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Motivation:  Practical

Object-oriented languages have developed ahead 
of underlying formal theory:

 Notions of "class" and "inheritance" may be ill-
defined.

 Programmers may confuse classes and types, 
inheritance and subtyping.

 Type rules of OOLs may be compromised -
formally incorrect.

 Type security of programs may be compromised -
unreliable.

There is an immediate need...

 to uncover the relationship between classes (in 
the object-oriented sense) and types (in the 
abstract data type sense).

 to construct a secure type model for the next 
generation of object-oriented languages.
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Motivation:  Theoretical

OOLs introduce a powerful combination of language 
features for which theory is immature.

Challenge to mathematicians: 

 To extend the popular treatments of types in 
strongly-typed languages to allow for systematic 
sets of relationships between types.

 To present a convincing model of type recursion 
under polymorphism.

 Plausible link between object-oriented type 
systems and order-sorted algebras (Category 
Theory).
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Classes and Types

First, a look at some of the issues surrounding 
classes and types.

 What are types?

 What are classes?

 Convenience viewpoint: 
"classes are not like types at all".

 Ambitious viewpoint: 
"classes are quite like types".

 Conflict of viewpoints:
"strong versus weak inheritance".

 Conflict of viewpoints:
"specification versus implementation".
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What is a Type?

 Concrete:  a schema for interpreting bit-strings in 
memory

 Eg the bit string

01000001

is 'A' if interpreted as a CHARACTER;

is 65 if interpreted as an INTEGER;

 Abstract:  a mathematical description of objects 
with an invariant set of properties:

 Eg the type INTEGER

INTEGER  Rec i . { plus : i  i  i;  
minus : i  i  i;  times : i  i  i;
div : i  i  i;  mod : i  i  i }

i,j,k : INTEGER
plus(i,j) = plus(j,i)
plus(plus(i,j),k) = plus(i,plus(j,k))
plus(i,0) = i
...
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What is a Class?

Not obvious what the formal status of the object-
oriented class is:

 type - provides interface (method signatures) 
describing abstract behaviour of some set of 
objects;

 template - provides implementation template 
(instance variables) for some set of objects;

 table - provides a table (class variables) for data 
shared among some set of objects.

In addition, each of these views is open-ended, 
through inheritance:

 incomplete type;

 incomplete template;

 incomplete table...
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Two Viewpoints

A class can be viewed as a kind of extensible 
record:

 storage for data;

 storage for methods;

Class seen as a unit of implementation
(convenience viewpoint).

A class can be viewed as a kind of evolving 
specification:

 adding new behaviours (adding method 
signatures);

 making behaviours more concrete 
(implementing/re-implementing methods);

 restricting set of objects (subclassing).

Class seen as a unit of specification (ambitious 
viewpoint).
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Class/Type Independence

Objects have class and type independently (Snyder, 
1986); this demonstrated by:

M:1 mappings from class hierarchies into type 
hierarchies, due to multiple concrete 
representations:
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M:1 mappings from class hierarchies into type 
hierarchies due to free choice between inheritance 
and composition:
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BUFFEREDITOR

EDITOR
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Convenience Viewpoint

Class as a unit of implementation:  formally lax; with 
some advantages...

 decoupling of class from type (can reason 
separately), as in Emerald;

 maximum reuse of implementations (but some 
odd abstractions);

 economy in levels of indirection (in structures) 
and levels of nesting (in call-graphs).

eg  RECTANGLE as a subclass of POINT:
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Ambitious Viewpoint

Class fulfils the same role as type for OOP:

 classification a natural activity in Psychology, 
undergirds types and abstraction;

 concept differentiation in AI can be compared with 
coerceable typing systems;

 strong desire to capture abstraction even in the 
type-free OOP languages;

 traditional languages have not addressed the 
possibility of systematic sets of relationships 
between types;

The fact that something systematic is possible in 
OOP means that there probably is an underlying 
type model which has not yet been discovered!

  Class and type are directly related notions.

 Is it correct to treat classes as types?

 What usage of classes is type-consistent?
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Strong and Weak Inheritance

Clash of ambitious/convenience views:

Strong inheritance:  sharing specification -
functional interface and type axioms by which all 
descendants should be bound.

Weak inheritance:  sharing implementation -
opportunistic reuse of functions and declarations for 
storage allocation.

POLYGON

TRIANGLE RECTANGLE

POLYGON

TRIANGLE

RECTANGLEdraw
move
rotate

Maximising reuse of storage for corners of figures 
{origin, extent, ... nth vertex} leads to crazy type 
hierarchies.

Type-consistent inheritance - allow only certain 
kinds of implementation sharing.
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Creeping Implementation

Clash of ambitious/convenience views:

Selective inheritance:  introduced through 
orthogonal export rules; undefinition rules (eg in 
Eiffel)

POLYGON

RECTANGLE

AddVertex

Leads to type violation - RECTANGLE does not 
respond to all the functions of POLYGON, therefore 
cannot be a POLYGON.

Implementation concerns creep into abstract 
specification of POLYGON:

 intended as abstract type for all closed figures;

 actually used to model concrete N-vertex 
polygons.

...but a RECTANGLE can't add to its vertices!!
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Inheritance:  Exercises

 Q1:  Design a type-consistent inheritance 
hierarchy (without deletions) for modelling the 
abstract behaviour of different kinds of bird, to 
include:

ALBATROSS (which soars, mainly)

PENGUIN (which swims, mainly)

OSTRICH (which runs, mainly)

What is it that unites the class of all birds?

 Q2:  Some OO methods advocate the discovery 
of inheritance structures by identifying entities, 
listing their attributes and factoring out common 
attributes in local superclasses.

