Object Discovery

A process for developing medium-sized object-oriented applications

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 1

Object Discovery

ECOOP'98

Part One

History and Principles behind the Discovery Method

Background to Discovery

OThird-Generation

- O 1st "naive" generation, circa 1990
- 2nd "eclectic" generation, circa 1994
- 3rd "selective" generation, circa 1998

OInfluences

- OBA/Graham/Jacobson/Gilb analysis
- O RDD/OOSE object modelling
- O JSP/Harel control, ERM data modelling
- O RDD/Design Patterns system architecture
- O Fusion/Z detailed design and specification

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 3

Object Discovery

ECOOP'98

Background to Discovery

OCase Studies

- O Reengineer 10-year old CAD
- O Glass gob manufacture
- O Personal and business loans
- O In-flight shopping and entertainment
- O Academic registration and tracking
- O Course options organiser

OAffiliation

- OPEN Consortium (30+)
- OPEN Working Groups (~15)
- **OPEN Process and Metamodel**

Discovery Method Version 1.0: January 1998

Principles of Discovery

O Transformational

- ...versus elaborational
- O current into required (cf SSADM)
- O analysis into design (cf SSADM)
- O seamlessness versus traceability

OCognitive Focus

- O power of abstractions (cf Gestalt)
- O plasticity of early models
- O selective use of techniques
- O "discovery procedures"

indicates some reinforcement technique

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 5

Object Discovery

ECOOP'98

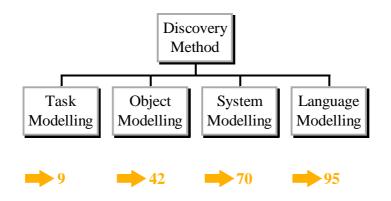
Power of Abstraction

Principles of Discovery

O Technical Process

- O respect focus of techniques
- O sequence inputs and outputs
- O cross-check overlapping models
- O provide systematic guidelines

OCommunication


- **O** continuous client involvement
- O uncluttered visual models
- O presentation and feedback
- O setting development priorities

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 7

Object Discovery

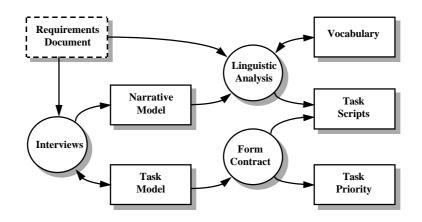
ECOOP'98

Phases of Discovery

Part Two

Discovery Task Modelling Phase: Requirements Engineering

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 9

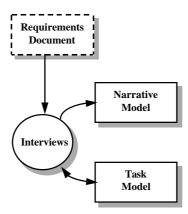

Object Discovery

ECOOP '98

Task Modelling Activities

Ointerviewing techniques –	12
Osystem task identification =	20
Onarrative modelling	24
Oconstruction of vocabularies	28
Oscripting in restricted grammar	3
Otask priority matrix	37

Discovery: Task Modelling



Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 11

Object Discovery

ECOOP '98

Interviews

Goals of Interviewing

QEstablish Business Model

- **O** whole business context
- O human and machine interactions
- O natural business constraints

OCapture Client Concerns

- O important make-or-break
- O social, political factors

OEstablish Feasible System

- O automation boundary
- o costs and benefits

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 13

Object Discovery

ECOOP'98

Interviewing Bias

OThe Client

- O total understanding of problem
 - o implicit, compiled expertise
- **O limited explicit formulation:**
 - o single or narrow goals
 - o existing procedures, interfaces
 - o "requirements" unreliable

OThe Developer

- O limited understanding of problem
- early explicit incomplete formulation:
 - o competence in systems
 - o aware of rationalisations

ECOOP'98 Object Discovery

Non-directive Interviewing

OModelling Assumptions

- O Don't impose your own object-model
- O Let client express their own business model

Question Presuppositions

- O Don't lead with "what X do you do/have?"
- O Use open-ended questions "tell me about..."
- O Don't use multiple-choice, multi-part

OActive Listening

- O clarification "let me see if I got this right..."
- o summarisation "first, you do X, then ..."

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 15

Object Discovery

ECOOP'98

Directed Interviewing

OStakeholders

- O viewpoint analysis by stakeholder
- O bluesky, win-win scenarios

OTask-centred

- O natural focus of client
- O mission-critical task(s)
- task dependency:
 - oindependent, concurrent (thread)
 - Oprecursor, consequent (logical)
 - Oupstream, downstream (time-order)

Directed Interviewing

O"Wh"-questions

- O who stakeholders, actor-rôles
- O what primary tasks, by rôle
- O how business process, subtasks
- O why logical justification, dependent tasks
- O when time constraints, dependent tasks
- O where impl. constraints, boundaries
- O subtasks reveal new actor-rôles
- O continue until no new tasks revealed

