
 1993 A J H Simons Object-Oriented Type Theory 1

Introduction to Object-Oriented
Type Theory

Tony Simons

A.Simons@dcs.shef.ac.uk

A J H Simons,
Department of Computer Science,

Regent Court, University of Sheffield,
211 Portobello Street,

SHEFFIELD, S1 4DP, United Kingdom.

ECOOP '93 Tutorials
Kaiserslautern, July 1993

 1993 A J H Simons Object-Oriented Type Theory 2

Overview

 Motivation

 Classes and Types

 Abstract Data Types

 Subtyping and Inheritance

 Recursion and Polymorphism

 Classes as Type Spaces

 Implications for Language Design

 Reference Material

 1993 A J H Simons Object-Oriented Type Theory 3

Motivation: Practical

Object-oriented languages have developed ahead
of underlying formal theory:

 Notions of "class" and "inheritance" may be ill-
defined.

 Programmers may confuse classes and types,
inheritance and subtyping.

 Type rules of OOLs may be compromised -
formally incorrect.

 Type security of programs may be compromised -
unreliable.

There is an immediate need...

 to uncover the relationship between classes (in
the object-oriented sense) and types (in the
abstract data type sense).

 to construct a secure type model for the next
generation of object-oriented languages.

 1993 A J H Simons Object-Oriented Type Theory 4

Motivation: Theoretical

OOLs introduce a powerful combination of language
features for which theory is immature.

Challenge to mathematicians:

 To extend the popular treatments of types in
strongly-typed languages to allow for systematic
sets of relationships between types.

 To present a convincing model of type recursion
under polymorphism.

 Plausible link between object-oriented type
systems and order-sorted algebras (Category
Theory).

 1993 A J H Simons Object-Oriented Type Theory 5

Classes and Types

First, a look at some of the issues surrounding
classes and types.

 What are types?

 What are classes?

 Convenience viewpoint:
"classes are not like types at all".

 Ambitious viewpoint:
"classes are quite like types".

 Conflict of viewpoints:
"strong versus weak inheritance".

 Conflict of viewpoints:
"specification versus implementation".

 1993 A J H Simons Object-Oriented Type Theory 6

What is a Type?

 Concrete: a schema for interpreting bit-strings in
memory

 Eg the bit string

01000001

is 'A' if interpreted as a CHARACTER;

is 65 if interpreted as an INTEGER;

 Abstract: a mathematical description of objects
with an invariant set of properties:

 Eg the type INTEGER

INTEGER Rec i . { plus : i i i;
minus : i i i; times : i i i;
div : i i i; mod : i i i }

i,j,k : INTEGER
plus(i,j) = plus(j,i)
plus(plus(i,j),k) = plus(i,plus(j,k))
plus(i,0) = i
...

 1993 A J H Simons Object-Oriented Type Theory 7

What is a Class?

Not obvious what the formal status of the object-
oriented class is:

 type - provides interface (method signatures)
describing abstract behaviour of some set of
objects;

 template - provides implementation template
(instance variables) for some set of objects;

 table - provides a table (class variables) for data
shared among some set of objects.

In addition, each of these views is open-ended,
through inheritance:

 incomplete type;

 incomplete template;

 incomplete table...

 1993 A J H Simons Object-Oriented Type Theory 8

Two Viewpoints

A class can be viewed as a kind of extensible
record:

 storage for data;

 storage for methods;

Class seen as a unit of implementation
(convenience viewpoint).

A class can be viewed as a kind of evolving
specification:

 adding new behaviours (adding method
signatures);

 making behaviours more concrete
(implementing/re-implementing methods);

 restricting set of objects (subclassing).

Class seen as a unit of specification (ambitious
viewpoint).

 1993 A J H Simons Object-Oriented Type Theory 9

Class/Type Independence

Objects have class and type independently (Snyder,
1986); this demonstrated by:

M:1 mappings from class hierarchies into type
hierarchies, due to multiple concrete
representations:

RECTANGLE

origin

width

height

RECTANGLE

origin

extent

POINT

x

y

POINT

x

y

POINT

x

y

M:1 mappings from class hierarchies into type
hierarchies due to free choice between inheritance
and composition:

WINDOW WINDOWBUFFER

BUFFEREDITOR

EDITOR

 1993 A J H Simons Object-Oriented Type Theory 10

Convenience Viewpoint

Class as a unit of implementation: formally lax; with
some advantages...

 decoupling of class from type (can reason
separately), as in Emerald;

 maximum reuse of implementations (but some
odd abstractions);

 economy in levels of indirection (in structures)
and levels of nesting (in call-graphs).

eg RECTANGLE as a subclass of POINT:

RECTANGLE

width

height

POINT

x

y

RECTANGLE

width

height

x

y

TEMPLATE

 1993 A J H Simons Object-Oriented Type Theory 11

Ambitious Viewpoint

Class fulfils the same role as type for OOP:

 classification a natural activity in Psychology,
undergirds types and abstraction;

 concept differentiation in AI can be compared with
coerceable typing systems;

 strong desire to capture abstraction even in the
type-free OOP languages;

 traditional languages have not addressed the
possibility of systematic sets of relationships
between types;

The fact that something systematic is possible in
OOP means that there probably is an underlying
type model which has not yet been discovered!

