tb2

},{}{ ><><⊗<↓>⇒ σx -- union of traces

⇒ {<↓># < x >,<↓># < σ >} -- by cp1

},,,{ ><↓><↓⇒ σx -- by tc5

100

Chapter 6: The Semantics of Tasks

The selection between a simple task and fail is solved in the same way:

∈∀ Simpx •le “x + φ‘

⊗<↓>⇒ }{ “x‘ ∪ “φ‘ -- by ta2

}{}{}{ ><∪><⊗<↓>⇒ φx -- by tb2

},{}{ ><><⊗<↓>⇒ φx -- union of traces

⇒ {<↓># < x >,<↓># < φ >} -- by cp1

},,,{ ><↓><↓⇒ φx -- by tc5

A selection between
two tra

“σ+ φ‘

{

<↓⇒ by tb

<↓⇒

succeed and fail results, as can be expected, results in a set with
ces with σ and φ, both preceded by ↓:

⊗} “σ‘ ∪ “φ‘ -- by ta2 <↓>⇒

{ }{}{} ><∪><⊗> φσ -- 2

{ },{} ><><⊗> φσ -- union of traces

># < σ >,<↓># < φ >} -- by cp1 ⇒ {<↓

{ },,, ><↓> φσ -- by tc5 <↓⇒

for parallelism of a||b is defined as the interleaving of the set of
traces o e operator // which uses the union distribution
is appli

Below,
tasks in parallel composition:

x || y‘

 “x‘ // “y‘ -- by tp1

 -- by tb2

6.5.4 Tracing a Parallel Composition of Activity

Parallelism was defined before simply as the simultaneous execution of tasks. The
precise meaning expressed here is that parallel composition is solved as the
interleaving of all the possible terminations of the simple tasks within the expression:

∀a, b : Activity • “a || b‘ = “a‘ // “b‘ (tp1)

Specifically, traces
f a with the set of traces of b. Th
ed.

 an example showing the transformation of an expression with two simple

•∈∀ Simpleyx, “

⇒

}//{}{ ><><⇒ yx

101

Chapter 6: The Semantics of Tasks

x >~< y >} -- by di1 ⇒ ∪{<

< x,y >,< y,x >}} -- by⇒ ∪{{ ti9

A simple task ctivit y in the simple
task:

},,,{ ><><⇒ xyyx

in parallel composition with an empty a y results onl

•∈∀ Simplex “x || ε‘

 ⇒ “x‘ // “ε‘ -- by tp1

}//{}{ <>><⇒ x -- by tb2 and tb1

⇒ ∪{< x >~<>} -- by di1

⇒ ∪{{< x >}} -- by ti2

}{ ><⇒ x

A finis
case, the example depicts a simple task with succeed as the other operand:

x || σ‘

 “x‘ // “σ‘ -- by tp1

hed activity predominates over any expression in parallel composition. In this

•∈∀ Simplex “

⇒

}//{}{ ><><⇒ σx -- by tb2

⇒ ∪{< x >~< σ >} -- by di1

⇒ ∪{{< σ >}} -- by ti4

}{ ><⇒ σ

The case of a pair of empty activities in parallel composition is shown below:

“ε || ε‘

“ε‘ // -- by tp1 ⇒ “ε‘

}//{}{ <><> -- by tb1 ⇒

∪{<>~<>} -- by di1 ⇒

∪{{<>}} ⇒ -- by ti1

}{<>⇒

102

Chapter 6: The Semantics of Tasks

When succ σ p

“σ|| σ‘

eed is in both sides of the operator, only one revails:

 “σ‘ // “σ‘ -- by tp1 ⇒

}//{}{ ><><⇒ σσ -- by tb2

⇒ ∪{< σ >~< σ >} -- by di1

⇒ ∪{{< σ >}} -- by ti3

}{ ><⇒ σ

The next example shows the empty activity in parallel composition with succeed:

“ε || σ‘

 “ε‘ // “σ‘ -- by tp1 ⇒

}//{}{ ><<>⇒ σ -- by tb1 and tb2

∪{<>~< σ >} -- by d⇒ i1

⇒ ∪{{< σ >}} -- by ti1

}{ ><⇒ σ

In the case l, suc fail:

“σ || φ‘

σ

 of succeed in parallel composition with fai ceed will prevail over

 “ ‘ // “φ‘ -- by tp1 ⇒

}//{}{ ><><⇒ φσ -- by tb2

⇒ ∪{< σ >~< φ >} -- by di1

⇒ ∪{{< σ >}} -- by ti3

}{ ><⇒ σ

The final c e ressio is in both
sides of the parallel composition operator:

“φ || φ‘

“φ‘ // “φ‘ -- by tp1

ase presented in this section presents an xp n where fail

⇒

}//{}{ ><><⇒ φφ -- by tb2

103

Chapter 6: The Semantics of Tasks

∪{< φ >~< φ >} -- by di1 ⇒

∪{{< φ >}} -- by ti5 ⇒

}{ ><⇒ φ

6.5.5 Tracing a Repetition of Activity

The interp tation f tions

these in other rules.

Just as the syntactic m nds a repetition over some activity x in:
µx.f(x), i with infinite traces, binding a
fixpoint over a set of traces t) is that to determine the correct
form of th be applied recursively
within the scope of the fixpoint; but the mapping function is defined to be applied to
syntactic up lated to the
property of completeness of the semantics proposed for our algebra, because a way is
needed of pe where t is bound.
Completeness is a property not considered fully within the scope of this work because

from this
research.

Supposing that the “ ‘ function has an abstract inverse, “ ‘-1, such that:

∀x : Activity • ∀y : Trace • “x‘ = y ⇔ “y‘ = x ∧ “ “y‘ ‘ = y

rms of t by referring to x as “t‘-1, and later expect “x‘=
 -1 ccordance with the identity law that a function applied to its inverse

ty function. With this supposition, the form of the trace expression g(t)
can be der

∀ ‘

 -1 t

)

<↓>} ⊗ (“ε ‘ ∪ t)) -- by the identity law

µt.(“a‘ ⊗ ({<↓>} ⊗ {<>}) ∪ ({<↓>} ⊗ t))

re or repetition is more difficult to express. While the construc
already explained produce finite sets of traces, the repetition involve computing
infinite sets of traces. Traces are usually records of finite executions [135]. Even
when it is possible to express formally infinite traces, in practice it is hard to combine

odel of repetition bi
t is also desirable to express the repetition

t in: µt.g(. The problem
e expression g(t), the mapping function “ ‘ should

 expressions. We need to make this s position, which is re

 referring to the recursion variable x in a sco

it is complex to prove and will be specified as possible future work arising

-1 -1

After this, x can be denoted in te
“ “t‘ ‘ = t, in a
yield the identi

ived by construction:

a : Activity • “ µx.(a ; ε + x)

= µt.(“ a; ε + “t‘ ‘) -- mapping the fixpoin

= µt.(“a‘ ⊗ “ε + “t‘-1‘) -- by (ts1)

= µt.(“a‘ ⊗ {<↓>} ⊗ (“ε ‘ ∪ ““t‘-1‘)) -- by (ta2

= µt.(“a‘ ⊗ {

= µt.(“a‘ ⊗ {<↓>} ⊗ ({<>}∪ t)) -- by (tb1)

=

104

Chapter 6: The Semantics of Tasks

= µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ -- t))) left-distributive over ∪

Intuitively a es, co f the traces of a
concatenated with the choice to stop the repetition or the choice to repeat the whole
cycle. Fo loop.
For any given set of traces, an unrolling rule may be constructed for the semantic
expression, to unwrap one repetition of th cycle The oint expression
would be recursively substituted for t.

In the same way, the form on
for the while-loop:

∀ ε + a ; x) ‘

= µt.({<↓>} ⊗ (“ε‘ ∪ “a; “t‘ ‘)) -- by (ta2)

= µt.({<↓>} ⊗ ({<>} ∪ “a; “t‘ ‘)) -- by (tb1)

= µt.({<↓>} ⊗ ({<>} ∪ (“a‘ ⊗ ““t‘ ‘))) -- by (ts1)

= µt.({<↓>} ⊗ ({<>} ∪ (“a‘ ⊗ t))) -- by the identity law

= µt.(({<↓>} ⊗ {<>}) ∪

({<↓>} ⊗ (“a‘ ⊗ t))) -- left-distributive over ∪

= µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by (cp1)

e to finish
the while-loop or the choice of the traces of a followed with the repetition of the
whole cycle. By derivation, this is the formal representation of infinite traces for the
while-loop. As for the until-loop, for any given set of traces an unrolling rule may be

whole fixpoint expression would be recursively substituted for t.

The forms of the trace expressions explained before can be used as the general cases
for infini r al
case, becaus pty activity is transformed in the empty trace:

∀a

 then {<>} (tr1

 else µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) (tr2)

∀a : Activity • “µx.(ε + a ; x)‘ = if (a = ε)

 then {<>} (tr3)

, this means t is bound over a set of tr c nsisting o

rmally, this is the complete representation of infinite traces for the until-

e . whole fixp

of the trace expression g(t) can be derived by constructi

a : Activity • “ µx.(

 = µt.(“ ε + a; “t‘-1 ‘) -- mapping the fixpoint

-1

-1

-1

Intuitively, this means t is bound over a set of traces, consisting of the choic

constructed for the semantic expression, to unwrap one repetition of the cycle. The

te repetitions. In addition, when the activity is empty is conside ed a speci
e the em

 : Activity • “µx.(a ; ε + x) ‘ = if (a = ε)

)

105

Chapter 6: The Semantics of Tasks

 } ⊗ (“a‘ ⊗ t))) (tr4)

The until-loop ial case when the
repetition is empty, (tr2) manages the general case where the fixpoint µx is converted
into a fixpoint µt in the semantics. In the same w
functions (tr3) and (tr4), where the functi e
empty ac
semant
express
µt:

µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 ∪ ({<↓>} ⊗ t))) -- by tb2

µt.(

, ↓>} ∪ ({<a, ↓>} ⊗ t)) -- by cp1

le depicted the repetition of a simple task. Repetition of empty activity
is solved as a special case:

“µx.(ε;ε+x) ‘

 {<>} -- by tr1

The reason is because the expression as the one in the las am y
axioms (r. be
reduced by

“µx.(φ; ε+x) ‘

µt.(“φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb2

µt.(({<φ>} ⊗ {<↓>})

∪ ({<φ>} ⊗ ({<↓>} ⊗ t))) -- by distributive law

µt.({<φ>} ∪ ({<φ>} ⊗ ({<↓>} ⊗ t))) -- by cp1

 else µt.({<↓>} ∪ ({<↓>

 is defined in (tr1) and (tr2).Whilst (tr1) treats the spec

ay, the while-loop is defined by
on (tr3) specifies the special case for th

tivity and the function (tr4) converts the fixpoint µx into a fixpoint µt in the
ics. Consequently, an abstract syntax repetition is translated to its resultant
ion in the semantic domain. For instance, the function (tr1) maps to fixpoint

•∈∀ Simplea “µx.(a;ε+x) ‘

⇒ -- by tr2

 µt.({<a>} ⊗ ({<↓>}⇒

⇒ ({<a>} ⊗ {<↓>})

∪ ({<a>} ⊗ ({<↓>} ⊗ t))) -- by distributive law

 µt.({<a, ↓>} ∪ ({<a>} ⊗ ({<↓>} ⊗ t))) -- by cp1 ⇒

⇒ µt.({<a, ↓>} ∪ (({<a>} ⊗ {<↓>}) ⊗ t)) -- by associative law

⇒ µt.({<a

The last examp

⇒

t ex ple may be reduced b
1) and (s.3). In a similar situation, a fail alone within the repetition may
 axioms (r.1) and (s.4), but can be interpreted in the semantics:

⇒

⇒

⇒

⇒

106

Chapter 6: The Semantics of Tasks

 µt.({<φ>} ∪ (({<φ>} ⊗ {<↓>}) ⊗ t)) -- by associative law ⇒

⇒ µt.({<φ>} ∪ ({<φ>} ⊗ t)) -- by cp1

⇒ U
=

><
1

}{
i

φ
∞

infinite union

 {<φ>}

An expre the same derivations:

“µx.(σ; ε+x) ‘

 ⊗ {<↓>})

∪ ({<σ>} ⊗ ({<↓>} ⊗ t))) -- by distributive law

tiv

1i

 {<σ>} -- set union

Similar examples are depicted for the while-loop structure to exemplify the behaviour
defined by (tr3 yntax hile-loop
is translated to its resultant expression in the semantic domain:

µx.(ε+a; x) ‘

µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by tr4

µt.({<↓>} ∪ ({<↓>} ⊗ ({<a>} ⊗ t)))

µ ↓ ∪ ↓ ⊗ ⊗

Repetition of e

“µx.(ε+ε; x) ‘

 --

 -- set union ⇒

ssion with succeed instead of fail can follow

 µt.(“σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2 ⇒

 µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb2 ⇒

⇒ µt.(({<σ>}

 µt.({<σ>} ∪ ({<σ>} ⊗ ({<↓>} ⊗ t))) -- by cp1 ⇒

 µt.({<σ>} ∪ (({<σ>} ⊗ {<↓>}) ⊗ t)) -- by associa e law ⇒

 µt.({<σ>} ∪ ({<σ>} ⊗ t)) -- by cp1 ⇒

 U >< }{ σ -- infinite union
∞

=

⇒

⇒

) and (tr4). The next example shows how an abstract s w

•∈∀ Simplea “

⇒

⇒ -- by tb2

⇒ t.({< >} (({< >} {<a>}) t)) -- by associative law

⇒ µt.({<↓>} ∪ ({<↓, a>} ⊗ t)) -- by cp1

mpty activity in a while-loop is treated also as a special case:

107

Chapter 6: The Semantics of Tasks

⇒ {<>}

A fail alon axioms (r.1) and (s.4). This can
be interpreted in the semantics:

“µx.(ε+ φ; x) ‘

µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ t))) -- by tr4

µ ↓ ∪ ↓ ⊗ φ ⊗

ssociative law

↓>} ∪ ({<↓, φ>} ⊗ t)) -- by cp1

-- by tr3

e within the repetition may be reduced by

⇒

⇒ t.({< >} ({< >} ({< >} t))) -- by tb2

⇒ µt.({<↓>} ∪ (({<↓>} ⊗ {<φ>}) ⊗ t)) -- by a

⇒ µt.({<

⇒ U ><↓<↓>
∞

=

An expression with succeed instead of fail can follow the same derivations:

“µx.(ε+ σ; x) ‘

 -- by tr4

µt.(-- by tb2

µt.({<↓>} ∪ (({<↓>} ⊗ {<σ>}) ⊗ t))

 -- by cp1

1

{
i

 {<↓>, <↓, σ>}

Additionally, just as the unrolling axioms in the abstract syntax level are necessary to
ressions, there are rules for unrolling in the semantic level. Rules (tr5)

and (tr6) define the unrolling for the until- and while-loops:

µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- unrolling until-loop (tr5)

⇔ “a‘ ⊗ ({<↓>} ⊗ (“ ‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))

if (a ≠ ε)

 ({< >} (“a‘ -- unrolling

},{ φ -- infinite union
1i

 {<↓>, <↓, φ>} ⇒

⇒ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t)))

{<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t))) ⇒

 -- by associative law ⇒

 µt.({<↓>} ∪ ({<↓, σ>} ⊗ t)) ⇒

⇒ U
∞

=

><↓<↓> }, σ -- infinite union

⇒

expand the exp

•∈∀ Activitya

ε

•∈∀ Activitya µt.({<↓>} ∪ ↓ ⊗ ⊗ t))) while-loop (tr6)

108

Chapter 6: The Semantics of Tasks

⇔ ⊗ (“a‘ ⊗ t)))))

Examples unrolling until-loop expressions by app
these examples shows the unrolling of an until-loop with a simple element:

µx.(a;ε+x) ‘

 >}

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))) -- by tr5

 ({<↓>} ⊗ ({<>} ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))) -- by tb1

µt.(({<a>} ⊗ {<↓>}) ∪ ({<a>} ⊗ ({<↓>} ⊗ t)))))

 -- by distributive law of ⊗ ∪

⊗ ↓ ⊗ ∪ ↓ ⊗

µ ⊗ ↓ ∪ ⊗ ↓ ⊗ t)))))

-- by distributive law of ⊗ over ∪

⊗ ↓ ∪ ↓ ⊗ µ ↓>} ∪ ({<a>} ⊗ ({<↓>} ⊗ t)))))

 -- by cp1

 ({<a>} ⊗ {<↓>}) ∪

⊗ ↓ ⊗ µ ↓ ∪ ⊗ ↓ ⊗

↓ ∪ ({<a, ↓ ⊗ µ ↓ ∪ ↓ ⊗

 -- by cp1

 {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>}

if (a ≠ ε)

lying the rule (tr5). The first of

•∈∀ Simplea “

⇒ µt.(“a‘ ⊗ ({<↓ ∪ ({<↓>} ⊗ t))) -- by tr2

⇒ “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘

⇒ “a‘ ⊗

 {<a>} ⊗ ({<↓>} ⊗ ({<>} ∪ µt.({<a>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))) ⇒

-- by tb2

 {<a>} ⊗ ({<↓>} ⊗ ({<>} ∪ ⇒

 over

 {<a>} (({< >} {<>}) ({< >} ⇒

t.(({<a>} {< >}) ({<a>} ({< >}

 {<a>} ({< >} ({< >} t.({<a, ⇒

⇒

({<a>} ({< >} t.({<a, >} ({<a>} ({< >} t)))))

-- by distributive law of ⊗ over ∪

⇒ ({<a>} ⊗ {<↓>}) ∪

({<a>} ⊗ {<↓>} ⊗ µt.({<a, ↓>} ∪ ({<a>} ⊗ {<↓>} ⊗ t)))

 -- by associativity of ⊗

 {<a, >} >} t.({<a, >} ({<a, >} t)))) ⇒

109

Chapter 6: The Semantics of Tasks

Unrolling of fail:

“µx.(φ; ε+x) ‘

 µt.(“φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

{<↓>} ⊗ (“ε‘ ∪ µt.(“φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))) -- by tr5

“φ‘ ⊗ ({<↓>} ⊗ ({<>} ∪ µt.(“φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))) -- by tb1

 {<φ>} ↓>} ⊗ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))

-- by tb2

 {<φ>} ⊗ ({ ↓>} ⊗

>} ⊗ {<↓>}) ∪ ({<φ>} ⊗ ({<↓>} ⊗ t)))))

 -- by distributive law of ⊗ over ∪

 {< } ⊗ (({<↓>} ⊗

-- by distributive law of ⊗ over ∪

 {<φ>} ↓>} ∪ ⊗ µt.({<φ>} ∪ ({<φ>} ⊗ ({<↓>} ⊗ t)))))

 -- by cp1

 ({<φ>} {<↓>}) ⊗ ({<↓>} ⊗

t.({< φ>} ⊗ ({<↓>} ⊗ t)))))

 ({<φ>} ⊗ {<↓>}) ∪ ({<φ>} ⊗ {<↓>} ⊗

µt.({<φ>} ∪ ({<φ>} ⊗ ({<↓>} ⊗ t)))) -- by associativity of ⊗

 {<φ>} φ>} -- by cp1

 {< -- by set union

Unrolling of succeed:

“µx.(σ; ε

“σ‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))) -- by tr5

⇒

⇒ “φ‘ ⊗ (

 ⇒

⊗ ({< ({<>} ∪⇒

 < ({<>} ∪⇒

µt.(({<φ

φ> ({<↓>} ⊗ {<>}) ∪⇒

µt.(({<φ>} ⊗ {<↓>}) ∪ ({<φ>} ⊗ ({<↓>} ⊗ t)))))

⊗ ({< ({<↓>}⇒

⊗ ∪ ({<φ>} ⇒

µ φ>} ∪ ({<

-- by distributive law of ⊗ over ∪

⇒

∪ {< ⇒

φ>} ⇒

+x) ‘

⇒ µt.(“σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

⇒

110

Chapter 6: The Semantics of Tasks

⇒ “σ‘ ⊗ ({<>} ∪ µt.(“σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))) -- by tb1

 ({<↓>} ∪ ({<↓>} ⊗ t)))))

-- by tb2

} ⊗ ({<>} ∪

µt.(({<σ>} ⊗ {<↓>}) ({<σ >} ⊗ t)))))

 -- by distributive law of ⊗ over ∪

 {<σ>} ⊗ (({<↓>} {<>}) ∪ ({

 ⊗ ({<↓>} ⊗ t)))))

ributive law of ⊗ over ∪

 ∪ ({<σ>} ⊗ ({<↓>} ⊗ t)))))

 -- by cp1

-- by distributive law of ⊗ over ∪

 ({<σ>} ⊗ {<↓>}) ∪ ({<σ>} ⊗ {<↓>} ⊗

µt.({<σ>} ∪ ({<σ>} ⊗ ({<↓>} ⊗ t)))) -- by associativity of ⊗

 {<σ>} ∪ {<σ>} -- by cp1

 {<σ>} -- by set union

Finally, the exam xpressions by applying the rule (tr6) are
presented below. Unrolling an exp e ion w

a

µt.({<↓>} -- by tr4

 {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))) -- by tr6

↓>} ⊗ (“a‘ ⊗ t))))) -- by tb1

↓>} ∪ ({<↓>} ⊗ ({<a>} ⊗ t)))))

-- by tb2

 ⊗ ({<↓>}

 {<σ>} ⊗ ({<↓>} ⊗ ({<>} ∪ µt.({<σ>} ⊗⇒

 {<σ> {<↓>} ⊗ (⇒

 ∪ >} ⊗ ({<↓

⊗ <↓>} ⊗ ⇒

µt.(({<σ>} ⊗ {<↓>}) ∪ ({<σ>}

-- by dist

 {<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ µt.({<σ>}⇒

⇒ ({<σ>} ⊗ {<↓>}) ∪ ({<σ>} ⊗ ({<↓>} ⊗

µt.({<σ>} ∪ ({<σ>} ⊗ ({<↓>} ⊗ t)))))

⇒

⇒

⇒

ples unrolling while-loop e
r ss ith a simple element:

•ple “µx.(ε+a; x) ‘ ∈∀ Sim

⇒ ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))

⇒

 {<↓>} ⊗ ({<>} ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<⇒

⇒ {<↓>} ⊗ ({<>} ∪ ({<a>} ⊗ µt.({<

111

Chapter 6: The Semantics of Tasks

 ({<↓>} ⊗ {<>}) ∪ ({<↓>}⊗ ({<a>} ⊗ ⇒

µt.({<↓>} ∪ ⊗ t))

-- by distributive law of ⊗ over ∪

 ({<↓>} ⊗ {<>}) ∪ ({<↓>}⊗ {<a>} ⊗

 ∪ ({<↓>} ⊗ {<a>} ⊗ t))) -- by associativity of ⊗

 {<↓>} ∪ ({<↓, a>} ⊗ µ by cp1

Unrolling

“µx.(ε+φ; x) ‘

 -- by tr4

 {<↓>} ⊗ (“ε‘ ∪ (“φ‘ ⊗ µ)) -- by tr6

↓>} ⊗ (“φ‘ ⊗ t))))) -- by tb1

 {<↓>} ⊗ ({<)))))

-- by tb2

<↓>} ⊗ {<>}) ∪ ({<↓>} ⊗ ({<φ>} ⊗

 by distributive law of ⊗ over ∪

 ({<↓>} ⊗ {<>}) ∪ ({<↓>} ⊗ {<

 ∪ ({<↓>} ⊗ {<φ>} ⊗ t))) -- by associative law

 {<↓>} ∪ ({<↓, φ>} µt.({<↓>} φ>} ⊗ t))) -- by cp1

Unrolling in the while-loop:

“µx.(ε+σ; x) ‘

 -- by tr4

 ({<↓>} ⊗ ({<a>})))

⇒

µt.({<↓>}

t.({<↓>} ∪ ({<↓, a>} ⊗ t))) --⇒

 of fail in the while-loop:

 µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ t))) ⇒

t.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ t)))⇒

 {<↓>} ⊗ ({<>} ∪ (“φ‘ ⊗ µt.({<↓>} ∪ ({<⇒

>} ∪ ({<φ>} ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t⇒

⇒ ({

µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t)))))

--

φ>} ⊗ ⇒

µt.({<↓>}

⊗ ∪ ({<↓, ⇒

 of succeed

 µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t))) ⇒

⇒ {<↓>} ⊗ (“ε‘ ∪ (“σ‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t))))) -- by tr6

⇒ {<↓>} ⊗ ({<>} ∪ (“σ‘

))

 ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t))))) -- by tb1

⇒ {<↓>} ⊗ ({<>} ∪ ({<σ>} ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t)))

112

Chapter 6: The Semantics of Tasks

-- by tb2

 ({<↓>} ∪ ↓> ⊗

t.({<↓ >} ⊗ ({<σ>} ⊗ t)))))

by distributive law of ⊗ over ∪

 ({< >} ⊗ {<↓>} ⊗ {<σ>} ⊗

µt. -- by associative law

>} ⊗ t))) -- by cp1

 corresponding examples
without the unrolling). The general proof of soundness will be provided in Chapter 7.

6.5.6 Tracing the Unpacking of Activity

Encapsul ary, allowing to establish a limit
for the effect of ed in the task boundary
syntax, to facilitat

∀ vity • pack(“a‘) (tu1)

Unpacking an activity eliminates the task boundary promoting the activity to the
higher level. σ oundary and is eliminated
for the higher level. On the other hand, φ remains in the higher level propagating the
failure.

The encapsu in the next examples. Encapsulation
of a simp

{x}T‘

⇒ unpack

 ⊗ {<>}) ({< } ⊗ ({<σ>} ⇒

µ >} ∪ ({<↓

--

↓ {<>}) ∪ (⇒

({<↓>} ∪ ({<↓>} ⊗ {<σ>} ⊗ t)))

 {<↓>} ∪ ({<↓,σ>} ⊗ µt.({<↓>} ∪ ({<↓, σ⇒

It is important to remember that each unrolled expression is semantically equivalent to
the expression in the first examples of this section (i.e., the

ation provides a scope within the task bound
Exit. A subscript T is allowed to be add
e the identification of the compound tasks:

a : Acti “{a}T‘ = un

 is understood as early success within the b

lation of basic elements is depicted
le task:

•∈∀ Simplex “

unpack (“x‘) -- by tu1 ⇒

})>< x -- by tb2 ({

⇒ {lift(x)} -- by up1

⇒ {x.(lift <>)} -- by li3

⇒ {x. <>} -- by li1

The encapsulation

“{ε}T‘

}{ > -- cons operator <⇒ x

 of the empty activity results in the empty activity:

113

Chapter 6: The Semantics of Tasks

unpack⇒ (“ε‘) -- by tu1

y tb1

The use of succeed an psulation in the abstract
syntax representation. ed in an empty
activity:

“{σ}T‘

 -- by tu1

}) -- b({<>⇒ unpack

⇒ {lift <>} -- by up1

}{<> -- by li1 ⇒

d fail is the main reason of the enca
Succeed in an encapsulation is transform

unpack⇒ (“σ‘)

})({ ><⇒ σunpack -- by tb2

{lift < σ >} -- by up1 ⇒

}{<> -- ⇒ by li2

More interesting results can be seen using bination with a binary
operator such as sequential com σ the right operand:

{x; σ}T‘

succeed in com
position, being

•∈∀ Simplex “

unpack (“x; σ⇒ ‘ by tu1

“x‘ ⊗ “σ‘)

({unpack ‘) -- by tb2

) --

unpack⇒ (-- by ts1

⊗>}x “σ<⇒

}){}({ ><⊗><⇒ σxunpack -- by tb2

unpack({< x ># < σ >}) -- by cp1 ⇒

}),({ ><⇒ σxunpack -- by tc6

⇒ {lift < x,σ >} -- by up1

 -- by li3 ⇒ {x.(lift < σ >)}

{x. <>} -- by li2 ⇒

}{ >< x -- cons op⇒ erator

114

Chapter 6: The Semantics of Tasks

Placing succeed over oduces first the elimination of the simple task in the
right and, subsequently, the transformation of σ into the empty activity, when the
lower level is eliminated:

{σ, x}T‘

“σ

- by ts1

“ ‘ {< x >}) -- by tb2

the left pr

•∈∀ Simplex “

unpack⇒ (; x‘) -- by tu1

unpack (“σ‘ ⊗ “x‘) -⇒

unpack⇒ (σ ⊗

}){}({ ><⊗><⇒ xunpack σ -- by tb2

σ ># < x >}) -- by cp1 ⇒ unpack({<

})({ ><⇒ σunpack -- by tc2

⇒ {lift < σ >} -- by up1

}{<>⇒ -- by li2

For selection being succeed in the right side:

{x + σ}T‘

 unpack(“x + σ‘) -- by tu1

“x‘ U “σ‘) -- by ta2

-- by tb2

 -- union of traces

•∈∀ Simplex “

⇒

⊗<↓>⇒ }({unpack

}){}{}({ ><∪><⊗<↓>⇒ σxunpack

}),{}({ ><><⊗<↓>⇒ σxunpack

⇒ unpack({<↓># < x >,<↓># < σ >}) -- by cp1

 -- by tc5 ⇒ unpack({<↓, x >,<↓,σ >})

 -- by up1 ⇒ {lift <↓, x >, lift <↓σ >}

⇒ {↓ .(lift < x >),↓.(lift < σ >)} -- by li3

 -- by li2 ⇒ {↓ .(lift < x >),↓.(lift <>)}

 -- by li3 ⇒ {↓.x.(lift <>),↓.(lift <>)}

⇒ {↓.x. <>,↓ . <>} -- by li1

115

Chapter 6: The Semantics of Tasks

⇒ {<↓, x >,<↓>} -- cons operator

cceed:

ck(“x || σ‘) -- by tu1

“x‘ // “σ‘) -- by tp1

For parallel composition with su

•∈∀ Simplex “{x || σ}T‘

⇒ unpa

 unpack⇒ (

})//{}({ ><><⇒ σxunpack -- by tb2

⇒ unpack(∪{< x >~< σ >}) -- by di1

⇒ unpack(∪{{< σ >}}) -- by ti4

})({ ><⇒ σunpack

⇒ {lift <>} -- by up1

 -- by li1

Both selection and parallel composition are defined in the abstract syntax as

“{φ} ‘

φ) -- by tu1

}{<>⇒

commutative, therefore inverting the order of the operands for the expressions in the
last two examples will generate the same set of traces for each expression. Whilst σ is
eliminated by the application of the unpacking function, φ is promoted to the higher
level, propagating the fail and eliminating the traces that are combined with it:

T

unpack⇒ (“ ‘

})({ ><⇒ φunpack -- by tb2

⇒ {lift < φ >} -- by up1

⇒ {φ.(lift <>)} -- by li3

⇒ {φ. <>} -- by li1

}{ ><⇒ φ -- cons operator

 in combination with a binary operator such as
 right:

 by tu1

The next example depicts the use of fail
sequential composition, being fail the operand on the

•∈∀ Simplex “{x; φ}T‘

unpack⇒ (“x; φ‘) --

116

Chapter 6: The Semantics of Tasks

unpack⇒ (“ ⊗ --x‘ “φ‘) by ts1

-- by tb2 ⊗><⇒ }({ xunpack “φ‘)

}){}({ ><⊗><⇒ φxunpack -- by tb2

⇒ unpack({< x ># < φ >}) -- by cp1

}),({ ><⇒ φxunpack -- by tc6

⇒ {lift < x,φ >} -- by up1

⇒ {x.(lift < φ >)} -- by li3

⇒ {x.φ.(lift <>)} -- by li3

⇒ {x.φ. <>} -- by li1

},{ ><⇒ φx -- cons operator

Placing fail over the left produces the elimination of the simple task in the right:

{φ; x

by tu

by ts

•∈∀ Simplex “ }T‘

unpack⇒ (“φ; x‘) -- 1

unpack⇒ (“φ‘ ⊗ “x‘) -- 1

unpack⇒ (“φ‘ ⊗ {< x >}) -- by tb2

}){}({ ><⊗><⇒ xunpack φ -- by tb2

⇒ unpack({< φ ># < x >}) -- by cp1

})({ ><⇒ φunpack -- by tc3

{lift < φ >} -- by up1 ⇒

⇒ {φ.(lift <>)} -- by li3

⇒ {φ. <>} -- by li1

}{ ><⇒ φ -- cons operator

For sel

x

 unpack(“x +

ection with fail:

•mple “{x + φ}∈∀ Si T‘

 φ‘) -- by tu1 ⇒

117

Chapter 6: The Semantics of Tasks

⊗<↓>⇒ }({unpack “x‘ U “φ‘) -- by ta2

}){}{}({ ><∪><⊗<↓>⇒ φxunpack -- by tb2

({<↓⇒ unpack }),{} ><><⊗> φx -- union of traces

⇒ unpack({<↓># < x >,<↓># < φ >}) -- by cp1

) -- by tc5 ⇒ unpack({<↓, x >,<↓,φ >}

⇒ {lift <↓, x >, lift <↓,φ >} -- by up1

⇒ {↓ .(lift < x >),↓.(lift < φ >)} -- by li3

⇒ {↓.x.(lift <>),↓.φ.(lift <>)} -- by li3

⇒ {↓.x. <>,↓ .φ. <>} -- by li1

⇒ {<↓, x >,<↓,φ >} -- cons operator

For parallel composition with fail:

•∈∀ Simplex “{x || φ}T‘

unpack(“x || φ‘) -- by tu1

 “x‘ // “φ‘) -- by tp1

⇒

unpack⇒ (

})//{}({ ><><⇒ φxunpack -- by tb2

⇒ unpack(∪{< x >~< φ >}) -- by di1

⇒ unpack(∪{{< φ >}}) -- by ti6

⇒ unpack({< φ >})

⇒ {lift < φ >} -- by up1

⇒ {φ.(lift <>)} -- by li3

⇒ {φ. <>} -- by li1

}{ ><⇒ φ -- cons operator

6.6 S

bra
presented in the previous chapter. The semantics were presented in terms of trace sets

prese tem. The trace semantics
ombinations of the basic

ummary

This chapter described the simple denotational semantics for the abstract task alge

re nting all possible complete execution paths for a sys
for the algebra was explained using examples showing c

118

Chapter 6: The Semantics of Tasks

elements. The soundness of the axioms from chapter 4 and congruence properties are
presented in the next chapter.

119

Chapte
Sou
Tasks

emantics in terms of traces of the

r 7:
ndness for the Semantics of

The previous chapter described the denotational s
constructions in the abstract task algebra. In this chapter, the t
used to prove the soundness of the axioms for the task algebra

race semantics are
 illustrated in the

chapter 4. Some examples of congruence properties are demonstrated for the algebra.
A full listing of congruence properties is defined in Appendix B.

 algebra to prove that the axioms are really trace
equivalent; i.e. that the axioms are true for all the elements of the algebra. The next

In this section, the soundness of the abstract task algebra is proved. The soundness of
an algebra means constructions which are equivalent,
according to the axioms of the algebra, are also equivalent in the semantics. In other

interpretations. Informally it can be said that it is impossible to derive contradictory
s

using the semantic definitions and a set of basic properties for the semantic functions
s ollow

• A.2 Distribution of ⊗ over union

• A.3 Identity for ⊗

• A.4 Associativity of //

• A.5 Commutativity of //

• A.6 D

7.1 Introduction

Soundness is a basic requisite in an

section demonstrates the soundness of the task algebra. Each of the axioms of the
task algebra is proved to hold, based on the given trace semantics, and on the
fundamental properties of the semantic functions.

7.2 Soundness

 to prove that syntactic

words, every theorem that is provable in the axioms is also provable in all semantic

propositions [141]. The soundness of the task algebra is proved for all their axiom

A.1 to A.8. The set of basic properties are a f s:

• A.1 Associativity of ⊗

istribution of // over union

120

Chapter 7: Soundness for the Semantics of Tasks

• A.7 Identity for //

• A.8 Distribution of unpack over union

These properties are assumed to hold here, and are derived in Appendix A. In
ases
 and

identifier. The base case of commit needed to be proved with a more profound
analysis. It was ne sible cases for trace2: ↓.rest and
a.rest. The ↓.rest case for trace2 was proved again by mathematical induction over
the len
follows directly from

7.2.1 Sequenti

The ta osition:
associative sequence (s.1), right distributivity of sequence over selection ty
sequence (s.3), early end with fail (s.4), and early end with succeed (s.5). In this
section, und by deriving the semantics of each
equival

7.2.1.1 Soun

property A.1, lemma 1 was proved by mathematical induction defining as base c
arbitrary traces of length 0 and 1. There are 5 base cases: <>, <φ>, <σ>, <↓>

cessary to analyse the two pos

gth of rest with base case of length 0 and 1. In the case of a.rest the proof
 the properties.

al composition

sk algebra defines for the following axioms for sequential comp
(s.2), emp

 each of these axioms is proved so
ence expression in the axioms.

dness for the associative sequence axiom

•∈∀ Activitycba ,, “a; (b; c)‘ = “(a; b); c‘

fi “a‘ ⊗ “(b; c)‘ = “(a; b)‘ ⊗ “c‘ -- by ts1

fi “a‘ ⊗ (“b‘ ⊗ “c‘) = (“a‘ ⊗ “b‘) ⊗ “c‘ -- by ts1

fi “a‘ ⊗ (“b‘ ⊗ “c‘) = “a‘ ⊗ (“b‘ ⊗ “c‘) -- by A.1

appin
concate

7.2.1.2

As can be seen the soundness for the associative sequence is proved by applying the
m g function for tracing a sequence of Activity, followed by the associativity of

nated product (property A.1).

 Soundness for the right distributivity of sequence over
selection axiom

•∈∀ Activitycba ,, “(a + b); c‘ = “(a; c) + (b; c)‘

fi “a + b‘ ⊗ “c‘ = “(a; c) + (b; c)‘ -- by ts1

fi {<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘ = {<↓>} ⊗ (“a; c ‘ ∪ “b; c‘) -- by ta2

fi {<↓> ‘) ⊗ “c‘ = {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘)) -- by ts1

 by A.2

} ⊗ (“a‘ ∪ “b

fi {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))

= {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘)) --

121

Chapter 7: Soundness for the Semantics of Tasks

The so a
sequence of Activity in combination with the application of the general mapping

s rmation by distribution
of concatenated product over union is applied to the left expression to obtain the

fi “a‘ ⊗ ⊗ “a‘ = “a‘ -- by tb1

nction for
ity ent,

and th the
concatenated product.

φ‘ -- by ts1

Exit with s proved deriving the left expression by mapping the sequence and
applying the di ion of <φ> and {t1, t2, …, tn}.
The right-side e for tracing basic elements.

7.2.1.5 ess for the exit with success axiom

Aa

undness for this axiom is proved applying the mapping function for tracing

function for tracing a selection of Activity. Finally, the tran fo

equivalent semantics.

7.2.1.3 Soundness for the empty sequence axiom

•∈∀ Activitya “a; ε‘ = “ε; a‘ = “a‘

 fi “a‘ ⊗ “ε‘ = “ε‘ ⊗ “a‘ = “a‘ -- by ts1

 {<>} = {<>}

fi “a‘ = “a‘ = “a‘ -- by A.3

In this case, the expression are reduced by applying initially the mapping fu
tracing a sequence of Activ followed by the rule for mapping the empty elem

e set containing the empty sequence is eliminated by identity for

7.2.1.4 Soundness for the exit with failure axiom

•∈∀ Activitya “φ; a‘ = “φ‘

 fi “φ‘ ⊗ “a‘ = “

fi {<φ>} ⊗ “a‘ = {<φ>} -- by tb2

 fi {<φ>} ⊗ {t1, t2, …, tn}= {<φ>} Let “a‘ = {t1, t2, …, tn}

 fi {<φ>} = {<φ>} Ui it1
}#{

=
>< φ

 failure i

n

stributed union for the trace concatenat
xpression is mapped by the second rule

 Soundn

•∀ ctivity “σ; a‘ = “∈ σ

 }
i i1=

‘

fi “σ‘ ⊗ “a‘ = “σ‘ -- by ts1

fi {<σ>} ⊗ “a‘ = {<σ>} -- by tb2

fi {<σ>} ⊗ {t1, t2, …, tn}= {<σ>} Let “a‘ = {t1, t2, …, tn}

fi {<σ>} = {<σ> n t }#{ >< σ U

122

Chapter 7: Soundness for the Semantics of Tasks

As in 6
sequence and applying the distributed union for the trace concatenation of <σ> and
{t1, t2,

ements.

The ta), commutative
selection (sel. 2), and idempotent selection (sel. 3). The soundness of these axioms is
proved

7.2.2.1 Soun

.2.1.4, exit with success is proved deriving the left expression by mapping the

…, tn}. The right-side expression is mapped by the second rule for tracing
basic el

7.2.2 Selection

sk algebra defines the axioms of associative selection (sel.1

 below.

dness for the associative selection axiom

•∈ Activity “(a + b) + c‘ = “a+ (b + c)‘ ∀ cba ,,

fi {<↓

 A.2

fi ({<↓>} ⊗ (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘))) ∪ ({<↓>} ⊗ “c‘)

>} ⊗ (“a + b‘ ∪ “c‘) = {<↓>} ⊗ (“a‘ ∪ “b + c‘) -- by ta2

fi {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘)

= {<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘))) -- by ta2

fi {<↓>} ⊗ ((({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘))) ∪ “c‘)

= {<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)))) -- by

= ({<↓>} ⊗“

 ({<↓>} ⊗ ({<↓>} ⊗ “a‘)) ∪ ({<↓>} ⊗ ({<↓>} ⊗ “b‘)))

= ({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ ({<↓>} ⊗ “b‘))

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘))) -- by A.2

fi (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ∪ ({<↓>} ⊗ “c‘)

= ({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) -- by cp1

selection into the semantics, followed by applying distribution of concatenated
produc
product with the commit symbol. Finally, the rule for concatenated product of trace
sets is he expressions to eliminate the case where a redundant commit
exists.

a‘) ∪ ({<↓>} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)))

-- by A.2

fi (

 ∪ ({<↓>} ⊗ “c‘)

Soundness for the associative selection axiom is proved mapping initially the

t over union to successively in order to place each activity in concatenation

applied to t

123

Chapter 7: Soundness for the Semantics of Tasks

7.2.2.2

ba,

fi {<↓

As can lection axiom
initially on of Activity.
After that, the

7.2.2.3

 fi “a‘ = “a‘ -

s six axioms in the task algebra: associative parallel
tative parallel composition (p.2), right distributivity of

allel composition axiom

 Soundness for the commutative selection axiom

•Activity “a + b‘ = “b + a‘ ∈∀

>} ⊗ (“a‘ ∪ “b‘) = {<↓>} ⊗ (“b‘ ∪ “a‘) -- by ta2

fi {<↓>} ⊗ (“a‘ ∪ “b‘) = {<↓>} ⊗ (“a‘ ∪ “b‘)

-- by commutativity of union

 be expected, to solve the soundness for the commutative se
 is applied the general mapping function for tracing a selecti

commutativity for set union is used.

 Soundness for the idempotent selection axiom

•∈∀ Activitya “a + a‘ = “a‘

- by ta1

Soundness for the idempotent selection axiom is resolved in one step by applying the
special case of the mapping function for tracing a selection of Activity.

7.2.3 Parallel composition

Parallel composition define
composition (p.1), commu
concurrency over selection (p.3), instant synchronisation (p.4), fail in parallel
composition (p.5), and succeed in parallel composition (p.6).

7.2.3.1 Soundness for the associative par

•∈∀ Activitycba ,, “(a || b) || c‘ = “a || (b || c)‘

 fi “(a || b)‘ // “c‘ = “a‘ // “(b || c)‘ -- by tp1

Activity and deriving by associativity of the distributed interleaving of trace sets.

7.2.3.2 Soundness for the commutative parallel composition axiom

a || b‘ = “b || a‘

fi “a‘ // “b‘ = “a‘ // “b‘ -- by A.5

 fi (“a‘ // “b‘) // “c‘ = “a‘ // (“b‘ // “c‘) -- by tp1

 fi “a‘ // (“b‘ // “c‘) = “a‘ // (“b‘ // “c‘) -- by A.4

The present axiom is proved to be sound after tracing a parallel composition of

•∈∀ Activityba, “

fi “a‘ // “b‘ = “b‘ // “a‘ -- by tp1

124

Chapter 7: Soundness for the Semantics of Tasks

The axiom for commutative parallel composition is derived initially by mapping from
parallel composition to the distributed interleaving of trace sets. Subsequently, the
elements in the right-side expression are interchanged applying the commutativity for

7.2.3.3 Soundness for the right distributivity of concurrency over
selection axiom

the distributed interleaving of trace sets.