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 17

Object Discovery

ECOOP'98

Build the Task Model

ORationale

- O high-level model of business
- O communication visual impact
- O client feedback (corrections)
- O developer feedback (rationalisations)

OTechnique

○ sketch tasks during interviews ○ structure task model

O present to client, revise

20

o present to enem; revise

23

O suggest optimisations, revise

Task Sketch Syntax

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 19

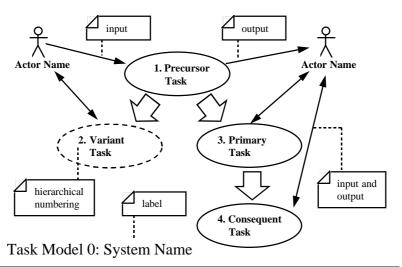
Object Discovery

ECOOP'98

Structure Task Model

ORationale

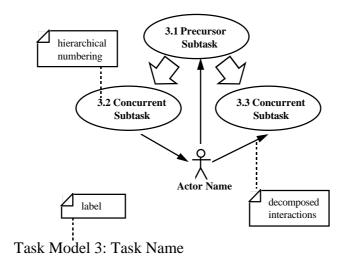
- O captured n tasks in a flat sketch
- O variable granularity, crossed lines
- O compose hierarchy by rules


OTechnique

- O cluster tasks by focus, goal, purpose
- O preserve contiguous boundaries
- O aim for 2-5 tasks per level
- O prefer to avoid crossed lines
- O isolate actor participation types

by actor, direction

Task Model Syntax



Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 21

Object Discovery

ECOOP '98

Task Model Syntax

Discovery Method Version 1.0: January 1998

Task Model Checks

OClient revision

- O check structure is meaningful
- O check participants all present

ODeveloper revision

- O isolate actor interfaces
- O propose task migration

OCross-checks

- o ensure contiguous clusters
- O propagate participation types by level -21-22
- O constraints on model size, crossed lines

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 23

Object Discovery

ECOOP'98

Build the Narrative Model

ORationale

- O storytelling cognitively relevant
- O natural business process paradigm
- O client's natural language

OTechnique

- O complete for each task, subtask
- O identify actor rôles, materials
- O identify prerequisites, postrequisites
- O describe tasks, including:
 - O subtask dispatch points
 - O alternate task branch points
 - O exception task break points

Narrative Model Syntax

Narrative M	odel 0.0: Title of Task	Author	Date	Revision
Purpose: Actor Rôles: Materials:	summary of task goals participants at this level (may elide documents and artefacts used (may	*		
Prerequisites:	material constraints/availability, ac logical dependency, sequential dep		aredness,	
Description:	Natural-language description of task, which may include dispatch points for sequential or concurrent subtasks, branch points for alternate tasks and break points for exceptional tasks. Any rules, conditions, events recorded in the most natural way.			
Exceptions:	Natural-language description of ab	normal termin	nation cases	S.
Postrequisites:	revised material constraints and ac of completeness, e.g. with respect	,		ement

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 25

Object Discovery

ECOOP'98

Narrative Model Syntax

O Presentation options

- embed dispatch points in a single paragraph
- organise by subtask, summarise under subheadings
- organise by business rule, summarise under subheadings
- include exceptions at end of description
- dispatch to exception tasks at break points

Task 1.1: Name Summary of subtask

Task 1.2: Name Summary of subtask

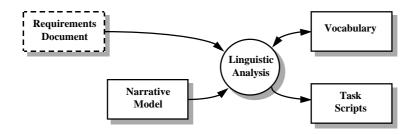
Summary of first subtask [Task 1.1]. Summary of second subtask [Task 1.2].

Narrative Model Checks

OClient Revision

- O check completeness of detail
- O check business logic makes sense

OCross-Checks


- O narrative produced for each task
- O uses only those actors, materials listed
- O prerequisites enabled by precursors
- O postrequisites enable successors

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 27

Object Discovery

ECOOP'98

Linguistic Analysis

Build the Vocabulary

ORationale

- O client vocabulary is rich, context-dependent
- O possible repeated, ambiguous concepts
- O "boil down" the domain vocabulary

OTechnique

- O identify primary, secondary NPs, Vs
- O identify AdjPs, AdvPs, PPs
- O attach AdjPs, secondary NPs to NPs
- O attach AdvPs, (phrasal) Preps to Vs
- O cluster concepts, reduce
- O validate vocabulary with client

30

30

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 29

Object Discovery

ECOOP'98

Vocabulary Clustering

Item	Part	Master	Description
degree module student level option core approved free select allocate	N N N N Adj Adj V	student degree module module module	study programme degree course unit registered for degree year of study optional course unit obligatory for degree optional for degree arbitrary course unit prioritise approved module choices assign students to modules

Build the Scripts

ORationale

- O re-express tasks in core vocabulary
- abstract from physical context
- O abstract from user interface