 Class and type are directly related notions.

 Is it correct to treat classes as types?

 What usage of classes is type-consistent?

 1993 A J H Simons Object-Oriented Type Theory 12

Strong and Weak Inheritance

Clash of ambitious/convenience views:

Strong inheritance: sharing specification -
functional interface and type axioms by which all
descendants should be bound.

Weak inheritance: sharing implementation -
opportunistic reuse of functions and declarations for
storage allocation.

POLYGON

TRIANGLE RECTANGLE

POLYGON

TRIANGLE

RECTANGLEdraw
move
rotate

Maximising reuse of storage for corners of figures
{origin, extent, ... nth vertex} leads to crazy type
hierarchies.

Type-consistent inheritance - allow only certain
kinds of implementation sharing.

 1993 A J H Simons Object-Oriented Type Theory 13

Creeping Implementation

Clash of ambitious/convenience views:

Selective inheritance: introduced through
orthogonal export rules; undefinition rules (eg in
Eiffel)

POLYGON

RECTANGLE

AddVertex

Leads to type violation - RECTANGLE does not
respond to all the functions of POLYGON, therefore
cannot be a POLYGON.

Implementation concerns creep into abstract
specification of POLYGON:

 intended as abstract type for all closed figures;

 actually used to model concrete N-vertex
polygons.

...but a RECTANGLE can't add to its vertices!!

 1993 A J H Simons Object-Oriented Type Theory 14

Inheritance: Exercises

 Q1: Design a type-consistent inheritance
hierarchy (without deletions) for modelling the
abstract behaviour of different kinds of bird, to
include:

ALBATROSS (which soars, mainly)

PENGUIN (which swims, mainly)

OSTRICH (which runs, mainly)

What is it that unites the class of all birds?

 Q2: Some OO methods advocate the discovery
of inheritance structures by identifying entities,
listing their attributes and factoring out common
attributes in local superclasses.

Explain why this approach fails to guarantee type-
consistent inheritance.

 1993 A J H Simons Object-Oriented Type Theory 15

Abstract Data Types

Now, a look at the foundations of type theory.

 Types as sorts and carrier sets.

 Types defined with function signatures.

 Types defined with logic axioms.

 Recursion: fixed point analysis.

 Recursion: ideals and Scott domains.

Algebraic approach to type modelling (cf Goguen),
rather than constructive approach (cf Martin-Löf).
Advantage: you define abstract types, rather than
concrete ones.

 1993 A J H Simons Object-Oriented Type Theory 16

Types: Sorts and Carrier Sets

Initial idea is that all types are sets:

x : T x T

This concept used to 'bootstrap' the first few
abstract type definitions; Notion of sorts and
carrier sets.

A sort (eg NATURAL or BOOLEAN) is:

"an uninterpreted identifier that has a
corresponding carrier in the standard (initial)
algebra" (Danforth and Tomlinson, 1988).

A carrier set is some concrete set of objects which
you can use to model sorts.

BOOL {true, false}- finite set

NAT {0, 1, 2, ... } - infinite set

An algebra is a pair of a sort (carrier set) and a
set of operations over elements of the sort (carrier):

BOOLEAN <BOOL, {, , , , }>

 1993 A J H Simons Object-Oriented Type Theory 17

Types: Functions

However, it is too restrictive to model abstract types
as concrete sets - consider:

SIMPLE_ORDINAL {0, 1, 2, ... }

SIMPLE_ORDINAL {a, b, c ... }

The type SIMPLE_ORDINAL can be modelled by a
variety of carriers which have an ordering defined
over them.

"Types are not sets" (Morris, 1973).

SIMPLE_ORDINAL is more precisely defined as the
abstract type over which the functions First() and
Succ() are meaningfully applied:

SIMPLE_ORDINAL ord . {
First : ord;
Succ : ord ord }

NB: ord is an existentially quantified variable
awaiting the full definition of the type - to allow for
recursion in the type definition.

 1993 A J H Simons Object-Oriented Type Theory 18

Types: Axioms

But this is still not enough - consider the possibility
that:

Succ(1) 1
Succ(b) a

We need to constrain the semantics of operations
using logic axioms:

x, y : SIMPLE_ORDINAL
Succ(x) x
Succ(x) First()

 Succ(x) = Succ(y) x = y

This is exactly enough to ensure that the type
behaves like a SIMPLE_ORDINAL:

X X X0 1 2First()

Succ(x) Succ(x)

Abstract types defined in terms of operations with
axioms are both more general and more precise
than the types-as-sets view.