•∈∀ Activitycba ,, “(a + b) || c‘ = “(a || c) + (b || c)‘

fi “a + b‘ // “c‘ = “(a || c) + (b || c)‘ -- by tp1

fi {<↓>} ⊗ (“a‘ ∪ “b‘) // “c‘ = {<↓>} ⊗ (“a || c ‘ ∪ “b || c‘) -- by ta2

fi {<↓>} ⊗ (“a‘ ∪ “b‘) // “c‘ = {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))

-- by tp1

fi {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))

= {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) -- by A.6

In this case, the rule for tracing a selection of Activity and tracing the parallel
composition to the distributed interleaving of trace sets are applied to both
expressions. The final transformation is made by distribution of distributed
interleaving over union.

7.2.3.4 Soundness for the instant synchronisation axiom

•∈∀ Activitya “a || ε‘

 -- by A.7

The instant synchronisation axiom is proved soundness by the identity rule for the
distributed interleaving of trace sets, once the parallel composition has been mapped

ace.

a

 -- by tp1

 fi “a‘ /

 = “a‘

 fi “a‘ // “ε‘ = “a‘ -- by tp1

fi “a‘ // {<>} = “a‘ -- by tb1

fi “a‘ = “a‘

to distributive interleaving and the empty element has been mapped to the empty
tr

7.2.3.5 Soundness for instant failure in parallel composition axiom

∈∀ A •ctivity “a || φ‘ = “φ‘

fi “a‘ // “φ‘ = “φ‘

/ {<φ>} = {<φ>} -- by tb2

125

Chapter 7: Soundness for the Semantics of Tasks

fi {t1, t2, …, tn} // {<φ>} = {<φ>} Let “a‘ = {t1, t2, …, tn}

 fi {<φ
1=

Soundn on axiom is proved by mapping from
parallel composition to the distributed in
the fail eleme g basic lemen . Fin is
represen
in inter

7.2.3.6 Soun

a

>} = {<φ>} U
n t }~{ >< φ
i i

ess for the fail in parallel compositi
terleaving of trace sets, followed by mapping

nt using the second rule for tracin e ts ally, “a‘
ted as a set of traces {t1, t2, …, tn} and each ti applied, using distributed union,

leaving with the fail trace.

dness for instant success in parallel composition axiom

∈∀ A •ctivity “a || σ‘ = “σ‘

 fi “a‘ /

/ “σ‘

 -- by tb2

fi {t1, t et “a‘ = {t1, t2

=

>< σ

The same process described in 6.2.4.5 is a
succeed is used instead of fail.

7.2.4 Repetition

Repetit of an until- and while-loop. It
has two axiom ned: unrolling one
cycle of until- e cyc of w le-loop repetition
(r.2).

7.2.4.1 of until-loop repetition
axio

a

Case a=

fi {<>} = “ε; ε + µx.(ε ; ε + x) ‘ -- by tr1

 -- by ts1

fi {<>

 = “σ‘ -- by tp1

fi “a‘ // {<σ>} = {<σ>}

2, …, tn} // {<σ>} = {<σ>} L , …, tn}

fi {<σ>} = {<σ>} U
n {
i it1

}~

pplied here, with the only difference that

ion is represented in the task algebra in the form
s which recursively unfold the expression contai

loop repetition (r.1) and Unrolling on le hi

 Soundness for the unrolling one cycle
m

∈∀ A •ctivity “µx.(a ; ε + x) ‘ = “a; ε + µx.(a ; ε + x) ‘

ε:

fi {<>} = “ε‘ ⊗ “ε + µx.(ε ; ε + x) ‘

} = “ε‘ ⊗ “ε + ε‘ 3 -- by r1 and s

fi {<>} = “ε‘ ⊗ “ε‘ -- by sel3

fi {<>} = {<>} ⊗ {<>} -- by tb1

126

Chapter 7: Soundness for the Semantics of Tasks

fi {<>} = {<>#<>} -- by cp1

fi
by tc1

 {<>} = {<>} --

 Otherwise:

fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) = “a; ε + µx.(a ; ε + x) ‘ -- by tr2

fi “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))

= “a; ε + µx.(a ; ε + x) ‘ -- by tr5

fi “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))

= “a‘ ⊗ “ε + µx.(a ; ε + x) ‘ -- by ts1

fi “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))

 ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))

} ⊗ t)))))

-- by tr2

In order to prove the
be mapped to the trace s e expression
has to ntics and,
subsequently, both expressions are translate e trace
semant

7.2.4.2 e of w p repetition

 fi {<>} = “ε + -- by tr3

r2
 -- by sel3

fi {<> -- by tb1

= “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a ; ε + x) ‘)) -- by ta2

fi “a‘ ⊗

= “a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>

soundness of this axiom, the expressions on both sides have to
emantics by tracing the repetitions. The left-sid

be unrolled by using the unrolling until-loop rule for the sema
d, as far as possible, to the sam

ics.

 Soundness for the unrolling one cycl hile-loo
axiom

•∈∀ Activitya “ µx.(ε + a ; x) ‘ = “ε + a; µx.(ε + a ; x) ‘

 Case a=ε:

ε; µx.(ε + ε ; x) ‘

fi {<>} = “ε + ε‘ -- by and s3
fi {<>} = “ε‘

} = {<>}

Otherwise:

127

Chapter 7: Soundness for the Semantics of Tasks

fi µt.({ a µx.(ε -- by tr4

; x) ‘ -- by tr6

fi {<↓>} ⊗ (“ ⊗ (“a‘ ⊗ t)))))

) by ta2

 (“)

-- by ts1

 (“a‘ ⊗ t)))))

“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))

-- by tr4

ed soundness by mapping both
express e semantics by tracing the repetitions. The left-side expression

a

7.2.5 Encapsul

up asks and
structures in the task algebra. It is supported by three ,
coincid

<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) = “ε + ; + a ; x) ‘

fi {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))

= “ε + a; µx.(ε + a

ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>}

= {<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x) ‘ --

fi {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ a‘ ⊗ t))))

= {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)) ‘)

fi {<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗

= {<↓>} ⊗ (“ε‘ ∪ (

In a similar way as in 6.2.5.1, this axiom is prov
ions to the trac

has to be unrolled by using the unrolling while-loop rule for the semantics and,
subsequently, both expressions are translated to the same trace sem ntics.

ation

As is mentioned in chapter 5, encapsulation is used to gro a set of t
axioms: vacuous subtask (e.1)

ent exit (e.2), and vacuous selection (e.3).

7.2.5.1 Soundness for the vacuous subtask axiom

“{σ}T‘ = “ε‘ = “{ε}T‘

 fi unpack(“σ‘) = “ε‘ ack(“ε‘) -- by tu1

 fi unpack({

 = unp

<σ>}) = “ε‘ = unpack(“ε‘ -- by tb2)

 fi unpack({<σ>}) = “ε‘ -- by tb1

 by up1

 -- by tb1

acing cking of
Activity, which, in the case of a subtask containing succeed, is transformed to the
empty third expressions are derived

 = unpack({<>})

 fi {<>} = “ε‘ = {<>} --

fi {<>} = {<>} = {<>}

Soundness for the vacuous subtask axiom is proved by tr the unpa

trace by the unpacking function. The second and

128

Chapter 7: Soundness for the Semantics of Tasks

from the empty sequence to the empty trace, where in the case of the third expression,
this is passed to the unpack function and the empty trace prevails at the end.

σ}T‘ = “{a}T‘

 fi unpack(“a; σ‘) = unpack(“ ‘) -- by tu1

 fi unpack(“a‘ “ ‘) = unpack(“a‘) -- by ts1

 fi unpack(“a‘ ⊗ {< >}) = unpack(“a‘) by tb2

fi unpack({t1, t2 n {< >}) = unpack(“a‘)

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘ ⊗ {<σ>})

lift (ti # <σ>) }

fi “a‘ = unpack(“{t1, t2, …, tn}‘) Let “a‘ = {t1, t2, …, tn} in unpack(“a‘})

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi “a‘ = “a‘ lift ti}

The axiom for the coincident exit considers the case where the succeed symbol is next
to the right boundary of a subtask. This, as is proved above, is equivalent to having
the same subtask without the succeed symbol. The derivation details formally the
operation of the unpacking rule for task sets. For this derivation, succeed is
disallowed to be in the Activity a in order to avoid the examination of every t1, t2, …,
tn. If succeed could be in a, the activity should be resolved before the function lift
eliminates fail, and the result should be a subset of a.

7.2.5.3 Soundness for the vacuous selection axiom

{a + σ}T‘ = “{a}T+ ε‘

 fi unpack (“a + σ‘) = “{a}T+ ε‘ -- by tu1

 fi unpack ({<↓>} ⊗ (“a‘ ∪ “σ‘)) = “{a}T+ ε‘ -- by ta2

fi unpack ({<↓>} ⊗ (“a‘ ∪ {<σ>})) = “{a}T+ ε‘ -- by tb2

fi unpack ({<↓>} ⊗ (“a‘ ∪ {<σ>}))

= {<↓>} ⊗ (“{a}T‘ ∪ “ε‘) -- by ta2

7.2.5.2 Soundness for the coincident exit axiom

• {a;∈∀ Activitya “

a

⊗ σ

σ --

, …, t } ⊗ σ

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

 fi “a‘ = unpack(“a‘) U
n

i 1=
{

U
n

i 1=
{

•∈∀ Activitya “

129

Chapter 7: Soundness for the Semantics of Tasks

fi unpack ({<↓>} ⊗ (“

= {<↓>} ⊗ (unp “ ‘ “ ‘

fi unpack ({<↓>} ⊗ (“a‘ ∪ {<σ>}))

a‘ ∪ {<σ>}))

ack(a) ∪ ε) -- by tu1

= {<↓>} ⊗ (unpack(“a‘) ∪ {<>}) -- by tb1

fi unpack ({<↓>} ⊗ “a‘ ∪ {<↓>} ⊗ {<σ>})

fi unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>})

= {<↓>} ⊗ (unpack(“a‘) ∪ {<>}) -- by A.8

⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>})

Let “a‘ = {t1, t2, …, tn}

fi unpack ({<↓>} ⊗ {t , t , …, t }) ∪ {<↓>}

fi {<↓t >, <↓t >, …, <↓t >}) ∪ {<↓>}

= {<↓>} ⊗ (unpack(“a‘) ∪ {<>}) -- by A.2

fi unpack ({<↓>} ⊗ “a‘ ∪ {<↓, σ>})

= {<↓>} ⊗ (unpack(“a‘) ∪ {<>}) -- cp1

fi unpack ({<↓>}

= {<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>})

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>}

= {<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>}) -- by up1

1 2 n

= {<↓>} ⊗ {t1, t2, …, tn} ∪ {<↓>} ⊗{<>} -- by A.2

fi unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>}

= {<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>} -- by cp1

1 2 n

= {<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>} Ui 1=
{lift <↓ tn

i > }

For this proof, it is necessary also to use some of the basic properties assumed at the
start of this chapter, which are proved in Appendix A; namely the distribution of
unpack over union and distribution of unpack over the concatenated product. The rest

130

Chapter 7: Soundness for the Semantics of Tasks

of the derivation depends on the semantics defined in chapter 5 and the distribution of
the concatenated product over union.

7.3 Congruence

Congruence is a property showing an equivalence relation of the algebra. This
property can be proved directly with the axioms of the algebra. Nevertheless,
congruence in an algebra can also be checked by taking equivalent expressions and

The semantics has to be equal for
the equivalent expression if the expression is congruent. However, this approach has

work and specified as future
work. Even so, in this section some examples of congruence properties are depicted.
The co nce p perties can be seen in Appendix B.

7.3.1 Show the associative

In this sectio
demons rated e ators f se and parallel
compos ion; a op) and the
encapsulation.

7.3.1.1 in s.

-- by ts1

fi“a‘ ⊗ “b‘ ⊗ “c‘ ⊗ “d‘ ≡ “a‘ ⊗ “b‘ ⊗ “c‘ ⊗ “d‘ -- by ts1

7.3.1.2 Congruence in s.1 with the selection operator

If a; (b; c)‘ ≡ “ (a; b); c ‘, then

(a; (b; c)) + d‘ ≡ “ ((a; b); c)

(a; (b; c))‘ ∪ “d‘) ≡ {<↓>} ⊗ (-- by ta2

“a‘ ⊗ “(b; c)‘) ∪ “d‘)

≡ {<↓>} ⊗ ((“(a; b)‘ ⊗ “c‘) ∪ “d‘) -- by ts1

 adding a subexpression to each of the equivalences.

the disadvantage that formally, the proof depends of the proof of completeness for the
algebra with respect to the semantics. As mentioned in chapter 6, the property of
completeness is considered beyond the scope of this

mplete listing of congrue ro

ing congruence for basic operators in
sequence axiom

 n, the congruence for the associative sequence axiom (s.1) is
t for the binary op r o quence, selection,
it s well as for the repetition structures (while- and until-lo

 Congruence 1 with the sequence operator

If •∈∀ Activitycba ,, “a; (b; c)‘ ≡ “ (a; b); c ‘, then

•∈∀ Activitydcba ,,, “(a; (b; c)); d‘ ≡ “ ((a; b); c); d‘

fi“a; (b; c)‘ ⊗ “d‘ ≡ “(a; b); c‘ ⊗ “d‘ -- by ts1

fi“a‘ ⊗ “(b; c)‘ ⊗ “d‘ ≡ “(a; b)‘ ⊗ “c‘ ⊗ “d‘

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “ + d‘

fi {<↓>} ⊗ (“ “((a; b); c)‘ ∪ “d‘)

fi {<↓>} ⊗ ((

fi {<↓>} ⊗ ((“a‘ ⊗ “b‘ ⊗ “c‘) ∪ “d‘)

131

Chapter 7: Soundness for the Semantics of Tasks

≡ {<↓>} ⊗ ((“a‘ ⊗ “b‘ ⊗ “c‘) ∪ “d‘) -- by ts1

7.3.1.3 rallel com

If ∀ ba, c)‘ ≡ “ (a; b); c ‘, then

cba ,, b; c)) || d‘ ≡ “ ((a; b); c) |

; b); c)‘ // “d‘) p1

(“(a; b)‘ ⊗ “c‘) //

 Congruence in s.1 with the pa position operator

•∈ Activityc, “a; (b;

•∈ Activityd, “(a; (

∀ | d‘

fi (“(a; (b; c))‘ // “d‘) ≡ (“((a -- by t

fi ((“a‘ ⊗ “(b; c)‘) // “d‘) ≡ (“d‘) -- by ts1

fi ((“a‘ ⊗ “b‘ ⊗ “c‘) // “d‘) ≡ ((“a‘ ⊗ “b‘ ⊗ “c‘) // “d‘) -- by ts1

7.3.1.4 Congruence in s.1 with the until-loop

If •∈∀ Activitycba ,, “a; (b; c)‘ ≡ “ (a; b); c ‘, then

•∈∀ Activitycba ,, “µx.((a; (b; c)); ε + x) ‘ ≡ “ µx.(((a; b); c); ε + x)‘

 fi µt.(“a; (b; c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 ≡ µt.(“(a; b); c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

fi µt.(“a‘ ⊗ “(b; c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 ≡ µt.(“(a; b)‘ ⊗ “c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ts1

fi µt.(“a‘ ⊗ “b‘ ⊗ “c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

-- by ts1

 ≡ “(a; b then

 ≡ µt.(“a‘ ⊗ “b‘ ⊗ “c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

7.3.1.5 Congruence in s.1 with the while-loop

If •∈∀ Activitycba ,, “a; (b; c)‘); c ‘,

∈∀ Activitcba ,, •y “µx.(ε + (a; (b; c)); x)‘ ≡ “µx.(ε + ((a; b); c); x)‘

↓ ⊗ ⊗ -- by tr4

b;

 (“a

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a; (b ⊗ t))) ; c)‘

 ≡ µt.({<↓>} ∪ ({< >} (“(a; b); c‘ t)))

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ “(c)‘ ⊗ t)))

 ≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“(a; b)‘ ⊗ “c‘ ⊗ t))) -- by ts1

fi µt.({<↓>} ∪ ({<↓>} ⊗ ‘ ⊗ “b‘ ⊗ “c‘ ⊗ t)))

132

Chapter 7: Soundness for the Semantics of Tasks

 ≡ µt.({<↓ ({ } ⊗ (“a‘ ⊗ “b‘ ⊗ “c>} ∪ <↓> ⊗ t))) -- by ts1

∀a, ≡ “(a

‘

7.3.1.6 Congruence in s.1 with the encapsulation

If •∈ Activitycb, “a; (b; c)‘ ; b); c ‘, then

•∈∀ Activitycba ,, “{a; (b; c)}T ‘ ≡ “{(a; b); c}T‘

; c)‘) ≡ unpack(“(a; b); c‘) -- by tu1

‘) ≡ unpack(“(a; b)‘ ⊗ “c‘) -- by ts1

⊗ “b‘ ⊗ “c‘) -- by ts1

 this revious chapter were used to prove
ra illustrated in chapter 4. Some

onstrated for the algebra. A full listing
icted in Appendix B.

fi “ bunpack(a; (

fi unpack(“a‘ ⊗ “(b; c)

fi unpack(“a‘ ⊗ “b‘ ⊗ “c‘) ≡ unpack(“a‘

7.4 Summary

In chapter, the trace semantics defined in the p
algebthe soundness of the axioms for the task

rties were demexamples of congruence prope
of congruence properties is dep

133

Chapter 8:
The Task Algebra Implementation

The previous chapters demonstrated the soundness of the task algebra semantics
presented in chapter 6. In this chapter, the implementation of the algebra is

properties of the

presented using a case study translating a Task Flow Diagram into the task algebra.
The traces generated by the program are then interrogated by LTL and CTL queries
to demonstrate how it is possible to model-check temporal logic
described system.

8.1 Introduction

The syntax for the task algebra was presented in chapter 5 followed by its semantics

r, the objectives of een developed in previous chapters. The last
as to provide an implementation of the algebra.

plementation showing the main algorithms

was developed in the Haskell language,
ge based on lambda calculus [142]. The application

in chapter 6. This chapter presents the implementation of the algebra and some
results from applying the algebra to represent task flow diagrams and model-checking
temporal logic properties in the trace outputs.

So fa this work have b
objective proposed for this work w
This implementation is necessary to test the feasibility of the formal representation.
In addition, the task algebra implementation will be complemented with model-
checking extensions (allowing LTL and CTL expressions) in an attempt to show
practical uses of this work.

The next section describes the im
implemented. The full code of the programs is shown in Appendix C. Section 8.3
presents an example where a task flow diagram is translated to its corresponding task
algebra representation and the trace semantics generated by the program. From the
traces, it is possible to obtain useful semantic information about task flows, such as
whether two alternative flow diagrams are equivalent, or whether certain properties
hold always or eventually. To determine the first requires no more than simple set
operations upon trace sets; whereas the latter requires temporal logic expressions, as
shown in section 8.4.

8.2 Task algebra implementation

The implementation for the task algebra
which is a lazy functional langua
in Haskell is a compiler that transforms a task algebra expression and, if the
expression is correct, generates the corresponding traces for the expression. The

134

Chapter 8: The Task Algebra Implementation

process will be similar to a one-pass compiler [143]. Figure 8.1 shows the process for
a task algebra expression in the implementation to generate the set of traces.

Figure 8.1. Structure of the Task A

Syntax-Lexical
analyser directed

translator

Task algebra
expression

Token
stream

Set of
Traces

lgebra implementation

Activity ::= Epsilon -- empty activity

| Phi -- φ fail
 | Task -- a single task
 | Activity ; Activity -- a sequence of activity
 | Activity + Activity -- a selection of activity
 | Activity || Activity -- parallel activity
 | Mu.x(Activity ; Epsilon + x) -- until-loop activity

| Mu.x(Epsilon + Activity ; x) -- while-loop activity

Task::= Simple -- a simple task
| { Activity } -- encapsulated activity

Evidently, the Greek symbols used in the algebra had to be converted into machine-
readable tokens in the Latin character set. Also, the Mu symbol was separated from
the variable x using a dot to simplify their identification in the lexical analyser (the
bound expression is then contained in parentheses). Table 8.1 shows the
correspondence between the expression written in the original algebra syntax and the
machine-readable syntax for the Haskell application.

Task Algebra Task Algebra implementation

From the BNF definition for the task algebra described in chapter 4, there are just a
couple of changes that have been made with the aim of facilitating the analysis of the
input string representing an expression in the algebra:

 | Sigma -- σ succeed

a; φ; c a; Phi; c

a + ε + b a + Epsilon + b

a || b || σ a || b || Sigma

µx.(a ; ε + x) Mu.x(a ; Epsilon + x)

µx.(ε + a ; x) Mu.x(Epsilon + a ; x)
Table 8.1 Comparison between original Task Algebra syntax and the Haskell implementation

dditionally, the traces for the expression are generated executing the function tr.
a; Phi; c” creates the traces for the expression a;

A
For instance, the execution of tr “

135

Chapter 8: The Task Algebra Implementation

Phi; c. Consequently, the expressions depicted above have the following set of
traces:

tr “a; Phi; c” {[a,Phi]}

tr “a + Epsilon + b” {[!],[!,a],[!,b]}

tr “a || b || Sigma” {[Sigma]}

tr “Mu.x(a ; Epsilon + x)” {[a,!],[a,!,a]}

tr “Mu.x(Epsilon + a ; x)” {[!],[!,a,!],[!,a,!,a]}

As can be seen, traces are produced following the semantics d
 Traces for the unt

efined in chapter 5 with
il- and while-loops are
maximum limit of two

 trace sets
e [!] is produced in the while-loop as

 trace notation
ckets to delimit
ion, simple task
compound tasks

algebra, which
ace semantics.

e lexical
 the appropriate constructor for the Activity data

pe.

'{' Activity '}' { Task (Encapsulation $2) }

Activity :
Activity ';' Activity { Sequence $1 $3 }

 | Activity '+' Activity { Selection $1 $3 }
 | Activity '||' Activity { Parallel $1 $3 }
 -- Until-loop
 | 'Mu' '.' simple '(' Activity ';'
 'Epsilon' '+' simple ')' { UntilLoop $5 (Simple $3)
(Simple $9) }
 -- While-loop
 |'Mu' '.' simple '(' 'Epsilon' '+' Activity';' simple ')'
 { WhileLoop $7 (Simple $3) (Simple $9) }
 | '(' Activity ')' { Task (Brackets $2) }
 | Encapsulation { $1 }

the exception of the repetition structures.
generated for a finite number of cycles, setting an arbitrary
repetitions for each loop. While- and until-loop show, as expected, different
due to the position of the condition (e.g., the trac
a result of the possibility of doing nothing). Minor differences in th

and the use of square bra
e

are the syntax for commit ‘!’ instead of ‘↓’,
traces as a substitute for the angle brackets used originally. In addit

for names should begin with a lowercase; uppercases are reserved
and the algebra keywords.

The implementation takes a string as an input for the expression in the
is translated to the corresponding functions to generate the resulting tr

arser generator for Haskell. In addition, a The parser was built using the Happy p
simple hand-written lexical analyser was built. Together, the parser and th
an
ty

alyser are responsible of linking to

Model : Activity { $1 }
 | CompoundTask Model { Model $1 $2 }

CompoundTask :

'let' taskName '=' Encapsulation { CompoundTask $2 $4 }

Encapsulation:

136

Chapter 8: The Task Algebra Implementation

 | 'Epsilon' { Epsilon }
 | 'Phi' { Fail }
 | 'Sigma' { Succeed }
 | simple { Task (Simple $1) }
 | taskName { Task (Compound $1) }

The definition of the Activity data type is as follows:

-- Activity
data Activity
 = Epsilon
 | Fail
 | Succeed
 | Task Task
 | Sequence Activity Activity
 | Selection Activity Activity
 | Parallel Activity Activity
 | UntilLoop Activity Task Task
 | WhileLoop Activity Task Task
 | CompoundTask String Activity
 | Model Activity Activity
 deriving (Eq, Ord)

Then, an instance declaration of Show Activity is defined for each constructor, where
the trace operation is called for most of the constructors together with the consequent
data type, allowing by pattern matching to do the aproppiate calls to generate the set

trace is as follows:

type Trace = [Event]

type SetOfTraces = Set Trace

Event is a data type defining the trace elements:

data Event = Ident String | Phi | Sigma | Commit

 deriving (Eq, Ord)

From here, the use of the function trace, by pattern matching, calls the appropriate
functions implementing the semantics from Chapter 6. For example, for sequence
composition the function trace is called as follows:

trace (Sequence a b) dict

which is equal to:

trace a dict #* trace b dict

of traces. The definition of the function

trace :: Activity -> DataDictionary -> SetOfTraces

where SetOfTraces is declared as a set if the Trace type. Trace is declared as a list of
Event:

137

Chapter 8: The Task Algebra Implementation

 meaning that the trace of a sequence of a followed by b is equal to the trace of a
concatenated with the trace of b, using the concatenated product operation (#*). As
defined in Chapter 6, the concatenated product works over set of traces:

(#*) :: SetOfTraces -> SetOfTraces -> SetOfTraces
setA #* setB
 | setA == empty = empty
 | setB == empty = empty
 | otherwise

= union (insert (findMin setA # findMin s
 (singleton (findMin setA) #* (difference setB
(singleton (findMin setB)))))
 ((difference setA (singleton (findMin setA))) #* s

which uses the concatenation function to append the traces. The sema
concatenation of traces implemented in Haskell:

(#) :: Trace -> Trace -> Trace
[Sigma] # (item:rest) =
[Phi] # (item:rest) = [Phi] # rest
[Commit] # trace@(item:rest)
 | item == Commit = trace
 | otherwise = Commit : trace
(item:rest) # trace = item : (rest # trac
epsilon#trace = trace

As mentioned above, the implementation for the rest of the semanti
seen in Appendix C. The next section introduces a case of study
implementation can be used.

8.3 An electronic journal

An interesting case study was developed by Adams [144] working with the Discovery
Method for modelling a web based electronic journal. The study models an electronic
journal, which is offered free to all subscribers, where the authors submit their articles
and pay towards the costs of their online publication by conducting peer reviews of
articles submitted by other authors.

There are four actor roles identified in the system. Reader is the role denoting
someone who wants to browse the j

etB)

etB)

ntic function for

[Sigma] # rest

e)

c functions can be
 to show how this

ournal, read articles or search for information in
e journal. The role of Author defines someone who wants to publish his/her articles.
e Reviewer is the role of an author who is required to review other unpublished

 of publishing his/her own paper. The
f the administrator of the system. The

This section focuses on the Task Flow analysis, which is the part of the Discovery
Method where Task Flow Diagrams are constructed in order to determine the

th
Th
papers with the aim of paying towards the cost
last role is that of the Editor, which is the role o
editor role is subdivided into a master editor and sub-editors, which can be assigned
their role by any master editor. In the study, a Task Structure diagram is developed
for each of the four main roles, describing the tasks they individually perform. The
diagrams can be seen in chapter 3 in [144].

8.3.1 Task Flow analysis

138

Chapter 8: The Task Algebra Implementation

workflows linking the identified tasks. For every Task Structure Diagram in the case
study, there is a corresponding Task Flow Diagram, illustrating the order in which the
tasks are carried out for each role. In general, Task Flow diagrams are constructed
from the viewpoint of the principal users of a system.

Figure 8.2 shows the Task Flow Diagram for the reader role. The diagram describes
the choice the reader has initially to decide between reading information about the
journal, searching for an article, or reading about content alerting before subscribing
to the content alerting service.

The diagram is formed by six tasks: Read Info on Journal, Search for Article, Read
Abstract, Download Article, Read about Content Alerting, and Register for Content
Alerting. The first task is clearly defined as a compound task, which is formed by the
subtasks Read Journal Aims, and Read Submission Instructions.

The task algebra expression for the diagram from Figure 8.2 should be as follows:

Mu.x(ReadInfoOnJournal;Epsilon + x)
+Mu.x((searchForArticle;Phi + readAbstract;downloadArticle + Epsilon);Epsilon + x)
+(readAboutContentAlerting;Epsilon + registerForContentAlerting)

Figure 8.2. Reader Task Flow Diagram

139

Chapter 8: The Task Algebra Implementation

Additionally, the compound task ReadInfoOnJournal can be defined like this:

let ReadInfoOnJournal = {readJournalAims + readSubmissionInstructions}

In the trace semantics only simple tasks are represented. The compound t
ReadInfoOnJournal is unpacked and its subtasks promoted to the higher level as
defined by the semantics in chapter 5. After the task algebra expression is defined
may be processed by the tr function to generate the set of traces. For this case
of traces is:

ask

, it
, the set

{ [!,readAboutContentAlerting,!],
[!,readAboutContentAlerting,!, registerForContentAlerting],
[!,readJournalAims,!],
[!,readJournalAims,!,readJournalAims],
[!,readJournalAims,!,readSubmisiionInstructions],
[!,readSubmisiionInstructions,!],
[!,readSubmisiionInstructions,!,readJournalAims],
[!,readSubmisiionInstructions,!,readSubmisiionInstructi
[!,searchForArticle,!,readAbstract,!],
[!,searchForArticle,!,readAbstract,!,downloadArticle,!]
[!,searchForArticle,!,readAbstract,!,downloadArticle,!,
searchForArticle,!,readAbstract,!],
[!,searchForArticle,!,readAbstract,!,downloadArticle,!,
searchForArticle,!,readAbstract,!,downloadArticle],
[!,searchForArticle,!,readAbstract,!,downloadArticle,!,
searchForArticle,!,Phi],
[!,searchForArticle,!,readAbstract,!,searchForArticle,!,
readAbstract,!],
[!,searchForArticle,!,readAbstract,!,searchForArticle,!,
readAbstract,!,downloadArticle],
[!,searchForArticle,!,readAbstract,!,searchForArticle,!,Phi],

ons],

,

[!,searchForArticle,!,Phi] }

8.3.1.1 Author Task Flow Diagram

The role of author is used for someone who wants to publish his/he
involves the options of Read Instructions, Obtain Style, Complete Res
(such as Read Reviews or Check Article Status), and Submit Article. Figur
the Task Flow Diagram for the author role. All tasks in the diagram
with the exception of Login, which is defined later.

The Task Algebra expression for the Author diagram is represented as follows:

(readAuthorGuidelines;readReviewerGuidelines)

r articles. It
tricted Task
e 8.3 shows

 are simple tasks

+ viewStyleGuide
+(Mu.x(Login;Epsilon + x);(readReviews;obtainEditorsDecision;
submitReworkedArticle + Epsilon) + checkArticleStatus)
+(completeSubmissionEform;obtainReviewerID)

140

Chapter 8: The Task Algebra Implementation

Figure 8.3. Author Task Flow Diagram

The compound task Login contemplates the complete process for login into
system, including the case when the user fails to introduce correctly the password,
with the possibility to activate a password reminder. Figure 8.4 presents th
Flow diagram for this task. The resultant expression in the task algebra is:

 { ((;)); let Login Phi Epsilon requestPassword Epsilon Phi= + + +

the

e Task

enterPassword

 }

Figure 8.4. Login Task Flow Diagram

Submit article

Complete submission
E-form

Read instructions

Complete
restricted
task

Read author
guidelines

Read reviewer
guidelines

¬ done

Read reviews

Obtain reviewer
ID

Obtain editors
decision

Article approved

View style
guide

Obtain style

done

Submit reworked
article

¬ approved

Action article

Check article
status

Check article
status

Login

141

Chapter 8: The Task Algebra Implementation

The set of traces resulting from the task algebra expression includes the task Login
which, as was mentioned above, manages the success and failure cases of logging into
the system by entering the password. Because Login is in a cycle to allow multiple
opportunities to gain entry into the system, an until-loop structure Mu.x(Login;
Epsilon + x) is needed. The set of traces from Login is unpacked within the set of
traces in the general expression to generate the complete set of traces:

{[!,completeSubmissionEform,obtainReviewerID],
[!,enterPassword,!,checkArticleStatus],
[!,enterPassword,!,enterPassword,!,checkArticleStatus],
[!,enterPassword,!,enterPassword,!,readReviews,obtainEditorsDecision,
!],[!,enterPassword,!,enterPassword,!,
readReviews,obtainEditorsDecision,!,submitReworkedArticle],
[!,enterPassword,!,readReviews,obtainEditorsDecision,!],
[!,enterPassword,!,readReviews,obtainEditorsDecision,!,
submitReworkedArticle],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
checkArticleStatus],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
readReviews,obtainEditorsDecision,!],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
readReviews,obtainEditorsDecision,!,submitReworkedArticle],
[!,enterPassword,!,requestPassword,!,Phi], [!,enterPassword,!,Phi],
[!,readAuthorGuidelines,readReviewerGuidelines],
[!,requestPassword,!,enterPassword,!,checkArticleStatus],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
checkArticleStatus],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
readReviews,obtainEditorsDecision,!],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
readReviews,obtainEditorsDecision,!,submitReworkedArticle],
[!,requestPassword,!,enterPassword,!,
readReviews,obtainEditorsDecision,!],
[!,requestPassword,!,enterPassword,!,
readReviews,obtainEditorsDecision,!,submitReworkedArticle],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,checkArticleStatus],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readReviews,obtainEditorsDecision,!],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readReviews,obtainEditorsDecision,!,submitReworkedArticle],
[!,requestPassword,!,enterPassword,!,requestPassword,!,Phi],
[!,requestPassword,!,enterPassword,!,Phi], [!,requestPassword,!,Phi],
[!,viewStyleGuide], [!,Phi]}

8.3.1.2 Reviewer Task Flow Diagram

 a
er

 “pay” by doing reviews), or
Task Flow

y compound task
 8.4.

The reviewer role defines the behaviour in the system for a user who wants to write
review of an article or perform some related activity, such as read an abstract in ord
to choose a paper, check his/her payment status (authors
simply checking the guidelines for the reviewers. Figure 8.5 presents the
Diagram for this role where, as for the previous role, Login is the onl
in this diagram. The flow for Login is the same defined earlier in Figure

142

Chapter 8: The Task Algebra Implementation

viewer Task Flow
s

:

Figure 8.5. Reviewer Task Flow Diagram

In a similar manner to the section above, the content of the Re
Diagram may be expressed directly in the syntax of the task algebra, incorporating a
unitary wholes any tasks that encapsulate further flows, such as the Login task

readReviewerGuidelines + (Mu.x(Login; Epsilon + x);checkPaymen
+completeReviewForm + (Mu.x((Mu.y(readAnAbstract;Epsilon + y);
selectPaper);Epsilon + x);confirmSelection;receivePapers))

From applying the trace function to the task algebra expression above, the foll
set of traces is obtained, in which once again the behaviour of the
unpacked:

tStatus

owing
Login task is

{[!,enterPassword,!,checkPaymentStatus],
[!,enterPassword,!,completeReviewEform],
[!,enterPassword,!,enterPassword,!,checkPaymentStatus],
[!,enterPassword,!,enterPassword,!,completeReviewEform],
[!,enterPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract,
selectPaper,!,confirmSelection,receivePapers],
[!,enterPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract,
selectPaper,!,readAnAbstract,!,readAnAbstract,selectPaper,
confirmSelection,receivePapers],
[!,enterPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract,
selectPaper,!,readAnAbstract,!,selectPaper,confirmSelection,
receivePapers],[!,enterPassword,!,enterPassword,!,readAnAbstract,!,
selectPaper,!,confirmSelection,receivePapers],

Login

¬ done

Check payment
status

Read reviewer
guidelines

done

Check payment
status

Complete review
E-form

Submit review

Read an abstract

Choose papers

Read instructions

Complete reviewer
task

Choose

Don’t choose

Select/deselect
paper

Confirm
selection

Rec
Pap

eive
er(s)

Continue
 browsing

Confirm
[legal selection]

143

Chapter 8: The Task Algebra Implementation

[!,enterPassword,!,enterPassword,!,readAnAbstract,!,selectPaper,!,
readAnAbstract,!,readAnAbstract,selectPaper,confirmSelection,
receivePapers],[!,enterPassword,!,enterPassword,!,readAnAbstract,!,
selectPaper,!,readAnAbstract,!,selectPaper,confirmSelection,
receivePapers],
[!,enterPassword,!,readAnAbstract,!,readAnAbstract,selectPaper,!,
confirmSelection,receivePapers],
[!,enterPassword,!,readAnAbstract,!,readAnAbstract,selectPaper,!,
readAnAbstract,!,readAnAbstract,selectPaper,confirmSelection,
receivePapers],
[!,enterPassword,!,readAnAbstract,!,readAnAbstract,selectPaper,!,
readAnAbstract,!,selectPaper,confirmSelection,receivePapers],
[!,enterPassword,!,readAnAbstract,!,selectPaper,!,confirmSelection,
receivePapers],
[!,enterPassword,!,readAnAbstract,!,selectPaper,!,readAnAbstract,!,
readAnAbstract,selectPaper,confirmSelection,receivePapers],
[!,enterPassword,!,readAnAbstract,!,selectPaper,!,readAnAbstract,!,
selectPaper,confirmSelection,receivePapers],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
checkPaymentStatus],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
completeReviewEform],
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,confirmSelection,receivePapers],
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,readAnAbstract,!,readAnAbstract,
selectPaper,confirmSelection,receivePapers],
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,readAnAbstract,!,selectPaper,
confirmSelection,receivePapers],
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,confirmSelection,receivePapers],
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,readAnAbstract,!,readAnAbstract,selectPaper,
confirmSelection,receivePapers],
[!,enterPassword,!,requestPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,readAnAbstract,!,selectPaper,confirmSelection,
receivePapers], [!,enterPassword,!,requestPassword,!,Phi],
[!,enterPassword,!,Phi], [!,readReviewerGuidelines],
[!,requestPassword,!,enterPassword,!,checkPaymentStatus],
[!, q Password,!,completeReviewEform], re uestPassword,!,enter
[!,requestPassword,!,enterPassword,!,enterPassword,!,
che Pck aymentStatus],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
com epl teReviewEform],
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,readAnAbstract,!,readAnAbstract,
selectPaper,confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,readAnAbstract,selectPaper,!,readAnAbstract,!,selectPaper,
confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,readAnAbstract,!,readAnAbstract,selectPaper,
confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,enterPassword,!,readAnAbstract,!
,selectPaper,!,readAnAbstract,!,selectPaper,confirmSelection,
receivePapers],

144

Chapter 8: The Task Algebra Implementation

[!,requestPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract,
selectPaper,!,confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract,
selectPaper,!,readAnAbstract,!,readAnAbstract,selectPaper,
confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,readAnAbstract,!,readAnAbstract,
selectPaper,!,readAnAbstract,!,selectPaper,confirmSelection,
receivePapers],
[!,requestPassword,!,enterPassword,!,readAnAbstract,!,selectPaper,!,
confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,readAnAbstract,!,selectPaper,!,
readAnAbstract,!,readAnAbstract,selectPaper,confirmSelection,
receivePapers],
[!,requestPassword,!,enterPassword,!,readAnAbstract,!,selectPaper,!,
readAnAbstract,!,selectPaper,confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,checkPaymentStatus],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,completeReviewEform],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,readAnAbstract,selectPaper,!,confirmSelection,
receivePapers],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,readAnAbstract,selectPaper,!,readAnAbstract,!,
readAnAbstract,selectPaper,confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,readAnAbstract,selectPaper,!,readAnAbstract,!,
selectPaper,confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,selectPaper,!,confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,selectPaper,!,readAnAbstract,!,readAnAbstract,
selectPaper,confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,readAnAbstract,!,selectPaper,!,readAnAbstract,!,selectPaper,
confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,requestPassword,!,Phi],
[!,requestPassword,!,enterPassword,!,Phi], [!,requestPassword,!,Phi],
[!,Phi]}

8.3.1.3 Flow Diagram

The ehaviour is specified in Figure 8.6. As can be seen, an editor is able
to e l les and reviews, publish a new edition of the journal, and even to
assign sub-editor privileges. The Task Flow Diagram shows the different tasks
involved for the execution of this role and, like the other roles, but with the exception
of the reader role, the compound task of Login is required. The rest of the tasks used
in th d e considered simple tasks.

 Editor Task

 Editor role b
va uate artic

is iagram ar

145

Chapter 8: The Task Algebra Implementation

Login

¬ done

Figure 8.6. Editor Task Flow Diagram

The expression in the Task Algebra includes the until-loop for the verification of the
login before carrying out the remaining tasks. After the editor has logged in, s/he has
to choose which of the activities want to perform. The task algebra expression is
presented here:

Mu.x(Login;Epsilon + x);(assignEditorPrivileges
+(obtainListFRArticles;selectFRArticle;
Phi + (approveArticle + referArtForCorrections + rejectArticle))
+(obtainListReviews;selectReview;approveReview + referReview)

+(obtainApprovedList;completePublication)

The many different executions of this Task Algebra expression may be obtained by
app n acing function, which obtains the following traces: lyi g the tr tr

{[!,enterPassword,!,assignEditorPrivileges],
[!,enterPassword,!,enterPassword,!,assignEditorPrivileges],
[!,enterPassword,!,enterPassword,!,obtainApprovedList,
completePublication],
[!,enterPassword,!,enterPassword,!,obtainListFRArticles,
selectFRArticle,!,approveArticle],
[!,enterPassword,!,enterPassword,!,obtainListFRArticles,
selectFRArticle,!,referArtForCorrections],

Assign editor
privileges

done Assign editor
privileges

Obtain list of fully
reviewed articles

Assess articles Assess re

Obtain list
of reviews

views

Select
review

Obtain approved
list

Select FR
article

Reviews not ok
/ unchecked

Publish new
edition

Complete
publication

Reject
article

Approve

Refer

Reject
Approve
review

Refer
review

[Review ok]

[Review not ok]

Approve
article

Refer article
for corrections

146

Chapter 8: The Task Algebra Implementation

[!,enterPassword,!,enterPassword,!,obtainListFRArticles,
selectFRArticle,!,rejectArticle],
[!,enterPassword,!,enterPassword,!,obtainListFRArticles,
sel tec FRArticle,!,Phi],
[!,enterPassword,!,enterPassword,!,obtainListReviews,selectReview,!,
app vro eReview],
[!,enterPassword,!,enterPassword,!,obtainListReviews,selectReview,!,
ref Rer eview],
[!,enterPassword,!,obtainApprovedList,completePublication],
[!,enterPassword,!,obtainListFRArticles,selectFRArticle,!,
approveArticle],
[!,enterPassword,!,obtainListFRArticles,selectFRArticle,!,
referArtForCorrections],
[!,enterPassword,!,obtainListFRArticles,selectFRArticle,!,
rejectArticle],
[!,enterPassword,!,obtainListFRArticles,selectFRArticle,!,Phi],
[!,enterPassword,!,obtainListReviews,selectReview,!,approveReview],
[!,enterPassword,!,obtainListReviews,selectReview,!,referReview],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
assignEditorPrivileges],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
obtainApprovedList,completePublication],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
obtainListFRArticles,selectFRArticle,!,approveArticle],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
obtainListFRArticles,selectFRArticle,!,referArtForCorrections],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
obtainListFRArticles,selectFRArticle,!,rejectArticle],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
obtainListFRArticles,selectFRArticle,!,Phi],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
obtainListReviews,selectReview,!,approveReview],
[!,enterPassword,!,requestPassword,!,enterPassword,!,
obtainListReviews,selectReview,!,referReview],
[!,enterPassword,!,requestPassword,!,Phi], [!,enterPassword,!,Phi],
[!,requestPassword,!,enterPassword,!,assignEditorPrivileges],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
assignEditorPrivileges],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
obtainApprovedList,completePublication],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
obtainListFRArticles,selectFRArticle,!,approveArticle],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
obtainListFRArticles,selectFRArticle,!,referArtForCorrections],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
ob ListFRArticles,selectFRArtictain le,!,rejectArticle],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
obtainListFRArticles,selectFRArticle,!,Phi],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
obtainListReviews,selectReview,!,approveReview],
[!,requestPassword,!,enterPassword,!,enterPassword,!,
obtainListReviews,selectReview,!,referReview],
[!,requestPassword,!,enterPassword,!,obtainApprovedList,
completePublication],
[!,requestPassword,!,enterPassword,!,obtainListFRArticles,
selectFRArticle,!,approveArticle],
[!,requestPassword,!,enterPassword,!,obtainListFRArticles,
selectFRArticle,!,referArtForCorrections],
[!,requestPassword,!,enterPassword,!,obtainListFRArticles,
selectFRArticle,!,rejectArticle],
[!,requestPassword,!,enterPassword,!,obtainListFRArticles,

147

Chapter 8: The Task Algebra Implementation

selectFRArticle,!,Phi],
[!,requestPassword,!,enterPassword,!,obtainListReviews,selectReview,!
,approveReview],
[!,requestPassword,!,enterPassword,!,obtainListReviews,selectReview,!
,referReview],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,assignEditorPrivileges],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainApprovedList,completePublication],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListFRArticles,selectFRArticle,!,approveArticle],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListFRArticles,selectFRArticle,!,referArtForCorrections],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListFRArticles,selectFRArticle,!,rejectArticle],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListFRArticles,selectFRArticle,!,Phi],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListReviews,selectReview,!,approveReview],
[!,requestPassword,!,enterPassword,!,requestPassword,!,enterPassword,
!,obtainListReviews,selectReview,!,referReview],
[!,requestPassword,!,enterPassword,!,requestPassword,!,Phi],
[!,requestPassword,!,enterPassword,!,Phi], [!,requestPassword,!,Phi],
[!,Phi]}

s in the
aces, illustrating the possible executions of the

ade in different ways. The simplest operations

e cases, for instance, two

{[!,a,b],[!,a,c]}. It is

These examples show how it is possible to express realistic Task Flow diagram
ask Algebra and convert them to trT

diagrams.