OTechnique

- O use only the core vocabulary
- O express in restricted grammar
- O complete 1+ scripts for each narrative
- O formalise pre-, postconditions
- O adjust vocabulary
- O adjust task decomposition

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 31

Object Discovery

ECOOP'98

Restricted Grammar

OGraham's SVDPI

Subject Verb DirectObject
[Preposition IndirectObject]

Test Condition Action

Test ::= IF Condition THEN Action [ELSE Action]

| WHILE Condition DO Action

| WHEN Condition DO Action

| FOR Subject IN IndirectObject DO Action;

Condition ::= Subject Verb [Complement];

Action ::= SVDPI;

Restricted Grammar

OSimplify Narrative

- O reduce full NL to simple active sentences
- o may yield object-stimulus-object patterns

OAdjust Vocabulary

O productive in forcing generalisations

OAdjust Tasks

- O productive in simplifying control structures
- O express logic for single item transactions
- O allow iteration row/column transformation

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 33

Object Discovery

ECOOP '98

Task Scripts

Script 2.1: Loan Application	Author	Date	Version
PRE true;			
the customer completes a loan app IF the manager approves the loan a THEN the clerk sends an acceptance lo ELSE the clerk sends a rejection lette	application etter to the cus		
POST IF loan application is approved THEN customer has acceptance ELSE customer has rejection le			

Discovery Method Version 1.0: January 1998

Task Scripts

Script 2.2: Loan Financing	Author	Date	Version
PRE loan application is approved;		•	
the manager forwards the loan application to the banker; the clerk opens a new loan account for the customer; WHEN the manager receives a finance note from the banker DO the clerk sends a repayment schedule to the customer;			
POST the banker has the loan applica the loan account is open; the customer has a repayment s	,		

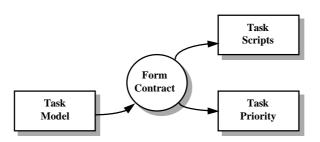
Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 35

Object Discovery

ECOOP'98

Script Checks

OClient revision


- O vocabulary is adequately subtle
- O stylised scripts retain business process

OCross-checks

- O every narrative has one or more scripts
- O each NP, V, ... defined in vocabulary
- O narrative rôles, materials preserved
- O narrative business logic preserved
 - O postconditions entail postrequisites
- O inception and completion formally defined
 - O concrete, testable pre-, postconditions

Discovery Method Version 1.0: January 1998

Form Contract

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 37

Object Discovery

ECOOP'98

Form Contract

ORationale

- O select system components
- o agree system specification
- O agree delivery schedule
- o agree pricing strategy

OTechnique

- o construct priority matrix
- O add client, developer factors
- O prioritise tasks by category
- O agree specification, schedules
- o sign off contract

Task Priority Matrix

Task	OrdId	CliPri	DevPri	EasDev	Priority
1 Registration					18
1.1 UGrad Pre-reg. 1.2 UGrad Registration 1.3 PGrad Registration	5 5 4	5 5 5	5 5 4	3 4 4	18 19 17
2 Academic Progress					16.66
2.1 UGrad Re-reg.	5	5	5	4	19
2.2 Course Changes					15.50
2.2.1 Module Add/Drop 2.2.2 Degree Change	4 4	5 4	4 3	3 4	16 15
3 Alumni Tracking	3	3	2	4	12

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 39

Object Discovery

ECOOP'98

Priority Factors

Order of Identification

- O high score for mission-critical task
- O middle score for client-identified task
- O low score for developer-suggested task

OClient and Developer Priority

- O client's sense of task urgency
- O developer's sense of task dependency
- O invert cost, difficulty: ease of development

OScore to Chosen Depth

- O add equal-scaled factors for leaf nodes
- O average all *leaf* scores for other nodes

Discovery Method Version 1.0: January 1998

Rank Tasks

- O incremental delivery
- O guaranteed and run-on pricing
- future extensions

1.2 UGrad Registration 2.1 UGrad Re-reg.	19 19	Essential
1.1 UGrad Pre-reg. 1.3 PGrad Registration 2.2.1 Module Add/Drop	18 17 16	Necessary
2.2.2 Degree Change	15	Desirable
3 Alumni Tracking	12	Optional

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 41

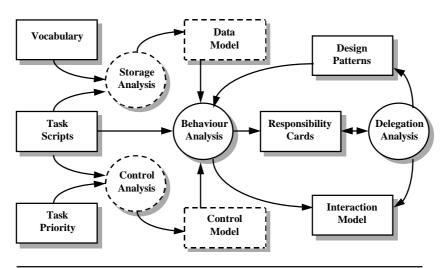
Object Discovery

ECOOP'98

Part Three

Discovery Object Modelling Phase: a Responsibility-Driven Approach

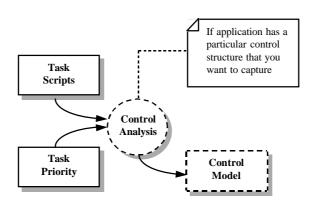
Object Modelling Activities


Oobject identification by behaviour	54
Oresponsibility/collaboration analysis	5 9
Odelegation using Design Patterns	5 6
Ointeraction diagram (object messagin	g) <u>66</u>
Odata modelling (back-end)	49
Ocontrol structures (front-end)	45