 1993 A J H Simons Object-Oriented Type Theory 19

Types: Recursion

Do existential types exist? Problems with recursion
in type definitions:

SIMPLE_ORDINAL ord . {
First : ord;
Succ : ord ord }

Analogy: Consider the recursive function:

add a.b. if b = zero then a
else (add (succ a)(pred b))

This is merely an equation that add must satisfy:

 there is no guarantee that add exists;

 there may not be a unique solution.

cf x2 = 4 x = 2 | x = -2

Standard technique for dealing with recursion is to
'solve' the equation above (Scott, 1976).

 1993 A J H Simons Object-Oriented Type Theory 20

Recursion: Fixed Point Analysis

Approach to solving recursive equations:

 transform body into non-recursive form by
replacing recursive call with abstraction:

add a.b. if b = zero then a
else (add (succ a)(pred b))

ADD f.a.b. if b = zero then a
else (f (succ a)(pred b))

 use this new function to generate the recursive
version:

add (ADD <some fn>)

 It so happens that what we really need is:

add (ADD add)

 ie add is defined as a value which is unchanged
by the application of ADD:

 such a value is called a fixed point of ADD.

 1993 A J H Simons Object-Oriented Type Theory 21

Recursion: Fixed Point Finder

We have transformed the task of finding a recursive
solution for add into finding fixed points for ADD.

 There might be many such fixed points;

 Under certain conditions, it is possible to define
the least fixed point of any function using the fixed
point finder, .

 has the property that:

f = (F) (F f) = f

 Here is a definition of . Note how it also is not
recursive, but does contain delayed self-
application:

 f.(s.(f (s s)) s.(f (s s)))

 Calculus Reduction Rules:

(x.x a) a

((x.y.(x y) a) b) (y.(a y) b) (a b)

(f a b) ((f a) b)

 1993 A J H Simons Object-Oriented Type Theory 22

Recursion: Derivation of add

ADD g.a.b. if b = zero then a
else (g (succ a)(pred b))

 f.(s.(f (s s)) s.(f (s s)))

add (ADD) {ADD / f}

 (s.(ADD (s s)) {(s s) / g}
s.(ADD (s s)))

 (s.a.b. if b = zero then a {... / s}
else ((s s)(succ a)(pred b))

s.(ADD (s s)))

 a.b. if b = zero then a
else ((s.(ADD (s s)) s.(ADD (s s)))

(succ a)(pred b))

 ... {... / s; (succ a) / a; (succ b) / b}

 a.b. if b = zero then a
 else (if (pred b) = zero then (succ a)

else ((s.(ADD (s s)) s.(ADD (s s)))
(succ (succ a))(pred (pred b)))

... etc

 1993 A J H Simons Object-Oriented Type Theory 23

Types: Domain Theory

Finding fixed point solutions to existential types
requires certain conditions - denotational semantics
of calculus (Scott, 1976) needs domain theory.

 V is the domain of all computable values, ie

V BOOLEAN + NATURAL +
[V V] + [V V].

 A complete partial order (cpo) relationship is
constructed among some sets of values in V.

 Certain sets of values are used as carriers for
types - can solve recursive equations using set-
theoretic interpretation.

'Useful' carrier sets known as ideals, which have the
following properties:

 downward closed under cpo;

 consistently closed under cpo;

on the domain V. What do these properties mean?

 1993 A J H Simons Object-Oriented Type Theory 24

Types: Ideals

Example: the powerset of natural numbers is an
ideal. Can approximate NAT and (NAT) with finite
subsets:

NAT = {0, 1, 2}

(NAT) = {{}, {0}, {1}, {2}, {0,1}, {1,2},
{0,2}, {0,1,2}}

 Downward closed: if {1,2} is in the type (set),
then so are its approximations {1}, {2} and {}
which are all 'less than' {1,2} under the cpo .

 Consistently closed: if an approximation to the
type (subset) is {{0}, {1,2}} then its least upper
bound {0,1,2} is also in the type.

Here, LUB(S) x,yS zS (x z y z)

Two important results from using ideals (MacQueen
et al., 1984):

 the set of all types (ideals) becomes a complete
lattice under ;

 recursive type equations have solutions.

 1993 A J H Simons Object-Oriented Type Theory 25

Abstract Types: Exercises

 Q1: In mathematics, a monoid is an algebra <S,
op, id> with certain properties, where

S is the sort (set) of elements;

op : S S S is an associative function taking a
pair of elements back into the sort;

id S is the identity element for which

(op id any) any.

How many examples of monoids can you find in
the standard data types provided in programming
languages?

 Q2: Is the set of NATURAL numbers an ideal?
Explain why, or why not.