8.4 Operations on traces

A set of traces is the trace semantic representation for a Task Flow Diagram. The
verification of the diagram may be m
could be performed by set operators but more operations may be applied over the
traces using temporal logic. In this work, we offer three different approaches for
checking the models represented with the algebra:

• Set operations on traces
• Model-checking with LTL
• Model-checking with CTL

.4.1 Set operations on traces 8

Operations over a set of traces can be easily applied. In som
or more trace sets may be compared to demonstrate equality (or inequality). For
example, comparing two expressions in the task algebra such as a;b+c and
(a;b)+(a;c) can be done using the equal operator in Haskell:

Main> tr "{a;b+c}" == tr "{(a;b)+(a;c)}"

False

Which is the expected result because the trace semantics for the expression a;b+c is
{[a,!,b],[a,!,c]}, while the trace semantics for (a;b)+(a;c) is

148

Chapter 8: The Task Algebra Implementation

easy to see that while in the first case the commit symbol occurs after a, in the second
mit symbol is placed in the first place for every trace in the semantics.

rPassword}
{Login}")

ion. The next sections will focus in
in results reasoning temporal

g with LTL

mporal logic has being extensively applied with specification and verification of
ftwa obtained from a task algebra expression, may be used to

gical properties within the specification expressed by the
LTL

 a Task Algebra
f the Task
 use LTL

me examples

e calculus.
ation over

ths. inhe ted fr prepositional calculus are the usual ones: (¬,
pression is as follows6:

case the com

In the same way, it is possible to use common set operations (e.g., set membership,
subset, union, difference, intersection) to obtain results over two or more sets of
traces. For instance, we could ask whether the trace describing a normal login is one
of the identified traces for the Login task (Figure 8.4):

Main> member ([Commit, Ident "enterPassword"]) (tr "let
Login={(Phi+Epsilon+(requestPassword; Epsilon + Phi)); ente

True

The last example uses the standard member function from the Haskell Library to
search through the results produced by the tr funct
the use of LTL and CTL operators in order to obta
aspects on the Task Flow diagrams.

8.4.2 Model-checkin

Te
, so re. A set of traces

verify some temporal and lo
diagrams. For this reason, a simple implementation of LTL was built. This
implementation works over the trace semantics generated from

press e e trace sema tics reex ion. Becaus th n present every possible path o
 toFlow diagram expressed in the Task Algebra, it is straightforward

rmulas to quantify universally over ll tho his section, sofo a se paths. In t
using Linear Temporal Logic (LTL) are presented, to illustrate the reasoning
capabilities of the LTL module.

LT a temporal lo ic e in poral operators to the predicat
tific

L is g , form d add g tem
These operators that can be used to refer to future states with no quan
pa Logical operators ri om
∧, ∨, →) and the syntax of the LTL ex

• Not p

• And p q

• Or p q

• Impl p q

The modal operators are divided into the unary (next, always or globally, and finally):

• X p. p holds on the next state.

6 As e d here, this is just the syntax of the LTL expression, whicxplaine h is applied to a set of traces
generated from a Task Algebra expression. An example showing the whole functions is depicted later.

149

Chapter 8: The Task Algebra Implementation

• G p. p holds globally.

in some future state.

s (until, weak-until, release):

task>

 or special task symbol. Pr is a

 never reaches a
ess (“once X occurred, Y

8.4.3 Model-checking with CTL

 of paths.
ted

gainst a set of traces obtained from a task algebra expression, in the same way that
heorems

e, the application has to transform

ination with temporal modal
operators. The modal operators are (next, always or globally, finally and until):

• F p. p holds

And the binary modal operator

• U p q. q holds on the current state or p is true and then q.

• W p q. q holds on the current state or p is true and then q, or p is true for all
the states.

• R p q. q holds in all the states or until p is true.

Where for this project, the operands p and q are LTL expressions and the basic
expression is the propositional denoted by:

• Pr <

<task> is any valid name for an simple task
constructor used to identify such tasks.

With temporal logic, system properties such as safety (“the system
bad state”), liveness (“there is progress in the system”), fairn
will ocurr in n steps”) and self-stabilisation (“the system recovers from a failure in a
finite number of steps”) can be proven [145]. Property specification of functional
requirements written, for instance, in LTL can help to find errors in the design of
systems.

While LTL formulas express temporal properties over all undifferentiated paths,
Computational Tree Logic (CTL) also considers quantification over sets
CTL is a branching-time logic [146] and theorems in this logic may also be tes
a
LTL theorems were tested above. A CTL application was built to test CTL t
against expressions in the task algebra. In this cas
the traces in a tree representation before applying the expression.

CTL is formed by a combination of logical operators, path operators and temporal
modal operators. Logical operators are the usual (¬, ∧, ∨, →) and are used as follows:

• Not p

• And p q

• Or p q

• Impl p q

Path operators are quantifiers A expressing “all paths” and E expressing “exists at
least one path”. Path operators are used in comb

150

Chapter 8: The Task Algebra Implementation

• X p. p holds on the next state.

• G p. p holds globally.

• F p. p holds in some future state.

• U p q. q holds on the current state or p is true and then q.

Where for this project, the operands p and q are CTL expressions and the basic
expression is the propositional denoted by:

• Pr <task>

<task> is any valid name for an simple task or special task symbol. Pr is a

ators X, G, F and U just like path operators cannot be used
without a modal operator. Accordingly, LTL-like expressions are not allowed in

TL.

y

 8.2 is also used. To check a
function check is defined. The

L expression. In
eturns true:

constructor used to identify such tasks.

In CTL path operators have to be used together with modal operators. A and E cannot
be used without modal oper

C

8.4.4 An implementation of model-checking with LTL

The implementation of LTL model-checking uses Phi, which is a data type defined to
specify the LTL expressions:

data Phi
 = Bool Bool
 | Pr String
 | Not Phi
 | And Phi Phi
 | Or Phi Phi
 | Impl Phi Phi
 | X Phi -- Next phi
 | G Phi -- All future states
 | F Phi -- Eventuall
 | U Phi Phi -- Until
 | W Phi Phi -- Weak-until
 | R Phi Phi -- Release
 deriving (Eq, Ord, Show)

Additionally, the function trace presented in section
LTL expression against a model in the algebra, the
function check is declared as follow:

check :: String -> Phi -> (Bool, Trace)

check expr phi = evalAllTraces (toList (tr expr)) phi

where evalAllTraces evaluates every possible path against the LT
order to do this, the function eval is called for each trace, while eval r

eval :: Trace -> Phi -> Bool

151

Chapter 8: The Task Algebra Implementation

where eval initiates the evaluation of each trace by calling the
matching the corresponding constructor. If the evaluation is tru
to the next trace; on the contrary, if the eva
evaluating and returns the Boolean value together with c

The syntax for using the LTL application is as fol

check <task-algebra-expression> <LTL-expression>

where task-algebra-expression is a string expressing a w
algebra, and LTL-expression is a valid expression in LTL. As ex
result is presented as a tuple showing the result (true or false) and,
expression is false, a counterexample. Evident
counterexample (an empty list is presented).

In the implementation of LTL for the task algebra, it is possible
to test against the task algebra for the diagram in Figure 8.4, asserting that eventual
every path leads to a fail. It is easy to see that this expression is false and, when it
executed, the result is accompanied by a counterexample

MyLTL> check "(Phi+Epsilon+(requestPasswor
enterPassword" (F (Pr "Phi"))

(False,[!,enterPassword])

The counterexample shows that there is a case when, after a choice, the password
entered and then the trace finishes without fail. It is important to note that, while f
is represented on the semantics as fail, there is no correspo
successfully terminating path.

The same kind of LTL theorem could be tested agains
8.5. This diagram shows no fail at the top level, but the possib
compound task Login (see Figure 8.4) is considered, as depicted in the lat
The execution command is as follows:

MyLTL> check "let Login={(Phi+Epsilon+(requestPas
Phi)); enterPassword} {readReviewerGuidelines + (
+ x); checkPaymentsStatus + completeReviewEForm
(Mu.x((Mu.y(readAnAbstract; Epsilon + y); select

 appropiate functions by
e, evalAllTraces goes

luation is false, evalAlltraces stops
ounterexample.

lows:

ell-formed expression in the
plained above, the
in the case the LTL

ly, a true result would show no

to construct a theorem
ly
 is

:

d; Epsilon + Phi));

 is
ail

nding symbol to represent a

t the larger diagram from Figure
ility of failure inside the

ter example.

sword; Epsilon +
Mu.x(Login; Epsilon
+
Paper); Epsilon + x);

no
e, the password is introduced

 next example, just
ed in order to verify if the task

hich it is true because no

);

)

confirmSelection; receivePapers))}" (F (Pr "Phi"))

(False,[!,enterPassword,!,checkPaymentsStatus])

As expected, the search to prove the LTL theorem finds a counterexample, where
fail is found in at least one path: namely, after a choic
and then the task of checking the payments status is chosen. In the
an extract of the diagram in Figure 8.5 is analys
receivePapers is eventually specified after selectPaper, w
counterexample could be found:

MyLTL> check "{Mu.x((Mu.y(readAnAbstract; Epsilon + y); selectPaper
Epsilon + x); confirmSelection; receivePapers}"
(F(U (Pr "selectPaper") (F(Pr "receivePapers")))

152

Chapter 8: The Task Algebra Implementation

(True,[])

As could be seen, the LTL queries were interpreted
existence of events, or relationships between events found
using the semantics proposed here for the task flow diagrams. These
kinds of property can be verified globally for the workflows expres
diagrams. The limitation with LTL is that the theorem has to hol
be falsifiable for at least one path). It may be desirable
different sets of paths, allowing a finer-grained kind of model checking.

8.4.5 An implementation of model-checking with CTL

As with the LTL code, the implementation of CTL model-checking defines the da
type Phi in order to specify the CTL expressions:

data Phi -- Path and State Operators
 -- operands and logical operators
 = Pr String
 | Bool Bool
 | Not Phi
 | And Phi Phi
 | Or Phi Phi
 | Impl Phi Phi
-- A ? - All: ? has to hold on all paths starting f
current state.
 | AX Phi -- Next phi
 | AG Phi -- All future states
 | AF Phi -- Eventually
 | AU Phi Phi -- Unti
-- E ? - Exists: there exists at least one path
the current state where ? holds.
 | EX Phi -- Next p
 | EG Phi -- All future stat
 | EF Phi -- Eventually
 | EU Phi Phi -- Until
 deriving (Eq, Ord, Show)

As in the LTL implementation, the function tr
used. In addition, to check a CTL expression against a model in the algebra, the
function check is defined. The function check is declared as follow

check :: String -> Phi -> ([[Integer]],

check expr phi = (sort (sat (tree (Set.toList(tr exp
tree (Set.toList(tr expr)))

In this implementations, the expression expr is passed to
the result is used by tree to build a tree representation

as logical statements about the
 in the traces generated

and similar
sed by the

d for every path (or
instead to quantify over

ta

rom the

l
 starting from

hi
es

ace presented in section 8.2 is also

:

Node)

r))) phi),

tr to generate the traces and
based in the data type Node:

 Node = Empty

 | Node ([Integer], Event) (SubTree)

data

153

Chapter 8: The Task Algebra Implementation

 deriving (Eq, Ord, Show)

type Empty =[]

type SubTree = [Node]

where as can be seen, a node may be an empty node, or a node containing a value (to
identify the node, and Event which, as was mentioned above, represents the elements
of the traces. In addition, a node may have a Subtree which, as can be seen, is defined
as a lists of nodes.

The result of check is a tuple containing first, a list with the numbers of the nodes for
which the expression in CTL is true (or an empty list if its not the case), and the
second element of the tuple is the whole tree representation. The list of nodes is
obtained by the function sat, which takes the CTL expression and, calling specific
functions (e.g., satAX, satEF) when necessary, returns the list of nodes satisfying the
expression:

sat :: Node -> Phi -> [[Integer]]

ression>

e

erting that the task
able at least once (viz. in at least one trace), and

1]],Node ([0],null) [Node ([0,3],Phi)
[0,2],requestPassword) [Node ([0,2,2],Phi) [Empty],Node

0,2,1],enterPassword) [Empty]],Node ([0,1],enterPassword) [Empty]])

second element of the
 integrate
 the level

0, 2]
, 2, 2]. As can be seen, the

shows a visual tree

The syntax for using the CTL applications is as follows:

eck <task-algebra-expression> <CTL-expch

where task-algebra-expression is a string expressing a well-formed expression in the
algebra, and CTL-expression is a valid expression in CTL. In this case, the result is
expressed as a pair of values containing first, the set of nodes for which the CTL
expression is true (if there is any), and second, the structure of the tree built from th

aces. tr

In CTL for example, we could construct a theorem ass
enterPassword was eventually reach
test this against the algebra expression denoting the diagram in Figure 8.4:

MyCTL> check "(Phi+Epsilon+(requestPassword; Epsilon + Phi));
enterPassword" (EF (Pr "enterPassword"))

([[0],[0,1],[0,2],[0,2,
[Empty],Node (
[

As mentioned above, the result of check is a tuple containing first, a list with the
numbers of the nodes for which the expression in CTL and the
tuple is the whole tree representation. The node [0] is null and it is used to
all the paths. The enumeration of the nodes is consecutive and also depicts
of the node in the tree. Consequently, subnodes of node [0] are nodes [0, 1], [
and [0, 3]. Node [0, 2] have as subnodes to [0, 2, 1] and [0
CTL application returns the nodes that are considered valid under the CTL expression
([0],[0,1],[0,2],[0,2,1]); where nodes [0,1] and [0,2,1] are the nodes representing the
states where the task enterPassword happens. Figure 8.7
representation where the valid states can be observed.

154

Chapter 8: The Task Algebra Implementation

Figure 8.7. Tree representation of traces from diagram in Figure 8.4

Again, we may test the same CTL formula against the larger diagram from Figure 8.5
where the compound task described in Figure 8.4 is embedded. The Haskell
command and the corresponding result are presented as follows (see Figure 8.8 for the
visual tree representation):

MyCTL> check "let Login={(Phi+Epsilon+(requestPassword; Epsilon +

+ x); checkPaymentsStatus + completeReviewEForm +

1],enterPassword) [Node ([0,3,1,6],Phi) [Empty],Node
([0,3,1,5],requestPassword) [Node ([0,3,1,5,2],Phi) [Empty],Node

,3,1,5,1,3],readAnAbstract)
Node

([0,3,1,5,1,3,2,1],confirmSelection) [Node

vePapers) [Empty]]],Node

lectPaper)

Phi)); enterPassword} {readReviewerGuidelines + (Mu.x(Login; Epsilon

(Mu.x((Mu.y(readAnAbstract; Epsilon + y); selectPaper); Epsilon + x);
confirmSelection; receivePapers))}" (EF (Pr "enterPassword"))

([[0],[0,1],[0,3],[0,3,1]],Node ([0],null) [Node ([0,4],Phi)
[Empty],Node ([0,3],requestPassword) [Node ([0,3,2],Phi) [Empty],Node
([0,3,

([0,3,1,5,1],enterPassword) [Node ([0
[Node ([0,3,1,5,1,3,2],selectPaper) [
([0,3,1,5,1,3,2,2],readAnAbstract) [Node
([0,3,1,5,1,3,2,2,2],selectPaper) [Node
([0,3,1,5,1,3,2,2,2,1],confirmSelection) [Node
([0,3,1,5,1,3,2,2,2,1,1],receivePapers) [Empty]]],Node
([0,3,1,5,1,3,2,2,1],readAnAbstract) [Node
([0,3,1,5,1,3,2,2,1,1],selectPaper) [Node
([0,3,1,5,1,3,2,2,1,1,1],confirmSelection) [Node
([0,3,1,5,1,3,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node

([0,3,1,5,1,3,2,1,1],receivePapers) [Empty]]],Node
([0,3,1,5,1,3,1],readAnAbstract) [Node
([0,3,1,5,1,3,1,1],selectPaper) [Node
([0,3,1,5,1,3,1,1,2],readAnAbstract) [Node
([0,3,1,5,1,3,1,1,2,2],selectPaper) [Node
([0,3,1,5,1,3,1,1,2,2,1],confirmSelection) [Node
([0,3,1,5,1,3,1,1,2,2,1,1],recei
([0,3,1,5,1,3,1,1,2,1],readAnAbstract) [Node
([0,3,1,5,1,3,1,1,2,1,1],selectPaper) [Node
([0,3,1,5,1,3,1,1,2,1,1,1],confirmSelection) [Node
([0,3,1,5,1,3,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,3,1,5,1,3,1,1,1],confirmSelection) [Node
([0,3,1,5,1,3,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,3,1,5,1,2],completeReviewEForm) [Empty],Node
([0,3,1,5,1,1],checkPaymentsStatus) [Empty]]],Node
([0,3,1,4],readAnAbstract) [Node ([0,3,1,4,2],selectPaper) [Node
([0,3,1,4,2,2],readAnAbstract) [Node ([0,3,1,4,2,2,2],se

155

Chapter 8: The Task Algebra Implementation

[Node ([0,3,1,4,2,2,2,1],confirmSelection) [Node
([0,3,1,4,2,2,2,1,1],receivePa
([0,3,1,4,2,2,1],readAnAbstract) [Node

pers) [Empty]]],Node

,selectPaper) [Node
1],confirmSelection) [Node

([0,3,1,4,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node

[0,3,1,4,1,1,2,1,1,1],confirmSelection) [Node
[0,3,1,4,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node

[0,3,1,4,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,3,1,3],enterPassword) [Node ([0,3,1,3,3],readAnAbstract) [Node
([0,3,1,3,3,2],selectPaper) [Node ([0,3,1,3,3,2,2],readAnAbstract)
[Node ([0,3,1,3,3,2,2,2],selectPaper) [Node
([0,3,1,3,3,2,2,2,1],confirmSelection) [Node
([0,3,1,3,3,2,2,2,1,1],receivePapers) [Empty]]],Node
([0,3,1,3,3,2,2,1],readAnAbstract) [Node
([0,3,1,3,3,2,2,1,1],selectPaper) [Node
([0,3,1,3,3,2,2,1,1,1],confirmSelection) [Node
([0,3,1,3,3,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,3,1,3,3,2,1],confirmSelection) [Node
([0,3,1,3,3,2,1,1],receivePapers) [Empty]]],Node
([0,3,1,3,3,1],readAnAbstract) [Node ([0,3,1,3,3,1,1],selectPaper)
[Node ([0,3,1,3,3,1,1,2],readAnAbstract) [Node
([0,3,1,3,3,1,1,2,2],selectPaper) [Node
([0,3,1,3,3,1,1,2,2,1],confirmSelection) [Node
([0,3,1,3,3,1,1,2,2,1,1],receivePapers) [Empty]]],Node
([0,3,1,3,3,1,1,2,1],readAnAbstract) [Node
([0,3,1,3,3,1,1,2,1,1],selectPaper) [Node
([0,3,1,3,3,1,1,2,1,1,1],confirmSelection) [Node
([0,3,1,3,3,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,3,1,3,3,1,1,1],confirmSelection) [Node
([0,3,1,3,3,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,3,1,3,2],completeReviewEForm) [Empty],Node
([0,3,1,3,1],checkPaymentsStatus) [Empty]],Node
([0,3,1,2],completeReviewEForm) [Empty],Node
([0,3,1,1],checkPaymentsStatus) [Empty]]],Node
([0,2],readReviewerGuidelines) [Empty],Node
([0,1],enterPassword) [Node ([0,1,6],Phi) [Empty],Node
([0,1,5],requestPassword) [Node ([0,1,5,2],Phi) [Empty],Node
([0,1,5,1],enterPassword) [Node ([0,1,5,1,3],readAnAbstract) [Node
([0,1,5,1,3,2],selectPaper) [Node ([0,1,5,1,3,2,2],readAnAbstract)
[Node ([0,1,5,1,3,2,2,2],selectPaper) [Node
([0,1,5,1,3,2,2,2,1],confirmSelection) [Node
([0,1,5,1,3,2,2,2,1,1],receivePapers) [Empty]]],Node
([0,1,5,1,3,2,2,1],readAnAbstract) [Node
([0,1,5,1,3,2,2,1,1],selectPaper) [Node
([0,1,5,1,3,2,2,1,1,1],confirmSelection) [Node
([0,1,5,1,3,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,1,5,1,3,2,1],confirmSelection) [Node
([0,1,5,1,3,2,1,1],receivePapers) [Empty]]],Node
([0,1,5,1,3,1],readAnAbstract) [Node ([0,1,5,1,3,1,1],selectPaper)
[Node ([0,1,5,1,3,1,1,2],readAnAbstract) [Node

([0,3,1,4,2,2,1,1]
([0,3,1,4,2,2,1,1,

([0,3,1,4,2,1],confirmSelection) [Node
([0,3,1,4,2,1,1],receivePapers) [Empty]]],Node
([0,3,1,4,1],readAnAbstract) [Node ([0,3,1,4,1,1],selectPaper) [Node
([0,3,1,4,1,1,2],readAnAbstract) [Node
([0,3,1,4,1,1,2,2],selectPaper) [Node
([0,3,1,4,1,1,2,2,1],confirmSelection) [Node
([0,3,1,4,1,1,2,2,1,1],receivePapers) [Empty]]],Node
([0,3,1,4,1,1,2,1],readAnAbstract) [Node
([0,3,1,4,1,1,2,1,1],selectPaper) [Node
(
(
([0,3,1,4,1,1,1],confirmSelection) [Node
(

156

Chapter 8: The Task Algebra Implementation

([0,1,5,1,3,1,1,2,2],selectPaper) [Node
nfirmSelection) [Node
eceivePapers) [Empty]]],Node
Abstract) [Node
ctPaper) [Node
nfirmSelection) [Node

[0,1,5,1,3,1,1,1],confirmSelection) [Node

[0,1,5,1,2],completeReviewEForm) [Empty],Node
[0,1,5,1,1],checkPaymentsStatus) [Empty]]],Node
([0,1,4],readAnAbstract) [Node ([0,1,4,2],selectPaper) [Node

2,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,1,4,2,1],confirmSelection) [Node ([0,1,4,2,1,1],receivePapers)

[0,1,4,1,1],selectPaper) [Node ([0,1,4,1,1,2],readAnAbstract) [Node
([0,1,4,1,1,2,2],selectPaper) [Node

1],confirmSelection) [Node
1,1],receivePapers) [Empty]]],Node

1,1,1],confirmSelection) [Node
([0,1,3,3,1,1,1,1],receivePapers) [Empty]]]]],Node

([0,1,5,1,3,1,1,2,2,1],co
([0,1,5,1,3,1,1,2,2,1,1],r
([0,1,5,1,3,1,1,2,1],readAn
([0,1,5,1,3,1,1,2,1,1],sele
([0,1,5,1,3,1,1,2,1,1,1],co
([0,1,5,1,3,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node
(
([0,1,5,1,3,1,1,1,1],receivePapers) [Empty]]]]],Node
(
(

([0,1,4,2,2],readAnAbstract) [Node ([0,1,4,2,2,2],selectPaper) [Node
([0,1,4,2,2,2,1],confirmSelection) [Node
([0,1,4,2,2,2,1,1],receivePapers) [Empty]]],Node
([0,1,4,2,2,1],readAnAbstract) [Node ([0,1,4,2,2,1,1],selectPaper)
[Node ([0,1,4,2,2,1,1,1],confirmSelection) [Node
([0,1,4,2,

[Empty]]],Node ([0,1,4,1],readAnAbstract) [Node
(

([0,1,4,1,1,2,2,
([0,1,4,1,1,2,2,
([0,1,4,1,1,2,1],readAnAbstract) [Node
([0,1,4,1,1,2,1,1],selectPaper) [Node
([0,1,4,1,1,2,1,1,1],confirmSelection) [Node
([0,1,4,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,1,4,1,1,1],confirmSelection) [Node
([0,1,4,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,1,3],enterPassword) [Node ([0,1,3,3],readAnAbstract) [Node
([0,1,3,3,2],selectPaper) [Node ([0,1,3,3,2,2],readAnAbstract) [Node
([0,1,3,3,2,2,2],selectPaper) [Node
([0,1,3,3,2,2,2,1],confirmSelection) [Node
([0,1,3,3,2,2,2,1,1],receivePapers) [Empty]]],Node
([0,1,3,3,2,2,1],readAnAbstract) [Node
([0,1,3,3,2,2,1,1],selectPaper) [Node
([0,1,3,3,2,2,1,1,1],confirmSelection) [Node
([0,1,3,3,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,1,3,3,2,1],confirmSelection) [Node
([0,1,3,3,2,1,1],receivePapers) [Empty]]],Node
([0,1,3,3,1],readAnAbstract) [Node ([0,1,3,3,1,1],selectPaper) [Node
([0,1,3,3,1,1,2],readAnAbstract) [Node
([0,1,3,3,1,1,2,2],selectPaper) [Node
([0,1,3,3,1,1,2,2,1],confirmSelection) [Node
([0,1,3,3,1,1,2,2,1,1],receivePapers) [Empty]]],Node
([0,1,3,3,1,1,2,1],readAnAbstract) [Node
([0,1,3,3,1,1,2,1,1],selectPaper) [Node
([0,1,3,3,1,1,2,1,1,1],confirmSelection) [Node
([0,1,3,3,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,1,3,3,

([0,1,3,2],completeReviewEForm) [Empty],Node
([0,1,3,1],checkPaymentsStatus) [Empty]],Node
([0,1,2],completeReviewEForm) [Empty],Node
([0,1,1],checkPaymentsStatus) [Empty]]])

157

Chapter 8: The Task Algebra Implementation

Figure 8.8 A partial tree representation of traces from diagram in Figure 8.5

Or it could be asked, for example, if either the password is always requested initially

er); Epsilon + x);

lly readAnAbstract happens, followed by selectPaper (see Figure 8.9 for the
visual tree representation):

],Node ([0,1,1],readAnAbstract) [Node ([0,1,1,1],selectPaper)
[Node ([0,1,1,1,2],readAnAbstract) [Node ([0,1,1,1,2,2],selectPaper)

(the task requestPassword happens), or the task readReviewerGuidelines is always
executed (the full tree representation is omitted):

MyCTL> check "let Login={(Phi+Epsilon+(requestPassword; Epsilon +
Phi)); enterPassword} {readReviewerGuidelines + (Mu.x(Login; Epsilon
+ x); checkPaymentsStatus + completeReviewEForm +
(Mu.x((Mu.y(readAnAbstract; Epsilon + y); selectPap
confirmSelection; receivePapers))}" (AX (Or (Pr "requestPassword")
(Pr "readReviewerGuidelines")))

([],Node ([0],null) [Node ([0,4],Phi) [Empty],Node
([0,3],requestPassword) ...)

In this case, since the CTL theorem is falsified, executing the CTL command returns
an empty list in the first part of the result (denoting no solutions) and the second part
returns the constructed CTL trace tree, as before. In the next example, just an extract
of the diagram in Figure 8.5 is analysed to verify whether, on at least one path,
eventua

MyCTL> check "{Mu.x((Mu.y(readAnAbstract; Epsilon + y); selectPaper);
Epsilon + x); confirmSelection; receivePapers}"
(EF(EU (Pr "readAnAbstract") (Pr "selectPaper")))

([[0],[0,1],[0,1,1],[0,1,1,1],[0,1,2]],Node ([0],null) [Node
([0,1],readAnAbstract) [Node ([0,1,2],selectPaper) [Node
([0,1,2,2],readAnAbstract) [Node ([0,1,2,2,2],selectPaper) [Node
([0,1,2,2,2,1],confirmSelection) [Node
([0,1,2,2,2,1,1],receivePapers) [Empty]]],Node
([0,1,2,2,1],readAnAbstract) [Node ([0,1,2,2,1,1],selectPaper) [Node
([0,1,2,2,1,1,1],confirmSelection) [Node
([0,1,2,2,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,1,2,1],confirmSelection) [Node ([0,1,2,1,1],receivePapers)
[Empty]]

158

Chapter 8: The Task Algebra Implementation

[Node ([0,1,1,1,2,2,1],confirmSelection) [Node
([0,1,1,1,2,2,1,1],receivePapers) [Empty]]],Node
([0,1,1,1,2,1],readAnAbstract) [Node ([0,1,1,1,2,1,1],selectPaper)
[Node ([0,1,1,1,2,1,1,1],confirmSelection) [Node
([0,1,1,1,2,1,1,1,1],receivePapers) [Empty]]]]],Node
([0,1,1,1,1],confirmSelection) [Node ([0,1,1,1,1,1],receivePapers)
[Empty]]]]]])

Figure 8.9 A partial tree representation of traces from an extract of the diagram in Figure 8.5

With the examples above it was shown that it is possible to model-check task flow
models represented in the algebra, by testing CTL formulas against the corresponding
traces. A tree is first built from the traces in order to use this branching-time logic
and then the theorem is tested, yielding the set of branches in which the theorem
holds.

8.5 Tests of the implementation

There are some attempts to apply LTL and CTL queries to traces. Traces semantics
for positive core Xpath(a subset of XML Path Language), which translates into LTL
an uses SPIN model checker [147]. Eleftherakis uses X-Machines to model and test
software [148]. In [149, 150], Eleftherakis mentions XmCTL, an extended CTL

ed in some
queries. Still, it takes no more than a few seconds to obtain the results from the
ueries. However, optimising the source code in Haskell or moving the

implementation to another language could increase the performance.

including two memory quantifier operators. In [151], it is described a query checking
tool using CTL. This tool works over XChek, a multi-valued model-checker [152].

In our project, the task algebra and the model-checking tools were developed in
Haskell. The implementation for the task algebra was tested using small and medium
sized examples. So far, no problems of execution were found while computing traces.
The case of study, as was mentioned, is a medium sized project, and the limited
number of loop-cycles also helps. In addition, the level of detail in the task flows is
usually not as high as in programming.

Additionally, the implementation for the LTL and CTL queries with the examples
presented here, and others of similar size are executed in a matter of seconds. As can
be expected, CTL queries are more time consuming because the tree has to be
constructed from the trace sets and because exhaustive searching is need

q

159

Chapter 8: The Task Algebra Implementation

As mentioned above, the source code for the task algebra, and the LTL and CTL
dix C.

y

e previous chapters demonstrated the soundness and congruence of the task
ell
w

Diagram from the case study into the task
ut

ral
logic pr heorems.

queries can be seen in Appen

8.6 Summar

Th
algebra. In this chapter, an implementation of the algebra in the Hask
programming language was described using a previously published Task Flo

 case study and translating the diagrams
algebra. The traces generated by the program were then the subject of queries abo
(in-)equality, tested using set operations, and more general theorems about tempo

operties, tested using LTL and CTL t

160

Chapter 9:
n

L query

Co clusions

In the previous chapter, the implementation of the algebra and the LTL/CT
tools w sults are summarized and the
expecte is also
mentioned.

ere presented. In this chapter, the research re
d contribution is shown. The possible future work of this research

9.1 R

e
depend ing more reliable. What is needed is a
better way to carefully examine software for accuracy and reliability. In order for

se
specification. However, it should be clear that the aim of specification is to

program ion
must b atics, but must also be comprehensible to,

eeds
 fo em.

Traditi ability,
through the expected problem of semantic

Conseq ware
uing this intention, an experimental

f
the diag
simplic e goal was to go further and define the

nt s
tua he

analyze

It was then decided to limit the scope of the research to providing a precise semantics

rac
present
based on simple and com
selection, and parallel composition. Recursion and encapsulation were also
considered. The axioms of the algebra were presented as well as a set of examples

esults

Software has become increasingly important in everyday life; yet while we are mor
ent on it, it does not appear to be gett

software to be amenable to such an examination, it should have a preci

communicate the problem that we want to solve between users, designers and
mers. Therefore, as Henderson mentions in [153], a formal specificat

e as elegant and precise as mathem
and readable by, people with different backgrounds. These are contradictory n
and, r that reason, it is difficult to find the ideal balance between th

onally, software engineering follows the approach emphasising read
 intuitive diagrammatic notations, with

imprecision and the difficulty of checking the specification.

uently, major effort should continue to be directed into modelling soft
using notations with precise semantics. Purs
approach was first followed, using Alloy to define and verify the abstract syntax o

rams in the Discovery Method, where these were chosen for their clarity and
ity over full UML notations. Initially, th

sema ics for the Discovery Method using the Alloy analyzer. This approach wa
even lly abandoned, due to problems encountered in restricting the scope of t

r.

for the Task Model, consisting of Task Structure and Task Flow diagrams. The
abst t syntax representation for the Task Flow model in the Discovery Method was

ed in chapter 5. This abstract syntax was used to define a task algebra, which is
pound tasks structured using operators such as sequence,

161

Chapter 9: Conclusions

showing a combination of basic elements in the expressions denoting simple, and
omplex, Task Flow diagrams. The task algebra was able to represent task
 in a clear and elegant style. Task Flow diagrams were

more c
models also related to State
Diagrams and Task Structure diagrams, as described in chapter 4.

Subseq
semantics was designed in terms of trace sets representing all possible complete

sk
algebra
implem ped
and pre analysed
by sub
more g out temporal logic properties, tested using LTL and CTL

In addi published case- study was used to validate the task algebra.

nt poral
logic to

formal
represe can
be used per
creating task models does not need to learn any complicated formal language to

e
al

and sim be used even by software engineers having little
s

system vide a graphical
,

hand.

All objec e achieved with different levels of satisfaction.
the

relation
restrict the
developer, because these relationships are not established directly in the semantics.

n
the actual proposal, selection is just represented as a commitment that a choice

re
informa to the
algebra e
algebra.

uently, the precise semantics for the abstract task algebra was developed. The

execution paths for a system of tasks. The soundness and congruence of the ta
 was proved in Chapter 7 and Appendix B respectively. In addition, an
entation of the algebra in the Haskell programming language was develo
sented in chapter 8. The traces generated by the program were then
mitting these to queries about (in-)equality, tested using set operations, and
eneral theorems ab

theorems.

tion, a previously
The diagrams were translated from the case- study into the abstract syntax; the
sema ic traces were generated, and these were then submitted to queries in tem

 check for a selection of properties.

Subsequently, as an outcome of our research, it is now possible to have
ntations of the Task Model as used in the Discovery Method. Task Models
 to represent in a precise way the interactions between tasks. The develo
 the

create the intended formal specification. The Task Model is itself equivalent to th
form specification, since it has a fully formal interpretation.

From this perspective, it is believed that the work presented here could be easy to
integrate into the process of modelling software. By itself, the task algebra is an easy

ple enough formalism to
previous experience with formal languages. The abstract syntax and axiomatic rule
offer a means of proving the equivalence (or otherwise) of different workflow-based

s. However, the intention of this approach is eventually to pro
tool to generate the diagrams and translate them automatically into the abstract syntax
so that the developer need not generate the representation in the formal language by

9.2 Evaluation

tives of this research wer
Whilst our approach proposes a precise abstract syntax for tasks and activities,

ship between the Task Structure and the Task Flow diagram and the
ions that this relationship defines have to be taken into account by

Additionally, the task algebra is limited by not representing guards on selections. I

happened in a trace (which is common in other trace-based approaches), but no mo
tion about the guards represented in the Task Flow diagram is mapped in
. This is a desirable characteristic to be considered in future version of th

162

Chapter 9: Conclusions

The denotational semantics were proposed in term of traces presenting a non-
ving model for parallinterlea el composition due to the necessity to restrict the

interleaving for special cases involving the succeed and fail symbols that have the
it

symbol atment, compared with an identifier representing a simple
task, being inserted at a selection point for each choice. In addition, soundness and

comple

em ons of
model- ion.

Inevita nt
ered important
.

lat

support pers,
directly d in
visualis eries, which are

apable of visualising
 of

queries

pport for
w

the use w
diagram ry Method. Modelling guards will have clearly an impact in

em

Finally
the representation of simple and compound tasks is unified at the lowest level of

 determine
the ss, the

semantics abstrac s and
 A future

develop t
represe in conditional expressions. This could be
developed, if simple tasks were decomposed further to express, in some form, how

ns of
each ta e triggering of
differen d
unsatisfied atomic preconditions. What kind of symbolic calculus would be sufficient

behaviour of finishing the execution of the activity in which they appear. The comm
 has also a special tre

congruence is presented, but congruence was proved from the semantics and to be
tely valid the completeness property still has to be proved.

The last objective proposed to test the feasibility of the formal representation. This
impl entation was presented and also included additional implementati

checking tools, so taking advantage of the task algebra implementat

9.3 Future work

bly, this research is never finished, it is merely published at a certain mome
when a line must be drawn under the work. Some further work consid
for the future of this research involves in different aspects of the project

As was mentioned above, a graphical tool is still needed to generate the diagrams and
trans e them into the algebra. This tool, which is envisaged as future work, will

 the automatic construction and simplification of formal models by develo
 from diagram specifications. In addition, further work should be investe
ing the results from applying LTL and, particularly, CTL qu

not easy to interpret in their current form. A graphical browser, c
and navigating over trees of traces, should help the developer understand the results

.

In addition, for a future version of the algebra, it will be useful to add su
mapping the guards from the task diagrams into the algebra. The guards should allo

 of values, variables and logical operators, which are allowed by the Task Flo
s in the Discove

the s antics and it will enhance the kind of queries to be applied over the models.

, the formal semantics developed in this work is sufficient to demonstrate how

representation. This is enough to represent the tasks in some detail, to
whe r or not these tasks succeed or fail in their execution. Neverthele

ts over the details of choices taken in conditional expression
does not further analyse simple tasks, which are considered atomic.

ment in the semantics should consider including a suitable abstrac
ntation of the states tested

they affected system states, which could be modelled as the atomic postconditio
sk. This would support more detailed reasoning about th
t branches and the ability to handle exceptional cases, based on satisfied an

to represent such atomic stateful properties is a matter for future research.

163

Ref

1.

deling Language

3.

4. Specification, Object Management Group,

5.
UML'98 - Beyond the notation, (1998),

6. n

 Group, 2000,

erences

Rumbaugh, J., Jacobson, I. and Booch, G. The Unified Modeling Language.
Reference Manual. Addison-Wesley, 1999.

2. Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Mo
User Guide. Addison Wesley, 1998.

France, R.B., Ghosh, S., Dinh-Trong, T. and Solberg, A. Model-Driven
Development Using UML 2.0: Promises and Pitfalls. COMPUTER, 59-66,
2006.

UML 2.0 Superstructure
Framingham, Massachusetts, 2004.

Bruel, J.-M. and R.B.France, Transforming UML models to formal
specifications. In Proceedings of
Springer Verlag.

Brodsky, S., Clark, T., Cook, S., Evans, A.S. and Kent, S., Feasibility Study i
Rearchitecting UML as a Family of Languages using a Precise OO Meta-
Modeling Approach, Technical Report of pUML
http://www.puml.org/mmf/mmf.pdf, Last access: April 2004

D'Souza, D.F. and Wills, A.C. Objects, Compo7. nents, and Frameworks. The

8.

Catalysis Approach. Addison-Wesley, 1999.

2U Consortium, 2U Consortium, Unambiguous UML, 2001,
http://www.2uworks.org/, Last access: September 2004

9. Kim, S.K. and Carrington, D. A Formal Mapping between UML Models and
Object-Z Specifications. ZB 2000: Formal Specification and Development in
and B, Lecture Notes in Computer Science, ed. G. Goos, J. Hartmanis and
van Leeuwen, 1878, 2-21, 2000.

 Z

J.

an, C.
-268.

.pdf

10. Jackson, D. Object Models as Heap Invariants. in McIver, A. and Morg
eds. Programming Methodology, Springer Verlag, New York, 2003, 247

11. Massoni, T., Gheyi, R. and Borba, P., Semantics-Preserving Transformation
for UML Class Diagrams, Universidade Federal de Pernambuco, 2004,
http://nazare.cin.ufpe.br/twiki/pub/SPG/WeeklySeminar/paper-uml2004 ,

Last access: May 2004

12. Naumenko, A. and Wegmann, A. A Metamodel for the Unified Modeling
Language. «UML» 2002 — The Unified Modeling Language, Lecture Notes in
Computer Science, ed. G. Goos, J. Hartmanis, and J. van Leeuwen, 2460, 2-
17, 2002.

164

References

13. ISO, IEC and ITU-T. The Reference Model of Open Distributed Processing
(RM-ODP, ITU-T Rec. X.901-X.904 | ISO/IEC 10746), 1995-2008.

14. Bordbar, B. and Anastasakis, K., UML2Alloy: A tool for lightweight

ering Reserach and Practice (SERP05), (Las
Vegas, USA, 2005), 209–216.

15. ackage merge with Alloy. In
Proceedings of First Alloy Workshop, (Portland, USA, 2006), ACM-MIT.

16. ipe for Analyzing Object-
Oriented Models, Cambridge, MA, USA, 2001,

modelling of Discrete Event Systems. In Proceedings of the International
Conference on Software Engine

Zito, A. and Dingel, J., Modeling UML2 p

Khurshid, S. and Marinov, D., Aaree: A Rec

http://sdg.lcs.mit.edu/pubs/2001/aaree.pdf, Last access: January 2005

17. Gallardo, M.d.M., Merino, P. and Pimentel, E. Debugging UML designs with

18. Richters, M. A Precise Approach to Validating UML Models and OCL
.

19. OMG. Object Constraint Language Specification. in OMG Unified Modeling

20. OMG. Object Constraint Language Specification, version 2.0. OMG, 2006.

21.
king. In Proceedings of IEEE Automated software

Engineering, (2001), 315-318.

22. the fly model checking of communicating
UML state machines, 2003, http://fmt.isti.cnr.it/WEBPAPER/onthefly-

model checking. Journal of Object Technology, 1 (2), 101-117, 2002.

Constraints, PhD Thesis, Universitaet Bremen, Berlin, 2002, 218 pp

Language Specification, OMG, 2003.

Shen, W., Compton, K. and Huggins, J., A toolset for supporting UML static
and dynamic model chec

Gnesi, S. and Mazzanti, F., On

SERA04.pdf, Last access: February 2005

23. Störrle, H. Semantics and Verification of Data Flow in UML 2.0 Activities.

24. Xactium, XMF-Mosaic, Xactium, 2005,

Electronic Notes in Theoretical Computer Science, 127 (4), 35-52, 2005.

http://albini.xactium.com/content/index.php?option=com_frontpage&Itemid=
1, Last access: March 2005

Simons, A.J.H., Object Discovery - A process for developing medium25. -sized
applications. In Proceedings of Tutorial 14, 12th European Conference on

8), (Oxford, 1998), BCS, 93.

Object-Oriented Programming (ECOOP '98), (Brussels, 1998), AITO/ACM,
109.

26. Simons, A.J.H., Object Discovery - A process for developing applications. In
Proceedings of Workshop 6, British Computer Society SIG OOPS Conference
on Object Technology (OT '9

165

References

27. Rumpe, B., A Note on Semantics (with Emphasis on UML). In Proceedings of
Second ECOOP Workshop on Precise Behavioral Semantics, (Brussels, 1998),
Technische Universität München, TUM-I9813, 177-197.

28. alysis and Design, Part 3 : Object
Modelling – Command and Control, The University of Sheffield, 2006, 52-55.

29. J., Gheorghe,
M., Harman, M., Hierons, R.M., Kapoor, K., Krause, P., Luettgen, G., Simons,

T), 2003, http://www.fortest.org.uk/documents/landscape3.pdf

Simons, A.J.H. COM3410 Systems An

Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick,

A.J.H., Vilkomir, S., Woodward, M.R. and Zedan, H., Working together:
Formal Methods and Testing, Formal Methods and Testing Network
(FORTES , Last
access: June 2004

30. er, 23

th ACM SIGPLAN conference on Object-

36. els of Software: Lightweight Modelling and Analysis

Wing, J.M. A Specifier's Introduction to Formal Methods. IEEE Comput
(9), 8-24, 1990.

31. Spivey, J.M. An Introduction to Z and Formal Specifications. Software
Engineering Journal IEEE/BCS, 4 (1), 40-50, 1989.

32. Khurshid, S., Marinov, D. and Jackson, D., An analyzable annotation
language. In Proceedings of 17
oriented programming, systems, languages, and applications, (2002), 231-
245.

33. ISO/IEC. International Standard ISO/IEC 13568: Formal Specification—Z
Notation—Syntax, Type and Semantics, 2002, 196.

34. Jackson, D. Software abstractions : logic, language and analysis. MIT Press,
Cambridge, Mass., 2006.

35. Simons, A.J.H. The Theory of Classification, Part 5: Axioms, Assertions and
Suptyping. Journal of Object Technology, 2 (1), 13-21, 2003.