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 43

Object Discovery

ECOOP '98


Discovery: Object Modelling

Discovery Method Version 1.0: January 1998

ECOOP'98 Object Discovery

Control Analysis

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 45

Object Discovery

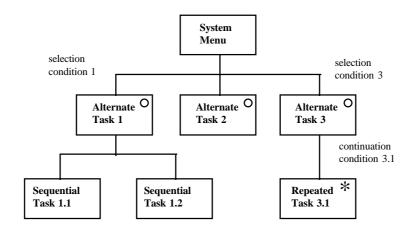
ECOOP'98

Control Model

OHierarchical

- O free selection of tasks
- o impose menu structure
- O use e.g. JSP-style Structure Chart

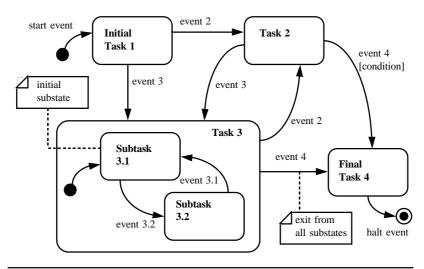
OEvent-Driven


- O tasks enabled, disabled
- O impose abstract state model
- o use e.g. Harel-style, UML State Diagram \longrightarrow 48

OAsynchronous

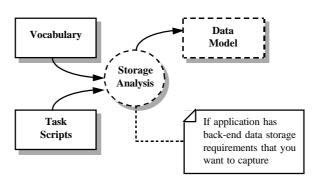
- O shared access to tasks
- O use e.g. Petri Net, UML Activity Diagram

Hierarchical Control Model



Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 47

Object Discovery


ECOOP'98

Event-Driven Control Model

Discovery Method Version 1.0: January 1998

Storage Analysis

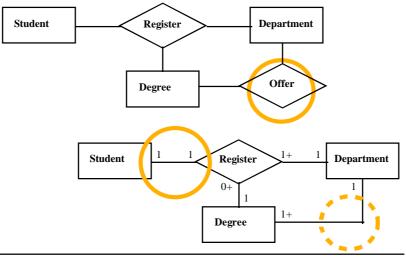
Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 49

Object Discovery

ECOOP'98

Data Model

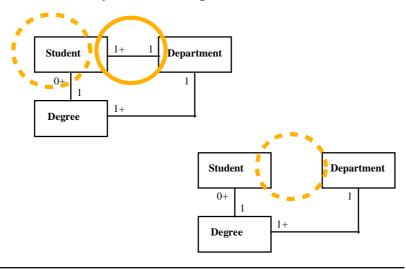
ORationale


- O optimise data storage model
- o interface with relational DBMS
- O no overlaid "object model" semantics

OTechnique

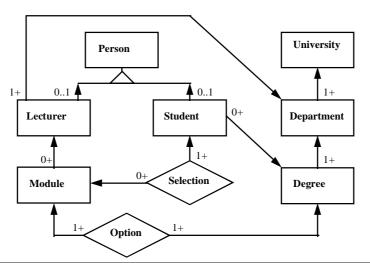
- O entities from NPs + storage Vs
- O build ERM using associations
- O eliminate redundant paths
- O encapsulate M:N, ternary, and higher
- O link dependent to master entities

Entity-Relationship Transformations



Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 51

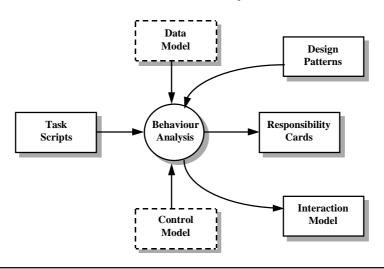
Object Discovery


ECOOP '98

Entity-Relationship Transformations

Discovery Method Version 1.0: January 1998

Data Model



Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 53

Object Discovery

ECOOP '98

Behaviour Analysis

Discovery Method Version 1.0: January 1998

Behaviour Analysis

ORationale

- O objects are agents with a purpose
- O classify by external behaviour
- O distribute system functionality

OTechnique

- O use catalogue of rôles, design patterns
- O identify responsible agents from scripts
- O include any data-managers, controllers
- O write responsibility cards
- O build interaction model

57

59

66

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 55

Object Discovery

ECOOP'98

Pattern Catalogues

OCategories

- O model, support, viewer, controller, stream
- O business objects, system objects, data objects, event handlers, command interfaces