 Q3: Provide a functional and axiomatic
specification for the abstract type STACK.

 1993 A J H Simons Object-Oriented Type Theory 26

Inheritance and Subtyping

At first glance, inheritance looks very similar to
subtyping; both are kinds of partial order
relationship.

 Subtyping Rule for Subranges

 Subtyping Rule for Functions

 Subtyping Rule for Axioms

 Subtyping Rule for Records

"A type A is included in (is a subtype of) another
type B when all the values of type A are also
values of B" (Cardelli and Wegner, 1985).

 1993 A J H Simons Object-Oriented Type Theory 27

Subtyping Rule for Subranges

Type constructor for subranges: s..t

where s NATURAL;
t NATURAL;
s t;

The set of all subranges is an ideal; useful partial
order among elements allowing the construction
of a subtype graph:

1..9

1..6 4..9

4..61..3 7..9

Subtyping for Subranges (Rule 1)

s..t .. iff s and t

henceforward, we shall use the (weaker) implication
and denote this using:

 s , t

 s..t ..

 1993 A J H Simons Object-Oriented Type Theory 28

Functions: Generalisation

Type constructor for functions:

name : domain codomain

Use subranges to model types in the domain and
codomain of -expressions:

f : 2..5 3..6
 x . x +1 (f 3) 4

Consider how simple types generalise: 3 has type
3..3 and also the type of any supertype:

3 : (3..3) (3..4) (2..4) (2..5)

Now consider how function types generalise:

g : (2..5 4..5) (2..5 3..6)

because it maps its domain to naturals between 4
and 5 (and hence between 3 and 6); however

h : (3..4 3..6) (2..5 3..6)

because it only maps naturals between 3 and 4
(and hence not between 2 and 5) to its codomain.

Subtyping Rule for Functions

 1993 A J H Simons Object-Oriented Type Theory 29

The inclusion (ie generalisation) rule for function
types therefore demands that

 the domain shrinks; but

 the codomain expands:

f : (2..5 3..6) (3..4 2..7)

Subtyping for Functions (Rule 2)

 s , t

 s t

This means that for two functions A B if

 A is covariant with B in its result type;
ie (result A) (result B)

 A is contravariant with B in its argument type; ie
(argument A) (argument B)

This is an important result for OOP.

 1993 A J H Simons Object-Oriented Type Theory 30

Axioms: Specialisation

Consider that STACK and QUEUE have
indistinguishable functional specifications:

SQ sq . {push : ELEMENT sq sq;
 pop : sq sq;
 top : sq ELEMENT}

without the appropriate constraints to ensure

 LIFO property of STACKs

 FIFO property of QUEUEs.

Imagine an unordered collection receiving an
element - we may assert the constraint:

e : ELEMENT, c : COLLECTION
e add(e,c)

Now, if we want to consider a STACK as a kind of
COLLECTION, we may assert an additional axiom
to enforce ordering:

e : ELEMENT, s : STACK
e add(e,s);
top(add(e,s)) = e

which is a more stringent constraint.

 1993 A J H Simons Object-Oriented Type Theory 31

Subtyping Rule for Axioms

A constraint is more stringent, if it rules out more
objects from a set:

{ x STACK } { y COLLECTION }

and this is the subtyping condition.

Constraints can be made more stringent by:

 adding axioms

 modifying axioms

A modified axiom is one which necessarily entails
the original one; here we can assert:

(top(add(e,s)) = e) (e add(e,s))

Subtyping for Axioms (Rule 3)

 1 1, ... k k

{ 1, ... k, ... n } { 1, ... k }

This means that for two constraints A B if

 A has n-k more axioms than B

 the first k axioms in A entail those in B (could be
identical).

 1993 A J H Simons Object-Oriented Type Theory 32

Objects as Records

Simple objects may be modelled as records whose
components are a set of labelled functions
representing methods:

 access to stored attributes represented using
nullary functions;

 modification to stored attributes represented by
constructing a new object.

Non-recursive records:

INT_POINT {
x : INTEGER; y : INTEGER }

Recursive records (assumes pnt):

CART_POINT Rec pnt . {
x : INTEGER; y : INTEGER;
moveBy : INTEGER x INTEGER pnt;
equal : pnt BOOLEAN }

 assumes objects are applied to labels to select
functions: (obj label).

 1993 A J H Simons Object-Oriented Type Theory 33

Subtyping Rule for Records

Consider that objects of type:

COL_POINT { x : INTEGER;
y : INTEGER; color : INTEGER }

may also be considered of type INT_POINT, since
they respect all INT_POINT's functions;

Consider also that objects of type:

NAT_POINT {
x : NATURAL; y : NATURAL }

are a subset of all INT_POINTs defined by:

{ p INT_POINT | p.x 0, p.y 0 }

Subtyping for Records (Rule 4)

 1 1, ... k k

{ x1:1, ... xk:k, ... xn:n } { x1:1, ... xk:k }

This rule says that for two records A B if

 A has n-k more fields than B;

 the first k fields of A are subtypes of those in B
(could be the identical type).