Jackson, D., Micromod
with Alloy, MIT Lab for Computer Science, 2002,
http://alloy.mit.edu/reference-manual.pdf, Last access: January 2004

38. Clarke, E.M. and Berezin, S., Mode

, The Netherlands, 1988), 18-24.

40. Claessen, K. and Sorensson, N., New techniques that improve MACE-style

41. Spivey, J.M. The Z Notation: A Reference Manual. Prentice Hall, 1992.

37. Clarke, E.M., Grumberg, O. and Peled, D. Model checking. MIT Press,
Cambridge, Mass., 1999.

l Checking: Historical Perspective and
Example. In Proceedings of Analytic Tableaux and Related Methods
(TABLEAU ’98), (Oisterwijk near Tilburg

39. McMillan, K.L. Symbolic model checking. Kluwer Academic, Boston, 1993.

finite model finding. In Proceedings of CADE-19, Workshop W4. Model
Computation - Principles, Algorithms, Applications, (Miami, USA, 2003).

166

References

42. Potter, B., Sinclair, J. and Till, D. An Introduction to Formal Specification and
Z. Prentice Hall, 1996.

44. Sun, J., Dong, J.S., Liu, J. and Wang, H. Z Family on the Web with their UML
 University

ence, 25 (3), 1995.

er

47. Community Z Tools (CZT), Community Z Tools Project, 2007,

43. Woodcock, J. and Davies, J. Using Z: Specification, Refinement, and Proof.
Prentice Hall, 1996.

Photos. Technical Report TRA1-01. School of Computing, National
of Singapore, 2001.

45. Toyn, I. and McDermid, J.A. CADi: An architecture for Z tools and its
implementation. Software: Practice and Experi

46. Malik, P. and Utting, M. CZT: A framework for Z tools. ZB 2005: Formal
Specification and Development in Z and B, Lecture Notes in Comput
Science, ed. G. Goos, J. Hartmanis and J. van Leeuwen, 3455, 65-84, 2005.

http://czt.sourceforge.net/, Last access: April 2009

Dupuy, S., Ledru, Y. and Chabre-Peccoud, 48. M., An Overview of RoZ : A Tool
for Integrating UML and Z Specifications. In Proceedings of Advanced

0.

2/alloy-tutorial.html

Information Systems Engineering: 12th International Conference, CAiSE
2000, (Stockholm, Sweden, 2000), Springer-Verlag, 417-43

49. Jackson, D., Alloy 2.0 Tutorial., MIT, Cambridge, 2002,
http://web.mit.edu/~rseater/www/tutorial , Last access:

 (2),

ambridge, MA, 2004, http://alloy.mit.edu/beta/index.php

January 2004

50. Jackson, D. Alloy: A Lightweight Object Modelling Notation. ACM
Transactions on Software Engineering and Methodology (TOSEM), 11
256-290, 2002.

51. Software Design Group, The Alloy Analyzer - 3.0 Beta, MIT Laboratory for
Computer Science, C ,

52. Jackson, D., Alloy 3.0: Reference Manual, MIT, Cambridge, 2004,

Last access: June 2004

http://alloy.mit.edu/beta/reference-manual.pdf, Last access: May 2004

53. Torlat, E. and Jackson, D., Kodkod: A Relational Model Finder. In

54. ., Seater, R., Rayside, D. and Jackson, D., Lightweight formal
methods applied to a radiotherapy machine component, 2004,

Proceedings of Algorithms for Construction and Analysis of Systems (TACAS
'07), (Braga, Portugal, 2007).

Dennis, G

http://sdg.lcs.mit.edu/publications.html, Last access: March 2004

Jackson, D. and Vaziri, M., Finding bugs with a constrain55. t solver. In
Proceedings of the 2000 ACM SIGSOFT international symposium on Software
testing and analysis, (Portland, Oregon, USA, 2000), ACM Press, 14-25.

167

References

56. Minas, M., Visual specification of visual editors with DiaGen. In Proceed
of International Workshop on Applications of Graph Transformations w
Industrial Relevance (AGTIVE'03), (Charlottesville, Virginia, USA, 20
461-466.

ings
ith

03),

57. Jackson, D., Shlyakhter, I. and Sridharan, M., A Micromodularity Mechanism.

neering Conference (FSE /
ESEC '01), (Vienna, Austria, 2001), ACM, 62-73.

58.
l

In Proceedings of 9th ACM SIGSOFT Conference on the Foundations of
Software Engineering / European Software Engi

Jackson, D., Alloy 3.0 Tutorial., MIT, Cambridge, 2004,
http://web.mit.edu/~rseater/www/tutorial3/alloy-tutorial.htm , Last access:
May 2004

59. bject Models. In
Proceedings of Foundations of Software Engineering, (Newport Beach, CA,

60. Richters, M. and Gogolla, M. OCL: Syntax, Semantics, and Tools. in Clark,

61. Hussmann, H., Demuth, B. and Finger, F., Modular architecture for a toolset

e, (York,
UK, 2000), Springer, 278-293.

62. ftware

ts.

,

64. t, J. and

rgouml.tigris.org/documentation/defaulthtml/manual/

Edwards, J., Jackson, D. and Torlak, E., A Type System for O

2004), To be published.

A. and Warmer, J. eds. Object Modeling with the OCL, Springer-Verlag,
Berlin, 2002, 42-68.

supporting OCL. In Proceedings of UML 2000 - The Unified Modeling
Language. Advancing the Standard. Third International Conferenc

Toval, A., Requena, V. and Fernández, J.L. Emerging OCL tools. So
and Systems Modeling, 2 (4), 248-261, 2003.

63. Richters, M. and Gogolla, M., Validating UML Models and OCL Constrain
In Proceedings of UML 2000 - The Unified Modeling Language. Advancing
the Standard. Third International Conference, (York, UK, 2000), Springer
265-277.

Ramirez, A., Vanpeperstraete, P., Rueckert, A., Odutola, K., Bennet
Tolke, L., ArgoUML User Manual, 2004,
http://a , Last access:
December 2004

65.

ptual Modeling - ER '98, 17th
International Conference on Conceptual Modeling, (Singapore, 1998),

67.
c. OOPSLA Workshop ``Rigorous Modeling and Analysis

with the UML: Challenges and Limitations'', (Colorado State University, Fort
Collins, Colorado, 1999).

Gogolla, M. and Richters, M., On Constraints and Queries in UML. In
Proceedings of UML Workshop 1997, (1997), 109-121.

66. Gogolla, M. and Richters, M., On Formalizing the UML Object Constraint
Language OCL. In Proceedings of Conce

Springer, 449-464.

Richters, M. and Gogolla, M., On the need for a precise OCL semantics. In
Proceedings of Pro

168

References

68. Hahnle, R. and Ranta, A., Connecting OCL with the Rest of the World. In
Proceedings of ETAPS 2001 Workshop on Transformations in UML, (Genova
Italy, 2001).

,

s algebra. CSR 04-02. Technische

70. Cheng, M.H.M., Calculus of Communicating Systems: a synopsis, 1994,

71. etical

Amsterdam, 1982.

73.

74.
International, Englewood Cliffs, N.J., 1985.

 Algebra of Regular Processes. In Proceedings of 11th ICALP, (1984),
Springer Verlag, 82-95.

University of Oxford, Oxford, 1981.

79. municating

0.

81.

82. E

d

69. Baeten, J.C.M. A brief history of proces
Universiteit Eindhoven, 2004.

citeseer.ist.psu.edu/cheng94calculu.html

Glabbeek, R.J.v. Notes on the methodology of CCS and CSP. Theor
Computer Science, 177 (2), 329-349, 1997.

72. Bergstra, J.A. and Klop, J.W. Fixed point semantics in process algebras. IW
208. Mathematical Centre,

Milner, R. A calculus of communicating systems. Springer-Verlag, Berlin;
New York, 1980.

Hoare, C.A.R. Communicating sequential processes. Prentice/Hall

75. Milner, R. Communicating and mobile systems: the pi-calculus. Cambridge
University Press, Cambridge, UK, 1999.

76. Bergstra, J.A. and Klop, J.W., The Algebra of Recursively Defined Processes
and the

77. Hoare, C.A.R. Communicating sequential processes. Communications of the
ACM, 21 (8), 666-677, 1978.

78. Hoare, C.A.R. A Model for Communicating Sequential Processes. PRG-22.

Brookes, S.D., Hoare, C.A.R. and Roscoe, A.W. A Theory of Com
Sequential Processes. J. ACM, 31 (3), 560-599, 1984.

80. Hall, A. Seven Myths of Formal Methods. IEEE Software, 7 (5), 11-19, 199

Bowen, J.P. and Hinchey, M.G. Seven More Myths of Formal Methods:
Dispelling Industrial Prejudices. IEEE Software, 12 (4), 34-41, 1995.

Bowen, J.P. and Hinchey, M.G. Ten Commandents of Formal Methods. IEE
Computer, 28 (4), 56-63, 1995.

83. Jackson, D., A Comparison of Object Modelling Notations: Alloy, UML an
Z, MIT, 1999, http://sdg.lcs.mit.edu/~dnj/publications/alloy-comparison.pdf,

84. cess Modelling. Information and Software
Technology, 45 (15), 1011-1089, 2003.

Last access: February 2004

Wallace, C. Using Alloy in Pro

169

References

85. Henderson-Sellers, B., Simons, A. and Youessi, H. The OPEN toolbox of
techniques. Harlow:Addison-Wesley, 1998.

LA '89, pub. Sigplan Notices, (1989), ACM
Sigplan.

89. -
 '89, pub. Sigplan Notices,

(1989), ACM Sigplan.

90. riented
 1990.

92. Coad, P. and Yourdon, E. Object-oriented design. Yourdon Press, Englewood

93. n. Prentice Hall, Englewood
Cliffs, N.J., 1991.

94.
, 1991.

g. ;

96. Booch, .

97.
Object-Oriented Programming. SIGS Books, New York, 1996.

. Prentice Hall,

100. Henderson-Sellers, B. and Edwards, J.M. Book two of object-oriented
knowledge : the working object : object-oriented software engineering :
methods and management. Prentice Hall, Sydney, Australia; New York, 1994.

86. Graham, I., Henderson-Sellers, B. and Younessi, H. The OPEN Process
Specification. Addison-Wesley, 1997.

87. Shlaer, S. and Mellor, S.J. Object-oriented systems analysis : modeling the
world in data. Yourdon Press, Englewood Cliffs, N.J., 1988.

88. Beck, K. and Cunningham, W., A laboratory for teaching object-oriented
thinking. In Proceedings of OOPS

Wirfs-Brock, R. and Wilkerson, B., Object-oriented design: a responsibility
driven approach. In Proceedings of OOPSLA

Wirfs-Brock, R., Wilkerson, B. and Wiener, L. Designing object-o
software. Prentice Hall, Englewood Cliffs, N.J.,

91. Coad, P. and Yourdon, E. Object-oriented analysis. Yourdon Press,
Englewood Cliffs, N.J., 1991.

Cliffs, N.J., 1991.

Rumbaugh, J. Object-oriented modeling and desig

Booch, G. Object oriented design with applications. Benjamin/Cummings
Pub. Co., Redwood City, Calif.

95. Jacobson, I. Object-oriented software engineering : a use case driven
approach. ACM Press, Addison-Wesley Pub., New York, Wokingham, En
Reading, Mass., 1992.

G. Object-oriented analysis and design with applications
Benjamin/Cummings Pub. Co., Redwood City, Calif., 1994.

Rumbaugh, J. OMT insights : perspectives on modeling from the Journal of

98. Hewlett-Packard The Fusion Object-Oriented Analysis and Design Method.
HP Laboratories, Bristol, England, 1992.

99. Coleman, D. Object-oriented development : the fusion method
Englewood Cliffs, N.J., 1994.

170

References

101. Walden, K. and Nerson, J.-M. Seamless object-oriented software architecture
b systems. Prentice Hall, New York, 1995.

 Software Engineering
Journal of Research and
00.

OPEN Consortium, The OPEN website, OPEN Consortium, 2000,
http://www.open.org.au/

: analysis and design of relia le

102. Henderson-Sellers, B. and Simons, A.J.H. The OPEN
Process Architecture: From Activities to Techniques.
Practice in Information Technology, 32 (1), 47-68, 20

103.
, Last access: April 2004

104. Graham, I. Migrating to object technology. Addison-Wesley Pub. Co.,

Santa Barbara, California, 1995).

l for Requirements Specification in Z. In Proceedings of Methods
Integration Workshop, (Leeds, UK, 1996).

107. Reenskaug, T., Wold, P. and Lehne, O.A. Working with objects : the OOram

epartment of Computer Science,
, Sheffield, 2000,

f.a uk/~a s/disc ery/ebook/

Wokingham, England ; Reading, Mass., 1995.

105. Firesmith, D., The Firesmith Method - Quo Vadis. In Proceedings of TOOLS
USA’95 Technology of Object-Oriented Languages and Systems 17
International Conference and Exhibition, (Interactive Software Engineering,

106. Rawson, M. and Allen, P., Synthesis - An Integrated, Object-Oriented Method
and Too

software engineering method. Manning, Greenwich, 1996.

108. Simons, A.J.H., The Discovery EBook, The D
University of Sheffield
http://www.dcs.she c. jh ov , Last access: June 2004

st, . and oiten, mework for UML consistency.
In Proceedings of Workshop on Consistency Problems in UML-based

s n, Ge any, 2002), 30-45.

ain Specific Languages Handbook of Software
Architecture, 2004,

re/b g.jsp?archive=2004-12.html

109. Derrick, J., Akehur D B E., A fra

Software Development, (Dre de rm

110. Booch, G., Microsoft and Dom

http://www.booch.com/architectu lo , Last
access: February 2004

OMG, UML Resource Page, Object Management Group, 1997,
http://www.uml.org/

111.
, Last access: June 2007

With UML 1.3. in Kilov, H., Rumpe, B. and Simmonds, I. eds. Behavioral
Businesses and Systems, Kluwer Academic Publishers, 1999,

13. Simons, A.J.H., Use Cases Considered Harmful. In Proceedings of 29th Conf.
iented Prog. Lang. and Sys., (TOOLS-29 Europe), (Los
, 1999), IEEE Computer Society, 194-203.

114. ML. In Proceedings
of ETAPS'99, FASE workshop, (1999).

112. Simons, A.J.H. and Graham, I. 30 things that go wrong in Object Modelling

Specifications of
237-257.

1
Tech. Obj.-Or
Alamitos, CA

Lano, K.C. and Evans, A.S., Rigorous Development in U

171

References

115. , A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,

artin, R.C., Mellor, S., Schwaber, K., Sutherland, J. and

Beck, K., Beedle, M., Bennekum, A.v., Cockburn

Marick, B., M
Thomas, D., Manifesto for Agile Software Development, 2001,
http://agilemanifesto.org/, Last access: May 23

116. Harel, D. Statecharts: A visual formalism for complex systems. Science of
, 8 (3), 231-274, 1987.

117. rope ies of hart diagrams.
 in C mputi s Object-

ted Methods 2000, (British Computer Society, 2000).

118. l-Tow rd a U of Data.
s, 1 (, 9-36

ing Messages in UML. Journal
ct Technology, 2 (1), 99-115, 2003.

120. , Grah m, I. and Simons, A.J.H.
nal o bjec rogramming

121. ns, E., Clare, P. and Coe, I. Structured systems analysis and design
od : application and context. Prentice Hall, New York, 1992.

122. alysis.
e on Object-oriented

ations, (1993), 240-255.

eller, U. and Schmitt, P.H., Translating the object constraint
c. In P of VERIFY, Workshop

, (Copenhagen, Denmark, 2002).

 reveal
nce of object-oriented methods in system-level design.

 Systems Science and Engineering, 14, 343,

., Design Patterns as Litmus
 5th.

riented Info. Sys, (1998), 129-147.

f reusable object-oriented software.
Addison-Wesley, Reading, Mass., 1995.

127. odel-
sign notations. In Proceedings of Sixth Mexican International

Conference on Computer Science, (Puebla, México, 2005), IEEE Computer

Computer Programming

Simons, A.J.H., On the compositional p rt UML statec
In Proceedings of Electronic Workshops o ng: Rigorou
Orien

Chen, P. The Entity-Relationship Mode a nified View
ACM Transactions on Database System 1) , 1976.

119. Génova, G., Llorens, J. and Palacios, V. Send
of Obje

Henderson-Sellers, B., Firesmith, D.G. a
Instanting the process metamodel. Jour f O t-Oriented P
(ROAD), 12 (3), 51-57, 1999.

Dow
meth

Høydalsvik, G.M. and Sindre, G., On the purpose of object-oriented an
In Proceedings of the eighth annual conferenc
programming systems, languages, and applic

123. Beckert, B., K
language into first-order predicate logi roceedings
at Federated Logic Conferences (FLoC)

124. Simons, A.J.H., Snoeck, M. and Hung, K.S.Y. Using design patterns to
the compete
International Journal of Computer
1999.

125. Simons, A.J.H., Snoeck, M. and Hung, K.S.Y
Paper to Test the Strength of Object-Oriented Methods. In Proceedings of
Int. Conf. Object-O

126. Gamma, E. Design patterns : elements o

Simons, A.J.H. and Fernández-y-Fernández, C.A., Using Alloy to m
check visual de

Society, 121-128.

172

References

128. ants. Formal Techniques in
Real-Time and Fault-Tolerant Systems, Lecture Notes In Computer Science,

, 863, 128-148, 1994.

Artiso, Visual Case Tool, Artiso 2006,
http://www.visualcase.com/kbase/visual_case.htm

Beeck, M.v.d. A Comparison of Statecharts Vari

ed. G. Goos, J. Hartmanis and J. van Leeuwen

129.
, Last access: November

ogramming Language Semantics and their
Uses. In Proceedings of Perspectives of System Informatics : 4th International

kademgorodok,

131. mbiguous UML (2U) 3rd Revised Submission to UML 2
P, 2003,

ml2submission/super0.2/uml2SuperSubmission02.p

2006

130. Mosses, P.D., The Varieties of Pr

Andrei Ershov Memorial Conference, PSI 2001, (A
Novosibirsk, Russia, 2001), Springer-Verlag, 165-190.

2U Consortium, Una
Superstructure RF
http://www.2uworks.org/u
df, Last access: February 2005

132. and Maskeri, G. A unified
ct Technology, 4 (1), 165-181, 2005.

133. ebra. Cambridge University

134. ek, R.J.v. The Linear Time - Branching Time Spectrum I. The
Handbook of Process Algebra,

135. systems : the CSP approach. John

136. Rozenberg,

137. nd Their Interpretation.

138. etri nets 1986, part II on
r models of concurrency,

 Bad Honnef, 1987, 279-324.

139. al Semantics. in Nielsen, M. and Schmidt,
lloquium on Automata, Languages and

nger-Verlag, 1982, 577-613.

, data abstraction, and
 (4), 471 - 523, 1985.

141. Manzano, M. Extensions of first order logic. Cambridge University Press,

Evans, A., Sammut, P., Willans, J.S., Moore, A.
superstructure for UML. Journal of Obje

Baeten, J.C.M. and Weijland, W.P. Process alg
Press, Cambridge; New York, 1990.

Glabbe
semanticts of Concrete, Sequential Process. in
2001.

Schneider, S.A. Concurrent and real time
Wiley, Chichester [England] ; New York, 2000.

Mazurkiewicz, A. Introduction to Trace Theory. in Diekert, V. and
G. eds. The Book of Traces, World Scientific, London, 1995, 3-42.

Mazurkiewicz, A. Concurrent Program Schemes a
DAIMI PB-78. Aarhus University, Comp. Science Depart., 1977.

Mazurkiewicz, A. Trace theory. in Advances in P
Petri nets: applications and relationships to othe
Springer-Verlag New York, Inc.,

Scott, D.S. Domains for Denotation
E.M. eds. Proceedings of the 9th Co
Programming, Spri

140. Cardelli, L. and Wegner, P. On understanding types
polymorphism. ACM Computing Surveys (CSUR), 17

Cambridge ; New York, 1996.

173

References

142. esley,
Harlow, Eng. ; Reading, Mass., 1999.

143. Aho, A.V., Sethi, R. and Ullman, J.D. Compilers, principles, techniques, and
n-Wesley Pub. Co., Reading, Mass., 1986.

144. al, esis,
Computer Science, The University of Sheffield, Sheffield, 2002, 69 pp.

145. Mäkelä, M. Parallel and Distributed Digital Systems Temporal Logic, Helsinki
ology, 2002.

atic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans.

. Lang. Syst., 8 (2), 244-263, 1986.

147. gs of
Temporal Representation and Reasoning, 2005. TIME 2005. 12th

148. leftherakis, G. and Kefalas, P. Using X-machines to model and
test discrete event simulation programs. Systems and Control: Theory and

149. , P. and Sotiriadou, A. Xmctl: Extending temporal
logic to facilitate formal verification of x-machines. Matematica-Informatica,

ii Bucharest, 50, 79-95, 2002.

eloping tools for formal
Proceedings of the 9th Panhellenic Conference in

tics, (2003), 625–639.

151.
Proceedings of the 10th

002),

152. poral logic query checking:
f, (20 ctrical

153. design: analysis. Infotech State of the Art Report, Series

154.
ww.haskell.org/happy/

Thompson, S. Haskell : the craft of functional programming. Addison W

tools. Addiso

Adams, M. A self resourcing web based electronic journ Bachelor Th

University of Techn

146. Clarke, E.M., Emerson, E.A. and Sistla, A.P. Autom

Program

Hartel, P.H., A trace semantics for positive Core XPath. In Proceedin

International Symposium on, (2005), 103-112.

Kehris, E., E

Applications, 163–171, 2000.

Eleftherakis, G., Kefalas

Analele Universitat

150. Kefalas, P., Eleftherakis, G. and Sotiriadou, A., Dev
methods. In Proceedings of
Informa

Gurfinkel, A., Devereux, B. and Chechik, M., Model exploration with
temporal logic query checking. In Proceedings of
ACM SIGSOFT symposium on Foundations of software engineering, (2
ACM New York, NY, USA, 139-148.

Gurfinkel, A., Chechik, M. and Devereux, B., Tem
A tool for model exploration. In Proceedings o 03), Institute of Ele
and Electronics Engineers.

Henderson, P. System
9 (6), 5-163, 1981.

Marlow, S. and Gill, A., Happy User Guide, 2001,
http://w , Last access: 2006

174

Appendix A:
Proving Basic Properties

Chapte e axioms for the task algebra illustrated in

r 7 described the soundness of th
chapter 5. The trace semantics from chapter 6 and basic properties demonstrated
here, w ppendix B will demonstrate
the entire congruence properties for the axioms of the algebra.

ere used to prove the soundness of the axioms. A

A set o ssume ment.
In this appendix, the proof for these properties is presented. The set of basic properties
are as f

• A.1 A f ⊗

• A.2 D

• A.5 Commutativity of //

• A.6 Distribution of // over union

• A.7 Identity for //

• A.8 Distribution of unpack over union

A.1 Associativity of ⊗
For:

seta ⊗ b ∈ se)

Lemm lds:

f basic operations were used in chapter 7 and a d as true at that mo

ollows:

ssociativity o

istribution of ⊗ over union

• A.3 Identity for ⊗

• A.4 Associativity of //

setb = {a # b | a, b ∈ Trace, a ∈ seta, tb } (cp1

We need to prove that:
({Trace1}⊗{Trace2})⊗{Trace3}={Trace1}⊗({Trace2}⊗{Trace3})

a 1. It ho

 (Trace1#Trace2)#Trace3 = Trace1#(Trace2#Trace3)

175

Appendix A: Proving Basic Properties

where Trace1, Trace2 and Trace3 are any trace.

Proof by induction.

The formulae depicted from 1 to 5 are the base cases of the formula to prove.

2. (<σ>#Trace2)#Trace3 = <σ>#(Trace2#Trace3)

 = <σ>#Trace3 -- by (tc2)

by (t

Trace2#Trace3) = <σ> -- by (tc2)

 Proof:

ce2)#Trace3 = <φ>#Trace3 -- by (tc3)

Trace2#Trace3) = <φ> -- by (tc3)

<

The formula to prove in this case is as follows:

(<↓>#↓.rest)#Trace3 = <↓>#(↓.rest #Trace3)

lent to:

a.1 (<↓>#↓.rest)#Trace3 = (↓.rest)#Trace3

1. (<>#Trace2)#Trace3 = <>#(Trace2#Trace3)

 Proof:

(<>#Trace2)#Trace3 = Trace2#Trace3 -- by (tc1)

and

<>#(Trace2#Trace3) = Trace2#Trace3 -- by (tc1)

Proof:

(<σ>#Trace2)#Trace3

 = <σ> -- c2)

and

<σ>#(

3. (<φ>#Trace2)#Trace3 = <φ>#(Trace2#Trace3)

 (<φ>#Tra

 = <φ> -- by (tc3)

and

 <φ>#(

4. (<↓>#Trace2)#Trace3 = ↓>#(Trace2#Trace3)

Case 4.a: Trace2= ↓.rest

Equiva

and

176

Appendix A: Proving Basic Properties

a.2 <↓>#(↓.rest #Trace3) = (↓.rest)#Trace3

Proof:

4.a.1:

(<↓>#↓.rest)#Trace3 = (↓.rest)#Trace3 -- by (tc4)

4.a.2:

 To prove: <↓>#(↓.rest #Trace3) = (↓.rest)#Trace3

We are going to prove by induction over the length of rest:

4.a.2.1 Base cases:

Zero length: rest = < > .

 follows:

↓ ↓ ↓

Observe that: (↓.< >)#Trace3 = <↓ >#Trace3

<↓>#(↓.< >#Trace3) = <↓>#(<↓ >#Trace3)

4.a.2.1.a) If Trace3 = ↓.Trace4, then

)

race4)

4.a.2.2 For base cases of length 1:

race3)

For this case the formula to prove is as

 < >#(.< >#Trace3) = (< >)#Trace3

Proof:

 <↓>#(<↓ >#Trace3)= <↓>#(<↓ >#(↓.Trace4)

 = <↓>#(Trace3) .

4.a.2.1.b) If a ≠↓ and Trace3 = a.Trace4, then

 <↓>#(↓.< >#Trace3) =<↓>#(<↓ ># a.Trace4) = <↓>#(↓. a.T

 =↓. a.Trace4 = <↓>#(Trace3).

Case 4.a.2.2.a : s is an identifier.

Formula to prove:

 <↓>#(↓.<s> #Trace3) = (↓.<s>)#Trace3

Proof:

<↓>#(↓.< s>#Trace3) = <↓>#(↓.< s> # T

177

Appendix A: Proving Basic Properties

 =<↓>#(↓.(< s> # Trace3)) -- by (tc6)

 = ↓.(< s> # Trace3) -- by (tc4)

↓ -- by (tc6)

Case 4.a.2.2.b : s = σ .

race3) = (↓.<σ>)#Trace3

Proof:

<↓>#(↓.<σ>#Trace3) = <↓>#(↓.(<σ> # Trace3)) -- by (tc6)

Proof:

Trace3) -- by (tc4)

race3 =↓.(<φ> # Trace3)) -- by (tc6)

race3) = (↓.<↓>)#Trace3

In addition,

(↓.<s>)#Trace3 = .(< s> # Trace3)

Formula to prove:

 <↓>#(↓.<σ> #T

 = ↓.(<σ> # Trace3) -- by (tc4)

In addition,

 (↓.<σ>)#Trace3 =↓.(<σ> # Trace3) -- by (tc6)

Case 4.a.2.2.c : s = φ .

Formula to prove:

 <↓>#(↓.<φ> #Trace3) = (↓.<φ>)#Trace3

<↓>#(↓.<φ>#Trace3) = <↓>#(↓.(< φ> # Trace3)) -- by (tc6)

 = ↓.(<φ> #

In addition,

 (↓.<φ>)#T

Case 4.a.2.2.d : s = ↓

Formula to prove:

 <↓>#(↓.<↓> #T

Proof:

<↓>#(↓.< ↓ >#Trace3) = <↓>#(↓.(< ↓ >#Trace3)) -- by (tc6)

 = ↓.(< ↓ >#Trace3) -- by (tc4)

178

Appendix A: Proving Basic Properties

4.a.2.3 Induction hypothesis. Supposing it holds for traces in rest of until k
symbols, k ≥ 1:

<↓>#(↓.rest #Trace3) = (↓.rest)#Trace3

4.a.2.4 Induction step. Let rest=s. rest1, where rest1 is a trace of k symbols and

>. ↓.↓ is transformed

<↓>#(↓.rest #Trace3) = <↓>#(↓.s.rest1 #Trace3)

 =<↓>#(↓.(s.rest1 #Trace3)) -- by (tc6)

-- by (tc4)

 = Trace3)

In addition,

(↓.rest)#Trace3 = (↓.s.rest1)#Trace3 = ↓. (s.rest1#Trace3) -- by (tc6)

Case 4b: Trace2= a.rest where φ.

a ≠ σ y o length 1 already
proved

 prove is:

.rest)#Trace3 = <↓>#(a.rest #Trace3)

of:

Trace3 = (↓.a.rest)#Trace3 -- by (tc5)

y (tc6)

↓>#(a.rest#Trace3) -- by (tc6)

#Trace2)#Trace3 = <a>#(Trace2#Trace3) where a is an identifier
ifferent to σ, φ and ↓)

(<a>#Trace2)#Trace3 = (a.<>#Trace2)#Trace3 -- by cons operator

 = (a.(<>#Trace2))#Trace3 -- by (tc6)

s is an identifier.

rest is a trace of length 1, <σ> or <φFot other cases in s,
in ↓ and the formula holds by the induction hypothesis.

Case 4.a.2.4.a : s is an identifier.

 = ↓.(s.rest1 #Trace3)

 ↓.(rest #

a is different of ↓, σ and

 a ≠ φ can be assumed since these cases are reduced t
.

The formula to

(<↓>#a

Pro

(<↓>#a.rest)#

 = .(a.rest#Trace3) -- b↓

 = <

5. (<a>
(d

Proof:

179

Appendix A: Proving Basic Properties

 -- by (tc1)

 = a.(Trace2# race3) -- by (tc6)

 and

<a> e2#Tr

 = a.(<>#(Trace2#Trace3)) -- by (tc6)

 = a.(Trace2#Trace3) -- by (tc1)

6. Induction hypothesis. Assuming the formula

(Trace1#Trace2) #Trace3 = Trace1#(Trace2#Trace3) , holds for every trace Trace2,
Trace3 longer than k, where k ≥ 1.

7. Induction step. Assuming that Trace1=a.Trace, where Trace is a trace of length
k and a is an identifier or a=↓. For other cases, the trace has a length of 1.

Case 7.a: a is an identifier.

(a.Trace #Trace2) #Trace3 = (a.(Trace #Trace2)) #Trace3 -- by (tc6)

 = a.((Trace #Trace2) #Trace3) -- by (tc6)

In addition,

a.Trace #(Trace2#Trace3) = a.(Trace #(Trace2#Trace3)) -- by (tc6)

= a.((Trace #Trace2)#Trace3) -- by 6

Case 7.b: a =↓

(↓.Trace #Trace2) #Trace3 = (↓.(Trace #Trace2)) #Trace3 -- by (tc6)

In a i

↓.Trac race3) =↓.(Trace #(Trace2#Trace3))

Theorem. Let {Trace1}, {Trace2} and {Trace3} be three non-empty sets of traces.
Then it holds
({Trace1}⊗{Trace2})⊗{Trace3}={Trace1}⊗({Trace2}⊗{Trace3})

Proof:
Let c be an element of ({Trace1}⊗{Trace2})⊗{Trace3}. Then c=Trace#Trace3’,

 = (a.Trace2)#Trace3

T

#(Trac ace3) = a.<>#(Trace2#Trace3) -- by cons operator

, if Trace1 is no

 = ↓.((Trace #Trace2) #Trace3) -- by (tc6)

dd tion,

e #(Trace2#T -- by (tc6)

 =↓.((Trace #Trace2)#Trace3) -- by 6

180

Appendix A: Proving Basic Properties

where Trace∈({Trace1}⊗{Trace2}) and Trace3’∈{Trace3}.
Trace∈({Trace1}⊗{Trace2}), implies that Trace=Trace1’#Trace2’, for some
Trace1’∈{Trace1} and some Trace2’∈{Trace2}. In consequence,
=(Trace1’#Trace2’)#Trace3’. By lemma 1,
race1’#Trace2’)#Trace3’=Trace1’#(Trace2’#Trace3’). Then,

Conversely, let c be an element of {Trace1}⊗({Trace2}⊗{Trace3}). Then, there is a
e3}), such that

c=Trace1’#Trace. Trace has the form Trace2’#Trace3’, where Trace2’ belongs to
race3}. Then, c=Trace1’#(Trace2’#Trace3’). By

Trace1’#(Trace2’#Trace3’)=(Trace1’#Trace2’)#Trace3’. Then,
})⊗{Trace3}.

This m

A.2 Distribution of ⊗ over union
For:

seta ⊗ setb = {a # b | a, b ∈ Trace, a ∈ seta, b ∈ setb } (cp1)

We need to prove that:
({Trace ∪{Trace2})⊗{Trace3}
 = ({Trace1}⊗({Trace3})∪({Trace2}⊗{Trace3})

Proof.

Let c be a arbitrary element of ({Trace1}∪{Trace2}⊗{Trace3}, then c=a#b, for
some a∈({Trace1}∪{Trace2}) and for some b∈{Trace3}.

Since a n element of the union of two sets, then a∈{Trace1} or a∈{Trace2}
holds. If a∈{Trace1}, then a#b∈{Trace1}⊗{Trace3} holds, by definition.

If a∈{Trace2}, then a#b∈{Trace2}⊗{Trace3}, by definition. Thus,
a#b∈({Trace1}⊗({Trace3})∪({Trace2}⊗{Trace3}) is true.

It follows that c∈({Trace1}⊗{Trace3})∪ ({Trace2}⊗{Trace3}), as desired.

Conversely, let c be an element of ({Trace1}⊗{Trace3})∪ ({Trace2}⊗{Trace3)}.

In this case, c∈{Trace1}⊗{Trace3} or c∈{Trace2}⊗{Trace3}.

If c∈{Trace1}⊗{Trace3} holds. Then, c is of the form a#b, for some a∈{Trace1}
and for some b∈{Trace3}. This implies, a∈({Trace1}∪{Trace2}), b∈{Trace3} and,

ition, a#b∈({Trace1}∪{Trace2})⊗{Trace3}. Then,
c∈({Trace1}∪{Trace2})⊗{Trace3}, as desired.

In the second case, c∈{Trace2}⊗{Trace3} holds, the proof is similar.

c
(T
c=Trace1’#(Trace2’#Trace3’). This implies c∈{Trace1}⊗({Trace2}⊗{Trace3}).

trace Trace1’ of {Trace1} and a trace Trace of ({Trace2}⊗{Trac

{Trace2} and Trace3’ belongs to {T
lemma 1,
c=(Trace1’#Trace2’)#Trace3’. This implies c∈({Trace1}⊗{Trace2

eans that both sets are equals.

1}

n

 is a

by defin

181

Appendix A: Proving Basic Properties

In b }⊗{Trace3)} implies
c∈({Trace1

A.3 Identity ⊗
For

seta ⊗ setb = {a # b | a, b ∈ Trace, a ∈ seta, b ∈ setb } (cp1)

We need to prove that:
 {Trace}⊗{<>}={Trace}
and
 {<>}⊗{Trace}={Trace}

Proof.

For the first equality, let c be an arbitrary element of {Trace}⊗{<>}, then
c=Trace1#<>, where Trace1∈{Trace} and <>∈{<>}, by properties (tc6, tc1 and
cons operator) Trace1#<>=Trace1. Therefore, c=Trace1 and then c∈{Trace}.

Reciprocally, if c∈{Trace}, then c=Trace1, where Trace1∈{Trace}. However, by
(tc6, tc1 and cons operator) Trace1=Trace1#<>, consequently
Trace1∈{Trace}⊗{<>}. Therefore, c∈{Trace}⊗ {<>}.

Therefore, we have proved that all the elements in the set {Trace}⊗{<>} are elements
in the set {Trace}. In addition, that all the elements in the set {Trace} are elements in
the set race}⊗ {<>}. This implies the equality of both sets.

For the second equality, let c be and arbitrary element of {<>}⊗{Trace}, then
c=<) <>#Trace1=Trace1.
Therefore, .

Rec o Trace1, where Trace1∈{Trace}. However, by
(tc1) Trace1∈{<>}⊗{Trace}. Therefore,
c∈{

The et {<>}⊗{Trace} are
elements in the set {Trace}. In addition, that all the elements in the set {Trace} are
elem

A.4 Associativity of //

In orde e associativity of //, we need to calculate the image of the
function ~ over all the possible pair of traces. However, note that we only need to
know the image of pairs taken from the set {< >, <σ>, <φ>, <↓>} and of a particular
set of pairs of traces , the called basic traces (Definition 3), to characterise the
general behaviour of ~ . Moreover, we claim that it is enough to prove the
associativity of // for sets with only one element. This follows as a consequence of

oth cases, c∈({Trace1}⊗{Trace3})∪({Trace2
}∪{Trace2})⊗{Trace3}.

for
:

{T

>#Trace1, where Trace1∈{Trace} and <>∈ {<>}, by (tc1
c=Trace1 and then c∈{Trace}

ipr cally, if c∈{Trace}, then c=
Trace1=<>#Trace1, consequently

<>}⊗{Trace}.

refore, we have proved that all the elements in the s

ents in the set {<>}⊗{Trace}. This implies the equality of both sets.

r to prove th

182

Appendix A: Proving Basic Properties

Proposition 1. In this section, we only will show the proof for sets containing one
element, to give the idea of our approach.

Definition 1. We will call a´ a symbol, if a´= a or a´= a, ↓ holds, where a is
an identifier .

Definit Let Trace1, Trace2 and Trace3 be three traces. Trace2 is a truncation
of Trace1, if and only if there exists a trace Trace3, such that
Trace1= Trace2 # Trace3.

Definition 3. A trace Trace will be called a trace in the basic form or , in short, a
basic tr

a) , where r , for

ion 2 .

ace , if Trace has one of these forms:

 1 ,..., kTrace a a′ ′=< >
,

i

i

i

a
a o

a

⎧
⎪′ = ⎨
⎪ ↓⎩

1 i k≤ ≤ and are

a σ′ ′ > , where r
⎧
⎪′ = ⎨

↓
 , for

1, ..., ka a

identifiers, k is an integer greater or equal than 1.

b) Trace a=< 1 ,..., ,k

,

i

i

i

a
a o

a⎪
⎩

1 i k≤ ≤ and are

identifiers, k is an integer greater or equal than 1.

c) , where r , for

1, ..., ka a

 1 ,..., ,kTrace a a φ′ ′=< >
,

i

i

i

a
a o

a

⎧
⎪′ = ⎨
⎪ ↓⎩

1 i k≤ ≤ and are

identifiers, k is an integer greater or equal than 1.

Notation 1.
 1. If we have , then its truncation is equal to < >, if
k = 1.

2.
i=
U = 1 and is a collection of sets, m ≥1.

i
oid confusions we will change our notation:

 are non-empty sets consisting of

 A, B and C be non-empty sets of traces. Then it holds:

a)

1, ..., ka a

1 ,..., kb b′ ′< > 1 1,..., kb b −
′ ′< >

1

iA
−

= ∅ , if k
1

k

{ } 1

m
i i

A
=

on 2. Notat

To av
A will denote {Trace1}, B, {Trace2} and C, {Trace3}.

We want to prove:

(A // B) // C = A // (B // C), where A, B and C
races. t

Proposition 1. Let

 / / ~A B a b= U
(),a b A B∈ ×

183

Appendix A: Proving Basic Properties

{ } { }~ / /a b a b=b) If a and b are two arbitrary traces, then .

on o on-empty sets of traces, then

∈ ∈

⎛ ⎞

c) { } { }()/ / / /A B a b= U
(),a b A B∈ ×

d) If { }i i I
A

∈
 is a non-empty collecti f n

()/ / / /i iA B A B=⎜ ⎟
⎝ ⎠i I i I
U U

∈
 is a non-empty collection of non-empty sets of traces, then

() ()

.

e) If { }iB
i I

/ / / /i i
i I i I

A B A B
∈ ∈

=U U .

f) Then it holds

() { } { }() { }()
((,

/ / / /
a b

A B C =
)) ()

() { }()
,

/ / / /

~ / /

c A B C

a b A B C

a b c

a b c

∈ × ×

∈ × ×

U

 And

(), , c

= U

{ } { } { }()()()
()(), ,a b c A B C∈ × ×

{ } ()()

/ / / / / / / /

/ / ~

A B C a b c

a b c

=

=

U

(), ,a b c A B C∈ × ×
U

g) { } { } { }/ / / /B Bφ< φ φ> = < > = < > , if B doesn’t contain the trace σ< > .

h) { } { } { }/ / σ= < > = < > . / /B Bσ σ< >

i) If B is a set of traces of the form ↓.rest, where rest is a trace. Then {↓}⊗ B=B.

j) If for each arbitrary chosen traces , ,a b c () { } { } ()~ / / / / ~a b c a b c=

holds, then () () holds for each non-empty sets of traces / / / / / / / /A B C A B C=
A, B and C.

k) Let Trace1 and Trace2 be two traces, a and b two identifiers. Then

() ().1 , # 1 ~ # 2k a Trace b Trace< ↓> < > =

{ } ()() { } ()(), 1 ~ # 2 , # 1 ~ 2a Trace b Trace b a Trace Trace< ↓> ⊗ < > < > ⊗ < ↓>U=

() ().2 # 1 ~ , # 2k a Trace b Trace< > < ↓> =

{ } ()()() { } ()()()1 ~ , # 2 , 1 ~a Trace b Trace b Trace T= < > ⊗ < ↓> < ↓> ⊗ <U # 2a race>

184

Appendix A: Proving Basic Properties

() ().3 ,k a< ↓>

{ } ()()() { } ()(())
1 ~ , # 2

2

Trace b Trace

race

< ↓> =

this re son we
will use the following generalisation of (ti9):

 a.as ~ b.bs = ({<a>})⊗(as ~b.bs) ∪ ({}⊗(bs ~ a.a

bols.

his section we will mention this generalisation as (ti9) too.

 that
() { }

, 1 ~ , # 2 , , # 1 ~a Trace b Trace b a Trace T= < ↓> ⊗ < ↓> < ↓> ⊗ < ↓>U

These statements show that symbols behaviour like identifiers. For a

s))

 where a and b are sym

During t

l) Let Trace1, Trace2 and Trace3 be traces. Suppose
{ } () holds.

Thus, the following relations holds:

.

1 ~ 2 / / 3 1 / / 2 ~ 3Trace Trace Trace Trace Trace Trace=

()() { } { } ()# 1 ~ 2 / / 3 # 1 / / 2 ~Trace Trace Trace Trace Trace Trace<↓> = <↓>1 3

2. ()() { } { } ()()1 ~ # 2 / / 3 1 / / # 2 ~Trace Trace Trace Trace Trace Tra<↓> = <↓>

3ce

3. () { } { } ()()1 ~ 2 / / # 3 1 / / 2 ~ # 3Trace Trace Trace Trace Trace Trace<↓> = <↓>

4. () ()() { } { } ()()# 1 ~ # 2Trace Trace<↓> <↓> / / 3 # 1 / / # 2 ~ 3Trace Trace Trace Trace= <↓> <↓>

5. ()() { } { } ()()# 1 ~ 2 / / # 3 # 1 / / 2ace Trace Trace Trace Trace<↓> = <↓> ~ # 3Tr Trace<↓> <↓>

6. ()() { }# 1 ~Trace↓> 2 / / # 3Trace Trace< <↓> =

{ } ()()# 1 / /Trace T<↓> 2 ~ # 3race Trace= <↓>

7. ()() () { }# 1 ~ # 2 / / # 3Trace Trace Trace<↓> <↓> = <↓>

 { } () ()()# 1 / / # 2 ~ # 3Trace Trace Trace= <↓> <↓> <↓>

Proof.

a) It is straightforward from the definitions.

185

Appendix A: Proving Basic Properties

b) It is str e definitions.

c) It follows by b) and by the definition of //.

d) If is a pty s ts of tr , by c),

/ / / / / / / /
i i

i
i I i I a A b B i I a A

b B
b B

i
i I

A B a b a b a b
∈ ∈ ∈ ∈ ∈ ∈

∈
∈

∈

⎛
= = =⎜ ⎟

⎝

=

U U UUU UU

e) This proof is similar to the previous.

f) From the previous properties and because there exits a bijection between the
 and

aightforward from th

{ }i i I
A

∈
 non-empty collection of non-em e aces. Then

⎞ { } { }() { } { }() { } { }()
i

i I

a A
∈

∈⎠ U

()/ / .A BU

sets ()A B C× × A B C× × it follows:

} { } { } { } { }

() { } { }() { } { }() { }

{ } {((
()

)) ()()
()() ()

() { }()
, ,

/ / / / / / / / / / / /

/ / / / / /

~ / / .

a A c C a A
b B b B

a b c A B C

A B C a b C a b c

b c a b c

a b c

∈ ∈ ∈
∈ ∈

∈ × ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

=⎟⎟

=

U U U

U

U

 b), f) and the hypothesis.