ODesign Patterns

- OSTL, Booch: Bridge
- OERM: Observer, Mediator, Bridge
- ORDD: Mediator, Template Method, Command, Chain

of Responsibility

○ EDD: Command, Composite, Chain of Responsibility

Objects from Scripts

OResponsibility

- who is responsible for the VP activity?
- o could be S, D, I or other

OExamples

O subject responsibility:

the manager forwards the loan application to the banker; the clerk opens a new loan account for the customer;

O object/other responsibility:

the **manager** asks the **banker** for the **funds**; the **student** supplies his/her **student details** for the **registration form**; the **borrower** borrows the **book**;

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 57

Object Discovery

ECOOP'98

Verb Phrase Indicators

Oact upon/request

- O direct object responsible for handling;
- O subject responsible for initiating

Otransmit/send

- O subject responsible for sending;
- O indirect object responsible for receiving/handling

Oprovide/supply

- o neither actor-subject nor form-object
- O usually, some other clerk or manager

Responsibility Cards

ORationale

- O generalisation of CRC cards
- o identify objects by responsible rôles
- O keep active agent perspective

OTechnique

- O group script clauses by agent responsible
- O cluster VP actions by goals
- **Q 2-5 coarse-grained responsibilities**
- 60
- **O** identify collaborators
- O assign data on need-to-know basis
- 61
- O assert invariants for concept

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 59

Object Discovery

ECOOP'98

Front of Card

Name: object name	Author Date	Version		
Purpose: Statement of purpose, no more than two lines of text, describing the overall rôle or goal of the object-concept identified above				
Responsibilities:	Collaborators:			
Coarse descriptions of purpose, breaking down the overall statement above;	The objects involved in helping this one to achieve its purpose;			
The individual goals of the object, rather than each proposed method;	The objects to which this object delegates some of its responsibility;			
Responsibilities for <i>knowing about</i> , and for <i>doing</i> things;	Index each sub-contractor objec	t;		
Enumerate 2-5 (general) statements.	List participating collaborators, against each responsibility state	•		

Reverse of Card

Classification:

Suggested classification of the object concept, such as: unique instance, rôle in a pattern, or class-level concept. Relationship to other concepts, such as is-a, a-kind-of, part-of.

Attributes:

Data attributes discovered for this object, part of its concrete state;

Data assigned on a need-to-know basis to the object which must use it;

Data assigned to the object which manages and protects the information.

Invariants:

Constraint rules relating the different attributes' values to each other;


Conditions describing states which this object may not legally enter;

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 61

Object Discovery

ECOOP'98

Delegation Analysis

Delegation Analyis

ORationale

- O second part of behaviour analysis
- O break down over-burdened objects
- O force decentralisation of functionality

OTechnique

- focus on levels of responsibility
- o apply RDD decomposition rules
- O continue until atomic message level
- O Chain of Responsibility patterns
- O build interaction model

66

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 63

Object Discovery

ECOOP'98

Decomposition Rules

OCard Size

- O refine to 2-12 atomic services
- O over 6 consider, over 12 mandate decomposition

ODelegates

- O responsibilities are cohesive
- O delegate to subcontractors

OPeers

- O responsibilities may be partitioned
- O split into two or more peers

OParents

O responsibilities overlap - hive off to parent

Responsibility Card Checks

- **OClient/developer review**
 - O coherent object abstractions
 - O plausible ownership of responsibility
- **OCross-checks**
 - O scripts:
 - OVPs map to atomic services,
 - O external NPs removed as actors, but tasks managed
 - O passive NPs demoted to attributes
 - o active NPs map to objects
 - O storage objects: data assigned to data-users
 - O interface/controller objects: logic captured

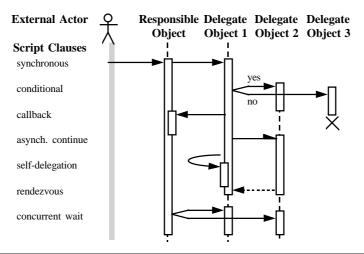
Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 65

Object Discovery

ECOOP'98

Build the Interaction Model

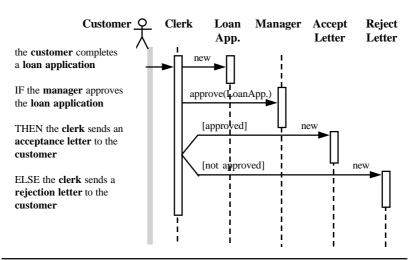
ORationale


- O complement responsibility cards
- O check scripts against responsible objects
- O provide message sequencing

OTechnique

- O distinguish internal/external
- O list script clauses on LHS
- O responsible objects as timelines
- O each clause is one stimulus
- O recipient is responsible object