 1993 A J H Simons Object-Oriented Type Theory 34

Subtyping: Exercises

 Q1: Is class B class A? Explain why, or why
not. (NB - here, model classes as records and
attributes as nullary functions).

class A class B inherit A
attributes attributes

x : INTEGER; b : BOOLEAN;
y : INTEGER; methods

methods foo : A D;
foo : B C; bar : B D;

end. end.

class C class D inherit C
attributes attributes

o : A; o : B;
methods methods

baz : A C baz : B D
end. end.

 1993 A J H Simons Object-Oriented Type Theory 35

Polymorphism and Type Recursion

We can now describe inheritance in terms of
subtyping; but soon will see how this is not enough.

 Inheritance considered as subtyping

 Polymorphism introduces type recursion

 Polarity in type expressions

 Subtyping breaks down: positive recursion

 Subtyping breaks down: negative recursion

The type model we have introduced cannot yet
handle the kind of type recursion introduced by
inheritance with polymorphism.

 1993 A J H Simons Object-Oriented Type Theory 36

Inheritance as Subtyping

Any two related classes, modelled as records
containing sets of functions, are in a subtype
relation A B if:

 extension: A adds monotonically to the functions
inherited from B (Rule 4); and

 overriding: A replaces some of B's functions with
subtype functions (Rule 4); and

 restriction: A is more constrained than B (Rule 3)
or a subrange/subset of B (Rule 1).

A function may only be replaced by another if:

 contravariance: arguments are more general
supertypes (Rule 2); and therefore preconditions
are weaker (Rule 3);

 covariance: the result is a more specific subtype
(Rule 2); and therefore postconditions are
stronger (Rule 3).

Many current OOLs violate these constraints.
However, even this is not sufficient...

 1993 A J H Simons Object-Oriented Type Theory 37

Polymorphism and Type Recursion

Inheritance with polymorphism is analogous to
mutual type-recursion (Cook & Palsberg,1989):

Consider a function F and a derived (modified)
version M which depends on F...

Direct derivation - encapsulation is preserved:-

client M F

Naive derivation from recursive structure:-

client M F

 In the naive case, the modification only affects
external clients, not recursive calls.

Derivation analogous to inheritance:-

client M F

 In the case of polymorphic inheritance, self-
reference in the original class must be changed to
refer to the modification.

 1993 A J H Simons Object-Oriented Type Theory 38

Polarity in Type Expressions

When we examine our inheritance-as-subtyping
model in the context of polymorphism, different
things go wrong depending on the location of
recursive type variables.

Analogy with polarity in logic (Canning, Cook, Hill,
Olthoff & Mitchell 1989):

Definition: Positive and Negative Polarity

In the type expression:

 appears negatively and positively.

Positive Type Recursion:

 occurs when the recursive type variable appears
on the RHS of the constructor.

Negative Type Recursion:

 occurs when the recursive type variable appears
on the LHS of the constructor.

 1993 A J H Simons Object-Oriented Type Theory 39

Positive Type Recursion

Consider classes in a simple screen graphics
package. We would like a move function:

MOVEABLE Rec mv . {
move : INTEGER INTEGER mv }

to apply polymorphically to all descendants of
MOVEABLE, such as SQUARE and CIRCLE.

However move does not have the type:

move : t MOVEABLE . t
(INTEGER INTEGER t)

but rather the type:

move : t MOVEABLE . t
(INTEGER INTEGER MOVEABLE)

 Whenever we move SQUAREs or CIRCLEs we
always obtain an object of exactly the type
MOVEABLE (we lose type information).

 The algebra does not force the function's result
type to mirror its polymorphic target.

 Cannot cope with positive type recursion.

 1993 A J H Simons Object-Oriented Type Theory 40

Negative Type Recursion

Consider now that we would like a < function

COMPARABLE Rec cp . {
< : cp BOOLEAN }

to apply polymorphically to all descendants of
COMPARABLE such as INTEGER and
CHARACTER, which inherit the < operation.

Now, the function < does not have the type:

< : t COMPARABLE . t
(t BOOLEAN)

but rather the type:

< : t COMPARABLE . t
(COMPARABLE BOOLEAN)

 Whenever we compare INTEGERs, the < function
always expects an argument of exactly the type
COMPARABLE.

 The algebra does not force < to compare
operands of the same type.

 Cannot cope with negative type recursion.