 Without lost of generality we can suppose that the first element of the trace

⎛ ⎞

,

/ /
c C a b A B

a
∈ ∈ ×

= ⎜⎜
⎝ ⎠

U U
⎛ ⎞

(), ,a b c A B C∈ × ×

The other equality is proven similarly.

g) It follows from the definitions and from (ti5) and (ti6).

h) It follows from (ti3), (ti4) and b).

i) It is consequence of (tc4).

j) It follows straightforward from

k) It follows from (ti9), (ti7) and (ti8).

l)
(from left to right) is not ↓. We will prove 1 and 4. The other proofs are
similar.

Proof of 1.

186

Appendix A: Proving Basic Properties

By (ti7) and the hypothesis,
()() { } { } (()) { }

{ } ()))
1 ~ 2 / / 3

3 .

race Trace Trace

ce

=

{ }() { } { } ((1 ~ 2 / / 3 1 / / 2 ~Trace Trace Trace Trace Trace Tra= <↓> ⊗ = <↓> ⊗

1 ~ 2 / / 3Trace Trace Trace T<↓> = <↓> ⊗

Thus,
()() { } { } { } ()()1 / / 2 ~ 3 .race Trace Trace

On the other hand, using (ti7) and the hypothesis:

1 ~ 2 / / 3Trace Trace Trace T<↓> = <↓> ⊗

()() { } { } ()() { }

{ } ()() { } { }))
1 ~ 2 / / 3 1 ~ 2 / / 3

3

Trace Trace Trace Trace Trace Trace

Trace

<↓> = <↓> ⊗

me set.

((1 ~ 2 / / 3 1 / / 2 ~Trace Trace Trace Trace Trace= <↓> ⊗ = <↓> ⊗

Therefore, both members of the equality to prove are the sa

 Proof of 4.

By (ti7) the hypothesis and (ti8) we have:

() ()() { } { } ()() { }

{ } ()

() ()()
} ()()

() ()()

1 ~ # 2 / / 3 1 ~ 2 / / 3

1 / / 2 ~ 3

2 ~ 3

1 / / # 2 ~ 3

Trace Trace Trace Trace Trace Trace

e

Trace Trace Trace

Trace Trace

Trace Trace Trace

<↓> <↓> = <↓> ⊗

= <↓>

↓> ⊗

= <↓> <↓>

tb = U{ a ~ b | a, b ∈ Trace, a ∈ seta, b ∈ setb } (di1)

where Trace1 and Trace2 are any trace

{ }()1 ~ 2 / / 3Trac Trace Trace= <↓> ⊗

{ } { } ()()1 / / 2 ~ 3Trace Trace Trace= <↓> ⊗

() {# 1 / /Trace= <↓> <

Remember : #<↓> <↓> = <↓> .

A.5 Commutativity of //
For:

seta // se

We need to prove that:

{Trace1} // {Trace2} = {Trace2} // {Trace1}

Lemma 1. It holds:

Trace1~Trace2 = Trace2~ Trace1

187

Appendix A: Proving Basic Properties

Proof by cases.

Case 1. <>~Trace2 = Trace2~<> -- by (ti1) and (ti2).

i3) and (ti4).

φ>~Trace2 -- by (ti5) and (ti6).

We just need to prove the equality on the next case. The other cases have been proved
 1-3.

a ≠ σ y a ≠ φ can be assu ed since these cases are reduced to length 1 already

tor

 = {<↓>} ⊗ (<> ~ a.rest) -- by (ti7)

ti1)

cons operator

 (ti2)

ase 5. <a>~Trace2 = Trace2~<a> where a is an identifier (different to σ, φ and ↓).

nly two cases remain to be proved. The other cases are already proved in cases 1-4.

ase 5.a: Trace2=b.rest where b is different of σ, ↓ and φ.

roof:

a>~b.rest = a.<> ~ b.rest -- by cons operator

 = ({<a>} ⊗ (<> ~ b.rest)) ∪ ({} ⊗ (rest ~ a.<>)) -- by (ti9)

Case 2. <σ>~Trace2 = Trace2~<σ> -- by (t

Case 3. <φ>~Trace2 = <

Case 4. <↓>~Trace2 = Trace2~<↓>

in cases

Trace2 = a.rest, where a is different of σ and φ.

m
proved.

The formula to prove is:

<↓>~a.rest = a.rest ~<↓>

Proof:

<↓>~a.rest = ↓.<> ~ a.rest -- by cons opera

 = {<↓>} ⊗ {a.rest} -- by (

In addition,

a.rest ~<↓> = a.rest ~↓.<> -- by

 = {<↓>} ⊗ (a.rest ~<>) -- by (ti8)

 = {<↓>} ⊗ {a.rest} -- by

C

O

C

P

<

188

Appendix A: Proving Basic Properties

In addition,

 -- by cons operator

(ti9)

 ({<a>} ⊗ (<> ~ b.rest)) ∪ ({} ⊗ (rest ~ a.<>))

-- by commutativity of the
union of sets.

 Trace2=↓.rest .

.rest ~<a> = {< ↓>}⊗ (rest ~<a>) -- by (ti7).

} ⊗ (Trace ~ b.rest)) ∪ ({} ⊗ (rest ~ a.Trace))
 -- by (ti9)

race

.rest))

-- by (ti9)

 ({} ⊗ (rest ~ a.Trace))

b.rest~<a> = b.rest ~ a.<>

 = ({} ⊗ (rest ~ a.<>)) ∪ ({<a>} ⊗ (<> ~ b.rest)) -- by

 =

Case 5.b:

Proof:

<a>~↓.rest = {< ↓>}⊗ (rest ~<a>) -- by (ti8).

In addition,

↓

Cases 6. Assuming that Trace1=a.Trace, where Trace is a trace of length k, k ≥1, and
a is an identifier or a=↓. For other cases, the trace has a length of 1, and these cases
have been already proved.

Case 6.a: a is an identifier.

 Case 6.a.a: Trace2=b.rest, where rest is a trace of length k and b is an
identifier or b=↓.

 Case 6.a.a.a: b is an identifier

a.Trace ~b.rest

= ({<a>

In addition,

b.rest ~ a.T

 = ({} ⊗ (rest ~ a.Trace)) ∪ ({<a>} ⊗ (Trace ~ b

= ({<a>} ⊗ (Trace ~ b.rest)) ∪

-- by commutativity of the
union of sets.

189

Appendix A: Proving Basic Properties

Case 6.a.a.b: b=↓

a.Trace ~ ↓.rest

= {<↓>} ⊗ (rest ~ a.Trace) -- by (ti8)

In addi

↓.rest ~ a.Trace

= {<↓>} ⊗ (rest ~ a.Trace) -- by (ti7)

Case 6.b: a =↓

↓.Trace ~Trace2 = {<↓>} ⊗ (Trace ~Trace2) -- by (ti7)

In addition,

ce ~Trace2) -- by (ti8)

Theorem. Let {Trace1} and {Trace2} be two non-empty sets of traces. Then it holds
ace1}//{Trace2}={

Proof:
Let c be an arbitrary element of {Trace1}//{Trace2}. Then c∈Trace1’~Trace2’,
where B lemm ow
Trace1’~Trace2’=Trace2’~Trace1’. Then, c∈ Trace2’~Trace1’. This set is a subset
of {Tra

Conver a trace Trace2’
of {Trace2} and a trace Trace1’ of {Trace1} such that c∈Trace2’~Trace1’. By

∈Trace1’~Trace2’. This
implies c∈{Trace1}//{Trace2}, by definition.

This means that both sets are equals.

A.6 Distribution of // over union
or:

We nee

 = ({Trace1}//({Trace3})U({Trace2}// {Trace3})

Proof.

tion,

Trace2 ~↓.Trace = {<↓>} ⊗ (Tra

{Tr Trace2}//{Trace1}

Trace1’∈{Trace1} and Trace2’∈{Trace2}. y a 1, we kn

ce2}//{Trace1}, by definition.

sely, let c be an element of {Trace2}//{Trace1}. Then, there is

lemmas 1, Trace2’~Trace1’=Trace1’~Trace2’. Then, c

F

seta // setb = U{ a ~ b | a, b ∈ Trace, a ∈ seta, b ∈ setb } (di1)

d to prove that:

({Trace1}U{Trace2})//{Trace3}

190

Appendix A: Proving Basic Properties

Let c be an arbitrary element of ({Trace1}U{Trace2})//{Trace3} en c=a~b, th , for
some a∈({Trace1} {Trace2}) and for some b∈{Trace3}.

Since a is an element of the union of two sets, then a∈{Trace1} or a∈{Trace2} holds.
∈{Trace1}, then a , by definition.

If a∈{Trace2}, then
a~b∈({Trace1}//({Trace3})U({Trace2}//{Trace3}) is true.

It follows that c∈({Trace1}//{Trace3})U({Trace2}//{Trace3}), as desired.

Conversely, let c be an element of ({Trace1}//({Trace3})U({Trace2}// {Trace3}).

In this case, c∈({Trace1}//({Trace3}) or c∈({Trace2}// {Trace3}).

If c∈({Trace1} {Trace3}) the fo ~ ome a∈{Trace1} and for
y

definition, a~b∈({Trace1}U{Trace2})//{Trace3}. Then,

he second case, c∈ e proof is similar.

In both cases, c∈({T //{Trace3)} implies
c∈({Trace1}U{Trace2})//{Trace3}.

A.7 Identity for //
For:

seta // s

, where
ace1}. Therefore

{Trace1}, because race}. Thus c∈{Trace}.

Reciprocally, if c∈{Tr Trace}. However, by
(ti2) {Trace1}=Trace c∈Trace1~<>.
Becaus e}//{< n conclude that
c∈{Tra

We have proved that the elem e in { d vice versa.

U

If a ~b∈{Trace1}//{Trace3} holds

 a~b∈{Trace2}//{Trace3}, by definition. Thus,

//(. Then c is of rm a b, for s
some b∈{Trace3}. This implies, a∈({Trace1}U{Trace2}), b∈{Trace3} and, b

c∈({Trace1}U{Trace2})//{Trace3}, as desired.

In t {Trace2}//{Trace3} holds, th

race1}//{Trace3})U({Trace2}

etb = U{ a ~ b | a, b ∈ Trace, a ∈ seta, b ∈ setb } (di1)

We need to prove that:

 {Trace}//{<>}={Trace}

Proof.

Let c be an arbitrary element of {Trace}//{<>}, then c∈Trace1~<>
Trace1∈{Trace} and <>∈{<>}, by property (ti2) Trace1~<>={Tr
c∈ Trace1∈{Trace} then {Trace1} ⊂{T

ace}, then c=Trace1, where Trace1∈{
1~<>; consequently, c∈{Trace1}, then

e by definition Trace1~<>is a subset of {Trac >}, we ca
ce}//{<>}.

ents of {Trace}//{<>} ar Trace} an

191

Appendix A: Proving Basic Properties

A.8 D union
For:

unpack seta = { lift a | a ∈ Trace, a ∈ seta } (up1)

We need to prove that:

unpack({Trace1}U{Trace2 }) =unpack({Trace1})U unpack({Trace2})

lift a, where a∈{Trace1}U{Trace2}.

Since a is part of the union of two set of traces, then a∈{Trace1} or a∈{Trace2}
ds. If a∈{Trace1} , by definition.

If a∈{Trace2}, then li s

lift a∈ } is true.

It follows that e }, as d

Reciprocally, let b be an element of unpack{Trace1}U unpack{Trace2}.
In this case, b .
If b∈ unpack{Trace1} holds. Then, b is of the form lift a, for some a∈{Trace1}.
This im ({Trace1}U{Trace2}).
Then, b∈ unpack({Trace1}{Trace2})

In the second case, b∈ unpack{Trace2}, the proof is similar.

In both cases, b∈ unpack({Trace1} {Trace2 }) implies
b∈ unpack({Tr

istribution of unpack over

Proof.

Let b be an arbitrary element of unpack({Trace1}U{Trace2}), then b is of the form of

hol , then lift a∈ unpack{Trace1} holds

ft a∈ unpack{Trace2}, by definition. Thu

unpack{Trace1}U unpack{Trace2

b∈ unpack {Trace1} U unpack {Trac 2 esired.

∈ unpack{Trace1} or b∈ unpack{Trace2}

plies, a∈ {Trace1} and, by definition, lift a∈ unpack
, as desired.

U
ace1})Uunpack({Trace2}).

192

Appendix B:
Congruence for the Semantics of
Tas

for the bra illustrated in

ks

The chapter 7 described the soundness of the axioms task alge
the chapter 5. The trace semantics from chapter 6 and basic properties explained in

ppend s of the axioms. In the present appendix,
the entire congruence properties are demonstrated for axioms of the algebra.
A ix A were used to prove the soundnes

2 Showing co omposition

Congruence for sequential composition is depicted in this section for the axioms of
associative sequenc sequence,
fail on sequence, and succeed on sequence. Every axiom is represented in
combin the task algebra.

B.2.1 e ative
sequence axiom

In this section, the c (s.1) is
demonstrated parallel
composition; as well as for the repetition structures (while- and until-loop) and the
encaps

B.2.1.1 Cong

If ∈∀ Accba ,,

cba ,,

fi“a; (b

B.1 Introduction

Informally, congruence in an algebra can be checked by taking equivalent expressions
and adding a subexpression to each of the equivalences. The result has to be the same
if the expressions are congruent.

B. ngruence for sequential c

e, right distributivity of sequence over selection, empty

ation with one of the basic operators defined for

Showing congruence for basic operators in th associ

ongruence for the associative sequence axiom
for the binary operators of sequence, selection, and

ulation.

ruence in s.1 with the sequence operator

•tivity “a; (b; c)‘ ≡ “ (a; b); c ‘, then

•∈ Activityd, “(a; (b; c)); d‘ ≡ “ ((a; b); c); d‘ ∀

; c)‘ ⊗ “d‘ ≡ “(a; b); c‘ ⊗ “d‘ -- by ts1

193

Appendix B: Congruence for the Semantics of Tasks

fi“a‘ ⊗

fi {<↓>} ⊗ (“); c)‘ ∪ “d‘) -- by ta2

fi {<↓>} ⊗

-- by ts1

fi {<↓

-- by ts1

B.2.1.3 Cong

If ∀ ba,

dcba ,,,

fi ((“a‘ 1

fi ((“a‘ “b‘ ⊗

B.2.1.

 “(b; c)‘ ⊗ “d‘ ≡ “(a; b)‘ ⊗ “c‘ ⊗ “d‘ -- by ts1

fi“a‘ ⊗ “b‘ ⊗ “c‘ ⊗ “d‘ ≡ “a‘ ⊗ “b‘ ⊗ “c‘ ⊗ “d‘ -- by ts1

B.2.1.2 Congruence in s.1 with the selection operator

If •∈∀ Activitycba ,, “a; (b; c)‘ ≡ “ (a; b); c ‘, then

•∈∀ Activitydcba ,,, “(a; (b; c)) + d‘ ≡ “ ((a; b); c) + d‘

(a; (b; c))‘ ∪ “d‘) ≡ {<↓>} ⊗ (“((a; b

 ((“a‘ ⊗ “(b; c)‘) ∪ “d‘)

≡ {<↓>} ⊗ ((“(a; b)‘ ⊗ “c‘) ∪ “d‘)

>} ⊗ ((“a‘ ⊗ “b‘ ⊗ “c‘) ∪ “d‘)

≡ {<↓>} ⊗ ((“a‘ ⊗ “b‘ ⊗ “c‘) ∪ “d‘)

ruence in s.1 with the parallel composition operator

•∈ Activityc, “a; (b; c)‘ ≡ “ (a; b); c ‘, then

•tivity “(a; (b; c)) || d‘ ≡ “ ((a; b); c) || d‘ ∈∀ Ac

fi (“(a; (b; c))‘ // “d‘) ≡ (“((a; b); c)‘ // “d‘) -- by tp1

 ⊗ “(b; c)‘) // “d‘) ≡ ((“(a; b)‘ ⊗ “c‘) // “d‘) -- by ts

 ⊗ “c‘) // “d‘) ≡ ((“a‘ ⊗ “b‘ ⊗ “c‘) // “d‘) -- by ts1

4 Congruence in s.1 with the until-loop

If •∈∀ Activitycba ,, “a; (b; c)‘ ≡ “ (a; b); c ‘, then

•∈∀ Activitycba ,, “µx.((a; (b; c)); ε + x) ‘ ≡ ((a; b); c); ε + x)‘ “ µx.(

 ≡ µt.(“) -- by tr2

fi µt.(“a‘ ⊗

)

 fi µt.(“a; (b; c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 (a; b); c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))

 “(b; c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 ≡ µt.(“(a; b)‘ ⊗ “c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)) -- by ts1

fi µt.(“a‘ ⊗ “b‘ ⊗ “c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

194

Appendix B: Congruence for the Semantics of Tasks

 ({<↓>} ⊗ t))) -- by ts1

B.2.1.5 Cong

If ∀ ba, en

 ≡ µt.(“a‘ ⊗ “b‘ ⊗ “c‘ ⊗ ({<↓>} ∪

ruence in s.1 with the while-loop

•∈ Activityc, “a; (b; c)‘ ≡ “(a; b); c ‘, th

∈∀ Activ •ity “µx.(ε + (a; (b; c)); x)‘ ≡ “cba ,, µ ; x)‘

µ ↓ ∪ ↓ ⊗ ⊗ ⊗ ⊗

cba ,, ‘, then

x.(ε + ((a; b); c)

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a; (b; c)‘ ⊗ t)))

 ≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“(a; b); c‘ ⊗ t))) -- by tr4

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ “(b; c)‘ ⊗ t)))

 ≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“(a; b)‘ ⊗ “c‘ ⊗ t))) -- by ts1

fi t.({< >} ({< >} (“a‘ “b‘ “c‘ t)))

 ≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ “b‘ ⊗ “c‘ ⊗ t))) -- by ts1

B.2.1.6 Congruence in s.1 with the encapsulation

If •ity “a; (b; c)‘ ≡ “(a; b); c∈∀ Activ

∈∀ Activitycba ,, “{a; (b; c)}T ‘ ≡ “{(a; b); c}T• ‘

‘) by tu1

‘) by ts1

‘) by ts1

.2.2 as ope ators
over sele tion

demonstrated in this
 selection, and parallel composition; as

ll as for the rep and until-loop) and the encapsulation.

B.2.2.1 Congru e operator

If ∀ ba,

dcba ,,,

fi “a +

fiunpack(“a; (b; c)‘) ≡ unpack(“(a; b); c --

fi unpack(“a‘ ⊗ “(b; c)‘) ≡ unpack(“(a; b)‘ ⊗ “c --

fi unpack(“a‘ ⊗ “b‘ ⊗ “c‘) ≡ unpack(“a‘ ⊗ “b‘ ⊗ “c --

B Showing congruence for b ic r in the right
distributivity of sequence c axiom

The right distributivity of sequence over selection axiom (s.2) is
section for the binary operators of sequence,
we etition structures (while-

ence in s.2 with the sequenc

•∈ Activityc, “(a + b); c‘ ≡ “(a; c) + (b; c)‘, then

•tivity “((a + b); c); d‘ ≡ “ ((a; c) + (b; c)); d‘ ∈∀ Ac

fi “(a + b); c ‘ ⊗ “d‘ ≡ “ (a; c) + (b; c)‘ ⊗ “d‘ -- by ts1

 b‘ ⊗ “c‘ ⊗ “d‘ ≡ “ (a; c) + (b; c)‘ ⊗ “d‘ -- by ts1

195

Appendix B: Congruence for the Semantics of Tasks

fi {<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘ ⊗ “d‘

≡ {<↓>} ⊗ (“a; c‘ ∪ “b; c‘) ⊗ “d‘ -- by ta2

fi {<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘ ⊗ “d‘

≡ {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘)) ⊗ “d‘ -- by ts1

fi {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘)) ⊗ “d‘

 {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (≡ “b‘ ⊗ “c‘)) ⊗ “d‘

 -- by distribution of ⊗ over union

B.2.2.

If ∀ ba,

cba ,, ‘

-- by ta2

fi {<↓>}

‘) ∪ “d‘)

∪ “d‘) -- by ta2

fi {<↓ “d‘)

 (“b‘ ⊗ “c‘))) ∪ “d‘) -- by ts1

fi {<↓

“b‘ ⊗ ‘)

-- by associativity of ⊗

fi {<↓ “d‘)

 “b‘ ⊗ ‘)

-- by distribution of ⊗ over union

2 Congruence in s.2 with the selection operator

•∈ Activityc, “(a + b); c‘ ≡ “(a; c) + (b; c)‘, then

•∈ Activityd, “((a + b); c) + d‘ = “ ((a; c) + (b; c)) + d∀

fi {<↓>} ⊗ (“(a + b); c ‘ ∪ “d‘)

≡ {<↓>} ⊗ (“ (a; c) + (b; c)‘ ∪ “d‘)

⊗ ((“a + b‘ ⊗ “c ‘)∪ “d‘)

≡ {<↓>} ⊗ (“ (a; c) + (b; c)‘ ∪ “d‘) -- by ts1

fi {<↓>} ⊗ ((({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ “c

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a; c‘ ∪ “b; c‘))

>} ⊗ ((({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ “c ‘) ∪

≡ {<↓>} ⊗ (({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪

>} ⊗ (({<↓>} ⊗ ((“a‘ ∪ “b‘) ⊗ “c ‘)) ∪ “d‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“c‘))) ∪ “d

>} ⊗ (({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))) ∪

≡ {<↓>} ⊗ (({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“c‘))) ∪ “d

196

Appendix B: Congruence for the Semantics of Tasks

B.2.2.3 Cong composition operator

If ∈∀ Accba ,,

 || d‘

fi “(a + b) c)‘ // “d‘ -- by tp1

fi (“a +

 -- by ta2

 fi ({<↓

))) // “d‘ -- by ts1

fi {<↓

 “d‘

 by distribution of ⊗ over union

B.2.2.4 Cong

If ∈∀ Accba ,,

ruence in s.2 with the parallel

•tivity “(a + b); c‘ ≡ “(a; c) + (b; c)‘, then

•∈∀ Activitydcba ,,, “((a + b); c) || d‘ ≡ “ ((a; c) + (b; c))

; c ‘ // “d‘ ≡ “ (a; c) + (b;

 b‘ ⊗ “c‘) // “d‘ ≡ “ (a; c) + (b; c)‘ // “d‘ -- by ts1

 fi ({<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) // “d‘

≡ ({<↓>} ⊗ (“a; c‘ ∪ “b; c‘)) // “d‘

>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) // “d‘

 ≡ ({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘

>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘)) // “d‘

≡ {<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘)) //

 --

ruence in s.2 with the until-loop

•tivity “(a + b); c‘ ≡ “(a; c) + (b; c)‘, then

•∈∀ Activity “µx.(((a + b); c) ; ε + x)‘ ≡cba ,, “µx.(((a; c) + (b; c)); ε + x)‘

fi µt.()

 ↓>} ⊗

 ≡ ↓>} ∪ ({<↓>} ⊗ t))) -- by ts1

fi µt.((({<↓>} ∪ ({<↓>} ⊗ t)))

>} ({<↓

c‘))) ⊗ ⊗ t)))

“(a + b); c ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))

≡ µt.(“ (a; c) + (b; c)‘ ⊗ ({<↓>} ∪ ({< t))) -- by tr2

fi µt.((“a + b‘ ⊗ “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

µt.(“ (a; c) + (b; c)‘ ⊗ ({<

{<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) ⊗

≡ µt.(({<↓>} ⊗ (“a; c‘ ∪ “b; c‘)) ⊗ ({<↓ ∪ >} ⊗ t)))

 -- by ta2

fi µt.(({<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “ ({<↓>} ∪ ({<↓>}

197

Appendix B: Congruence for the Semantics of Tasks

 -- by ts1

fi µt.(({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 -- by distribution of ⊗ over union

B.2.2.5 Congruence in s.2 with the while-loop

If (a + b); c‘ ≡ “(a; c) + (b; c)‘, then

 ≡ µt.(({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “µx.(ε + ((a + b); c); x)‘ ≡ “µx.(ε + ((a; c) + (b; c)); x)‘

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“(a + b); c ‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“ (a; c) + (b; c)‘ ⊗ t))) -- by tr4

fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a + b‘ ⊗ “c‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“ (a; c) + (b; c)‘ ⊗ t))) -- by ts1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) ⊗ t)))

c‘)) ⊗ t))) -- by ta2

fi µt.({<↓ ↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘) ⊗ t)))

≡ ⊗ (({<↓>} ⊗ ((“a‘ ⊗ “c‘)

‘

“ ‘ “b‘ ⊗ c‘))) ⊗

 by distribution of ⊗ over union

B.2.2.6 Cong

If ∀ ba,

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“a; c‘ ∪ “b;

>} ∪ ({<↓>} ⊗ (({<

µt.({<↓>} ∪ ({<↓>}

 ∪ (“b ⊗ “c‘))) ⊗ t))) -- by ts1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ ((a‘ ⊗ “c) ∪ (“ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ ((“a‘ ⊗ “c‘)

 ∪ (“b‘ ⊗ “c‘))) ⊗ t))) --

ruence in s.2 with the encapsulation

•∈ Activityc, “(a + b); c‘ ≡ “(a; c) + (b; c)‘, then

•∈∀ Activitycba ,, “{(a + b); c}T‘ ≡ “{(a; c) + (b; c)}T‘

fi unpack pack(“ (a; c) + (b; c)‘) -- by tu1

fi unpack pack(“ (a; c) + (b; c)‘) -- by ts1

(“(a + b); c‘) ≡ un

(“a + b‘ ⊗ “c‘) ≡ un

198

Appendix B: Congruence for the Semantics of Tasks

fi unpack({<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘)

≡ unpack({<↓>} ⊗ (“a; c‘ ∪ “b; c‘)) -- by ta2

∪ (“b ⊗ “c‘)))

“c‘)))

 -- by distribution of ⊗ over union

B.2.3 Showi ators in the empty
seque

The em ated in this section for the binary
operators of sequence, selection, and parallel composition; as well as for the repetition
structures (wh n.

B.2.3. e operator

If ∈∀ Activia

ba,

 fi“a; ε‘

 s1

 fi“a‘ ⊗ ‘

 -- by identity for ⊗

B.2.3.2 Cong erator

Activityb,) + b‘ ≡ “a + b‘

fi {<↓> ∪ “b‘)

 -- by ta2

fi {<↓ ‘ ⊗ “a ∪ “b‘

 -- by ts1

fi unpack({<↓>} ⊗ (“a‘ ∪ “b‘) ⊗ “c‘)

≡ unpack({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗ “c‘))) -- by ts1

fi unpack({<↓>} ⊗ ((“a‘ ⊗ “c‘) ‘

 ≡ unpack({<↓>} ⊗ ((“a‘ ⊗ “c‘) ∪ (“b‘ ⊗

ng congruence for basic oper
nce axiom

pty sequence axiom (s.3) is demonstr

ile- and until-loop) and the encapsulatio

1 Congruence in s.3 with the sequenc

•ty “a; ε‘ ≡ “ε; a‘ ≡ “a‘, then

•Activity “(a; ε); b‘ ≡ “(ε; a); b‘ ≡ “a; b‘ ∈∀

 ⊗ “b‘ ≡ “ε; a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘ -- by ts1

fi“a‘ ⊗ “ε‘ ⊗ “b‘ ≡ “ε‘ ⊗ “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘ -- by t

 {<>} ⊗ “b‘ ≡ {<>} ⊗ “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b -- by tb1

fi“a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘

ruence in s.3 with the selection op

If •∈∀ Activitya “a; ε‘ ≡ “ε; a‘ ≡ “a‘, then

•∈∀a “(a; ε) + b‘ ≡ “(ε; a

} ⊗ (“a; ε‘ ∪ “b‘) ≡ {<↓>} ⊗ (“ε; a‘

≡ {<↓>} ⊗ (“a‘ ∪ “b‘)

>} ⊗ ((“a‘ ⊗ “ε‘) ∪ “b‘) ≡ {<↓>} ⊗ ((“ε ‘))

≡ {<↓>} ⊗ (“a‘ ∪ “b‘)

199

Appendix B: Congruence for the Semantics of Tasks

fi {<↓ ({<>} “a‘)

-- by tb1

fi {<↓

tity for ⊗

B.2.3.3 Cong mp

If ∈∀a

ba,

 by tp1

fi (“a‘ ⊗ “

>} ⊗ ((“a‘ ⊗ {<>}) ∪ “b‘) ≡ {<↓>} ⊗ (⊗ ∪ “b‘)

≡ {<↓>} ⊗ (“a‘ ∪ “b‘)

>} ⊗ (“a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘)

≡ {<↓>} ⊗ (“a‘ ∪ “b‘) -- by iden

ruence in s.3 with the parallel co osition operator

•Activity “a; ε‘ ≡ “ε; a‘ ≡ “a‘, then

•y “(a; ε) || b‘ ≡ “(ε; a) || b‘ ≡ “a || b‘ ∈∀ Activit

fi “a; ε‘ // “b‘ ≡ “ε; a‘ // “b‘ ≡ “a‘ // “b‘ --

ε‘) // “b‘ ≡ (“ε‘ a‘) // “b‘ ≡ “a‘ // “b‘ -- by ts1

fi (“a‘ ⊗ >} ⊗ “a‘) // “b‘ ≡ “a‘ // “b‘ -- by tb1

 ⊗

B.2.3.

If ∈∀a

a ; ε + x)‘ ≡ “µx.(a; ε + x)‘

 fiµt.(“

⊗ t)))

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

 ⊗ “

 {<>}) // “b‘ ≡ ({<

fi“a‘ // “b‘ ≡ “a‘ // “b‘ ≡ “a‘ // “b‘ -- by identity for

4 Congruence in s.3 with the until-loop

•Activity “a; ε‘ ≡ “ε; a‘ ≡ “a‘, then

∈∀ A •ctivity “µx.((a; ε); ε + x)‘ ≡ “µx.((ε; a)

a; ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“ε; a‘ ⊗ ({<↓>} ∪ ({<↓>}

fiµt.(“a‘ ⊗ “ε } ∪ ({<↓>} ⊗ t)))

-- by ts1

‘⊗ ({<↓>

≡ µt.(“ε‘ ⊗ “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 fiµ

≡ µ ↓>} ∪ ({<↓>} ⊗ t)))

≡ µ “ ({<↓>} ⊗ t))) -- by tb1

t.(“a‘ ⊗ {<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

t.({<>} ⊗ “a‘ ⊗ ({<

t.(a‘ ⊗ ({<↓>} ∪

fiµt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

200

Appendix B: Congruence for the Semantics of Tasks

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by identity for ⊗

B.2.3.

If ∈∀a

 x)‘

fiµt.({<↓ ε‘ ⊗ t)))

≡ µ (“ε; a‘ ⊗ t)))

5 Congruence in s.3 with the while-loop

•Activity “a; ε‘ ≡ “ε; a‘ ≡ “a‘, then

•∈∀ Activitya “µx.(ε + (a; ε); x)‘ ≡ “µx.(ε + (ε; a); x)‘ ≡ “µx.(ε +a;

 >} ∪ ({<↓>} ⊗ (“a;

t.({<↓>} ∪ ({<↓>} ⊗

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by tr4

fiµ

 -- by ts1

 fiµt.({

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ “a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by tb1

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by identity for ⊗

B.2.3.6 Congruence in s.3 with the encapsulation

If a; ε‘ ≡ “ε; a‘ ≡ “a‘, then

{a; ε}T‘ ≡ “{ε; a}T‘ ≡ “{a}T‘

 fi unpack(“a; ε‘) ≡ unpack(“ε; a‘) ≡ unpack(“a‘) -- by tu1

 fi unpack(“a‘ “ ‘) ≡ unpack(“ ‘ “a‘) unpack(“a‘) -- by ts1

npack(“a‘) -- by tb1

fi unpack ≡ unpack(“a‘) -- by identity for ⊗

t.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ “ε‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“ε‘ ⊗ “a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))

<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ {<>} ⊗ t)))

 •∈∀ Activitya “

•∈∀ Activitya “

⊗ ε ε ⊗ ≡

 fi unpack(“a‘ ⊗ {<>}) ≡ unpack({<>} ⊗ “a‘) ≡ u

 (“a‘) ≡ unpack(“a‘)

201

Appendix B: Congruence for the Semantics of Tasks

B.2.4 Showi ators in the fail on
sequence

The fail on sequence axiom (S.4) is demonstrated in this section for the binary
operators of se ition; as well as for the repetition
structures (while- and until-loop) and the encapsulation.

B.2.4. erator

If ∈∀ Activitya

ng congruence for basic oper

quence, selection, and parallel compos

1 Congruence in s.4 with the sequence op

 • “φ; a‘ ≡ “φ‘

ba,

, then

•Activity “(φ; a); b‘ ≡ “∈∀ φ

fi“φ; a‘

; b‘

 ⊗ “b‘ ≡ “φ‘

fi“φ‘ “a‘ “b‘ “ ‘ “b‘ -- by ts1

fi{<φ>} ⊗ “a‘ “b‘ ≡ {< >} “b‘ -- by tb2

⊗ 1, t2 n}⊗ “ ‘ ≡ φ “b‘ Let “a‘ = {t1, t2, …, tn}

fi {<φ>} ⊗ “ ‘ ≡ φ>} “ ‘

φ ‘

; a) + b‘ “ ‘

fi {< >} (“φ; a‘ ∪ “b‘) (“ ‘ ∪ “b‘) -- by ta2

fi {<↓>} ⊗ “ ‘ “a‘ “ ‘ ≡ {<↓ “φ‘ ∪ “b‘

 {< “a‘ ∪ “b‘ ⊗ ({<φ>} ∪ “b‘) -- by tb2

fi {<↓>} ⊗ ⊗ 1, t2 n}) ∪ “ ‘

 {< >} >} “b‘ “a‘ = {t1, t2, …, tn}

fi {<↓>} ⊗ ({<φ>} ∪ “b‘) ≡ {<↓>} ⊗ ({<φ>} ∪ “b‘)

B.2.4.3 Congruence in s.4 with the pa p

If φ ≡ φ

 ⊗ “b‘ -- by ts1

⊗ ⊗ ≡ φ ⊗

⊗ φ ⊗

fi {<φ>} {t , …, t b {< >} ⊗

U
n

i it1
}#{

=
>< φ b {< ⊗ b

B.2.4.2 Congruence in s.4 with the selection operator

If ; a‘ ≡ “φ , then •∈∀ Activitya “

•∈∀ Activityba, “(φ ≡ φ + b

↓ ⊗ ≡ {<↓>} ⊗ φ

 ((φ ⊗) ∪ b) >} ⊗ () -- by ts1

fi ↓>} ⊗ (({<φ>} ⊗)) ≡ {<↓>}

 (({<φ>} {t , …, t b)

≡ ↓ ⊗ ({<φ ∪) Let

U
n

i it1
}#{

=
>< φ

rallel com osition operator

 •∈∀ Activitya “ ; a‘ “ ‘

(φ; a) || b‘ ≡ “φ || b‘

, then

•∈∀ Activityba, “

202

Appendix B: Congruence for the Semantics of Tasks

 fi “φ; a‘ // “b‘ ≡ “φ‘

fi (“φ‘ ⊗ “

 // “b‘ -- by tp1

 a‘) // “b‘ ≡ “φ‘ ‘ -- by ts1

fi({<φ> φ>} // “b‘ -- by tb2

, tn}

1=

B.2.4. p

If ∈∀a

 // “b

} ⊗ “a‘) // “b‘ ≡ {<

fi ({<φ>} ⊗ {t1, t2, …, tn}) // “b‘ ≡ {<φ>} // “b‘ Let “a‘ = {t1, t2, …

fi {<φ>} // “b‘ ≡ {<φ>} // “b‘ U
n t }#{ >< φ
i i

4 Congruence in s.4 with the until-loo

•Activity “φ; a‘ ≡ “φ‘

)

, then

•∈∀ Activitya “µx.((φ; a); ε + x)‘ ≡ “µx.(φ; ε + x)‘

fi µt.(“φ; a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))

≡ µt.(“φ‘ -- by tr2 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

fi µt.(“φ‘ ⊗ “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“φ‘

 ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb2

Let “a‘ = {t1, t2, …, tn}

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) it }#{ >< φ

B.2.4.5 Congruence in s.4 with the while-loop

If φ; a‘ ≡ “φ‘, then

µx.(ε + (φ; a); x)‘ ≡ “µx.(ε +φ; x)‘

fiµt.({<↓>} ∪ ({<↓>} ⊗ (“φ; a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ t))) -- by tr4

fiµt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ “a‘ ⊗ t)))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ts1

fi µt.({<φ>} ⊗ “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<φ>} ⊗

fi µt.({<φ>} ⊗ {t1, t2, …, tn} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

fi µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

U
n

i 1=

 •∈∀ Activitya “

•∈∀ Activitya “

203

Appendix B: Congruence for the Semantics of Tasks

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ -- by ts1

fiµt.({

, tn}

fi µt.({

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t

B.2.4.

If ∈∀ Activia

 ⊗ t)))

<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ “a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t))) -- by tb2

fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ {t1, t2, …, tn} ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t))) Let “a‘ = {t1, t2, …

<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t)))

))) U
n

i it1
}#{

=
>< φ

6 Congruence in s.4 with the encapsulation

•ty “φ; a‘ ≡ “φ‘

fi unpack(“φ; a‘) ≡ unpack(“φ‘)

, then

•∈∀ Activitya “{φ; a}T‘ ≡ “{φ}T‘

 -- by tu1

fi unpack(“φ‘ ⊗ “a‘) ≡ unpack(“φ‘

fi unpack({< φ>}) -- by tb2

fi unpack({< 1 2 n

et “a‘ = {t1, t2, …, tn}

fi unpack({<φ>}) ≡ unpack({<φ>})

B.2.5 Showing congruence for basic operators in the succeed on

The succeed o the binary
operators of sequence, selection, and parallel composition; as well as for the repetition
structures (wh

σ; a

) -- by ts1

φ>} ⊗ “a‘) ≡ unpack({<

φ>} ⊗ {t , t , …, t })

≡ unpack({<φ>}) L

U
n

i it1
}#{

=
>< φ

sequence axiom

n sequence axiom (s.5) is demonstrated in this section for

ile- and until-loop) and the encapsulation.

B.2.5.1 Congruence in s.5 with the sequence operator

If ‘ ≡ “σ•∈∀ Activitya “ , then ‘

(σ; •∈∀ Activityba, “ a); b‘ ≡ “σ; b‘

fi“σ; a‘ ⊗ “b‘ ≡ “σ‘ ⊗ “b‘ -- by ts1

204

Appendix B: Congruence for the Semantics of Tasks

fi“σ‘ ⊗

-- by tb2

fi {<σ et “a‘ = {t1, t2, …, tn}

fi {<σ
1
{

=
<

If ∈∀ Activia

 “a‘ ⊗ “b‘ ≡ “σ‘ ⊗ “b‘ -- by ts1

fi{<σ>} ⊗ “a‘ ⊗ “b‘ ≡ {<σ>} ⊗ “b‘

>} ⊗ {t1, t2, …, tn}⊗ “b‘ ≡ {<σ>} ⊗ “b‘ L

>} ⊗ “b‘ ≡ {<σ>} ⊗ “b‘ U t }#>σ n

i i

B.2.5.2 Congruence in s.5 with the selection operator

 •ty “σ; a‘ ≡ “σ‘

ba,

fi {<↓

, then

•y “(σ; a) + b‘ ≡ “σ + b‘ ∈∀ Activit

fi {<↓>} ⊗ (“σ; a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“σ‘ ∪ “b‘) -- by ta2

>} ⊗ ((“σ‘ ⊗ “a‘) ∪ “b‘) ≡ {<↓>} ⊗ (“σ‘

fi {<↓

fi {<↓>} ⊗ (({<σ>} ⊗ {t1, t2, …, tn}) ∪ “b‘

“ t1, t2, …, tn}

fi {<↓>} ⊗ ({<σ>} ∪ “b‘) ≡ {<↓>} ⊗ ({<σ>} ∪ “b‘)

B.2.5.3 Congruence in s.5 with the parallel composition operator

If σ; a‘ ≡ “σ‘, then

(σ; a) || b‘ ≡ “σ || b‘

 fi “σ; a‘ // “b‘ ≡ “σ‘ // “b‘ -- by tp1

 fi (“σ‘ ⊗ “a‘) // “b‘ ≡ “σ‘ // “b‘ -- by ts1

fi{<σ>} ⊗ “a‘ // “b‘ ≡ {<σ>} // “b‘ -- by tb2

fi {<σ>} ⊗ {t1, t2, …, tn}// “b‘ ≡ {<σ>} // “b‘ Let “a‘ = {t1, t2, …, tn}

fi {<σ }

B.2.5.4 Cong

If ∈∀a

 ∪ “b‘) -- by ts1

>} ⊗ (({<σ>} ⊗ “a‘) ∪ “b‘) ≡ {<↓>} ⊗ ({<σ>} ∪ “b‘) -- by tb2

)

≡ {<↓>} ⊗ ({<σ>} ∪ b‘) Let “a‘ = {

U
n

i it1
}#{

=
>< σ

 •∈∀ Activitya “

•∈∀ Activityba, “

>} // “b‘ ≡ {<σ>} // “b‘ Ui it1
#{

=
>< σ

n

ruence in s.5 with the until-loop

•Activity “σ; a‘ ≡ “σ‘, then

205

Appendix B: Congruence for the Semantics of Tasks

•∈∀ Activitya “µx.((σ; a); ε + x)‘ ≡ “µx.(σ; ε + x)‘

fi µt.(“ ⊗ t)))

y tr2

fi µt.(“

fi µt.({<σ>} ⊗

≡ µt.({

, tn}

fi µt.({

B.2.5.5 Cong

If ∈∀ Activia

 σ; a‘ ⊗ ({<↓>} ∪ ({<↓>}

≡ µt.(“ σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- b

σ‘ ⊗ “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ts1

 “a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb2

fi µt.({<σ>} ⊗ {t1, t2, …, tn} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) Let “a‘ = {t1, t2, …

<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

U
n

i it1
}#{

=
>< σ ≡ µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

ruence in s.5 with the while-loop

 •ty “σ; a‘ ≡ “σ‘

a

fiµt.({

fiµt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ “a‘ ⊗ t)))

fiµt.({<

fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ {t1, t2,

t1, t2, …, tn}

fi µt.({ >} ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t)))

, then

∈∀ A •ctivity “µx.(ε + (σ; a); x)‘ ≡ “µx.(ε +σ; x)‘

<↓>} ∪ ({<↓>} ⊗ (“σ; a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t))) -- by tr4

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t))) -- by ts1

↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ “a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t))) -- by tb2

…, tn} ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t))) Let “a‘ = {

<↓>} ∪ ({<↓>} ⊗ ({<σ

U
n

i it1
}#{

=
>< σ

206

Appendix B: Congruence for the Semantics of Tasks

B.2.5.6 Congruence in s.5 with the encapsulation

If ∈∀ Activia •ty “σ; a‘ ≡ “σ‘

fi unp

fi unp

≡ unpa {t1, t2, …, tn}

fi unpack({
1

}
=

B.3 Showin election

r the axioms of associative
selection, comm Every axiom is
represented in defined for the task
algebra.

B.3.1 Showing congruence for basic operators in the associative

The associativ r the binary
operators of sequence, selection, and parallel composition; as well as for the repetition
structures (wh

If ∈∀ Accba ,, , then

 c)) ; d‘ ≡ “ (a + b + c) ; d‘

 fi “((a

≡ “ (a +

≡ {<↓>

, then

•∈∀ Activitya “{σ; a}T‘ ≡ “{σ}T‘

fi unpack(“σ; a‘) ≡ unpack(“σ‘) -- by tu1

ack(“σ‘ ⊗ “a‘) ≡ unpack(“σ‘) -- by ts1

ack({<σ>} ⊗ “a‘) ≡ unpack({<σ>}) -- by tb2

fi unpack({<σ>} ⊗ {t1, t2, …, tn})

ck({<σ>}) Let “a‘ =

<σ>}) ≡ unpack({<σ>}) U
n t#{ >< σ
i i

g congruence for s

Congruence for selection is depicted in this section fo
utative selection, and idempotent selection.

 combination with one of the basic operators

selection axiom

e selection axiom (sel.1) is demonstrated in this section fo

ile- and until-loop) and the encapsulation.