Interaction Model Syntax



Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 67

Object Discovery

ECOOP'98

Interaction Model

Discovery Method Version 1.0: January 1998

Interaction Model Checks

OConsistency checks

- O Single threads:
 - o every case managed by one object
 - ocomb or ladder, no returns
- O Multiple threads:
 - o focus of control shifts
 - o returns to wake up

OCross-checks

- O script coverage VPs map to stimuli
- O top timeline maps to main responsibility card
- O collaborators map to delegated timelines

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 69

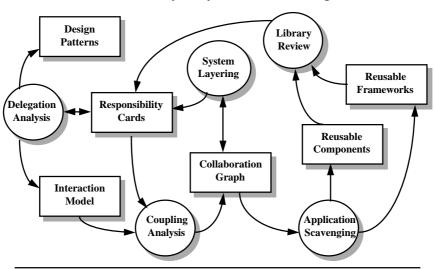
Object Discovery

ECOOP '98

Part Four

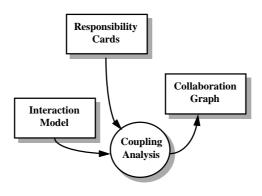
Discovery System Modelling Phase:
Optimising the Architecture in the
Context of Frameworks

System Modelling Activities


Ocollaboration diagram (connections)	75
Ocohesion/coupling analysis	73,77
Osystem layering using aggregation	78
Osystem layering using generalisation	8 1
Ofeedback from frameworks and components	86
Oapplication scavenging	91

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 71

Object Discovery


ECOOP '98

Discovery: System Modelling

Discovery Method Version 1.0: January 1998

Coupling Analysis

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 73

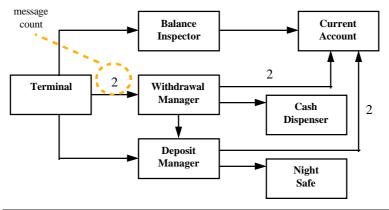
Object Discovery

ECOOP'98

Coupling Analysis

ORationale

- O group together client-server messages
- O overview of total connections by usage
- O viewpoint needed for system layering

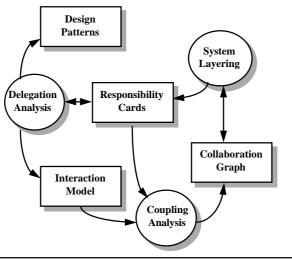

OTechnique

- O walk through responsibility cards
- O trace through interaction model
- 66
- O build collaboration graph:
 - O add new arcs for new client-server connections
 - o increment usage counts on old connections

75

Collaboration Graph

o overview of client-server connnectionsNOT snapshot of instance messaging



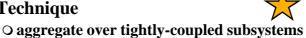
Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 75

Object Discovery

ECOOP '98

System Layering

Discovery Method Version 1.0: January 1998


ECOOP'98 Object Discovery

System Layering

ORationale

- O introduce modular hierarchy
- O reduce inter-module coupling
- **O low complexity = easy implementation**
- O low dependency = more reuse

OTechnique

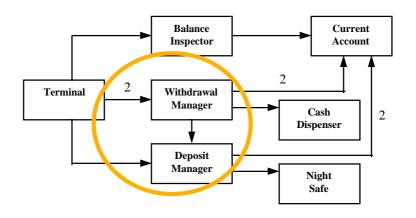
- generalise over commonly-invoked services → 81
- **O** generate new coordinating objects
- O update responsibility cards, interactions
- O harvest new Design Pattern examples

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 77

Object Discovery

ECOOP'98

Aggregate over Coupled Subsystems

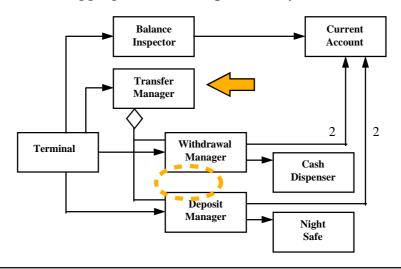

OWhat to look for

- O closed loops, linked rings, doubly-linked rings in the collaboration graph
- O choose to enclose the collaborations that you wish to eliminiate (eg with high per-service counts)

OWhat to do

- O invent new object abstraction Mediator that aggregates over components
- **O** remove inter-component collaborations
- O subsystem services migrate up to *Mediator*
- Mediator communicates with components

Aggregate over Coupled Subsystems



Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 79

Object Discovery

ECOOP '98

Aggregate over Coupled Subsystems

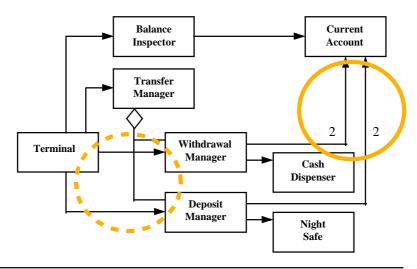
Discovery Method Version 1.0: January 1998