 1993 A J H Simons Object-Oriented Type Theory 41

Subtyping Breaks Down

If we unroll the inherited type definitions for
CHARACTER or INTEGER, we can force the
function < to accept the types we desire:

CHARACTER Rec ch . { ...; print : ch ;
< : ch BOOLEAN; ... }

By explicit redefinition, < now has the type

< : t CHARACTER . t
(CHARACTER BOOLEAN)

To ensure CHARACTER COMPARABLE, we
need to obtain subtyping among functions in the
pair of records:

{...; < : CHARACTER BOOLEAN; ... }
 { < : COMPARABLE BOOLEAN }

requiring COMPARABLE CHARACTER in turn by
contravariance!

 CHARACTER COMPARABLE cannot be
derived using the rules of subtyping unless in fact
CHARACTER COMPARABLE.

 A simple subtyping model breaks down in the
presence of polymorphism.

 1993 A J H Simons Object-Oriented Type Theory 42

Type Recursion: Exercises

 Q1: Given the following classes, explain how the
expression

x.park;

involves mutual type recursion when x is of type
CAR.

class VEHICLE class CAR inherit
attributes VEHICLE

home : GARAGE;attributes
methods home : PORT;

park is end.
 home.take(self)
end;

end. class GARAGE
attributes
 keep : VEHICLE:

class PORT inherit methods
GARAGE take(v : VEHICLE) is

attributes keep := v
keep : CAR; end;

end. end.

 1993 A J H Simons Object-Oriented Type Theory 43

Polymorphic Type Space

The problem is that we have been treating classes
as though they were actual types, when in fact they
are type constructors.

 Ambiguous semantics of class

 Type space and fixed points

 F-bounded quantification

 Polymorphic subtyping

 Relationship with Category Theory

 1993 A J H Simons Object-Oriented Type Theory 44

Classes: Semantic Ambiguity

Problem stems from semantic ambiguity which we
have not captured:

A class may denote either:

 open semantics: a space of possible types (the
bounded, but possibly infinite set of descendent
classes derived from it); or

 closed semantics: a specific type (the type of
new objects created from the class template);

Implicitly we adopt the open semantics
interpretation:

 when designing open-ended class libraries using
inheritance;

 when assigning types to polymorphic variables;

but may switch to the closed semantics
interpretation:

 when creating new objects.

 1993 A J H Simons Object-Oriented Type Theory 45

Type Space and Fixed Points

Imagine the space of all possible recursive abstract
types (RATs) - this type domain:

 is quantal in single functions (and axioms);

 contains RATs corresponding to the powerset of
all functions;

 forms a complete lattice under the cpo .

General

Specific

Actual Type

Polymorphic Type

Classes define bounded, closed volumes in the type
domain - these are true polymorphic types - with a
least fixed point at the apex - this is the most
general actual type satisfying the bound.

 1993 A J H Simons Object-Oriented Type Theory 46

Classes as Type Constructors

The type constructor for ARRAYs contains explicit
type parameters denoting 'unknown' or 'incomplete'
parts of the type:

ARRAY [s SUBRANGE] OF [t TOP]

Classes are also constructors, containing an implicit
type parameter which:

 abstracts over the entire class body;

 corresponds to the 'known' parts of the type;

 must permit full recursive instantiation with any
suitable type satisfying the class bound.

Mathematically, we have been modelling
polymorphism inadequately using bounded
universal quantification:

t (Rec r . F(r)) . (t)

whereas we need a construct which permits type
recursion in the constraining typing function itself:

t F[t] . (t)

 1993 A J H Simons Object-Oriented Type Theory 47

Deriving Typing Functions

(Canning, Cook, Hill, Olthoff & Mitchell 1989) obtain
typing functions which have the recursive properties
we desire.

Consider the polymorphic move function.

Working backwards, we seek the condition on a
type t so that for any variable x : t we can derive ""
that x.move(1, 1) is also of type t.

x : t x.move(1, 1) : t { by assumption }

Using a type rule for function application:

f : , v :
APP

 (f v) :

x : t x.move : (INTEGER INTEGER t)

Using a type rule for record selection:

 r : { 1:1, ..., n:n }
SEL i 1..n

 r.i : i

x : t x : { move : INTEGER INTEGER t }

 1993 A J H Simons Object-Oriented Type Theory 48

F-Bounded Quantification

x : t x : { move : INTEGER x INTEGER t }

is the minimal constraint on the record type of x.
Using the subtyping rule, we can introduce more
specific record types such that:

 { move : INTEGER INTEGER t }

x : t x :

Since the type does not occur in any other
assumption, we may simplify using { t / } to the
requirement

t { move : INTEGER INTEGER t }

which cannot be proved without additional
assumptions.

Expressing this condition as t F-Moveable[t],
where F-Moveable[t] is a typing function:

F-Moveable[t] {
move : INTEGER INTEGER t }

it is clear that this condition fits the format for the
kind of quantification we desire.