B.3.1.1 Congruence in sel.1 with the sequence operator

•tivity “(a + b) + c‘ ≡ “a + (b + c)‘ ≡ “a + b + c‘

•∈∀ Activitydcba ,,, “((a + b) + c); d‘ ≡ “ (a + (b +

+ b) + c)‘ ⊗ “d‘ ≡ “ (a + (b + c))‘ ⊗ “d‘

 b + c)‘ ⊗ “d‘ -- by ts1

 fi {<↓>} ⊗ (“a + b‘ ∪ “c‘) ⊗ “d‘

} ⊗ (“a‘ ∪ “ b + c‘) ⊗ “d‘

≡ {<↓>} ⊗ (“a‘ ∪ “ b + c‘) ⊗ “d‘ -- by ta2

207

Appendix B: Congruence for the Semantics of Tasks

 fi {<↓ } ⊗ ((“d‘

 {<↓> “c

 ({<↓>} ⊗ “c‘))) ⊗ “d‘

-- by distribution of ⊗ over union

fi ({<

 ({<↓

> {<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘) ⊗

≡ {<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘))) ⊗ “d‘

≡ } ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ ‘))) ⊗ “d‘ -- by ta2

fi {<↓>} ⊗ ((({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ∪ “c‘) ⊗ “d‘

≡ {<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ∪

≡ {<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘))) ⊗ “d‘

↓>} ⊗ (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘))) ∪ ({<↓>} ⊗ “c‘) ⊗ “d‘

≡ >} ⊗“ >} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘))) ⊗ “d‘

≡ ({<↓>} ⊗“a‘) ∪ ({<↓>} ⊗ (({<↓>}

-- by distribution of over union

fi (({< “b‘)))

a‘) ∪ ({<↓>} ⊗ (({<↓

⊗ “b‘) ∪ ({<↓>} ⊗ “c‘))) ⊗ “d‘

⊗

↓>} ⊗ ({<↓>} ⊗ “a‘)) ∪ ({<↓>} ⊗ ({<↓>} ⊗

 ∪ ({<↓>} ⊗ “c‘) ⊗ “d‘

≡ ({<↓>} ⊗“ “

‘

a‘) ∪ (({<↓>} ⊗ ({<↓>} ⊗ b‘))

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘))) ⊗ “d

≡ ({<↓>} ⊗“ “

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘))) ⊗ “d‘

fi (({< >} ⊗ “a‘) ({<↓>} ⊗ “b‘)) ({<↓>} ⊗ “c‘) “d‘

 ({< >} “a‘) (({< >} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ⊗ “d‘

≡ ({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) ⊗ “d‘ -- by cp1

B.3.1.2 Congruence in sel.1 with the selection operator

If (a + b) + c‘ ≡ “a + (b + c)‘ ≡ “a + b + c‘, then

((a + b) + c) + d ≡ (a + (b + c)) + d‘ = “ (a + b + c) + d‘

 fi {<↓>} ⊗ (“(a + b) + c ∪ d) ≡ {<↓>} ⊗ (a + (b + c) ∪ “d‘)

a‘) ∪ (({<↓>} ⊗ ({<↓>} ⊗ b‘))

-- by distribution of ⊗ over union

↓ ∪ ∪ ⊗

≡ ↓ ⊗ ∪ ↓

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “ ‘ “

‘ “ ‘ “ ‘

208

Appendix B: Congruence for the Semantics of Tasks

≡ {<

 fi {<↓ “c‘)) ∪ “d‘)

d‘)

-- by ta2

 fi {<↓ ∪ “d

) ∪ “d‘)

) -- by ta2

 fi {<↓ “c‘) ∪ “d‘)

≡ {<↓>

“d‘)

n of ⊗ over union

fi {<↓>} ⊗ (“a‘) ∪ ({<↓>} ⊗ “b‘)))

≡ {<↓

≡ {<↓ (({<↓>} ⊗ “b‘)

ver union

fi {<↓>} ⊗ (∪ ({<↓>} ⊗ ({<↓>} ⊗ “b‘)))

≡ {<↓ <↓

≡ {<↓ {<↓>} ⊗ ({<↓>} ⊗ “b‘))

ion

fi {<↓>} ⊗ (∪ ({<↓>} ⊗ “c‘) ∪ “d‘)

↓>} ⊗ (“a + b + c‘ ∪ “d‘) -- by ta2

>} ⊗ (({<↓>} ⊗ (“a + b‘ ∪

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b + c‘)) ∪ “

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b + c‘)) ∪ “d‘)

>} ⊗ (({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘)) ‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘)))

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘)))) ∪ “d‘

>} ⊗ ({<↓>} ⊗ ((({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ∪

} ⊗ ({<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘))) ∪ “d‘)

≡ {<↓>} ⊗ ({<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘))) ∪

-- by distributio

({<↓>} ⊗ (({<↓>} ⊗

∪ ({<↓>} ⊗ “c‘) ∪ “d‘)

>} ⊗ (({<↓>} ⊗“a‘) ∪ ({<↓>} ⊗ (({<↓>} ⊗ “b‘)

∪ ({<↓>} ⊗ “c‘))) ∪ “d‘)

>} ⊗ (({<↓>} ⊗“a‘) ∪ ({<↓>} ⊗

∪ ({<↓>} ⊗ “c‘))) ∪ “d‘) -- by distribution of ⊗ o

(({<↓>} ⊗ ({<↓>} ⊗ “a‘))

 ∪ ({<↓>} ⊗ “c‘) ∪ “d‘)

>} ⊗ (({<↓>} ⊗“a‘) ∪ (({ >} ⊗ ({<↓>} ⊗ “b‘))

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘))) ∪ “d‘)

>} ⊗ (({<↓>} ⊗“a‘) ∪ ((

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘))) ∪ “d‘) -- by distribution of ⊗ over un

(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘))

209

Appendix B: Congruence for the Semantics of Tasks

≡ {<↓>} ⊗ (({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ “b‘)

∪ ({<↓

≡ {<↓>} ⊗ (({<↓>} ⊗“a‘) ∪ (({<↓>

B.3.1.3 Congruenc on operator

If ∈∀ Accba ,,

 + c) || d‘

 fi “(a + 1

 fi ({<↓>} ⊗ (// “d‘

≡ ({<↓>} ⊗ (“a‘ ∪ “b + c‘)) // “d‘

≡ ({<↓ ↓>} ⊗ (“b‘ ∪ “c‘)))) // “d‘

y ta2

fi {<↓>} ⊗ (“b‘)) ∪ “c‘) // “d‘

≡ {<↓> ∪ ({<↓>} “c‘))) // “d‘

ution of ⊗ over union

fi ({<↓>} ⊗ “c‘) // “d‘

≡ ({

>} ⊗ “c‘)) ∪ “d‘)

} ⊗ “b‘)

∪ ({<↓>} ⊗ “c‘)) ∪ “d‘) -- by cp1

e in sel.1 with the parallel compositi

•tivity “(a + b) + c‘ ≡ “a + (b + c)‘ ≡ “a + b + c‘, then

•∈∀ Activitydcba ,,, “((a + b) + c) || d‘ ≡ “(a + (b + c)) || d‘ ≡ “(a + b

 b) + c‘ // “d‘ ≡ “a + (b + c)‘ // “d‘ ≡ “a + b + c‘ // “d‘ -- by tp

“a + b‘ ∪ “c‘)) // “d‘ ≡ ({<↓>} ⊗ (“a‘ ∪ “b + c‘))

 -- by ta2

fi ({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘)) // “d‘

>} ⊗ (“a‘ ∪ ({<

≡ ({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘)))) // “d‘ -- b

(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗

≡ {<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘))) // “d‘

} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ⊗

-- by distrib

 (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘))) ∪ ({<↓>} ⊗

<↓>} ⊗“ ⊗ “c‘))) // “d‘ a‘) ∪ ({<↓>} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>}

≡ ({<↓>} ⊗“ “b‘) ∪ ({<↓>} ⊗ “c‘))) // “d‘

↓>} ⊗ ({<↓>} ⊗ “b‘)))

a‘) ∪ ({<↓>} ⊗ (({<↓>} ⊗

-- by distribution of ⊗ over union

fi (({<↓>} ⊗ ({<↓>} ⊗ “a‘)) ∪ ({<

 ∪ ({<↓>} ⊗ “c‘) // “d‘

≡ ({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ ({<↓>} ⊗ “b‘))

210

Appendix B: Congruence for the Semantics of Tasks

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘))) // “d‘

≡ ({<↓>} ⊗“

 of ⊗ n

a‘) ∪ (({<↓>} ⊗ ({<↓>} ⊗ “b‘))

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘))) // “d‘ -- by distribution over unio

fi (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ∪ ({<↓>} ⊗ “c‘) // “d‘

≡ ({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) // “d‘

≡ ({<↓>} ⊗“ y cp1

B.3.1.4 Congruence in sel.1 with the until-

If ∀ ba,

a‘) ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)) // “d‘ -- b

loop

•∈ Activityc, “(a + b) + c‘ ≡ “a + (b + c)‘ ≡ “a + b + c‘, then

∈∀ Activ •ity “µx.(((a + b) + c); ε + x)‘ ≡ “µx.((a + (b + c)); ε + x)‘ cba ,,

≡ “µx.(ε + x)‘

 fi µt.(“

≡ µt.(“ (a + (b + c))‘ ⊗ {<↓>} ∪ ({<

y tr2

 fi µt.({ c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

))

 ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ta2

 fi µt.({ >} ⊗ t)))

 (“b‘

ta2

 fi µt.({<↓>} ⊗ ((({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ∪ “c‘)

⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)))

(a + b + c);

((a + b) + c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 (↓>} ⊗ t)))

≡ µt.(“ (a + b + c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- b

<↓>} ⊗ (“a + b‘ ∪ “

≡ µt.({<↓>} ⊗ (“a‘ ∪ “ b + c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)

≡ µt.({<↓>} ⊗ (“a‘ ∪ “ b + c‘) ⊗

<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘) ⊗ ({<↓>} ∪ ({<↓

≡ µt.({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ ∪ “c‘)))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘)))

⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by

211

Appendix B: Congruence for the Semantics of Tasks

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)))

fi µt.(({<↓>} ⊗ (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘))) ∪ ({<↓>} ⊗ “c‘)

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗“a‘) ∪ ({<↓>} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({< >} ⊗“a‘) ∪ ({<↓>} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)))

 ({<↓>} ∪ ({<↓>} ⊗ t)))

y b

fi µt.(((({<↓>} ⊗ ({<↓>} ⊗ “a‘)) ∪ ({<↓>}

≡ µt.((({< >} ⊗ “a‘) ∪ (({<↓>} ⊗ ({<↓>} ⊗ “b‘))

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)))) ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.((({<↓>} “a‘) ∪ (({<↓>} ⊗ ({<↓ ⊗ “b‘))

∪ ({<↓>} ⊗ ({<↓ ⊗ “c‘)))) ↓>} ∪ ({<↓>} ⊗ t)))

⊗ over union

‘ ∪ ({<↓>} ⊗ “c‘))

≡ µt.((({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ “

≡ µt <↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)))

1

f ∀ ba,

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by distribution of ⊗ over union

↓

⊗

-- b distri ution of ⊗ over union

⊗ ({<↓>} ⊗ “b‘)))

 ∪ ({<↓>} ⊗ “c‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

↓

⊗

⊗ >}

>} ⊗ ({<

-- by distribution of

fi µt.(((({<↓>} ⊗ “a) ∪ ({<↓>} ⊗ “b‘))

⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

b‘) ∪ ({<↓>} ⊗ “c‘)))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

.((({<↓>} ⊗“a‘) ∪ (({

⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by cp

B.3.1.5 Congruence in sel.1 with the while-loop

I •∈ Activityc, “(a + b) + c‘ ≡ “a + (b + c)‘ ≡ “a + b + c‘, then

212

Appendix B: Congruence for the Semantics of Tasks

•∈∀ Activity “µx.(ε + ((a + b) + c); x)‘ ≡ “µx.(ε + (a + (b + c));cba ,, x)‘

≡ “µx.(ε + (a + b + c); x)‘

≡ µt. (a + (b + c))‘ ⊗ t)))

≡ µ -- by tr4

 b‘ ∪ “c‘) ⊗ t)))

∪ “ b + c‘) t)))

‘)) ∪ “c‘) ⊗ t)))

⊗ (“b‘ ∪ “c‘))) ⊗ t)))

{<↓>}

 -- by ta2

 fi µt.({<↓ ‘)

 t)))

∪ (({<↓>} “b‘)

‘)

tion of ⊗ over union

fi µt.({ } ⊗ “b‘)))

∪ ({<↓>} ⊗ “c‘)) ⊗ t)))

<↓>} ⊗ (({<↓>}

“c‘)))) ⊗ t)))

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“((a + b) + c)‘ ⊗ t)))

({<↓>} ∪ ({<↓>} ⊗ (“

t.({<↓>} ∪ ({<↓>} ⊗ (“ (a + b + c)‘ ⊗ t)))

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a +

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ⊗

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ∪ “ b + c‘)

⊗ t))) -- by ta2

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ∪ ({<↓>}

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ∪ (

⊗ (“b‘ ∪ “c‘))) ⊗ t)))

>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ ((({<↓>} ⊗ “a

∪ ({<↓>} ⊗ “b‘)) ∪ “c‘) ⊗

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ⊗

∪ ({<↓>} ⊗ “c‘))) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b

∪ ({<↓>} ⊗ “c‘))) ⊗ t))) -- by distribu

<↓>} ∪ ({<↓>} ⊗ ((({<↓>} ⊗ (({<↓>} ⊗ “a‘) ∪ ({<↓>

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((({<↓>} ⊗“a‘) ∪ ({

⊗ “b‘) ∪ ({<↓>} ⊗

213

Appendix B: Congruence for the Semantics of Tasks

≡ ↓>} ⊗“a‘) ∪ ({<↓>} ⊗ (({<↓>}

 ⊗ n

⊗ ({<↓>} ⊗ “b‘))) ∪ ({<↓>}

⊗ “b‘)) ∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)))) ⊗ t)))

-- by distribution of ⊗ over union

fi µt.({<↓ ↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ∪ ({<↓>}

 t.({<↓

≡ µ ⊗ ((({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ “b‘)

⊗ t))) -- by cp1

≡ ≡ a + b + c‘, then

µt.({<↓>} ∪ ({<↓>} ⊗ ((({<

⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)))) ⊗ t)))

-- by distribution of over unio

fi µt.({<↓>} ∪ ({<↓>} ⊗ (((({<↓>} ⊗ ({<↓>} ⊗ “a‘)) ∪ ({<↓>}

 ⊗ “c‘)) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ ({<↓>}

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ ({<↓>}

⊗ “b‘)) ∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)))) ⊗ t)))

>} ∪ ({<↓>} ⊗ (((({<

⊗ “c‘)) ⊗ t)))

≡ µ >} ∪ ({<↓>} ⊗ ((({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ “b‘)

∪ ({<↓>} ⊗ “c‘))) ⊗ t)))

t.({<↓>} ∪ ({<↓>}

∪ ({<↓>} ⊗ “c‘)))

B.3.1.6 Congruence in sel.1 with the encapsulation

If (a + b) + c‘ “a + (b + c)‘ “ •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “{(a + b) + c}T‘ ≡ “{a + (b + c)}T‘ ≡ “{a + b + c}T‘

 “(a + b) + c‘) ≡ unpack(fi unpack(“a + (b + c)‘)

≡ unpack(by tu1

≡ unpack({<↓>} ⊗ (“a‘ ∪ “ b + c‘)) -- by ta2

“a + b + c‘) --

 fi unpack({<↓>} ⊗ (“a + b‘ ∪ “c‘))

≡ unpack({<↓>} ⊗ (“a‘ ∪ “ b + c‘))

214

Appendix B: Congruence for the Semantics of Tasks

 fi unpack({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘))

≡ u a‘ ∪ ({<↓>} ⊗ (“b‘ ∪ “c‘))))

“b‘ ∪ “c‘)))) -- by ta2

<↓>} ⊗ “b‘)) ∪ “c‘))

↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘))))

n

“b‘))) ∪ ({<↓>} ⊗ “c‘))

≡ u a‘) ∪ ({<↓>} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>}

} ⊗ (({<↓>} ⊗ “b‘) ∪ ({<↓>}

er union

 ∪ ({<↓>} ⊗ ({<↓>} ⊗ “b‘)))

 “b‘))

∪ “c‘))))

“a‘) ∪ (({<↓>} ⊗ ({<↓>} ⊗ “b‘))

n

 “c‘)))

npack({<↓>} ⊗ (“

≡ unpack({<↓>} ⊗ (“a‘ ∪ ({<↓>} ⊗ (

 fi unpack({<↓>} ⊗ ((({<↓>} ⊗ “a‘) ∪ ({

≡ unpack({<↓>} ⊗ (“a‘ ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘))))

≡ unpack({<↓>} ⊗ (“a‘ ∪ (({<

-- by distribution of ⊗ over unio

fi unpack(({<↓>} ⊗ (({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗

npack(({<↓>} ⊗“

⊗ “c‘))))

≡ unpack(({<↓>} ⊗“a‘) ∪ ({<↓>

⊗ “c‘)))) -- by distribution of ⊗ ov

fi unpack((({<↓>} ⊗ ({<↓>} ⊗ “a‘))

 ∪ ({<↓>} ⊗ “c‘))

≡ unpack(({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ ({<↓>} ⊗

({<↓>} ⊗ ({<↓>} ⊗

≡ unpack(({<↓>} ⊗

∪ ({<↓>} ⊗ ({<↓>} ⊗ “c‘)))) -- by distribution of ⊗ over unio

fi unpack((({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ “b‘)) ∪ ({<↓>} ⊗ “c‘))

≡ unpack(({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗

≡ unpack(({<↓>} ⊗“a‘) ∪ (({<↓>} ⊗ “b‘) ∪ ({<↓>} ⊗ “c‘)))

-- by cp1

215

Appendix B: Congruence for the Semantics of Tasks

B.3.2 Showing congruence for basic operators in the commutative
selection axiom

The commutative selection axiom (sel.2) is demonstrated in this section for the binary
operators of sequence, selection, and parallel composition; as well as for the repetition
structures (while- and until-loop) and the encapsulation.

B.3.2.1 Congruence in sel.2 with the sequence operator

If •∈∀ Activityba, “a + b‘ ≡ “b + a‘, then

•∈∀ Activitycba ,, “(a

 by ts1

 ‘ ∪ “a -- by ta2

 ∪ “b

tivity of union

.2.2 Congruenc n operator

If

 + b); c‘ ≡ “(b + a); c‘

fi “a + b‘ ⊗ “c‘ ≡ “b + a‘ ⊗ “c‘ --

fi ({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ “c‘ ≡ ({<↓>} ⊗ (“b ‘)) ⊗ “c‘

fi ({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ “c‘ ≡ ({<↓>} ⊗ (“a‘ ‘)) ⊗ “c‘

-- by commuta

B.3 e in sel.2 with the selectio

 •∈∀ Activityba, “a + b‘ ≡ “b + a‘, then

•∈ Activity “(a + b) + c‘ ≡ “(b + a) + c‘ ∀ cba ,,

 } ⊗ (“b + a‘ ∪ “c‘) -- by ta2

 fi {<↓

 “a‘)) ∪ “c‘) -- by ta2

 fi {<↓

 by commutativity of union

B.3.2.3 Congruenc position operator

If

fi {<↓>} ⊗ (“a + b‘ ∪ “c‘) ≡ {<↓>

>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (“b‘ ∪

>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ∪ “c‘)

--

e in sel.2 with the parallel com

∀ ba, •∈ Activity “a + b‘ ≡ “b + a‘, then

•∈ Activity “(a + b) || c‘ ≡ “(b + a) || c‘ ∀ cba ,,

 -- by tp1

 fi ({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘ = ({<↓>} ⊗ (“b‘ ∪ “a‘)) // “c‘ -- by ta2

fi “a + b‘ // “c‘ ≡ “b + a‘ // “c‘

216

Appendix B: Congruence for the Semantics of Tasks

 fi ({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘ ≡ ({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘

 by commutativity of union

B.3.2.4 Congrue

If

--

nce in sel.2 with the until-loop

•∈ Activity “a + b‘ ≡ “b + a‘, then ∀ ba,

ba,

by tr2

 t)))

⊗ by ta2

 ⊗ t)))

 ≡ µt.(∪ ({<↓>} ⊗ t)))

 of union

B.3.2. op

If

•y “µx.((a + b); ε + x)‘ ≡ “µx.((b + a); ε + x)‘ ∈∀ Activit

fi µt.(“a + b‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“b + a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) --

fi µt.(({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗

≡ µt.(({<↓>} ⊗ (“b‘ ∪ “a‘)) ⊗ ({<↓>} ∪ ({<↓>} t))) --

 fi µt.(({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ ({<↓>} ∪ ({<↓>}

({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ ({<↓>}

-- by commutativity

5 Congruence in sel.2 with the while-lo

 •∈∀ Actiba,

ba,)‘

 fi µt.({

 -- by tr4

 fi µt.({

‘)) ⊗ t))) -- by ta2

fi µt.({<↓>} ∪ b‘)) ⊗ t)))

≡ µt. (“a‘ ∪ “b‘)) ⊗ t)))

 by co muta ion

B.3.2.6 latio

If

vity “a + b‘ ≡ “b + a‘, then

•Activity “µx.(ε + (a + b); x)‘ ≡ “µx.(ε + (b + a); x∈∀

<↓>} ∪ ({<↓>} ⊗ (“a + b‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“b + a‘ ⊗ t)))

<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“b‘ ∪ “a

 ({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “

({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗

-- m tivity of un

 Congruence in sel.2 with the encapsu n

a + b‘ ≡ “b + a‘, then •∈∀ Activityba, “

217

Appendix B: Congruence for the Semantics of Tasks

•∈∀ Activityba, “{a + b}T‘ ≡ “{b + a}T‘

 fi unpack(“a + b‘) ≡ unpack(“b + a‘) -- by tu1

b‘))

-- by commutativity of union

B.3.3 Showing congruence for basic operators in the idempotent
selection

The ide the binary
operators of sequence, selection, and parallel composition; as well as for the repetition
structu

B.3.3.

Activityb, “(a

 fi “a + a‘ ⊗ -- by ts1

 fi “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘ -- by ta1

B.3.3.2 Congruence in sel.3 with the selection operator

If a + a‘ ≡ “a‘, then

(a + a) + b‘ ≡ “a + b‘

 fi {<↓>} ⊗ (“a + a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘) -- by ta2

 fi {<↓>} ⊗ (“a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘) -- by ta1

B.3.3.3 Congruence in sel.3 with the parallel composition operator

If a + a‘ ≡ “a‘, then

(a + a) || b‘ ≡ “a || b‘

 fi “a + a‘ // “b‘ ≡ “a‘ // “b‘ -- by tp1

 fi “a‘ // “b‘ ≡ “a‘ // “b‘ -- by ta1

 fi unpack({<↓>} ⊗ (“a‘ ∪ “b‘)) ≡ unpack({<↓>} ⊗ (“b‘ ∪ “a‘)) -- by ta2

 fi unpack({<↓>} ⊗ (“a‘ ∪ “b‘)) ≡ unpack({<↓>} ⊗ (“a‘ ∪ “

 axiom

mpotent selection action (sel.3) is demonstrated in this section for

res (while- and until-loop) and the encapsulation.

1 Congruence in sel.3 with the sequence operator

If •∈∀ Activitya “a + a‘ ≡ “a‘, then

•∈∀a + a); b‘ ≡ “a; b‘

 “b‘ ≡ “a‘ ⊗ “b‘

 •∈∀ Activitya “

•∈∀ Activityba, “

 •∈∀ Activitya “

•∈∀ Activityba, “

218

Appendix B: Congruence for the Semantics of Tasks

B.3.3.4 Congruence in sel.3 with the until-loop

If a + a‘ ≡ “a‘, then

µx.((a + a); ε + x)‘ ≡ “µx.(a; ε + x)‘

 fi µt.(“a + a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ta1

B.3.3.5 Congruence in sel.3 with the while-loop

If a + a‘ ≡ “a‘, then

µx.(ε + (a + a); x)‘ ≡ “µx.(ε + a; x)‘

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a + a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by tr4

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by ta1

B.3.3.6 Congruence in sel.3 with the encapsulation

If a + a‘ ≡ “a‘, then

{a + a}T‘ ≡ “{a}T‘

 fi unpack(“a + a‘) ≡ unpack(“a‘) -- by tu1

 fi unpack(“a‘) ≡ unpack(“a‘) -- by ta1

B.4 Showing congruence for parallel composition

Parallel composition has the axioms of associative parallel composition, commutative
composition, right distributivity of concurrency over selection, instant
synchronisation, fail in parallel composition, and succeed in parallel composition. In
this section, the congruence is demonstrated for each of these axioms.

 •∈∀ Activitya “

•∈∀ Activitya “

fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 •∈∀ Activitya “

•∈∀ Activitya “

 •∈∀ Activitya “

•∈∀ Activitya “

219

Appendix B: Congruence for the Semantics of Tasks

B.4.1 Showing congruence for basic operators in the associative
parallel composition axiom

The associative parallel composition axiom (p.1) is demonstrated in this section for
the binary operators of sequence, selection, and parallel composition; as well as for
the repetition structures (while- and until-loop) and the encapsulation.

B.4.1.1 Congruence in p.1 with the sequence operator

If (a || b) || c‘ ≡ “a || (b || c)‘, then

((a || b) || c); d‘ ≡ “(a || (b || c)); d‘

fi “(a || b) || c‘ ⊗ “d‘ ≡ “a || (b || c)‘ ⊗ “d‘ -- by ts1

fi (“a || b‘ // “c‘) ⊗ “d‘ ≡ (“a‘ // “b || c‘) ⊗ “d‘ -- by tp1

fi (“a‘ // “b‘ // “c‘) ⊗ “d‘ ≡ (“a‘ // “b‘ // “c‘) ⊗ “d‘ -- by tp1

B.4.1.2 Congruence in p.1 with the selection operator

If (a || b) || c‘ ≡ “a || (b || c)‘, then

((a || b) || c) + d‘ ≡ “(a || (b || c)) + d‘

fi {<↓>} ⊗ (“(a || b) || c‘ ∪ “d‘) ≡ {<↓>} ⊗ (“a || (b || c)‘ ∪ “d‘) -- by ta2

fi {<↓>} ⊗ ((“a || b‘ // “c‘) ∪ “d‘)

≡ {<↓>} ⊗ ((“a‘ // “b || c‘) ∪ “d‘) -- by tp1

fi {<↓>} ⊗ ((“a‘ // “b‘ // “c‘) ∪ “d‘)

≡ {<↓>} ⊗ ((“a‘ // “b‘ // “c‘) ∪ “d‘) -- by tp1

B.4.1.3 Congruence in p.1 with the parallel composition operator

If (a || b) || c‘ ≡ “a || (b || c)‘, then

((a || b) || c) || d‘ ≡ “(a || (b || c)) || d‘

fi “(a || b) || c‘ // “d‘ ≡ “a || (b || c)‘ // “d‘ -- by tp1

fi “a || b‘ // “c‘ // “d‘ ≡ “a‘ // “b || c‘ // “d‘ -- by tp1

fi “a‘ // “b‘ // “c‘ // “d‘ ≡ “a‘ // “b‘ // “c‘ // “d‘ -- by tp1

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “

220

Appendix B: Congruence for the Semantics of Tasks

B.4.1.4 Congruence in p.1 with the until-loop

If (a || b) || c‘ ≡ “a || (b || c)‘, then •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “µx.(((a || b) || c); ε + x)‘ ≡ “µx.((a || (b || c)); ε + x)‘

fi µt.(“(a || b) || c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“a || (b || c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

fi µt.((“a || b‘ // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.((“a‘ // “b || c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tp1

fi µt.((“a‘ // “b‘ // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.((“a‘ // “b‘ // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tp1

B.4.1.5 Congruence in p.1 with the while-loop

If (a || b) || c‘ ≡ “a || (b || c)‘, then •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “µx.(ε + ((a || b) || c); x)‘ ≡ “µx.(ε + (a || (b || c)); x)‘

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“(a || b) || c‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a || (b || c)‘ ⊗ t))) -- by tr4

fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a || b‘ // “c‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // “b || c‘) ⊗ t))) -- by tp1

fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // “b‘ // “c‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // “b‘ // “c‘) ⊗ t))) -- by tp1

B.4.1.6 Congruence in p.1 with the encapsulation

If (a || b) || c‘ ≡ “a || (b || c)‘, then •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “{(a || b) || c}T‘ ≡ “{a || (b || c)}T‘

fi unpack(“(a || b) || c‘) ≡ unpack(“a || (b || c)‘) -- by tu1

fi unpack(“a || b‘ // “c‘) ≡ unpack(“a‘ // “b || c‘) -- by tp1

fi unpack(“a‘ // “b‘ // “c‘) ≡ unpack(“a‘ // “b‘ // “c‘) -- by tp1

221

Appendix B: Congruence for the Semantics of Tasks

B.4.2 Showing congruence for basic operators in the commutative
parallel composition axiom

The commutative parallel composition axiom (p.2) is demonstrated in this section for
the binary operators of sequence, selection, and parallel composition; as well as for
the repetition structures (while- and until-loop) and the encapsulation.

B.4.2.1 Congruence in p.2 with the sequence operator

If a || b ‘ ≡ “b || a ‘, then •∈∀ Activityba, “

•∈∀ Activitycba ,, “(a || b); c‘ ≡ “(b || a); c‘

fi “a || b‘ ⊗ “c‘ ≡ “b || a‘ ⊗ “c‘ -- by ts1

fi (“a‘ // “b‘) ⊗ “c‘ ≡ (“b‘ // “a‘) ⊗ “c‘ -- by tp1

fi (“a‘ // “b‘) ⊗ “c‘ ≡ (“a‘ // “b‘) ⊗ “c‘ -- by commutativity of //

B.4.2.2 Congruence in p.2 with the selection operator

If a || b ‘ ≡ “b || a ‘, then •∈∀ Activityba, “

•∈∀ Activitycba ,, “(a || b) + c‘ ≡ “(b || a) + c‘

fi {<↓>} ⊗ (“a || b‘ ∪ “c‘) ≡ {<↓>} ⊗ (“b || a‘ ∪ “c‘) -- by ta2

fi {<↓>} ⊗ ((“a‘ // “b‘) ∪ “c‘) ≡ {<↓>} ⊗ ((“b‘ // “a‘) ∪ “c‘) -- by tp1

fi {<↓>} ⊗ ((“a‘ // “b‘) ∪ “c‘) ≡ {<↓>} ⊗ ((“a‘ // “b‘) ∪ “c‘)

-- by commutativity of //

B.4.2.3 Congruence in p.2 with the parallel composition operator

If a || b ‘ ≡ “b || a ‘, then •∈∀ Activityba, “

•∈∀ Activitycba ,, “(a || b) || c‘ ≡ “(b || a) || c‘

fi “a || b‘ // “c‘ ≡ “b || a‘ // “c‘ -- by tp1

fi (“a‘ // “b‘) // “c‘ ≡ (“b‘ // “a‘) // “c‘ -- by tp1

fi (“a‘ // “b‘) // “c‘ ≡ (“a‘ // “b‘) // “c‘ -- by commutativity of //

B.4.2.4 Congruence in p.2 with the until-loop

If •∈∀ Activityba, “a || b ‘ ≡ “b || a ‘, then

222

Appendix B: Congruence for the Semantics of Tasks

•∈∀ Activityba, “µx.((a || b); ε + x)‘ ≡ “µx.((b || a); ε + x)‘

fi µt.(“a || b‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“b || a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

fi µt.((“a‘ // “b‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.((“b‘ // “a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tp1

fi µt.((“a‘ // “b‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.((“a‘ // “b‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

-- by commutativity of //

B.4.2.5 Congruence in p.2 with the while-loop

If •∈∀ Activityba, “a || b ‘ ≡ “b || a ‘, then

µx.(ε + (a || b); x)‘ ≡ “µx.(ε + (b || a); x)‘

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a || b‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“b || a‘ ⊗ t))) -- by tr4

fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // “b‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((“b‘ // “a‘) ⊗ t))) -- by tp1

fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // “b‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // “b‘) ⊗ t))) -- by commutativity of //

B.4.2.6 Congruence in p.2 with the encapsulation

If

•∈∀ Activityba, “

 •∈∀ Activityba, “a || b ‘ ≡ “b || a ‘, then

{a || b}T‘ ≡ “{b || a}T‘

fi unpack(“a || b‘) ≡ unpack(“b || a‘) -- by tu1

fi unpack(“a‘ // “b‘) ≡ unpack(“b‘ // “a‘) -- by tp1

fi unpack(“a‘ // “b‘) ≡ unpack(“a‘ // “b‘) -- by commutativity of //

•∈∀ Activityba, “

223

Appendix B: Congruence for the Semantics of Tasks

B.4.3 Showing congruence for basic operators in the right
distributivity of concurrency over selection axiom

The right distributivity of concurrency over selection axiom (p.3) is demonstrated in
this section for the binary operators of sequence, selection, and parallel composition;
as well as for the repetition structures (while- and until-loop) and the encapsulation.

B.4.3.1 Congruence in p.3 with the sequence operator

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then

((a + b) || c); d‘ ≡ “((a || c) + (b || c)); d‘

fi “(a + b) || c‘ ⊗ “d‘ ≡ “(a || c) + (b || c)‘ ⊗ “d‘ -- by ts1

fi (“a + b‘ // “c‘) ⊗ “d‘ ≡ “(a || c) + (b || c)‘ ⊗ “d‘ -- by tp1

fi (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ “d‘

≡ ({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) ⊗ “d‘ -- by ta2

fi (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ “d‘

≡ ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) ⊗ “d‘ -- by tp1

fi {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ “d‘

≡ {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ “d‘ -- distribution of // over ∪

B.4.3.2 Congruence in p.3 with the selection operator

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then

((a + b) || c) + d‘ ≡ “((a || c) + (b || c)) + d‘

fi {<↓>} ⊗ (“(a + b) || c‘ ∪ “d‘)

≡ {<↓>} ⊗ (“(a || c) + (b || c)‘ ∪ “d‘) -- by ta2

fi {<↓>} ⊗ ((“a + b‘ // “c‘) ∪ “d‘)

≡ {<↓>} ⊗ (“(a || c) + (b || c)‘ ∪ “d‘) -- by tp1

fi {<↓>} ⊗ ((({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ∪ “d‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) ∪ “d‘) -- by ta2

fi {<↓>} ⊗ ((({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ∪ “d‘)

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “

224

Appendix B: Congruence for the Semantics of Tasks

≡ {<↓>} ⊗ (({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) ∪ “d‘) -- by tp1

fi {<↓>} ⊗ ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ∪ “d‘)

≡ {<↓>} ⊗ ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ∪ “d‘)

-- distribution of // over ∪

B.4.3.3 Congruence in p.3 with the parallel composition operator

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then

((a + b) || c) || d‘ ≡ “((a || c) + (b || c)) || d‘

fi “(a + b) || c‘ // “d‘ ≡ “(a || c) + (b || c)‘ // “d‘ -- by tp1

fi (“a + b‘ // “c‘) // “d‘ ≡ “(a || c) + (b || c)‘ // “d‘ -- by tp1

fi (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) // “d‘

≡ ({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) // “d‘ -- by ta2

fi (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) // “d‘

≡ ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) // “d‘ -- by tp1

fi {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) // “d‘

≡ {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) // “d‘ -- distribution of // over ∪

B.4.3.4 Congruence in p.3 with the until-loop

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then

 •∈∀ Activitycba ,, “

•∈∀ Activitydcba ,,, “

 •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “µx.(((a + b) || c); ε + x)‘ ≡ “µx.(((a || c) + (b || c)); ε + x)‘

fi µt.(“(a + b) || c‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“(a || c) + (b || c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

fi µt.((“a + b‘ // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“(a || c) + (b || c)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tp1

fi µt.((({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

225

Appendix B: Congruence for the Semantics of Tasks

-- by ta2

fi µt.((({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 -- by tp1

fi µt.({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 -- distribution of // over ∪

B.4.3.5 Congruence in p.3 with the while-loop

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then •∈∀ Activitycba ,, “

•∈∀ Activitycba ,, “µx.(ε + ((a + b) || c); x)‘ ≡ “µx.(ε + ((a || c) + (b || c)); x)‘

fi µt.({<↓>} ∪ ({<↓>} ⊗ “(a + b) || c‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ “(a || c) + (b || c)‘ ⊗ t))) -- by tr4

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a + b‘ // “c‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ “(a || c) + (b || c)‘ ⊗ t))) -- by tp1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) ⊗ t)))

 -- by ta2

fi µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) ⊗ t)))

 -- by tp1

fi µt.({<↓>} ∪ ({<↓>} ⊗{<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ {<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)) ⊗ t)))

 -- distribution of // over ∪

B.4.3.6 Congruence in p.3 with the encapsulation

If (a + b) || c ‘ ≡ “(a || c) + (b || c)‘, then •∈∀ Activitycba ,, “

226

Appendix B: Congruence for the Semantics of Tasks

•∈∀ Activitycba ,, “{(a + b) || c}T‘ ≡ “{(a || c) + (b || c)}T‘

fi unpack(“(a + b) || c‘) ≡ unpack(“(a || c) + (b || c)‘) -- by tu1

fi unpack(“a + b‘ // “c‘) ≡ unpack(“(a || c) + (b || c)‘) -- by tp1

fi unpack(({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘)

≡ unpack({<↓>} ⊗ (“a || c‘ ∪ “b || c‘)) -- by ta2

fi unpack({<↓>} ⊗ (“a‘ ∪ “b‘)) // “c‘)

≡ unpack({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘))) -- by tp1

fi unpack({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)))

≡ unpack({<↓>} ⊗ ((“a‘ // “c‘) ∪ (“b‘ // “c‘)))

-- distribution of // over ∪

B.4.4 Showing congruence for basic operators in the instant
synchronisation axiom

The instant synchronisation axiom (p.4) is demonstrated in this section for the binary
operators of sequence, selection, and parallel composition; as well as for the repetition
structures (while- and until-loop) and the encapsulation.

B.4.4.1 Congruence in p.4 with the sequence operator

If a || ε‘ ≡ “a‘, then

(a || ε); b‘ ≡ “a; b‘

 fi “a || ε‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘ -- by ts1

 fi (“a‘ // “ε‘) ⊗ “b‘ ≡ “a‘ ⊗ “b‘ -- by tp1

 fi (“a‘ // {<>}) ⊗ “b‘ ≡ “a‘ ⊗ “b‘ -- by tb1

 fi “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘ -- by di1

B.4.4.2 Congruence in p.4 with the selection operator

If a || ε‘ ≡ “a‘, then

(a || ε) + b‘ ≡ “a + b‘

 fi {<↓>} ⊗ (“a || ε‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘) -- by ta2

 •∈∀ Activitya “

•∈∀ Activityba, “

 •∈∀ Activitya “

•∈∀ Activityba, “

227

Appendix B: Congruence for the Semantics of Tasks

 fi {<↓>} ⊗ ((“a‘ // “ε‘) ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘) -- by tp1

 fi {<↓>} ⊗ ((“a‘ // {<>}) ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘) -- by tb1

 fi {<↓>} ⊗ (“a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘) -- by di1

B.4.4.3 Congruence in p.4 with the parallel composition operator

If a || ε‘ ≡ “a‘, then

(a || ε) || b‘ ≡ “a || b‘

 fi “a || ε‘ // “b‘ ≡ “a‘ // “b‘ -- by tp1

 fi (“a‘ // “ε‘) // “b‘ ≡ “a‘ // “b‘ -- by tp1

 fi (“a‘ // {<>}) // “b‘ ≡ “a‘ // “b‘ -- by tb1

 fi “a‘ // “b‘ ≡ “a‘ // “b‘ -- by di1

B.4.4.4 Congruence in p.4 with the until-loop

If a || ε‘ ≡ “a‘, then

µx.((a || ε); ε + x)‘ ≡ “µx.(a; ε + x)‘

 fi µt.(“a || ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

 fi µt.((“a‘ // “ε‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tp1

 fi µt.((“a‘ // {<>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb1

 fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by di1

B.4.4.5 Congruence in p.4 with the while-loop

If a || ε‘ ≡ “a‘, then

µx.(ε + (a || ε); x)‘ ≡ “µx.(ε + a; x)‘

 •∈∀ Activitya “

•∈∀ Activityba, “

 •∈∀ Activitya “

•∈∀ Activitya “

 •∈∀ Activitya “

•∈∀ Activitya “

228

Appendix B: Congruence for the Semantics of Tasks

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a || ε‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by tr4

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // “ε‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by tp1

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // {<>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by tb1

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) -- by di1

B.4.4.6 Congruence in p.4 with the encapsulation

If a || ε‘ ≡ “a‘, then

{a || ε}T‘ ≡ “{a}T‘

 fi unpack(“a || ε‘) ≡ unpack(“a‘) -- by tu1

 fi unpack(“a‘ // “ε‘) ≡ unpack(“a‘) -- by tp1

 fi unpack(“a‘ // {<>}) ≡ unpack(“a‘) -- by tb1

 fi unpack(“a‘) ≡ unpack(“a‘) -- by di1

B.4.5 Showing congruence for basic operators in the fail in parallel
composition axiom

The fail in parallel composition axiom (p.5) is demonstrated in this section for the
binary operators of sequence, selection, and parallel composition; as well as for the
repetition structures (while- and until-loop) and the encapsulation.

B.4.5.1 Congruence in p.5 with the sequence operator

If a || φ‘ ≡ “φ‘, then

(a || φ); b‘ ≡ “φ; b‘

 fi “a || φ‘ ⊗ “b‘ ≡ “φ‘ ⊗ “b‘ -- by ts1

 fi (“a‘ // “φ‘) ⊗ “b‘ ≡ “φ‘ ⊗ “b‘ -- by tp1

 fi (“a‘ // {<φ>}) ⊗ “b‘ ≡ {<φ>} ⊗ “b‘ -- by tb2

 •∈∀ Activitya “

•∈∀ Activitya “

 •∈∀ Activitya “

•∈∀ Activityba, “

229

Appendix B: Congruence for the Semantics of Tasks

fi ({t1, t2, …, tn} // {<φ>}) ⊗ “b‘ ≡ {<φ>} ⊗ “b‘ Let “a‘ = {t1, t2, …, tn}

fi {<φ>} ⊗ “b‘ ≡ {<φ>} ⊗ “b‘

B.4.5.2 Congruence in p.5 with the selection operator

If a || φ‘ ≡ “φ‘, then

(a || φ) + b‘ ≡ “φ + b‘

fi {<↓>} ⊗ (“a || φ‘ ∪ “b‘) ≡ {<↓>} ⊗ (“φ‘ ∪ “b‘) -- by ta2

fi {<↓>} ⊗ ((“a‘ // “φ‘) ∪ “b‘) ≡ {<↓>} ⊗ (“φ‘ ∪ “b‘) -- by tp1

fi {<↓>} ⊗ ((“a‘ // {<φ>}) ∪ “b‘) ≡ {<↓>} ⊗ ({<φ>} ∪ “b‘) -- by tb2

fi {<↓>} ⊗ (({t1, t2, …, tn} // {<φ>}) ∪ “b‘)

 ≡ {<↓>} ⊗ ({<φ>} ∪ “b‘) Let “a‘ = {t1, t2, …, tn}

fi {<↓>} ⊗ ({<φ>} ∪ “b‘) ≡ {<↓>} ⊗ ({<φ>} ∪ “b‘)

B.4.5.3 Congruence in p.5 with the parallel composition operator

If a || φ‘ ≡ “φ‘, then

(a || φ) || b‘ ≡ “φ || b‘

 fi “a || φ‘ // “b‘ ≡ “φ‘ // “b‘ -- by tp1

 fi (“a‘ // “φ‘) // “b‘ ≡ “φ‘ // “b‘ -- by tp1

 fi (“a‘ // {<φ>}) // “b‘ ≡ {<φ>} // “b‘ -- by tb2

fi ({t1, t2, …, tn} // {<φ>}) // “b‘ ≡ {<φ>} // “b‘ Let “a‘ = {t1, t2, …, tn}

fi {<φ>} // “b‘ ≡ {<φ>} // “b‘

B.4.5.4 Congruence in p.5 with the until-loop

If a || φ‘ ≡ “φ‘, then

µx.((a || φ); ε + x)‘ ≡ “µx.(φ; ε + x)‘

 fi µt.(“a || φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

U
n

i it1
}~{

=
>< φ

 •∈∀ Activitya “

•∈∀ Activityba, “

U
n

i it1
}~{

=
>< φ

 •∈∀ Activitya “

•∈∀ Activityba, “

U
n

i it1
}~{

=
>< φ

 •∈∀ Activitya “

•∈∀ Activitya “

230

Appendix B: Congruence for the Semantics of Tasks

≡ µt.(“φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

 fi µt.((“a‘ // “φ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“φ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tp1

 fi µt.((“a‘ // {<φ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb2

fi µt.(({t1, t2, …, tn} // {<φ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) Let “a‘ = {t1, t2, …, tn}

fi µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<φ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

B.4.5.5 Congruence in p.5 with the while-loop

If a || φ‘ ≡ “φ‘, then

µx.(ε + (a || φ); x)‘ ≡ “µx.(ε + φ; x)‘

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a || φ‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ t))) -- by tr4

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // “φ‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“φ‘ ⊗ t))) -- by tp1

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // {<φ>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>}⊗ t))) -- by tb2

fi µt.({<↓>} ∪ ({<↓>} ⊗ (({t1, t2, …, tn} // {<φ>}) ⊗ t)))

 = {t1, t2, …, tn}

fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>} ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>}⊗ t)))

B.4.5.6 Congruence in p.5 with the encapsulation

If a || φ‘ ≡ “φ‘, then

U
n

i it1
}~{

=
>< φ

 •∈∀ Activitya “

•∈∀ Activitya “

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<φ>}⊗ t))) Let “a‘

U
n

i it1
}~{

=
>< φ

 •∈∀ Activitya “

231

Appendix B: Congruence for the Semantics of Tasks

•∈∀ Activitya “{a || φ}T‘ ≡ “{φ}T‘

 fi unpack(“a || φ‘) ≡ unpack(“φ‘) -- by tu1

 fi unpack(“a‘ // “φ‘) ≡ unpack(“φ‘) -- by tp1

 fi unpack(“a‘ // {<φ>}) ≡ unpack({<φ>}) -- by tb2

fi unpack({t1, t2, …, tn} // {<φ>})

≡ unpack({<φ>}) Let “a‘ = {t1, t2, …, tn}

fi unpack({<φ>}) ≡ unpack({<φ>})

B.4.6 Showing congruence for basic operators in the succeed in
parallel composition axiom

The succeed in parallel composition axiom (p.6) is demonstrated in this section for the
binary operators of sequence, selection, and parallel composition; as well as for the
repetition structures (while- and until-loop) and the encapsulation.