Generalise over Common Services

OWhat to look for

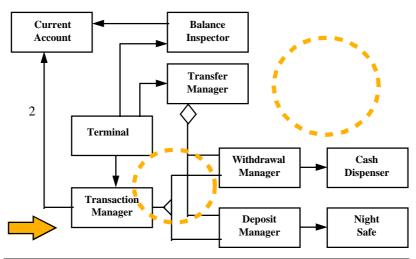
- O objects whose interfaces overlap (server-end)
- O objects that invoke overlapping services (client-end)

OWhat to do


- O invent new abstract parent, often a *Command*, that generalises over the components
- O remove component client/server collaborations
- O component collaborations migrate up to parent, become part of a *Template Method*
- O Components redefine parts of the *Template Method* (eventually, using dynamic binding)

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 81

Object Discovery


ECOOP'98

Generalise over Common Services

Discovery Method Version 1.0: January 1998

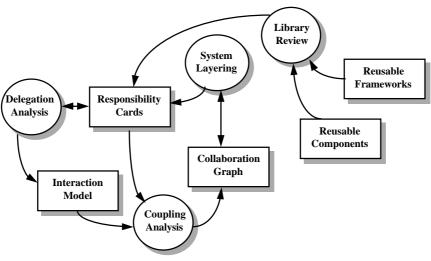
Generalise over Common Services

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 83

Object Discovery

ECOOP'98

System Layering Checks


OClient reviews

- O new abstractions may be meaningful
- O may have data, states, life history

OCross-checks

- O equivalence of services, before and after
 - o check Mediator interface, collaborations
 - O check Template Method hot-spots, binding
- O subsystem objects have responsibility cards
- O lifelines modified to reflect new pattern

Library Review

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 85

Object Discovery

ECOOP'98

Components

ODefinition

- O cohesive software element
- O reusable part (dual of framework)
- O directly implemented, available

OCoverage

- O domain-dependent (business object)
- O domain-independent (GUI, basic object)

Frameworks

ODefinition

- O domain-specific harness or shell
- O reusable whole (dual of component)
- O implementation (documented by Patterns)

OCoverage

- O horizontal: common layer or substrate
- O vertical: narrow business domain

OArchitectures

white-box: inheritance, effective subclasses black-box: composition, components/interfaces

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 87

Object Discovery

ECOOP'98

Library Review

ORationale

- O maximise reuse of designs
- O plan for component integration
- O plan for framework integration

OTechnique

O examine application control structure

- O compare with existing framework(s)
- O good match: import framework, rework the current design (cards, interactions, collaborations)
- O poor match: schedule framework(s) for reengineering, deliver to existing design

Business Decisions

OAlternatives

- O import frameworks before system layering stage
- O layer system before considering frameworks

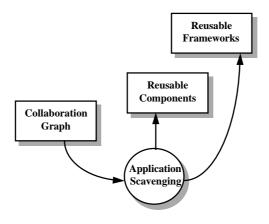
ODecision criteria

- O cognitive: framework may bias perception of current system (eg OO-toaster)
- O historical: maturity of existing framework
- O pragmatic:
 - O real needs of the current system
 - o cost of importing existing framework
 - O cost of reworking existing framework

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 89

Object Discovery

ECOOP'98


Library Reuse Checks

OCross-checks

- O equivalence of services, before and after
 - o no application service omitted
 - o no dangling hot-spots/missing methods
- O control structure preserved (white-box)
 - o only hot-spots have been specialised
 - O no internal dispatch points overwritten
 - state machines of subclasses only introduce substate machines, or orthogonal states (no overlapping)
- **O** control structure preserved (black-box)
 - O components supply expected interface
 - component methods pre-/postconditions satisfy "programming by contract" rules

Discovery Method Version 1.0: January 1998

Application Scavenging

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 91

Object Discovery

ECOOP'98

Application Scavenging

ORationale

- O harvest new components
- O refactor existing framework(s)

OTechnique

- O proceed after 3+ applications
- O generalise on business objects, control strategy
- O white-box during evolutionary phase
 - onew Command, Template Method
 - O multiple levels of generalisation
- O black-box when control stabilised
 - O refactor layer of controller objects
 - O plug-in points for business objects

Costs of Refactoring

ORefactor Class

- O(1): add method, add attribute
- \bigcirc O(n²): reorganise internal dependency

ORefactor Inheritance

- O(n): add extended class specialise
- \bigcirc O(n²): add overlapping class generalise, migrate

ORefactor Collaboration

- \bigcirc $O(x^n)$: too many specialisation dimensions extract and encapsulate one degree of variation
- \circ $O(x^n)$: new focus of control different patterns of collaboration