 1993 A J H Simons Object-Oriented Type Theory 49

Polymorphic Types

Using such typing functions which preserve
recursion in type parameters, we can give an
intuitively pleasing type to polymorphic spaces in
the type domain:

F-Moveable[t] {
move : INTEGER INTEGER t }

F-Comparable[t] { < : t BOOLEAN }

Actual types are obtained by the application of
these typing functions to specific types, whereby the
parameter is replaced:

F-Moveable[SQUARE] { move :
INTEGER INTEGER SQUARE }

F-Moveable[CIRCLE] { move :
INTEGER INTEGER CIRCLE }

F-Comparable[CHARACTER] {
< : CHARACTER BOOLEAN }

F-Comparable[INTEGER] {
< : INTEGER BOOLEAN }

 1993 A J H Simons Object-Oriented Type Theory 50

Polymorphic Subtyping

If we unroll the type definitions for SQUARE or
CIRCLE we get:

SQUARE Rec sqr . { ...;
move : INTEGER INTEGER sqr; ... }

CIRCLE Rec cir . { ...;
move : INTEGER INTEGER cir; ... }

thereby demonstrating that:

SQUARE F-Moveable[SQUARE]
CIRCLE F-Moveable[CIRCLE] ...etc

which is precisely what we want.

Note that the most general type satisfying the bound
is the type over whose body we abstracted:

MOVEABLE F-Moveable[MOVEABLE]

but we do not have any other simple subtyping
relationships:

SQUARE MOVEABLE
CIRCLE MOVEABLE

 1993 A J H Simons Object-Oriented Type Theory 51

Links with Category Theory

One semantic interpretation of F-bounded
quantification relies on Category Theory.

 A category is a collection of abstract objects with
similar structure and behaviour,

cf all objects conforming to some type.

 Structure-preserving maps, called morphisms, f :
x y, exist from object to object in a category,

cf correspondences between different
representations of objects within a type.

 A morphism f with an inverse, g : y x, results in
two isomorphic objects x y,

cf two objects with identical type.

 The initial object in each category has a single
morphism extending to every other object,

cf the most abstract denotation of all objects
conforming to some type.

 1993 A J H Simons Object-Oriented Type Theory 52

-Algebra Semantics

 Morphism-preserving maps, called functors, : C
 D, exist from category to category,

cf polymorphic inheritance which maps behaviour
for one type into behaviour for another type (with
"more structure").

 An endofunctor is a which maps from a
category into itself, ie f : (t) t,

cf recursive construction of a type (with "more
structure", in the same category).

 A -algebra is the category of pairs <t, f>, where f
: (t) t are morphisms among a recursively
constructed type,

cf category of all objects in a recursive type.

 An initial -algebra is the solution to the equation
(t) t, a fixed point of ,

cf the most abstract denotation of a recursive
type.

 Since (t) t, the inverse g : t (t) must also
exist.

 1993 A J H Simons Object-Oriented Type Theory 53

Quantification over -Coalgebras

The dual of a category theory construct is one in
which "arrows are reversed":

 morphisms are replaced by their inverse;

 initial objects become terminal objects.

The dual of a -algebra is a -coalgebra or
category of pairs <t, g>, with g : t (t).

 Both the initial -algebra and terminal -
coalgebra satisfy t (t).

When we use F-bounded quantification, we say t
 F[t]

 which implies a map g : t (t), ie

 quantification over pairs <t, g> or some family of
-coalgebras.

Since any recursive type Rec t . F[t] may be
regarded as a particular -coalgebra,

F-bounded quantification is over a category whose
objects are "generalisations" of the recursive type
Rec t . F[t].

 1993 A J H Simons Object-Oriented Type Theory 54

Type Spaces: Exercises

 Q1: What kind of semantics (open or closed) do
we typically give to the following kinds of
expression?

p : POINT; ...
p.Create(2,4);

a : ARRAY[GRAPHIC]; ...
a.put(sqare1, 1);
a.put(circle3, 2);

x : like Current; ...
x.Create(...);

 Q2: What morphisms exist, in the category of
monoids, between <LIST, append, nil>, and
<STRING, concat, ""> ?

 Q3: Describe the category theoretic relationship
between the algebras <SEQUENCE, {append}>
and <SEQUENCE, {append, length}> .

 1993 A J H Simons Object-Oriented Type Theory 55

Implications for Language Design

If classes are considered properly as type
constructors, then various considerations arise in
relation to resolving the number and scope of
implicit parameters (Simons and Cowling, 1992).

 Type recursion with self-reference.

 Single and multiple parameters.

 Homogenous and heterogenous collections.

 Combining polymorphism and genericity.