B.4.6.1 Congruence in p.6 with the sequence operator

If a || σ‘ ≡ “σ‘, then

(a || σ); b‘ ≡ “σ; b‘

 fi “a || σ‘ ⊗ “b‘ ≡ “σ‘ ⊗ “b‘ -- by ts1

 fi (“a‘ // “σ‘) ⊗ “b‘ ≡ “σ‘ ⊗ “b‘ -- by tp1

fi (“a‘ // {<σ>}) ⊗ “b‘ ≡ {<σ>} ⊗ “b‘ -- by tb2

fi ({t1, t2, …, tn} // {<σ>}) ⊗ “b‘ ≡ {<σ>} ⊗ “b‘ Let “a‘ = {t1, t2, …, tn}

fi {<σ>} ⊗ “b‘ ≡ {<σ>} ⊗ “b‘

B.4.6.2 Congruence in p.6 with the selection operator

If a || σ‘ ≡ “σ‘, then

(a || σ) + b‘ ≡ “σ + b‘

fi {<↓>} ⊗ (“a || σ‘ ∪ “b‘) ≡ {<↓>} ⊗ (“σ‘ ∪ “b‘) -- by ta2

fi {<↓>} ⊗ ((“a‘ // “σ‘) ∪ “b‘) ≡ {<↓>} ⊗ (“σ‘ ∪ “b‘) -- by tp1

U
n

i it1
}~{

=
>< φ

 •∈∀ Activitya “

•∈∀ Activityba, “

U
n

i it1
}~{

=
>< φ

 •∈∀ Activitya “

•∈∀ Activityba, “

232

Appendix B: Congruence for the Semantics of Tasks

fi {<↓>} ⊗ ((“a‘ // {<σ>}) ∪ “b‘) ≡ {<↓>} ⊗ ({<σ>} ∪ “b‘) -- by tb2

fi {<↓>} ⊗ (({t1, t2, …, tn} // {<σ>}) ∪ “b‘)

 ≡ {<↓>} ⊗ ({<σ>} ∪ “b‘) Let “a‘ = {t1, t2, …, tn}

fi {<↓>} ⊗ ({<σ>} ∪ “b‘) ≡ {<↓>} ⊗ ({<σ>} ∪ “b‘)

B.4.6.3 Congruence in p.6 with the parallel composition operator

If a || σ‘ ≡ “σ‘, then

(a || σ) || b‘ ≡ “σ || b‘

 fi “a || σ‘ // “b‘ ≡ “σ‘ // “b‘ -- by tp1

 fi (“a‘ // “σ‘) // “b‘ ≡ “σ‘ // “b‘ -- by tp1

fi (“a‘ // {<σ>}) // “b‘ ≡ {<σ>} // “b‘ -- by tb2

fi ({t1, t2, …, tn} // {<σ>}) // “b‘ ≡ {<σ>} // “b‘ Let “a‘ = {t1, t2, …, tn}

fi {<σ>} // “b‘ ≡ {<σ>} // “b‘

B.4.6.4 Congruence in p.6 with the until-loop

If a || σ‘ ≡ “σ‘, then

µx.((a || σ); ε + x)‘ ≡ “µx.(σ; ε + x)‘

 fi µt.(“a || σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

 fi µt.((“a‘ // “σ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“σ‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tp1

 fi µt.((“a‘ // {<σ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb2

fi µt.(({t1, t2, …, tn} // {<σ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) Let “a‘ = {t1, t2, …, tn}

fi µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

U
n

i it1
}~{

=
>< σ

 •∈∀ Activitya “

•∈∀ Activityba, “

U
n

i it1
}~{

=
>< σ

 •∈∀ Activitya “

•∈∀ Activitya “

233

Appendix B: Congruence for the Semantics of Tasks

≡ µt.({<σ>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

B.4.6.5 Congruence in p.6 with the while-loop

If a || σ‘ ≡ “σ‘, then

µx.(ε + (a || σ); x)‘ ≡ “µx.(ε + σ; x)‘

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a || σ‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t))) -- by tr4

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // “σ‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“σ‘ ⊗ t))) -- by tp1

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ // {<σ>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>}⊗ t))) -- by tb2

fi µt.({<↓>} ∪ ({<↓>} ⊗ (({t1, t2, …, tn} // {<σ>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>}⊗ t))) Let “a‘ = {t1, t2, …, tn}

fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>} ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<σ>}⊗ t)))

B.4.6.6 Congruence in p.6 with the encapsulation

If a || σ‘ ≡ “σ‘, then

{a || σ}T‘ ≡ “{σ}T‘

 fi unpack(“a || σ‘) ≡ unpack(“σ‘) -- by tu1

 fi unpack(“a‘ // “σ‘) ≡ unpack(“σ‘) -- by tp1

 fi unpack(“a‘ // {<σ>}) ≡ unpack({<σ>}) -- by tb2

fi unpack({t1, t2, …, tn} // {<σ>})

≡ unpack({<σ>}) Let “a‘ = {t1, t2, …, tn}

fi unpack({<σ>}) ≡ unpack({<σ>})

U
n

i it1
}~{

=
>< σ

 •∈∀ Activitya “

•∈∀ Activitya “

U
n

i it1
}~{

=
>< σ

 •∈∀ Activitya “

•∈∀ Activitya “

U
n

i it1
}~{

=
>< φ

234

Appendix B: Congruence for the Semantics of Tasks

B.5 Showing congruence for repetition

In this section, congruence for repetition is illustrated for each its axioms. Repetition
is formed by only two axioms: unrolling one cycle of until-loop repetition and
unrolling one cycle of while-loop repetition.

B.5.1 Showing congruence for basic operators in the unrolling one
cycle of until-loop repetition axiom

The unrolling one cycle of until-loop axiom (r.1) is demonstrated in this section for
the binary operators of sequence, selection, and parallel composition; as well as for
the repetition structures (while- and until-loop) and the encapsulation.

B.5.1.1 Congruence in r.1 with the sequence operator

If µx.(a; ε + x)‘ ≡ “(a; ε + µx.(a; ε + x))‘, then

µx.(a; ε + x); b‘ ≡ “(a; ε + µx.(a; ε + x)); b‘

 fi “µx.(a; ε + x)‘ ⊗ “b‘ ≡ “a; ε + µx.(a; ε + x)‘ ⊗ “b‘ -- by ts1

 fi “µx.(a; ε + x)‘ ⊗ “b‘ ≡ (“a‘ ⊗ “ε + µx.(a; ε + x)‘) ⊗ “b‘ -- by ts1

 fi “µx.(a; ε + x)‘ ⊗ “b‘

≡ (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘))) ⊗ “b‘ -- by ta2

 fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ⊗ “b‘

≡ (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))) ⊗ “b‘

 -- by tr2

 fi (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))) ⊗ “b‘

≡ (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))) ⊗ “b‘

 -- by tr5

B.5.1.2 Congruence in r.1 with the selection operator

If µx.(a; ε + x)‘ ≡ “(a; ε + µx.(a; ε + x))‘, then

µx.(a; ε + x) + b‘ ≡ “(a; ε + µx.(a; ε + x)) + b‘

fi {<↓>} ⊗ (“µx.(a; ε + x)‘ ∪ “b‘)

≡ {<↓>} ⊗ (“a; ε + µx.(a; ε + x)‘ ∪ “b‘) -- by ta2

 •∈∀ Activitya “

•∈∀ Activityba, “

 •∈∀ Activitya “

•∈∀ Activityba, “

235

Appendix B: Congruence for the Semantics of Tasks

 fi {<↓>} ⊗ (“µx.(a; ε + x)‘ ∪ “b‘)

≡ {<↓>} ⊗ ((“a‘ ⊗ “ε + µx.(a; ε + x)‘) ∪ “b‘) -- by ts1

 fi {<↓>} ⊗ (“µx.(a; ε + x)‘ ∪ “b‘)

≡ {<↓>} ⊗ ((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘)))

∪ “b‘) -- by ta2

 fi {<↓>} ⊗ (µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ∪ “b‘)

≡ {<↓>} ⊗ ((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪

({<↓>} ⊗ t)))))) ∪ “b‘) -- by tr2

 fi {<↓>} ⊗ ((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))))

∪ “b‘)

≡ {<↓>} ⊗ ((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>}

∪ ({<↓>} ⊗ t)))))) ∪ “b‘) -- by tr5

B.5.1.3 Congruence in r.1 with the parallel composition operator

If µx.(a; ε + x)‘ ≡ “(a; ε + µx.(a; ε + x))‘, then

µx.(a; ε + x) || b‘ ≡ “(a; ε + µx.(a; ε + x)) || b‘

 fi “µx.(a; ε + x)‘ // “b‘ ≡ “a; ε + µx.(a; ε + x)‘ // “b‘ -- by tp1

 fi “µx.(a; ε + x)‘ // “b‘ ≡ (“a‘ ⊗ “ε + µx.(a; ε + x)‘) // “b‘ -- by ts1

 fi “µx.(a; ε + x)‘ // “b‘

≡ (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘))) // “b‘ -- by ta2

 fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) // “b‘

≡ (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))) // “b‘

 -- by tr2

 fi (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))) // “b‘

≡ (“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))))) // “b‘

 •∈∀ Activitya “

•∈∀ Activityba, “

236

Appendix B: Congruence for the Semantics of Tasks

 -- by tr5

B.5.1.4 Congruence in r.1 with the until-loop

If µx.(a; ε + x)‘ ≡ “a; ε + µx.(a; ε + x)‘, then

µx.(µx.(a; ε + x); ε + x)‘ ≡ “µx.((a; ε + µx.(a; ε + x)); ε + x)‘

 fi µt.(“µx.(a; ε + x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“a; ε + µx.(a; ε + x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

 fi µt.(“µx.(a; ε + x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.((“a‘ ⊗ “ε + µx.(a; ε + x)‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ts1

 fi µt.(“µx.(a; ε + x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘)))

⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ta2

 fi µt.(µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

 fi µt.((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr5

B.5.1.5 Congruence in r.1 with the while-loop

If µx.(a; ε + x)‘ ≡ “a; ε + µx.(a; ε + x)‘, then

µx.(ε + µx.(a; ε + x); x)‘ ≡ “µx.(ε + (a; ε + µx.(a; ε + x)); x)‘

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(a; ε + x)‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a; ε + µx.(a; ε + x)‘ ⊗ t))) -- by tr4

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(a; ε + x)‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ ⊗ “ε + µx.(a; ε + x)‘) ⊗ t))) -- by ts1

 •∈∀ Activitya “

•∈∀ Activitya “

 •∈∀ Activitya “

•∈∀ Activitya “

237

Appendix B: Congruence for the Semantics of Tasks

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(a; ε + x)‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘)))

 ⊗ t))) -- by ta2

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>}

 ∪ ({<↓>} ⊗ t)))))) ⊗ t))) -- by tr2

 fi µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>}

∪ ({<↓>} ⊗ t)))))) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>}

 ∪ ({<↓>} ⊗ t)))))) ⊗ t))) -- by tr5

B.5.1.6 Congruence in r.1 with the encapsulation

If µx.(a; ε + x)‘ ≡ “(a; ε + µx.(a; ε + x))‘, then

{µx.(a; ε + x)}T‘ ≡ “{a; ε + µx.(a; ε + x)}T‘

 fi unpack(“µx.(a; ε + x)‘) ≡ unpack(“a; ε + µx.(a; ε + x)‘) -- by tu1

 fi unpack(“µx.(a; ε + x)‘) ≡ unpack(“a‘ ⊗ “ε + µx.(a; ε + x)‘) -- by ts1

 fi unpack(“µx.(a; ε + x)‘)

≡ unpack(“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ “µx.(a; ε + x)‘))) -- by ta2

 fi unpack(µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))

≡ unpack(“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>}

∪ ({<↓>} ⊗ t)))))) -- by tr2

 fi unpack(“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))))))

≡ unpack(“a‘ ⊗ ({<↓>} ⊗ (“ε‘ ∪ µt.(“a‘ ⊗ ({<↓>}

∪ ({<↓>} ⊗ t)))))) -- by tr5

 •∈∀ Activitya “

•∈∀ Activitya “

238

Appendix B: Congruence for the Semantics of Tasks

B.5.2 Showing congruence for basic operators in the unrolling one
cycle of while-loop repetition axiom

The unrolling one cycle of while-loop repetition axiom (r.2) is demonstrated in this
section for the binary operators of sequence, selection, and parallel composition; as
well as for the repetition structures (while- and until-loop) and the encapsulation.

B.5.2.1 Congruence in r.2 with the sequence operator

If µx.(ε + a ; x)‘ ≡ “(ε + a; µx.(ε + a ; x))‘, then

µx.(ε + a ; x); b‘ ≡ “(ε + a; µx.(ε + a ; x)); b‘

 fi “µx.(ε + a ; x)‘ ⊗ “b‘ ≡ “ε + a; µx.(ε + a ; x)‘ ⊗ “b‘ -- by ts1

 fi “µx.(ε + a ; x)‘ ⊗ “b‘

≡ ({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) ⊗ “b‘ -- by ta2

 fi “µx.(ε + a ; x)‘ ⊗ “b‘

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘))) ⊗ “b‘ -- by ts1

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) ⊗ “b‘

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))))

⊗ “b‘ -- by tr4

 fi ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))) ⊗ “b‘

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))) ⊗ “b‘

 -- by tr6

B.5.2.2 Congruence in r.2 with the selection operator

If µx.(ε + a ; x)‘ ≡ “(ε + a; µx.(ε + a ; x))‘, then

µx.(ε + a ; x) + b‘ ≡ “(ε + a; µx.(ε + a ; x)) + b‘

 fi {<↓>} ⊗ (“µx.(ε + a ; x)‘ ∪ “b‘)

≡ {<↓>} ⊗ (“ε + a; µx.(ε + a ; x)‘ ∪ “b‘) -- by ta2

 fi {<↓>} ⊗ (“µx.(ε + a ; x)‘ ∪ “b‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) ∪ “b‘) -- by ta2

 •∈∀ Activitya “

•∈∀ Activityba, “

 •∈∀ Activitya “

•∈∀ Activityba, “

239

Appendix B: Congruence for the Semantics of Tasks

 fi {<↓>} ⊗ (“µx.(ε + a ; x)‘ ∪ “b‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘))) ∪ “b‘)

-- by ts1

 fi {<↓>} ⊗ (µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) ∪ “b‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗

µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))) ∪ “b‘) -- by tr4

 fi {<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗

µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))) ∪ “b‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗

µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))) ∪ “b‘) -- by tr6

B.5.2.3 Congruence in r.2 with the parallel composition operator

If µx.(ε + a ; x)‘ ≡ “(ε + a; µx.(ε + a ; x))‘, then

µx.(ε + a ; x) || b‘ ≡ “(ε + a; µx.(ε + a ; x)) || b‘

 fi “µx.(ε + a ; x)‘ // “b‘ ≡ “ε + a; µx.(ε + a ; x)‘ // “b‘ -- by tp1

 fi “µx.(ε + a ; x)‘ // “b‘

≡ ({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) // “b‘ -- by ta2

 fi “µx.(ε + a ; x)‘ // “b‘

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘))) // “b‘ -- by ts1

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) // “b‘

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))))

// “b‘ -- by tr4

 fi ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))) // “b‘

≡ ({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))) // “b‘

 -- by tr6

 •∈∀ Activitya “

•∈∀ Activityba, “

240

Appendix B: Congruence for the Semantics of Tasks

B.5.2.4 Congruence in r.2 with the until-loop

If µx.(ε + a ; x)‘ ≡ “ε + a; µx.(ε + a ; x)‘, then

µx.(µx.(ε + a ; x); ε + x)‘ ≡ “µx.((ε + a; µx.(ε + a ; x)); ε + x)‘

 fi µt.(“µx.(ε + a ; x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“ε + a; µx.(ε + a ; x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

 fi µt.(“µx.(ε + a ; x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 -- by ta2

 fi µt.(“µx.(ε + a ; x)‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘)))

⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ts1

 fi µt.(µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))))

⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr4

 fi µt.(({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))))

⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr6

B.5.2.5 Congruence in r.2 with the while-loop

If µx.(ε + a ; x)‘ ≡ “ε + a; µx.(ε + a ; x)‘, then

µx.(ε + µx.(ε + a ; x); x)‘ ≡ “µx.(ε + (ε + a; µx.(ε + a ; x)); x)‘

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(ε + a ; x)‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“ε + a; µx.(ε + a ; x)‘ ⊗ t))) -- by tr4

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(ε + a ; x)‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) ⊗ t)))

 •∈∀ Activitya “

•∈∀ Activitya “

 •∈∀ Activitya “

•∈∀ Activitya “

241

Appendix B: Congruence for the Semantics of Tasks

 -- by ta2

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (“µx.(ε + a ; x)‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘)))

⊗ t))) -- by ts1

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>}

 ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))) ⊗ t))) -- by tr4

 fi µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>}

∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>}

∪ ({<↓>} ⊗ (“a‘ ⊗ t)))))) ⊗ t))) -- by tr6

B.5.2.6 Congruence in r.2 with the encapsulation

If µx.(ε + a ; x)‘ ≡ “ε + a; µx.(ε + a ; x)‘, then

{µx.(ε + a ; x)}T‘ ≡ “{ε + a; µx.(ε + a ; x)}T‘

 fi unpack(“µx.(ε + a ; x)‘)≡ unpack(“ε + a; µx.(ε + a ; x)‘) -- by tu1

 fi unpack(“µx.(ε + a ; x)‘)

≡ unpack({<↓>} ⊗ (“ε‘ ∪ “a; µx.(ε + a ; x)‘)) -- by ta2

 fi unpack(“µx.(ε + a ; x)‘)

≡ unpack({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ “µx.(ε + a ; x)‘))) -- by ts1

 fi unpack(µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))

≡ unpack({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))))

 -- by tr4

 fi unpack({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))))

≡ unpack({<↓>} ⊗ (“ε‘ ∪ (“a‘ ⊗ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))))))

 -- by tr6

 •∈∀ Activitya “

•∈∀ Activitya “

242

Appendix B: Congruence for the Semantics of Tasks

B.6 Showing congruence for encapsulation

This section shows the last group of axioms for the task algebra. Encapsulation is
formed by the axioms of vacuous subtask, coincident exit, and vacuous selection.
Every axiom is represented in combination with one of the basic operators defined for
the task algebra.

B.6.1 Showing congruence for basic operators in the vacuous
subtask axiom

The vacuous subtask axiom (e.1) is demonstrated in this section for the binary
operators of sequence, selection, and parallel composition; as well as for the repetition
structures (while- and until-loop) and the encapsulation.

B.6.1.1 Congruence in e.1 with the sequence operator

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then

{σ}T; a‘ ≡ “ε; a‘ ≡ “{ε}T; a‘

fi “{σ}T‘ ⊗ “a‘ ≡ “ε‘ ⊗ “a‘ ≡ “{ε}T‘ ⊗ “a‘ -- by ts1

fi unpack(“σ‘) ⊗ “a‘ ≡ “ε‘ ⊗ “a‘ ≡ unpack (“ε‘) ⊗ “a‘ -- by tu1

fi unpack(“σ‘) ⊗ “a‘ ≡ {<>} ⊗ “a‘ ≡ unpack ({<>}) ⊗ “a‘ -- by tb1

fi unpack({<σ>}) ⊗ “a‘ ≡ {<>} ⊗ “a‘ ≡ unpack ({<>}) ⊗ “a‘ -- by tb2

fi {<>} ⊗ “a‘ ≡ {<>} ⊗ “a‘ ≡ {<>} ⊗ “a‘ -- by up1

B.6.1.2 Congruence in e.1 with the selection operator

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then

{σ}T + a‘ ≡ “ε + a‘ ≡ “{ε}T + a‘

fi {<↓>} ⊗ (“{σ}T‘ ∪ “a‘) ≡ {<↓>} ⊗ (“ε‘ ∪ “a‘)

≡ {<↓>} ⊗ (“{ε}T‘ ∪ “a‘) -- by ta2

fi {<↓>} ⊗ (unpack(“σ‘) ∪ “a‘) ≡ {<↓>} ⊗ (“ε‘ ∪ “a‘)

≡ {<↓>} ⊗ (unpack(“ε‘) ∪ “a‘) -- by tu1

fi {<↓>} ⊗ (unpack(“σ‘) ∪ “a‘) ≡ {<↓>} ⊗ ({<>} ∪ “a‘)

≡ {<↓>} ⊗ (unpack({<>}) ∪ “a‘) -- by tb1

fi {<↓>} ⊗ (unpack({<σ>}) ∪ “a‘) ≡ {<↓>} ⊗ ({<>} ∪ “a‘)

•∈∀ Activitya “

•∈∀ Activitya “

243

Appendix B: Congruence for the Semantics of Tasks

≡ {<↓>} ⊗ (unpack({<>}) ∪ “a‘) -- by tb2

fi {<↓>} ⊗ ({<>} ∪ “a‘) ≡ {<↓>} ⊗ ({<>} ∪ “a‘)

≡ {<↓>} ⊗ ({<>}) ∪ “a‘) -- by up1

B.6.1.3 Congruence in e.1 with the parallel composition operator

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then

{σ}T || a‘ ≡ “ε || a‘ ≡ “{ε}T || a‘

fi “{σ}T‘ // “a‘ ≡ “ε‘ // “a‘ ≡ “{ε}T‘ // “a‘ -- by tp1

fi unpack(“σ‘) // “a‘ ≡ “ε‘ // “a‘ = unpack (“ε‘) // “a‘ -- by tu1

fi unpack(“σ‘) // “a‘ ≡ {<>} // “a‘ ≡ unpack ({<>}) // “a‘ -- by tb1

fi unpack({<σ>}) // “a‘ ≡ {<>} // “a‘ ≡ unpack ({<>}) // “a‘ -- by tb2

fi {<>} // “a‘ ≡ {<>} // “a‘ ≡ {<>} // “a‘ -- by up1

B.6.1.4 Congruence in e.1 with the until-loop

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then

“µx.({σ}T; ε + x)‘ ≡ “µx.(ε; ε + x)‘ ≡ “µx.({ε}T; ε + x)‘

fi µt.(“{σ}T‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“{ε}T‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr4

fi µt.(unpack(“σ‘)⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(unpack (“ε‘)⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tu1

fi µt.(unpack(“σ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(unpack ({<>})⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb1

fi µt.(unpack({<σ>})⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

•∈∀ Activitya “

244

Appendix B: Congruence for the Semantics of Tasks

≡ µt.({<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(unpack ({<>})⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb2

fi µt.({<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.({<>} ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by up1

B.6.1.5 Congruence in e.1 with the while-loop

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then

“µx.(ε + {σ}T; x)‘ ≡ “µx.(ε + ε; x)‘ ≡ “µx.(ε + {ε}T; x)‘

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“{σ}T‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“ε‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“{ε}T‘ ⊗ t))) -- by tr2

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“σ‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“ε‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack (“ε‘)⊗ t))) -- by tu1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“σ‘)⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack ({<>}) ⊗ t))) -- by tb1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({<σ>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack ({<>}) ⊗ t))) -- by tb2

fi µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ({<>} ⊗ t))) -- by up1

B.6.1.6 Congruence in e.1 with the encapsulation

If “{σ}T‘ ≡ “ε‘ ≡ “{ε}T‘, then

245

Appendix B: Congruence for the Semantics of Tasks

“{{σ}T}T‘ ≡ “{ε}T‘ ≡ “{{ε}T}T‘

fi unpack(“{σ}T‘) ≡ unpack(“ε‘) ≡ unpack(“{ε}T‘) -- by tu1

fi unpack(unpack(“σ‘)) ≡ unpack(“ε‘) ≡ unpack(unpack(“ε‘)) -- by tu1

fi unpack(unpack(“σ‘)) ≡ unpack({<>}) ≡ unpack(unpack({<>}) -- by tb1

fi unpack(unpack({<σ>})) ≡ unpack({<>})

≡ unpack(unpack({<>}) -- by tb2

fi unpack({<>}) ≡ unpack({<>}) ≡ unpack({<>}) -- by up1

B.6.2 Showing congruence for basic operators in the coincident
exit axiom

The coincident exit axiom (e.2) is demonstrated in this section for the binary operators
of sequence, selection, and parallel composition; as well as for the repetition
structures (while- and until-loop) and the encapsulation.

B.6.2.1 Congruence in e.2 with the sequence operator

If {a; σ}T‘ ≡ “{a}T‘, then

{a; σ}T; b‘ ≡ “{a}T; b‘

fi “{a; σ}T‘ ⊗ “b‘ ≡ “{a}T‘ ⊗ “b‘ -- by ts1

fi unpack(“a; σ‘) ⊗ “b‘ ≡ unpack(“a‘) ⊗ “b‘ -- by tu1

fi unpack(“a‘ ⊗ “σ‘) ⊗ “b‘ ≡ unpack(“a‘) ⊗ “b‘ -- by ts1

fi unpack(“a‘ ⊗ {<σ>}) ⊗ “b‘

≡ unpack(“a‘) ⊗ “b‘ -- by tb2

fi unpack({t1, t2, …, tn} ⊗ {<σ>}) ⊗ “b‘

≡ unpack(“a‘) ⊗ “b‘ Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi “a‘ ⊗ “b‘ ≡ unpack(“a‘) ⊗ “b‘ lift (ti # <σ>) }

fi “a‘ ⊗ “b‘ ≡ unpack({t1, t2, …, tn}) ⊗ “b‘

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘})

 •∈∀ Activitya “

•∈∀ Activityba, “

U
n

i 1=
{

246

Appendix B: Congruence for the Semantics of Tasks

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi “a‘ ⊗ “b‘ ≡ “a‘ ⊗ “b‘ lift ti}

B.6.2.2 Congruence in e.2 with the selection operator

If {a; σ}T‘ ≡ “{a}T‘, then

{a; σ}T + b‘ ≡ “{a}T + b‘

fi {<↓>} ⊗ (“{a; σ}T‘ ∪ “b‘) ≡ {<↓>} ⊗ (“{a}T‘ ∪ “b‘) -- by ta2

fi {<↓>} ⊗ (unpack(“a; σ‘) ∪ “b‘)

≡ {<↓>} ⊗ (unpack(“a‘) ∪ “b‘) -- by tu1

fi {<↓>} ⊗ (unpack(“a‘ ⊗ “σ‘) ∪ “b‘)

≡ {<↓>} ⊗ (unpack(“a‘) ∪ “b‘) -- by ts1

fi {<↓>} ⊗ (unpack(“a‘ ⊗ {<σ>}) ∪ “b‘)

≡ {<↓>} ⊗ (unpack(“a‘) ∪ “b‘) -- by tb2

fi {<↓>} ⊗ (unpack({t1, t2, …, tn} ⊗ {<σ>}) ∪ “b‘)

≡ {<↓>} ⊗ (unpack(“a‘) ∪ “b‘) Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi {<↓>} ⊗ (“a‘ ∪ “b‘)

≡ {<↓>} ⊗ (unpack(“a‘) ∪ “b‘) lift (ti # <σ>) }

fi {<↓>} ⊗ (“a‘ ∪ “b‘) ≡ {<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ “b‘)

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘})

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi {<↓>} ⊗ (“a‘ ∪ “b‘) ≡ {<↓>} ⊗ (“a‘ ∪ “b‘) lift ti}

B.6.2.3 Congruence in e.2 with the parallel composition operator

If {a; σ}T‘ ≡ “{a}T‘, then

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activityba, “

U
n

i 1=
{

U
n

i 1=
{

 •∈∀ Activitya “

247

Appendix B: Congruence for the Semantics of Tasks

•∈∀ Activityba, “{a; σ}T || b‘ ≡ “{a}T || b‘

fi “{a; σ}T‘ // “b‘ ≡ “{a}T‘ // “b‘ -- by tp1

fi unpack(“a; σ‘) // “b‘ ≡ unpack(“a‘) // “b‘ -- by tu1

fi unpack(“a‘ ⊗ “σ‘) // “b‘ ≡ unpack(“a‘) // “b‘ -- by ts1

fi unpack(“a‘ ⊗ {<σ>}) // “b‘

≡ unpack(“a‘) // “b‘ -- by tb2

fi unpack({t1, t2, …, tn} ⊗ {<σ>}) // “b‘

≡ unpack(“a‘) // “b‘ Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi “a‘ // “b‘ ≡ unpack(“a‘) // “b‘ lift (ti # <σ>) }

fi “a‘ // “b‘ ≡ unpack({t1, t2, …, tn}) // “b‘

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘})

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi “a‘ // “b‘ ≡ “a‘ // “b‘ lift ti}

B.6.2.4 Congruence in e.2 with the until-loop

If {a; σ}T‘ ≡ “{a}T‘, then

µx.({a; σ}T; ε + x)‘ ≡ “µx.({a}T; ε + x)‘

fi µt.(“{a; σ}T‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“{a}T‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

fi µt.(unpack(“a; σ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(unpack(“a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tu1

fi µt.(unpack(“a‘ ⊗ “σ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(unpack(“a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ts1

fi µt.(unpack(“a‘ ⊗ {<σ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

U
n

i 1=
{

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activitya “

248

Appendix B: Congruence for the Semantics of Tasks

≡ µt.(unpack(“a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tb2

fi µt.(unpack({t1, t2, …, tn} ⊗ {<σ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(unpack(“a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(unpack(“a‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) lift (ti # <σ>) }

fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(unpack({t1, t2, …, tn}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘})

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“a‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) lift ti}

B.6.2.5 Congruence in e.2 with the while-loop

If {a; σ}T‘ ≡ “{a}T‘, then

µx.(ε + {a; σ}T; x)‘ ≡ “µx.(ε + {a}T; x)‘

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“{a; σ}T‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“{a}T‘ ⊗ t))) -- by tr4

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a; σ‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘) ⊗ t))) -- by tu1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘ ⊗ “σ‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘) ⊗ t))) -- by ts1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘ ⊗ {<σ>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘) ⊗ t))) -- by tb2

U
n

i 1=
{

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activitya “

249

Appendix B: Congruence for the Semantics of Tasks

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({t1, t2, …, tn} ⊗ {<σ>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘) ⊗ t))) Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a‘) ⊗ t))) lift (ti # <σ>) }

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({t1, t2, …, tn}) ⊗ t)))

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘})

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“a‘ ⊗ t))) lift ti}

B.6.2.6 Congruence in e.2 with the encapsulation

If {a; σ}T‘ ≡ “{a}T‘, then

{{a; σ}T}T‘ ≡ “{{a}T}T‘

fi unpack(“{a; σ}T‘) ≡ unpack(“{a}T‘) -- by tu1

fi unpack(unpack(“a; σ‘)) ≡ unpack(unpack(“a‘)) -- by tu1

fi unpack(unpack(“a‘ ⊗ “σ‘)) ≡ unpack(unpack(“a‘)) -- by ts1

fi unpack(unpack(“a‘ ⊗ {<σ>})) ≡ unpack(unpack(“a‘)) -- by tb2

fi unpack(unpack({t1, t2, …, tn} ⊗ {<σ>}))

≡ unpack(unpack(“a‘)) Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi unpack(“a‘) ≡ unpack(unpack(“a‘)) lift (ti # <σ>) }

fi unpack(“a‘) ≡ unpack(unpack({t1, t2, …, tn}))

Let “a‘ = {t1, t2, …, tn} in unpack(“a‘})

U
n

i 1=
{

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activitya “

U
n

i 1=
{

250

Appendix B: Congruence for the Semantics of Tasks

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi unpack(“a‘) ≡ unpack(“a‘) lift ti}

B.6.3 Showing congruence for basic operators in the vacuous
selection axiom

The vacuous selection axiom (e.3) is demonstrated in this section for the binary
operators of sequence, selection, and parallel composition; as well as for the repetition
structures (while- and until-loop) and the encapsulation.

B.6.3.1 Congruence in e.3 with the sequence operator

If {a + σ}T‘ ≡ “{a}T + ε‘, then

{a + σ}T; b‘ ≡ “({a}T + ε); b‘

fi “{a + σ}T‘ ⊗ “b‘ ≡ “{a}T + ε‘ ⊗ “b‘ -- by ts1

fi unpack(“a + σ‘) ⊗ “b‘ ≡ “{a}T + ε‘ ⊗ “b‘ -- by tu1

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ “b‘

≡ ({<↓>} ⊗ (“{a}T‘ ∪ “ε‘)) ⊗ “b‘ -- by ta2

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ “b‘

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ “ε‘)) ⊗ “b‘ -- by tu1

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ “b‘

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ “b‘ -- by tb1

fi unpack({<↓>} ⊗ (“a‘ ∪ {<σ>})) ⊗ “b‘

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ “b‘ -- by tb2

fi unpack(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ {<σ>})) ⊗ “b‘

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ “b‘

-- by distribution of ⊗ over union

fi unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>}) ⊗ “b‘

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ “b‘ -- by cp1

fi (unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>})) ⊗ “b‘

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activityba, “

251

Appendix B: Congruence for the Semantics of Tasks

≡ {<↓>} ⊗ (unpack(“a‘) ∪ {<>}) ⊗ “b‘

-- by distribution of unpack over union

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>})) ⊗ “b‘

≡ {<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>}) ⊗ “b‘

Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>}) ⊗ “b‘

≡ {<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>}) ⊗ “b‘ -- by up1

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>}) ⊗ “b‘

≡ (({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>} ⊗ {<>})) ⊗ “b‘

-- by distribution of ⊗ over union

fi (unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>}) ⊗ “b‘

≡ ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) ⊗ “b‘ -- by cp1

fi ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) ⊗ “b‘

≡ ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) ⊗ “b‘

lift <↓ ti >}

B.6.3.2 Congruence in e.3 with the selection operator

If {a + σ}T‘ ≡ “{a}T + ε‘, then

{a + σ}T + b‘ ≡ “({a}T + ε) + b‘

fi {<↓>} ⊗ (“{a + σ}T‘ ∪ “b‘)

≡ {<↓>} ⊗ (“{a}T + ε‘ ∪ “b‘) -- by ta2

fi {<↓>} ⊗ (unpack(“a + σ‘) ∪ “b‘)

≡ {<↓>} ⊗ (“{a}T + ε‘ ∪ “b‘) -- by tu1

fi {<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ∪ “b‘)

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activityba, “

252

Appendix B: Congruence for the Semantics of Tasks

≡ {<↓>} ⊗ (({<↓>} ⊗ (“{a}T‘ ∪ “ε‘)) ∪ “b‘) -- by ta2

fi {<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ∪ “b‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (unpack(“a‘) ∪ “ε‘)) ∪ “b‘) -- by tu1

fi {<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ∪ “b‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ∪ “b‘) -- by tb1

fi {<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ {<σ>})) ∪ “b‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ∪ “b‘) -- by tb2

fi {<↓>} ⊗ (unpack(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ {<σ>})) ∪ “b‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ∪ “b‘)

-- by distribution of ⊗ over union

fi {<↓>} ⊗ (unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>}) ∪ “b‘)

≡ {<↓>} ⊗ (({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ∪ “b‘) -- by cp1

fi {<↓>} ⊗ ((unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>})) ∪ “b‘)

≡ {<↓>} ⊗ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>}) ∪ “b‘)

-- by distribution of unpack over union

fi {<↓>} ⊗ ((unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>})) ∪ “b‘)

≡ {<↓>} ⊗ ({<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>}) ∪ “b‘)

Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi {<↓>} ⊗ ((unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>}) ∪ “b‘)

≡ {<↓>} ⊗ ({<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>}) ∪ “b‘) -- by up1

fi {<↓>} ⊗ ((unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>}) ∪ “b‘)

≡ {<↓>} ⊗ ((({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>} ⊗ {<>})) ∪ “b‘)

-- by distribution of ⊗ over union

253

Appendix B: Congruence for the Semantics of Tasks

fi {<↓>} ⊗ ((unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>}) ∪ “b‘)

≡ {<↓>} ⊗ (({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) ∪ “b‘) -- by cp1

fi {<↓>} ⊗ (({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) ∪ “b‘)

≡ {<↓>} ⊗ (({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) ∪ “b‘)

lift <↓ ti >}

B.6.3.3 Congruence in e.3 with the parallel composition operator

If {a + σ}T‘ ≡ “{a}T + ε‘, then

{a + σ}T || b‘ ≡ “({a}T + ε) || b‘

fi “{a + σ}T‘ // “b‘ ≡ “{a}T + ε‘ // “b‘ -- by tp1

fi unpack(“a + σ‘) // “b‘ ≡ “{a}T + ε‘ // “b‘ -- by tu1

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) // “b‘

≡ ({<↓>} ⊗ (“{a}T‘ ∪ “ε‘)) // “b‘ -- by ta2

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) // “b‘

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ “ε‘)) // “b‘ -- by tu1

fi unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) // “b‘

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) // “b‘ -- by tb1

fi unpack({<↓>} ⊗ (“a‘ ∪ {<σ>})) // “b‘

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) // “b‘ -- by tb2

fi unpack(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ {<σ>})) // “b‘

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) // “b‘

-- by distribution of ⊗ over union

fi unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>}) // “b‘

≡ ({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) // “b‘ -- by cp1

fi (unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>})) // “b‘

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activityba, “

254

Appendix B: Congruence for the Semantics of Tasks

≡ {<↓>} ⊗ (unpack(“a‘) ∪ {<>}) // “b‘

-- by distribution of unpack over union

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>})) // “b‘

≡ {<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>}) // “b‘

Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>}) // “b‘

≡ {<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>}) // “b‘ -- by up1

fi (unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>}) // “b‘

≡ (({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>} ⊗ {<>})) // “b‘

-- by distribution of ⊗ over union

fi (unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>}) // “b‘

≡ ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) // “b‘ -- by cp1

fi ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) // “b‘

≡ ({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) // “b‘

lift <↓ ti >}

B.6.3.4 Congruence in e.3 with the until-loop

If {a + σ}T‘ ≡ “{a}T + ε‘, then

µx.({a + σ}T; ε + x)‘ ≡ “µx.(({a}T + ε); ε + x)‘

fi µt.(“{a + σ}T‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 ≡ µt.(“{a}T + ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tr2

fi µt.(unpack(“a + σ‘) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(“{a}T + ε‘ ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by tu1

fi µt.(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activitya “

255

Appendix B: Congruence for the Semantics of Tasks

≡ µt.(({<↓>} ⊗ (“{a}T‘ ∪ “ε‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by ta2

fi µt.(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (unpack(“a‘) ∪ “ε‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 -- by tu1

fi µt.(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 -- by tb1

fi µt.(unpack({<↓>} ⊗ (“a‘ ∪ {<σ>})) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 -- by tb2

fi µt.(unpack(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ {<σ>})) ⊗ ({<↓>}

∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ ({<↓>}

∪ ({<↓>} ⊗ t))) -- by distribution of ⊗ over union

fi µt.(unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 -- by cp1

fi µt.((unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>})) ⊗ ({<↓>}

∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

 -- by distribution of unpack over union

fi µt.((unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>}))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>}))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) Let “a‘ = {t1, t2, …, tn}

256

Appendix B: Congruence for the Semantics of Tasks

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi µt.((unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>})

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>})) ⊗ ({<↓>}

∪ ({<↓>} ⊗ t))) -- by up1

fi µt.((unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>})

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.((({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>} ⊗ {<>}))

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by distribution of ⊗ over union

fi µt.((unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>})

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})

 ⊗ ({<↓>} ∪ ({<↓>} ⊗ t))) -- by cp1

fi µt.(({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) ⊗ ({<↓>} ∪ ({<↓>} ⊗ t)))

≡ µt.(({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) ⊗ ({<↓>}

∪ ({<↓>} ⊗ t))) lift <↓ ti >}

B.6.3.5 Congruence in e.3 with the while-loop

If {a + σ}T‘ ≡ “{a}T + ε‘, then

µx.(ε + {a + σ}T; x)‘ ≡ “µx.(ε + ({a}T + ε); x)‘

fi µt.({<↓>} ∪ ({<↓>} ⊗ (“{a + σ}T‘ ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“{a}T + ε‘ ⊗ t))) -- by tr4

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(“a + σ‘) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (“{a}T + ε‘ ⊗ t))) -- by tu1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (“{a}T‘ ∪ “ε‘)) ⊗ t))) -- by ta2

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activitya “

257

Appendix B: Congruence for the Semantics of Tasks

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (unpack(“a‘)

∪ “ε‘)) ⊗ t))) -- by tu1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗

(unpack(“a‘) ∪ {<>})) ⊗ t))) -- by tb1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack({<↓>} ⊗ (“a‘ ∪ {<σ>})) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (unpack(“a‘)

∪ {<>})) ⊗ t))) -- by tb2

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(({<↓>} ⊗ “a‘)

∪ ({<↓>} ⊗ {<σ>})) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ t)))

-- by distribution of ⊗ over union

fi µt.({<↓>} ∪ ({<↓>} ⊗ (unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ t)))

 -- by cp1

fi µt.({<↓>} ∪ ({<↓>} ⊗ ((unpack ({<↓>} ⊗ “a‘)

∪ unpack({<↓, σ>})) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) ⊗ t)))

-- by distribution of unpack over union

fi µt.({<↓>} ∪ ({<↓>} ⊗ ((unpack ({<↓>} ⊗ {t1, t2, …, tn})

∪ unpack({<↓, σ>})) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ (unpack({t1, t2, …, tn})

∪ {<>})) ⊗ t))) Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

258

Appendix B: Congruence for the Semantics of Tasks

fi µt.({<↓>} ∪ ({<↓>} ⊗ ((unpack ({<↓>} ⊗ {t1, t2, …, tn})

∪ {<↓>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓>} ⊗ ({t1, t2, …, tn}

∪ {<>})) ⊗ t))) -- by up1

fi µt.({<↓>} ∪ ({<↓>} ⊗ ((unpack ({<↓>} ⊗ {t1, t2, …, tn})

∪ {<↓>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ ((({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>}

⊗ {<>})) ⊗ t))) -- by distribution of ⊗ over union

fi µt.({<↓>} ∪ ({<↓>} ⊗ ((unpack ({<↓t1>, <↓t2>, …, <↓tn>})

∪ {<↓>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓t1>, <↓t2>, …, <↓tn>}

∪ {<↓>}) ⊗ t))) -- by cp1

fi µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) ⊗ t)))

≡ µt.({<↓>} ∪ ({<↓>} ⊗ (({<↓t1>, <↓t2>, …, <↓tn>}

∪ {<↓>}) ⊗ t))) lift <↓ ti >}

B.6.3.6 Congruence in e.3 with the encapsulation

If {a + σ}T‘ ≡ “{a}T + ε‘, then

{{a + σ}T}T‘ ≡ “{{a}T + ε}T‘

fi unpack(“{a + σ}T‘) ≡ unpack(“{a}T + ε‘) -- by tu1

fi unpack(unpack(“a + σ‘)) ≡ unpack(“{a}T + ε‘) -- by tu1

fi unpack(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)))

≡ unpack({<↓>} ⊗ (“{a}T‘ ∪ “ε‘)) -- by ta2

fi unpack(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)))

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ “ε‘)) -- by tu1

fi unpack(unpack({<↓>} ⊗ (“a‘ ∪ “σ‘)))

U
n

i 1=
{

 •∈∀ Activitya “

•∈∀ Activitya “

259

Appendix B: Congruence for the Semantics of Tasks

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) -- by tb1

fi unpack(unpack({<↓>} ⊗ (“a‘ ∪ {<σ>})))

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) -- by tb2

fi unpack(unpack(({<↓>} ⊗ “a‘) ∪ ({<↓>} ⊗ {<σ>})))

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ {<>}))

-- by distribution of ⊗ over union

fi unpack(unpack(({<↓>} ⊗ “a‘) ∪ {<↓, σ>}))

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ {<>})) -- by cp1

fi unpack(unpack ({<↓>} ⊗ “a‘) ∪ unpack({<↓, σ>}))

≡ unpack({<↓>} ⊗ (unpack(“a‘) ∪ {<>}))

-- by distribution of unpack over union

fi unpack(unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ unpack({<↓, σ>}))

≡ unpack({<↓>} ⊗ (unpack({t1, t2, …, tn}) ∪ {<>}))

Let “a‘ = {t1, t2, …, tn}

where t1≠<σ>, t2≠<σ>, …, tn≠<σ>

fi unpack(unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>})

≡ unpack({<↓>} ⊗ ({t1, t2, …, tn} ∪ {<>})) -- by up1

fi unpack(unpack ({<↓>} ⊗ {t1, t2, …, tn}) ∪ {<↓>})

≡ unpack(({<↓>} ⊗ {t1, t2, …, tn}) ∪ ({<↓>} ⊗ {<>}))

-- by distribution of ⊗ over union

fi unpack(unpack ({<↓t1>, <↓t2>, …, <↓tn>}) ∪ {<↓>})

≡ unpack({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) -- by cp1

fi unpack({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>})

≡ unpack({<↓t1>, <↓t2>, …, <↓tn>} ∪ {<↓>}) lift <↓ ti >} U
n

i 1=
{

260

Appendix B: Congruence for the Semantics of Tasks

B.7 Summary

The previous chapter described the soundness of the axioms for the task algebra
illustrated in the chapter 4. The trace semantics from the chapter 5 and basic
properties explained in the Appendix A were used to prove the soundness of the
axioms. In the present chapter, the congruence properties were demonstrated for
axioms of the algebra, by combining the equivalences with each basic operator
defined in the task algebra. An implementation of the task algebra will be presented
in the next chapter.