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 93

Object Discovery

ECOOP'98

Developer Rôles

OApplication Developer

O focus: current application

OReuse Manager

O focus: mapping onto components

OLibrarian

O focus: defence of frameworks

OApplication Scavenger

O focus: extraction of components

Part Five

Discovery Language Modelling Phase: Detailed Design for Implementation

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 95

Object Discovery

ECOOP'98

Language Modelling Activities

Olifetime and visibility analysis

101, 103

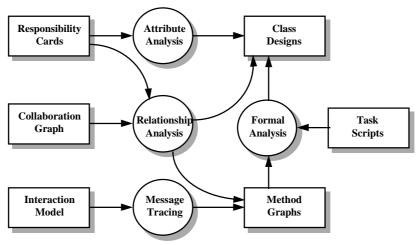
Oattribute/relationship structure

98, 100

Omethod execution graphs (end-to-end computation)

104

Omethod signature specification

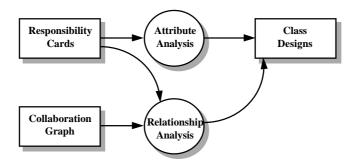

107

Omethod pre- and postconditions

107

Oclass specification sheets

Discovery: Language Modelling



Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 97

Object Discovery

ECOOP '98

Attributes and Relationships

Attribute Analysis

ORationale

- O extract managed data attributes
- O enforce encapsulation rules
- O maintain data invariants

OTechnique

- O prepare class design spec. sheets
- O transfer attributes from responsibility cards
- O mark up according to encapsulation rules
 - oprivate, or protected? not public!
- O transfer invariants from responsibility cards

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 99

Object Discovery

ECOOP'98

Relationship Analysis

ORationale

- O extract references, embedded objects
- o establish creation/deletion order
- O enforce constant rules

OTechnique

- O determine client/server collaboration semantics
 - oinput: exclusive, constant, connascent?
 - O output: embedding, references, constants
- O determine client/server lifeline closures
 - Oinput: lifelines, collaboration semantics
 - output: create calls, create args, GC strategy

Collaboration Semantics

- **OPermanent/Temporary**
 - O already decided by the collaboration graph
- **OExclusive/Shared**
 - whether > 1 client may access server
- **OConstant/Mutable**
 - O whether server may be replaced
- **OIndependent/Connascent**
 - O whether server is born and dies with client

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 101

Object Discovery

ECOOP'98

Collaboration Semantics

OReferences vs Embedding

- O connascent + exclusive => client may embed server, or call create/delete
- otherwise, clients must reference server (or, a distinguished client may embed server)
- o add embedded objects/ references to class design specs.

OGC Strategy?

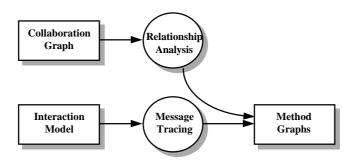
- O connascent + shared => clients keep refcount on server for GC, delete when zero
- O otherwise, clients forget server, external object or system controls server lifetime

Lifeline Closure

ORelative lifetimes

- O closure visible from interaction diagrams
- O cross-check: connascence + mutability

OConstruction


- O server lifeline contained: client embeds, or calls create/delete on server object
- server lifeline not contained: client constructor accepts a server-argument
- O add constructors to class design specs.

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 103

Object Discovery

ECOOP'98

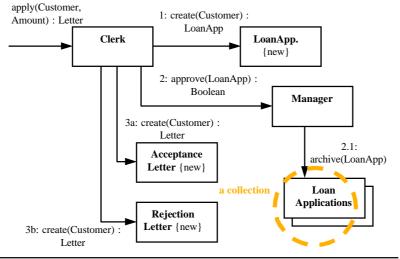
Methods

Message Tracing

ORationale

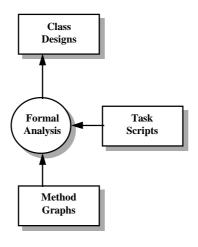
- O complete end-to-end processing
- O counteract yo-yo effect
- O documentation for implementors

OTechnique


- O trace system operations through interactions
- O build end-to-end method execution graph
- O determine method arguments:
 - **O** collaborations = permanent references
 - O anything else = additional arguments
- O mark creation, distribution semantics

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 105

Object Discovery


ECOOP'98

Method Execution Graph

Discovery Method Version 1.0: January 1998

Formal Analysis

Discovery Method Version 1.0: January 1998 © Anthony J H Simons Slide 107

Object Discovery

ECOOP'98

Formal Analysis

ORationale

- O guarantee contract specification
- O correct operation of methods
- O specification for testers

OTechnique

- O transfer method protocols to class spec. sheets
- O check for partial semantics against scripts
- O specify method preconditions
- O check for success criteria against scripts
- O specify method postconditions

Object Discovery

Thank-you for your participation;
I hope we learned some useful things
from each other!

Discovery Method Version 1.0: January 1998