 1993 A J H Simons Object-Oriented Type Theory 56

Type Recursion: Self-Reference

Object-oriented languages need to distinguish
actual (albeit general) types, eg:

m : MOVEABLE;

from F-bounded polymorphic types,

m : t F-Moveable[t];

which we might represent syntactically using an
explicit parameter:

m : MOVEABLE(M);

such that it is clear when expressions have a
recursively instantiated polymorphic type:

move : M (INTEGER INTEGER M);

The parameterised construct correctly handles the
flexible typing of expressions such as:

x : like <anchor>; in Eiffel
x class new; in Smalltalk

in the same manner as (Milner, 1978) for the
functional languages.

 1993 A J H Simons Object-Oriented Type Theory 57

Single and Multiple Parameters

Object-oriented languages need to be able to
distinguish polymorphic functions accepting
homogenous arguments:

< : t COMPARABLE . t
(t BOOLEAN)

from polymorphic functions accepting heterogenous
arguments:

< : s, t COMPARABLE . s
(t BOOLEAN)

where this might be represented syntactically using
two type parameters:

class COMPARABLE(S|T) ...

< : S (T BOOLEAN)

permitting different instantiations of each parameter.
Such a function would accept:

3 < 'a'; 'b' < 70;

as legal expressions (possibly implemented over
byte-size representations).

 1993 A J H Simons Object-Oriented Type Theory 58

Homogenous and Heterogenous
Collections

Object-oriented languages need to be able to
distinguish properly the types of homogenous
collections from heterogenous collections. For
example,

d : LIST [GRAPHIC];

should denote homogenous lists of objects precisely
of the (albeit general) type GRAPHIC; whereas:

d : LIST [GRAPHIC(T)]

should denote polymorphic, but homogenous lists of
any type constrained by

t F-Graphic[t]

and finally

d : LIST [GRAPHIC(S|T)]

should denote polymorphic, heterogenous lists of
any types constrained by

s, t F-Graphic[s, t] .

 1993 A J H Simons Object-Oriented Type Theory 59

Combining Polymorphism and
Genericity

The introduction of a bound parameter for
polymorphic types brings these closer to generic
constructs (eg in Ada and Eiffel).

Instead of a special generic syntax:

x : LIST [ANY(S|T)]

we could treat all recursively and iteratively defined
collections as recursive record types:

class LIST(L) ...
item : ANY(S|T);
next : L; ...

and apply generic type constructors using the same
syntax as for inheritance:

class ORDERED_LIST(O)
inherit LIST(O)
redefine

item : COMPARABLE(C); ...

here, obtaining a homogenous list of ordered items
from a heterogenous list of any item.

 1993 A J H Simons Object-Oriented Type Theory 60

Reference Material

The basic bibliography is still difficult for beginners,
but may prove rewarding after the exposition of this
tutorial.

The more advanced material provides much of the
mathematical foundation for the arguments
presented here and should only be handled by
properly-trained mathematicians!

 1993 A J H Simons Object-Oriented Type Theory 61

Basic Bibliography

 L Cardelli (1984), 'A semantics of multiple
inheritance', in: Semantics of Data Types, LNCS
173, Springer Verlag, 51-68.

 L Cardelli and P Wegner (1985), 'On
understanding types, data abstraction and
polymorphism', ACM Computing Surveys 17 (4),
471-521.

 S Danforth and C Tomlinson (1988), 'Type
theories and OOP', ACM Computing Surveys, 20
(1), 29-72.

 P Canning, W Cook, W Hill, W Olthoff and J
Mitchell (1989), 'F-bounded polymorphism for
OOP', Proc. Func. Prog. Langs. and Comp. Arch.
4th Int. Conf, 273-280.

 W Cook and J Palsberg (1989), 'A denotational
semantics of inheritance and its correctness',
Proc. OOPSLA-89, 433-443.

 P Canning, W Cook, W Hill and W Olthoff (1989),
'Interfaces for strongly-typed OOP', Proc.
OOPSLA-89, 457-467.

 1993 A J H Simons Object-Oriented Type Theory 62

Other References

 D Scott (1976), 'Data types as lattices', SIAM J.
Computing, 5 (3), 523-587.

 R Milne and C Strachey (1976), A Theory of
Programming Language Semantics, Chapman
and Hall.

 R Milner (1978), 'A theory of type polymorphism
in programming', J. Comp. and Sys. Sci. 17, 348-
375.

 D MacQueen, G Plotkin and R Sethi (1984), 'An
ideal model for recursive polymorphic types',
Proc. POPL-84, 165-174.

 A Snyder (1986), 'Encapsulation and inheritance
in OOP languages', Proc. OOPSLA-86, 38-45.

 W Cook, W Hill and P Canning (1990),
'Inheritance is not subtyping', Proc. POPL-89,
125-135.

 A Simons and A Cowling (1992), 'A proposal for
harmonising types, inheritance and polymorphism
for OOP', Report CS-92-13, Dept. Comp. Sci,
University of Sheffield, UK.