261

Appendix C:
Source Code

The Haskell source code of the software mentioned in Chapter 8 is presented in this
appendix. Initially, the code of the Task Algebra is depicted. Section2 shows the code
for the LTL implementation. Finally, section 3 presents the code for the CTL
implementation.

C.1 Task Algebra

The parser for the Task Algebra expressions was written with the Happy program.
Happy is a parser generator software for Haskell [154]. The lexical analyser was
hand-written in Haskell and included in the source code of Happy.

{
-- Simple task abstract syntax version 1

module MainTaskAlgebra where

import Char
import System (getArgs)
-- Data types to represent the parsed expression are in
Traces.hs
import Traces
import Data.Set as Set

}

%name taskAlgebraParser
%tokentype { Token }

%token
 simple { TokenSimple $$ }
 taskName { TokenTaskName $$ }
 'let' { TokenLet }
 'Epsilon' { TokenEpsilon }
 'Phi' { TokenFail }
 'Sigma' { TokenSucceed }
 'Mu' { TokenMu }
 '+' { TokenSelection }
 ';' { TokenSequence }

262

Appendix C: Source Code

 '||' { TokenParallel }
 '(' { TokenOB }
 ')' { TokenCB }
 '{' { TokenOEnc }
 '}' { TokenCEnc }
 '.' { TokenDot }
 '=' { TokenNewTask }

%right ';' '+' '||'
%%

Model : Activity { $1 }
 | CompoundTask Model { Model $1 $2 }

CompoundTask :

'let' taskName '=' Encapsulation { CompoundTask $2 $4 }

Encapsulation:

'{' Activity '}' { Task (Encapsulation $2) }

Activity :

Activity ';' Activity { Sequence $1 $3 }
 | Activity '+' Activity { Selection $1 $3 }
 | Activity '||' Activity { Parallel $1 $3 }
 -- Until-loop
 | 'Mu' '.' simple '(' Activity ';'
 'Epsilon' '+' simple ')' { UntilLoop $5 (Simple $3)
(Simple $9) }
 -- While-loop
 |'Mu' '.' simple '(' 'Epsilon' '+' Activity';' simple ')'
 { WhileLoop $7 (Simple $3) (Simple $9) }
 | '(' Activity ')' { Task (Brackets $2) }
 | Encapsulation { $1 }
 | 'Epsilon' { Epsilon }
 | 'Phi' { Fail }
 | 'Sigma' { Succeed }
 | simple { Task (Simple $1) }
 | taskName { Task (Compound $1) }

{
happyError :: [Token] -> a
happyError _ = error "Parse error"

-- Token definition
data Token
 = TokenSimple String
 | TokenTaskName String
 | TokenSelection
 | TokenSequence
 | TokenParallel
 | TokenEpsilon
 | TokenMu
 | TokenFail
 | TokenSucceed
 | TokenOEnc
 | TokenCEnc

263

Appendix C: Source Code

 | TokenOB
 | TokenCB
 | TokenDot
 | TokenNewTask
 | TokenLet
 deriving Show

-- a simple lexer that returns this data structure.

lexer :: String -> [Token]
lexer [] = []
lexer (c:cs)
 | isSpace c = lexer cs
 | isUpper c = lexTask (c:cs)
 | isLower c = lexTaskAt (c:cs)
lexer (';':cs) = TokenSequence : lexer cs
lexer ('+':cs) = TokenSelection : lexer cs
lexer ('{':cs) = TokenOEnc : lexer cs
lexer ('}':cs) = TokenCEnc : lexer cs
lexer ('(':cs) = TokenOB : lexer cs
lexer (')':cs) = TokenCB : lexer cs
lexer ('.':cs) = TokenDot : lexer cs
lexer ('=':cs) = TokenNewTask : lexer cs
lexer ('|':cs) = lexCon cs

lexCon ('|':cs) = TokenParallel : lexer cs

-- Compound Tasks, Epsilon, Exit and Mu begin with uppercase
lexTask cs =
 case span isAlphaNum cs of
 ("Epsilon",rest) -> TokenEpsilon : lexer rest
 ("Phi",rest) -> TokenFail : lexer rest
 ("Sigma",rest) -> TokenSucceed : lexer rest
 ("Mu",rest) -> TokenMu : lexer rest
 (taskName,rest) -> TokenTaskName taskName : lexer
rest

-- the name of a simple task begins with a lowercase
lexTaskAt cs =
 case span isAlphaNum cs of
 ("let",rest) -> TokenLet : lexer rest
 (simple,rest) -> TokenSimple simple : lexer
rest

-- general trace function
tr :: String -> SetOfTraces
tr [] = empty
tr s = trace (taskAlgebraParser (lexer s)) []

}
-- end of happy code :(

264

Appendix C: Source Code

-- task semantics version 1: Traces module
module Traces where

import Data.Set as Set

--

-- Activity
data Activity
 = Epsilon
 | Fail
 | Succeed
 | Task Task
 | Sequence Activity Activity
 | Selection Activity Activity
 | Parallel Activity Activity
 | UntilLoop Activity Task Task
 | WhileLoop Activity Task Task
 | CompoundTask String Activity
 | Model Activity Activity
 deriving (Eq, Ord)

instance Show Activity where
 show Epsilon = show (trace Epsilon [])
 show Fail = show (trace Fail [])
 show Succeed = show (trace Succeed [])
 show (Task t) = show t
 show (Sequence a1 a2) = show (trace (Sequence a1 a2) [])
 show (Selection a1 a2)= show (trace (Selection a1 a2) [])
 show (Parallel a1 a2) = show (trace (Parallel a1 a2) [])
 show (UntilLoop act at1 at2)

= show (trace (UntilLoop act at1 at2) [])
 show (WhileLoop act at1 at2)

 = show (trace (WhileLoop act at1 at2) [])
 show (CompoundTask s act)

 = show (addToDictio (CompoundTask s act) [])
 show (Model ct act) = show (trace (Model ct act) [])

-- Task
data Task
 = Simple String
 | Brackets Activity
 | Encapsulation Activity
 | Compound String
 deriving (Eq, Ord)

instance Show Task where
 show (Simple s) = show (trace (Task (Simple s)) [])
 show (Brackets a)= show (trace (Task (Brackets a)) [])
 show (Encapsulation a)

= show (trace (Task (Encapsulation a)) [])
 show (Compound a)= show (trace (Task (Compound a)) [])

-- trace functions

265

Appendix C: Source Code

trace :: Activity -> DataDictionary -> SetOfTraces
-- Simple Traces
trace Epsilon _ = singleton epsilon
trace Fail _ = singleton [Phi]
trace Succeed _ = singleton [Sigma]
trace (Task (Simple s)) _ = singleton [Ident s]

-- Sequence composition
trace (Sequence a b) dict = trace a dict #* trace b dict

-- Selection
trace (Selection a b) dict = if (trace a dict)== (trace b
dict) then trace a dict
 else singleton
[Commit] #* union (trace a dict) (trace b dict)

-- Parallel composition
trace (Parallel a b) dict = trace a dict // trace b dict

-- Brackets (parenthesis)
trace (Task (Brackets a)) dict = trace a dict

-- Encapsulation
trace (Task (Encapsulation a)) dict = unpack (trace a dict)

-- Until-loop repetition
trace (UntilLoop act atom1 atom2) dict = if atom1==atom2
 {-
generating just the first two traces of the until-loop we can
derive

 Mu.x(act;E+x) as act;(E+(act;E+E)) => act;E+act
 -}
 then
trace (finiteU (UntilLoop act atom1 atom2) 2) dict
 else
error ("Until-loop structure error. "++

 show (findMin (trace (Task atom1) dict)) ++" and "

 ++show (findMin (trace (Task atom2) dict))++" have to use
an unique name.")

-- While-loop repetition
trace (WhileLoop act atom1 atom2) dict = if atom1==atom2
 {-
generating just the first two traces of the while-loop we can
derive

 Mu.x(E+act;x) as E+(act;(E+(act;E))) => E+(act;E+act)
 -}
 then
trace (finiteW (WhileLoop act atom1 atom2) 2) dict
 else
error ("While-loop structure error. "++

266

Appendix C: Source Code

 show (findMin (trace (Task atom1) dict)) ++" and "

 ++show (findMin (trace (Task atom2) dict))++" have to use
an unique name.")

-- traceModel myTaskDict encap = trace encap
trace (Model ct act) dict = trace act (addToDictio ct dict)

-- When found a compound task, it have to trace its relationed
"code"
trace (Task (Compound a)) dict = trace (findCTask a dict) dict

--
-- trace low level definitions

-- elements of the traces, as subclasses of Eq
data Event = Ident String | Phi | Sigma | Commit
 deriving (Eq, Ord)

-- defining specific instances of Show
instance Show Event where
 show (Ident c) = c
 show Phi = "Phi"
 show Sigma = "Sigma"
 show Commit = "!"

-- a trace is a list of events
type Trace = [Event]
type SetOfTraces = Set Trace

epsilon :: Trace
epsilon = []

-- Trace Concatenation
(#) :: Trace -> Trace -> Trace
[Sigma] # (item:rest) = [Sigma] # rest
[Phi] # (item:rest) = [Phi] # rest
[Commit] # trace@(item:rest)
 | item == Commit = trace
 | otherwise = Commit : trace
(item:rest) # trace = item : (rest # trace)
epsilon#trace = trace

-- concatenated product
(#*) :: SetOfTraces -> SetOfTraces -> SetOfTraces
setA #* setB
 | setA == empty = empty
 | setB == empty = empty
 | otherwise = union (insert (findMin setA #
findMin setB)
 (singleton (findMin setA) #* (difference setB
(singleton (findMin setB)))))
 ((difference setA (singleton (findMin setA))) #*
setB)

267

Appendix C: Source Code

-- Trace interleaving
(~~) :: Trace -> Trace -> SetOfTraces
[] ~~ trace = singleton trace
trace ~~ [] = singleton trace
traceA@(a:as) ~~ traceB@(b:bs)
 | traceA == [Sigma] = singleton [Sigma]
 | traceB == [Sigma] = singleton [Sigma]
 | traceA == [Phi] = singleton [Phi]
 | traceB == [Phi] = singleton [Phi]
 | a == Commit = (singleton [Commit]) #* (as ~~
traceB)
 | b == Commit = (singleton [Commit]) #* (bs ~~
traceA)
 | otherwise = union (singleton [a] #* (as
~~ traceB))
 (singleton [b] #* (bs ~~ (traceA)))

-- distributed union
(//) :: SetOfTraces -> SetOfTraces -> SetOfTraces
setA // setB
 | setA == empty = empty
 | setB == empty = empty
 | otherwise = union (union (findMin setA ~~
findMin setB) (singleton (findMin setA) // (difference setB
(singleton (findMin setB)))))
 ((difference setA (singleton (findMin setA))) //
setB)

-- unpacking
unpack :: SetOfTraces -> SetOfTraces
unpack set
 | set == empty = empty
 | otherwise = union (singleton (lift (findMin
set))) (unpack (difference set (singleton (findMin set))))

-- lift
lift :: Trace -> Trace
lift [] = []
lift [Sigma]= []
lift (a:as) = a: (lift as)

-- Additional functions

-- dealing compound Tasks and the data dictionary
type DataDictionary = [(String, Activity)]

-- return the Activity of a particular compound task
findCTask :: String -> DataDictionary -> Activity
findCTask [] _ = Epsilon
findCTask _ [] = Epsilon
findCTask a (ele:rest)
 | a == fst ele = snd ele

268

Appendix C: Source Code

 | a < fst ele = Epsilon
 | otherwise = findCTask a rest

-- add a compound task to the data dictionary
addToDictio :: Activity -> DataDictionary -> DataDictionary
addToDictio (CompoundTask s act) [] = [(s,act)]
addToDictio (CompoundTask s act) dict@(ele:rest)
 = if s<fst ele then
(s,act):dict
 else ele: addToDictio
(CompoundTask s act) rest

-- return a finite expression for a Until-loop (till n).
finiteU :: Activity -> Int -> Activity
finiteU (UntilLoop act atom1 atom2) 0 = Epsilon
finiteU (UntilLoop act atom1 atom2) n = Sequence act
(Selection Epsilon (finiteU (UntilLoop act atom1 atom2) (n-
1)))
finiteU act n = act

-- return a finite expression for a While-loop (till n).
-- E+(act;E+act)
finiteW :: Activity -> Int -> Activity
finiteW (WhileLoop act atom1 atom2) 0 = Epsilon
finiteW (WhileLoop act atom1 atom2) n = Selection Epsilon
(Sequence act (finiteW (WhileLoop act atom1 atom2) (n-1)))
finiteW act n = act

C.2 LTL

-- Linear temporal logic functions
module Main where
import System (getArgs)

import MainTaskAlgebra -- task algebra parser
import Data.Set as Set
import Traces

-- LTL syntax
data Phi
 = Bool Bool
 | Pr String
 | Not Phi
 | And Phi Phi
 | Or Phi Phi
 | Impl Phi Phi
 | X Phi -- Next phi
 | G Phi -- All future states (Globally)
 | F Phi -- Eventually (some Future state)
 | U Phi Phi -- Until (U p q -- p holds until
q, (when q holds p doesn't hold anymore)
 | W Phi Phi -- Weak-until
 | R Phi Phi -- Release

269

Appendix C: Source Code

 deriving (Eq, Ord, Show)

-- returns true if the atomic proposition is true for the
first state
-- of the trace
-- expr - expression defining the traces (or set of paths)
check :: String -> Phi -> (Bool, Trace)
check expr phi = evalAllTraces (toList (tr expr)) phi

-- evaluates every trace
evalAllTraces :: [Trace] -> Phi -> (Bool, Trace)
evalAllTraces [] _ = (True, [])
evalAllTraces traces@(t:ts) phi = if eval t phi

then evalAllTraces ts phi -- (i+1)
 else (False, t)

-- returning boolean result
eval :: Trace -> Phi -> Bool
eval trace (Bool b) = b
eval trace (Pr p) = pr trace p
eval trace (Not p) = not (eval trace p)
eval trace (And p q) = if eval trace p then
 if eval trace q then True
 else False
 else False

eval trace (Or p q) = if eval trace p then True
 else if eval trace q then True
 else False
eval trace (Impl p q) =

if eval trace p && not (eval trace q) then False
 else True
eval trace (X p) = x trace p
eval trace (G p) = g trace p
eval trace (F p) = f trace p
eval trace (U p q) = u trace p q
eval trace (W p q) = w trace p q
eval trace (R p q) = r trace p q

-- resolves p using the set of traces
pr :: Trace -> String -> Bool
pr [] _ = False -- error "invalid state"
pr (t:ts) atm
 | t == Commit = pr ts atm
 | Ident atm == t = True
 | otherwise = False

-- X phi - neXt phi states that the formula phi should hold
for the rest
-- of the execution without the first state
x :: Trace -> Phi -> Bool
x [] _ = False
x trace phi = eval (dropHead trace) phi

270

Appendix C: Source Code

-- G (Globally) phi holds for all the future states
g :: Trace -> Phi -> Bool
g [] _ = True
g trace phi = if eval trace phi then g (dropHead trace) phi

 else False

-- F Phi -- Eventually (some Future state)
-- evaluate the tression for every atom in each trace if there
is no null trace
f :: Trace -> Phi -> Bool
f [] _ = False
f trace phi = if eval trace phi then True
 else f (dropHead trace) phi

-- U p q -- p until q (for p != q)
-- p has to be true at least the first state and after q has
to be true
-- but p is not required to hold
-- u function verifies if p is true and if it is then pass the
control to u2
u :: Trace -> Phi -> Phi -> Bool
u [] _ _ = False
u trace p q
 | eval trace q = True
 | eval trace p = u2 (dropHead trace) p q
 | otherwise = False

-- u2 verifies if p is true and when it's false verifies if q
is true
u2 :: Trace -> Phi -> Phi -> Bool
u2 trace p q
 | trace == [] = False
 | eval trace q = True -- if q then
try the next trace
 | eval trace p = u2 (dropHead trace) p q
 | otherwise = False

-- W p q -- p until q but q is not required to be satisfied
w :: Trace -> Phi -> Phi -> Bool
w [] _ _ = False
w trace p q
 | eval trace q = True -- if q then try the
next trace
 | eval trace p = w2 (dropHead trace) p q
 | otherwise = False

-- w2 verifies if p still holds or if q holds
w2 :: Trace -> Phi -> Phi -> Bool
w2 trace p q
 | trace == [] = True -- try next trace
 | eval trace q = True -- if q then try the
next trace
 | eval trace p = w2 (dropHead trace) p q

271

Appendix C: Source Code

 | otherwise = True -- try next trace

-- p R q. p releases q if q is true until the first position
in which p is true
-- (or forever if such a position does not exist).
-- p R q = Not (Not p U Not q)
r :: Trace -> Phi -> Phi -> Bool
r trace p q = eval trace (Not (U (Not p) (Not q)))

-- drops the first element of the list
dropHead :: Trace -> Trace
dropHead [] = []
dropHead (t:ts)
 -- drops the commit element before droping the next
relevant element
 | t == Commit = dropHead ts
 | otherwise = ts

C.3 CTL

-- Computation Tree Logic (CTL) functions
module Main where

import Traces
import MainTaskAlgebra
import Data.List
import qualified Data.Set as Set

-- CTL syntax
data Phi -- Path and State Operators
 -- operands and logical operators
 = Pr String
 | Bool Bool
 | Not Phi
 | And Phi Phi
 | Or Phi Phi
 | Impl Phi Phi
-- A ? - All: ? has to hold on all paths starting from the
current state.
 | AX Phi -- Next phi
 | AG Phi -- All future states
(Globally)
 | AF Phi -- Eventually (some Future
state)
 | AU Phi Phi -- Until (U p q -- p holds
until q, (when q holds p doesn't hold anymore)
-- E ? - Exists: there exists at least one path starting from
the current state where ? holds.
 | EX Phi -- Next phi
 | EG Phi -- All future states
(Globally)
 | EF Phi -- Eventually (some Future

272

Appendix C: Source Code

state)
 | EU Phi Phi -- Until (U p q -- p holds
until q, (when q holds p doesn't hold anymore)
 deriving (Eq, Ord, Show)

-- create tree from list of traces
-- Trace == [Event] (defined in Traces.hs)
type ListOfTraces = [Trace]

-- Returns true if the atomic proposition is true for the
first state
-- of the trace
-- expr - expression defining the traces (or set of paths)
-- phi - CTL expression
check :: String -> Phi -> ([[Integer]], Node)
check expr phi = (sort (sat (tree (Set.toList(tr expr))) phi),
tree (Set.toList(tr expr)))

-- SAT function. It takes a CTL formula s input and returns
the set of states
-- satisfying the formula.
-- It calls the functions satEx, SatEu and SatAf,
respectively, if EX, EU, or AF
sat :: Node -> Phi -> [[Integer]]
sat tr (Bool True) = s tr
sat _ (Bool False) = [] -- phi is False
sat tr (Pr str) -- phi is atomic
 | tr == Empty = []
 | atomic tr str == [] = []
 | otherwise = atomic tr str
sat tr (Not p) = (getAllStateNumbers
(getAllStates [tr])) \\ (sat tr p)
sat tr (And p q) = (sat tr p) `intersect` (sat tr q)
sat tr (Or p q) = (sat tr p) `union` (sat tr
q)
sat tr (Impl p q) = sat tr (Not p `Or` q)
sat tr (AX p) = satAx tr p
sat tr (EX p) = satEx tr p
sat tr (AU p q) = if snd (satAu tr p q) ==
True then fst (satAu tr p q)
 else []
sat tr (EU p q) = satEu tr p q
sat tr (EF p) = sat tr (EU (Bool True) (p))
sat tr (EG p) = if snd (satEg tr p) == True
then fst (satEg tr p)
 else []
sat tr (AF p) = if snd (satAf tr p) == True
then fst (satAf tr p)
 else []

sat tr (AG p) = if snd (satAg tr p) == True
then fst (satAg tr p)
 else []

273

Appendix C: Source Code

-- S here represents the set of states that each element of
the diagram can have
s :: Node -> [[Integer]]
s tr@(Node (nodeNumber, evt) (subnodes))
 | tr == Empty = []
 | otherwise = [nodeNumber]

satAx :: Node -> Phi -> [[Integer]]
satAx Empty _ = []
satAx tr p = if length (sat tr (Not (EX (Not p)))) < length
(getSubNodes tr)
 then [] else [getNodeNumber tr] `union`
sat tr (Not (EX (Not p)))

-- satEx finds the states satisfying EX phi, looking FORWARD
-- along the subnodes
satEx :: Node -> Phi -> [[Integer]]
satEx Empty _ = []
satEx (Node (nodeNumber, evt) (sn:snds)) p
 | sn == Empty = []
 | otherwise = if ((sat sn p) `union` (if snds/=[]
then (satEx (Node (nodeNumber, evt) (snds)) p) else [])) /=
[]
 then [nodeNumber] `union`
((sat sn p) `union` (if snds/=[] then (satEx (Node
(nodeNumber, evt) (snds)) p) else []))
 else []

-- satAg tr p
-- It determines the set of states satisfying AG p
satAg:: Node -> Phi -> ([[Integer]], Bool)
satAg (Node (_, _) []) _ = ([], True)
satAg Empty _ = ([], True)
satAg nd@(Node (nodeNumber, evt) (sn:snds)) p
 -- if it is found, add to the list and continue with the
next branch
 | sat nd p /= [] = ([nodeNumber] `union`((sat nd
p) ++ (concat [fst (satAg x p) | x<-(sn:snds)])),
 (and [snd (satAg x p) | x<-
(sn:snds)]))
 | otherwise = ([], False)

-- satEg tr p
-- It determines the set of states satisfying EG p
satEg:: Node -> Phi -> ([[Integer]], Bool)
satEg (Node (_, _) []) _ = ([], True)
satEg Empty _ = ([], True)
satEg nd@(Node (nodeNumber, evt) (sn:snds)) p
 -- if it is found, add to the list and continue with the
next branch

274

Appendix C: Source Code

 | sat nd p /= [] = ([nodeNumber] `union`((sat nd
p) ++ (concat [fst (satEg x p) | x<-(sn:snds)])),
 (or [snd (satEg x p) | x<-
(sn:snds)]))
 | otherwise = ([], False)

-- satAf tr p
-- It determines the set of states satisfying AF p
satAf:: Node -> Phi -> ([[Integer]], Bool)
satAf (Node (_, _) []) _ = ([], True)
satAf (Node (nodeNumber, evt) (sn:snds)) p
 -- if it is found it, add to the list and continue with
the next branch
 | sat sn p /= [] = ([nodeNumber] `union`((sat sn
p) ++ fst (satAf (Node (nodeNumber, evt) (snds)) p)),
 {-True &&-} snd (
satAf (Node (nodeNumber, evt) (snds)) p))
 -- otherwise if there are not subnodes then false
 | getSubNodes sn == [Empty] = ([], False)
 -- otherwise try the branch till you find it or till the
end
 | fst (satAf (Node (nodeNumber, evt) (getSubNodes sn))
p) /= []
 = ([nodeNumber] `union`
(((getNodeNumber sn):fst (satAf (Node (nodeNumber, evt)
(getSubNodes sn)) p))
 ++ fst (satAf
(Node (nodeNumber, evt) (snds)) p)),
 snd (satAf (Node
(nodeNumber, evt) (getSubNodes sn)) p) &&
 snd (satAf (Node
(nodeNumber, evt) (snds)) p))
 | otherwise = ([], False)

-- satAu determines the set of states satisfying A [p U q]
-- It computes the states satisfying p by calling sat. Then,
it accumulates states
-- satisfying A [p U q] in the manner described in the
labelling algorithm
satAu:: Node -> Phi -> Phi -> ([[Integer]], Bool)
satAu Empty _ _ = ([], True)
satAu tr@(Node (nodeNumber, evt) snds) p q
 | sat tr q /= [] = (sat tr q, True)
 | sat tr p /= [] = exploreAu tr p q
 | otherwise = ([], False)

-- explore to see if p es true and then q
exploreAu :: Node -> Phi -> Phi -> ([[Integer]], Bool)
exploreAu tr@(Node (nodeNumber, evt) snds) p q
 | snds == [Empty] =
([], False)
 | snd (applyToSnAu snds p q) == True = ((sat tr p)
`union` (fst (applyToSnAu snds p q)), True)
 | otherwise

275

Appendix C: Source Code

 = ([], False)

-- look into subnodes for p and q
applyToSnAu:: SubTree -> Phi -> Phi -> ([[Integer]], Bool)
applyToSnAu [] _ _ = ([], True)
applyToSnAu (sn:snds) p q
 | sn == Empty = ([], False)
 | sat sn q /= [] = ((sat sn q) `union` (fst
(applyToSnAu snds p q)), snd (applyToSnAu snds p q)) -- True)
 | sat sn p /= [] = (concatMap fst ((exploreAu sn p
q):[applyToSnAu snds p q]) , (and (map snd ((exploreAu sn p
q):[applyToSnAu snds p q]))))
 | otherwise = ([], False)

-- satEu determines the set of states satisfying E [p U q]
-- It computes the states satisfying p by calling sat. Then,
it accumulates states
-- satisfying E [p U q] in the manner described in the
labelling algorithm
satEu:: Node -> Phi -> Phi -> [[Integer]]
satEu Empty _ _ = []
satEu tr@(Node (nodeNumber, evt) snds) p q
 | sat tr q /= [] = sat tr q
 | sat tr p /= [] = explore tr p q
 | otherwise = []

-- explore to see if p es true and then q
explore :: Node -> Phi -> Phi -> [[Integer]]
explore tr@(Node (nodeNumber, evt) snds) p q
 | snds == [Empty] = []
 | (applyToSn snds p q) /= [] = (sat tr p) `union`
(applyToSn snds p q)
 | otherwise = []

-- look into subnodes for p and q
applyToSn:: SubTree -> Phi -> Phi -> [[Integer]]
applyToSn [] _ _ = []
applyToSn (sn:snds) p q
 | sn == Empty = []
 | sat sn q /= [] = (sat sn q) `union` (applyToSn
snds p q)
 | sat sn p /= [] = (explore sn p q) `union` (applyToSn
snds p q)
 | otherwise = []

-- atomic function
-- Phi is atomic. Returns {s in S | phi in L(s) }
atomic :: Node -> String -> [[Integer]]
atomic Empty _ = []
atomic (Node (nodeNumber, evt) (subnodes)) str
 | evt == Ident str = [nodeNumber]
 | otherwise = []

276

Appendix C: Source Code

277

-- getAllStateNumbers scans the tree and return a list with
the number of the states
getAllStateNumbers :: [Node] -> [[Integer]]
getAllStateNumbers [] = []
getAllStateNumbers (nd@(Node (n, evt) (_)):nds)
 | nd==Empty = []
 | otherwise = n:getAllStateNumbers nds

-- getAllStates return all the nodes as a single list
getAllStates :: SubTree -> [Node]
getAllStates [] = []
getAllStates [Empty] = []
getAllStates (nd@(Node (n, evt) (subnodes)) : sbns)
 | nd == Empty = []
 | otherwise = ((Node (n, evt) []):getAllStates
(subnodes)) ++ getAllStates sbns

--

data Node = Empty
 | Node ([Integer], Event) (SubTree)
 deriving (Eq, Ord, Show)
type Empty =[]
type SubTree = [Node]

--getSubNodes gets the list of sub-nodes from a current node
getSubNodes :: Node -> SubTree
getSubNodes Empty = [Empty]
getSubNodes (Node (s, evt) st) = st

-- return tree from traces
tree :: ListOfTraces -> Node
tree [] = Empty
tree traces = Node ([0], Ident "null") (subNodes traces [0]
[])

-- creates the subnodes from the list of traces for a tree
{- Parameters:
 ListOfTraces : Traces to introduce to the
nodes
 Integer: node number
 SubTree: subnodes to be passed to the function
 SubTree: final result of the nodes -}
subNodes :: ListOfTraces -> [Integer] -> SubTree-> SubTree
subNodes [] _ sbnds = sbnds
subNodes (t:ts) n sbnds
 | t == [] = subNodes ts n sbnds
 | sbnds == [] = subNodes ts (n) ((setFirstTrace t
n):sbnds)
 | otherwise = subNodes ts (n) (setNTrace t sbnds n)

Appendix C: Source Code

278

-- setFirstTrace creates a branch based on the first trace
setFirstTrace :: Trace -> [Integer] -> Node
setFirstTrace [] _ = Empty
setFirstTrace (evt:tr) n
 | evt == Commit = setFirstTrace tr n
 | otherwise = Node ((n++[1]), evt) ([setFirstTrace
tr (n++[1])])

-- setNTrace adds a trace to the tree without repeating states
already created
-- Parameters: Trace - Trace to add to the tree,
-- SubTree - subnodes
-- Integer - number of last node added
-- SubTree - modified subnodes
setNTrace :: Trace -> SubTree -> [Integer] -> SubTree
setNTrace [] _ _ = [Empty]
setNTrace (evt:tr) subnodes n
 | evt == Commit = setNTrace tr subnodes n
 -- the event is in a subnode. Go to the next
sublevel
 | (cmpEvtInSubNodes evt subnodes) /= Empty
 = addToSubNodes (cmpEvtInSubNodes evt
subnodes)
 (setNTrace tr (getSubNodes
(cmpEvtInSubNodes evt subnodes)) (getNodeNumber
(cmpEvtInSubNodes evt subnodes)))
 subnodes
 -- the event is not in a subnode. Add the node with
the event
 | otherwise = (Node (getNextNumber
subnodes n, evt) ([setFirstTrace tr (getNextNumber subnodes
n)])):subnodes -- newNode evt n

-- It gets the number of a node
getNodeNumber :: Node -> [Integer]
-- getNodeNumber [] = Empty
getNodeNumber (Node (n, _) _) = n

--It gets the next number on a list of nodes for a particula
level
getNextNumber :: SubTree -> [Integer] -> [Integer]
getNextNumber subnodes n = n ++ [(fromIntegral (length
subnodes))+1]

-- addToSubNodes adds the result of setNTrace to the subnodes
of the existent node
-- Parameters: Node - The existent node. To its subnodes the
result of setNTrace will be added
-- SubTree - set of subnodes resulted
from setNTrace
-- SubTree - original subnodes where
Node is part of.
-- SubTree - subnodes at the level of
the node parameter
addToSubNodes :: Node -> SubTree -> SubTree -> SubTree
addToSubNodes Empty _ _ = []

Appendix C: Source Code

279

addToSubNodes _ [] _ = []
addToSubNodes (Node (n, evt) subnodes) moreSubnodes osbnds=
replaceNode (Node (n, evt) (moreSubnodes)) osbnds

-- replaceNode replaces Node in the list of nodes
-- Parameters: Node - The node to replace in the list
-- SubTree - The list of nodes where the
node is being replaced
-- SubTree - new list with the node replaced
replaceNode :: Node -> SubTree -> SubTree
replaceNode Empty _ = []
replaceNode (Node (n, evt) sbnds) ((Node (n2, evt2)
sbnds2):ms)
 | n == n2 = (Node (n, evt) sbnds) : ms
 | otherwise = (Node (n2, evt2) sbnds2) : (replaceNode
(Node (n, evt) (sbnds)) ms)

-- cmpEvtInSubNodes returns the node if this has the same
event
-- to compare or empty in other case
-- Event - Event to compare with the nodes
-- SubTree - the node with the subnodes to compare
cmpEvtInSubNodes :: Event -> SubTree ->Node
cmpEvtInSubNodes _ [] = Empty
cmpEvtInSubNodes _ [Empty] = Empty
cmpEvtInSubNodes evt (Node (n, evn) stn:nds)
 | evt==evn = Node (n, evn) stn
 | otherwise = cmpEvtInSubNodes evt nds

--

-- Displays a branch of the trace list
displayBranch :: ListOfTraces -> ListOfTraces
displayBranch [] = []
displayBranch (trc:restOfTraces)
 | restOfTraces == [] = [trc]
 | head trc == head (head restOfTraces) = trc:
displayBranch(restOfTraces)
 | otherwise = [trc]

-- find the next trace list
nextTraceList :: Trace -> ListOfTraces ->ListOfTraces
nextTraceList [] listTrc = listTrc
nextTraceList trc [] = []
nextTraceList trc (t:ts)
 | head trc == head t = nextTraceList trc ts
 |otherwise = t:ts

-- Displays initial branchs from a trace list
displayBranchs :: ListOfTraces -> [ListOfTraces]
displayBranchs [] = []
displayBranchs (trc:restOfTraces)
 | restOfTraces == [] = [trc]:[]
 | head trc == head (head restOfTraces)

Appendix C: Source Code

280

 = (displayBranch (trc:restOfTraces)):(displayBranchs
(nextTraceList trc (tail restOfTraces)))
 | otherwise = [trc]:displayBranchs (restOfTraces)

--

-- main function
main = do
 args<- getArgs
 if length args ==2 then print (check (head args)
(ctlCompiler (args!!1))) else print "Sintax:
ctlModelChecking <Task-Algebra-Expr> <CTL-Expr>"

	Introduction
	Background and motivation
	Goal of this research
	Objectives
	Hypothesis
	Thesis structure
	Summary

	Formal Methods and Modelling Tools
	Introduction
	Tool Support for Z, Alloy and OCL
	Z
	An example: the birthday book
	Schema calculus
	Z tools

	Alloy
	Signatures
	Subtype signatures
	Subset signatures

	Declaration area
	Formulas
	Formula paragraphs

	Executing an analysis
	Metamodel
	Summary

	OCL
	Syntax overview
	BirthdayBook example
	Summary

	Process Algebra
	ACP
	CCS
	CSP

	Summary

	Object Oriented Methodologies and the Discovery Method
	Introduction
	A brief object-oriented history
	UML problems
	Discovery Method
	Business Modelling
	Object Modelling
	System Modelling
	Software Modelling

	Summary

	The Informal Semantics for the Task Models
	The informal semantics for the Task Diagrams
	Task Structure Diagram
	Task Flow Diagram

	The Alloy approach
	Methodology
	Abstract syntax
	Checking visual models with Alloy
	Evaluating Alloy
	Conclusions on the Alloy approach

	From the Task Flow Diagram to the Task Algebra
	Sequence of tasks
	Selection
	Repetition
	Parallel composition
	The eating routine example

	Summary

	An Abstract Syntax Representation for the Task Flow Model
	Introduction
	The Abstract Syntax
	Task Model Constructions
	Simple task
	Empty activity
	Finished activity
	Sequential composition
	Selection
	Parallel composition
	Repetition
	Encapsulation

	Summary

	The Semantics of Tasks
	Introduction to Trace Semantics
	Trace Semantics for Tasks
	The Trace Domain
	The Trace Alphabet
	Construction of Traces

	Semantic Functions over the Trace Domain
	Concatenation of Traces
	Concatenated Product of Trace Sets
	Interleaving of Traces
	Distributed Interleaving of Trace Sets
	Unpacking of Trace Sets

	Interpreting Task Algebra in the Trace Domain
	Tracing Basic Elements
	Tracing a Sequence of Activity
	Tracing a Selection of Activity
	Tracing a Parallel Composition of Activity
	Tracing a Repetition of Activity
	Tracing the Unpacking of Activity

	Summary

	Soundness for the Semantics of Tasks
	Introduction
	Soundness
	Sequential composition
	Soundness for the associative sequence axiom
	Soundness for the right distributivity of sequence over sele
	Soundness for the empty sequence axiom
	Soundness for the exit with failure axiom
	Soundness for the exit with success axiom

	Selection
	Soundness for the associative selection axiom
	Soundness for the commutative selection axiom
	Soundness for the idempotent selection axiom

	Parallel composition
	Soundness for the associative parallel composition axiom
	Soundness for the commutative parallel composition axiom
	Soundness for the right distributivity of concurrency over s
	Soundness for the instant synchronisation axiom
	Soundness for instant failure in parallel composition axiom
	Soundness for instant success in parallel composition axiom

	Repetition
	Soundness for the unrolling one cycle of until-loop repetiti
	Soundness for the unrolling one cycle of while-loop repetiti

	Encapsulation
	Soundness for the vacuous subtask axiom
	Soundness for the coincident exit axiom
	Soundness for the vacuous selection axiom

	Congruence
	Showing congruence for basic operators in the associative se
	Congruence in s.1 with the sequence operator
	Congruence in s.1 with the selection operator
	Congruence in s.1 with the parallel composition operator
	Congruence in s.1 with the until-loop
	Congruence in s.1 with the while-loop
	Congruence in s.1 with the encapsulation

	Summary

	The Task Algebra Implementation
	Introduction
	Task algebra implementation
	An electronic journal
	Task Flow analysis
	Author Task Flow Diagram
	Reviewer Task Flow Diagram
	Editor Task Flow Diagram

	Operations on traces
	Set operations on traces
	Model-checking with LTL
	Model-checking with CTL
	An implementation of model-checking with LTL
	An implementation of model-checking with CTL

	Tests of the implementation
	Summary

	Conclusions
	Results
	Evaluation
	Future work
	Associativity of (
	Distribution of (over union
	Identity for (
	Associativity of //
	Commutativity of //
	Distribution of // over union
	Identity for //
	Distribution of unpack over union
	Introduction
	Showing congruence for sequential composition
	Showing congruence for basic operators in the associative se
	Congruence in s.1 with the sequence operator
	Congruence in s.1 with the selection operator
	Congruence in s.1 with the parallel composition operator
	Congruence in s.1 with the until-loop
	Congruence in s.1 with the while-loop
	Congruence in s.1 with the encapsulation

	Showing congruence for basic operators in the right distribu
	Congruence in s.2 with the sequence operator
	Congruence in s.2 with the selection operator
	Congruence in s.2 with the parallel composition operator
	Congruence in s.2 with the until-loop
	Congruence in s.2 with the while-loop
	Congruence in s.2 with the encapsulation

	Showing congruence for basic operators in the empty sequence
	Congruence in s.3 with the sequence operator
	Congruence in s.3 with the selection operator
	Congruence in s.3 with the parallel composition operator
	Congruence in s.3 with the until-loop
	Congruence in s.3 with the while-loop
	Congruence in s.3 with the encapsulation

	Showing congruence for basic operators in the fail on sequen
	Congruence in s.4 with the sequence operator
	Congruence in s.4 with the selection operator
	Congruence in s.4 with the parallel composition operator
	Congruence in s.4 with the until-loop
	Congruence in s.4 with the while-loop
	Congruence in s.4 with the encapsulation

	Showing congruence for basic operators in the succeed on seq
	Congruence in s.5 with the sequence operator
	Congruence in s.5 with the selection operator
	Congruence in s.5 with the parallel composition operator
	Congruence in s.5 with the until-loop
	Congruence in s.5 with the while-loop
	Congruence in s.5 with the encapsulation

	Showing congruence for selection
	Showing congruence for basic operators in the associative se
	Congruence in sel.1 with the sequence operator
	Congruence in sel.1 with the selection operator
	Congruence in sel.1 with the parallel composition operator
	Congruence in sel.1 with the until-loop
	Congruence in sel.1 with the while-loop
	Congruence in sel.1 with the encapsulation

	Showing congruence for basic operators in the commutative se
	Congruence in sel.2 with the sequence operator
	Congruence in sel.2 with the selection operator
	Congruence in sel.2 with the parallel composition operator
	Congruence in sel.2 with the until-loop
	Congruence in sel.2 with the while-loop
	Congruence in sel.2 with the encapsulation

	Showing congruence for basic operators in the idempotent sel
	Congruence in sel.3 with the sequence operator
	Congruence in sel.3 with the selection operator
	Congruence in sel.3 with the parallel composition operator
	Congruence in sel.3 with the until-loop
	Congruence in sel.3 with the while-loop
	Congruence in sel.3 with the encapsulation

	Showing congruence for parallel composition
	Showing congruence for basic operators in the associative pa
	Congruence in p.1 with the sequence operator
	Congruence in p.1 with the selection operator
	Congruence in p.1 with the parallel composition operator
	Congruence in p.1 with the until-loop
	Congruence in p.1 with the while-loop
	Congruence in p.1 with the encapsulation

	Showing congruence for basic operators in the commutative pa
	Congruence in p.2 with the sequence operator
	Congruence in p.2 with the selection operator
	Congruence in p.2 with the parallel composition operator
	Congruence in p.2 with the until-loop
	Congruence in p.2 with the while-loop
	Congruence in p.2 with the encapsulation

	Showing congruence for basic operators in the right distribu
	Congruence in p.3 with the sequence operator
	Congruence in p.3 with the selection operator
	Congruence in p.3 with the parallel composition operator
	Congruence in p.3 with the until-loop
	Congruence in p.3 with the while-loop
	Congruence in p.3 with the encapsulation

	Showing congruence for basic operators in the instant synchr
	Congruence in p.4 with the sequence operator
	Congruence in p.4 with the selection operator
	Congruence in p.4 with the parallel composition operator
	Congruence in p.4 with the until-loop
	Congruence in p.4 with the while-loop
	Congruence in p.4 with the encapsulation

	Showing congruence for basic operators in the fail in parall
	Congruence in p.5 with the sequence operator
	Congruence in p.5 with the selection operator
	Congruence in p.5 with the parallel composition operator
	Congruence in p.5 with the until-loop
	Congruence in p.5 with the while-loop
	Congruence in p.5 with the encapsulation

	Showing congruence for basic operators in the succeed in par
	Congruence in p.6 with the sequence operator
	Congruence in p.6 with the selection operator
	Congruence in p.6 with the parallel composition operator
	Congruence in p.6 with the until-loop
	Congruence in p.6 with the while-loop
	Congruence in p.6 with the encapsulation

	Showing congruence for repetition
	Showing congruence for basic operators in the unrolling one
	Congruence in r.1 with the sequence operator
	Congruence in r.1 with the selection operator
	Congruence in r.1 with the parallel composition operator
	Congruence in r.1 with the until-loop
	Congruence in r.1 with the while-loop
	Congruence in r.1 with the encapsulation

	Showing congruence for basic operators in the unrolling one
	Congruence in r.2 with the sequence operator
	Congruence in r.2 with the selection operator
	Congruence in r.2 with the parallel composition operator
	Congruence in r.2 with the until-loop
	Congruence in r.2 with the while-loop
	Congruence in r.2 with the encapsulation

	Showing congruence for encapsulation
	Showing congruence for basic operators in the vacuous subtas
	Congruence in e.1 with the sequence operator
	Congruence in e.1 with the selection operator
	Congruence in e.1 with the parallel composition operator
	Congruence in e.1 with the until-loop
	Congruence in e.1 with the while-loop
	Congruence in e.1 with the encapsulation

	Showing congruence for basic operators in the coincident exi
	Congruence in e.2 with the sequence operator
	Congruence in e.2 with the selection operator
	Congruence in e.2 with the parallel composition operator
	Congruence in e.2 with the until-loop
	Congruence in e.2 with the while-loop
	Congruence in e.2 with the encapsulation

	Showing congruence for basic operators in the vacuous select
	Congruence in e.3 with the sequence operator
	Congruence in e.3 with the selection operator
	Congruence in e.3 with the parallel composition operator
	Congruence in e.3 with the until-loop
	Congruence in e.3 with the while-loop
	Congruence in e.3 with the encapsulation

	Summary
	Task Algebra
	LTL
	CTL

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Zed
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