Explain why this approach fails to guarantee type-
consistent inheritance.
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Abstract Data Types

Now, a look at the foundations of type theory.

 Types as sorts and carrier sets.

 Types defined with function signatures.

 Types defined with logic axioms.

 Recursion:  fixed point analysis.

 Recursion:  ideals and Scott domains.

Algebraic approach to type modelling (cf Goguen), 
rather than constructive approach (cf Martin-Löf).  
Advantage:  you define abstract types, rather than 
concrete ones.
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Types:  Sorts and Carrier Sets

Initial idea is that all types are sets:

x : T    x  T

This concept used to 'bootstrap' the first few 
abstract type definitions;    Notion of sorts and 
carrier sets.

A sort (eg NATURAL or BOOLEAN) is:

"an uninterpreted identifier that has a 
corresponding carrier in the standard (initial) 
algebra"  (Danforth and Tomlinson, 1988).

A carrier set is some concrete set of objects which 
you can use to model sorts.

BOOL  {true, false}- finite set

NAT  {0, 1, 2, ... } - infinite set

An algebra is a pair of a sort ( carrier set) and a 
set of operations over elements of the sort (carrier):

BOOLEAN  <BOOL, {, , , , }>
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Types:  Functions

However, it is too restrictive to model abstract types 
as concrete sets - consider:

SIMPLE_ORDINAL  {0, 1, 2, ... }

SIMPLE_ORDINAL  {a, b, c ... }

The type SIMPLE_ORDINAL can be modelled by a 
variety of carriers which have an ordering defined 
over them.

"Types are not sets" (Morris, 1973).

SIMPLE_ORDINAL is more precisely defined as the 
abstract type over which the functions First() and 
Succ() are meaningfully applied:

SIMPLE_ORDINAL   ord . { 
First :  ord;
Succ : ord  ord }

NB:  ord is an existentially quantified variable 
awaiting the full definition of the type - to allow for 
recursion in the type definition.
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Types:  Axioms

But this is still not enough - consider the possibility 
that:

Succ(1)  1
Succ(b)  a

We need to constrain the semantics of operations 
using logic axioms:

x : SIMPLE_ORDINAL
Succ(x)  x
Succ(x)  First()
Succ(x) = Succ(y)  x = y

This is exactly enough to ensure that the type 
behaves like a SIMPLE_ORDINAL:

X X X0 1 2First()

Succ(x) Succ(x)

Abstract types defined in terms of operations with 
axioms are both more general and more precise 
than the types-as-sets view.
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Types:  Recursion

Do existential types exist?  Problems with recursion 
in type definitions:

SIMPLE_ORDINAL   ord . { 
First :  ord;
Succ : ord  ord }

Analogy:  Consider the recursive function:

add  a.b. if b = zero then a 
else (add (succ a)(pred b))

This is merely an equation that add must satisfy:

 there is no guarantee that add exists;

 there may not be a unique solution.

cf x2 = 4    x = 2 | x = -2

Standard technique for dealing with recursion is to 
'solve' the equation above (Scott, 1976).
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Recursion:  Fixed Point Analysis

Approach to solving recursive equations:

 transform body into non-recursive form by 
replacing recursive call with  abstraction:

add  a.b. if b = zero then a 
else (add (succ a)(pred b))

ADD  f.a.b. if b = zero then a 
else (f (succ a)(pred b))

 use this new function to generate the recursive 
version:

add  (ADD <some fn>)

 It so happens that what we really need is:

add  (ADD add)

 ie add is defined as a value which is unchanged 
by the application of ADD:

 such a value is called a fixed point of ADD.
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Recursion:  Fixed Point Finder

We have transformed the task of finding a recursive 
solution for add into finding fixed points for ADD.

 There might be many such fixed points;

 Under certain conditions, it is possible to define 
the least fixed point of any function using the fixed 
point finder, .

  has the property that:

f = ( F)  (F f) = f

 Here is a definition of .  Note how it also is not 
recursive, but does contain delayed self-
application:

  f.(s.(f (s s)) s.(f (s s)))

 Calculus Reduction Rules:

(x.x a)  a

((x.y.(x y) a) b)  (y.(a y) b)  (a b)

(f a b)  ((f a) b)
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Recursion:  Derivation of add

ADD  g.a.b. if b = zero then a 
else (g (succ a)(pred b))

  f.(s.(f (s s)) s.(f (s s)))

add  ( ADD) {ADD / f}

 (s.(ADD (s s)) {(s s) / g}
s.(ADD (s s)))

 (s.a.b. if b = zero then a {... / s}
else ((s s)(succ a)(pred b))

s.(ADD (s s)))

 a.b. if b = zero then a
else ((s.(ADD (s s)) s.(ADD (s s)))

(succ a)(pred b))

 ...        {... / s; (succ a) / a; (succ b) / b}

 a.b. if b = zero then a
   else (if (pred b) = zero then (succ a)

else ((s.(ADD (s s)) s.(ADD (s s)))
(succ (succ a))(pred (pred b)))

... etc
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Types:  Domain Theory

Finding fixed point solutions to existential types 
requires certain conditions - denotational semantics 
of  calculus (Scott, 1976) needs domain theory.

 V is the domain of all  computable values, ie

V  BOOLEAN + NATURAL +
[V  V] + [V  V].

 A complete partial order (cpo) relationship is 
constructed among some sets of values in V.

 Certain sets of values are used as carriers for  
types - can solve recursive equations using set-
theoretic interpretation.

'Useful' carrier sets known as ideals, which have the 
following properties:

 downward closed under cpo;

 consistently closed under cpo;

on the domain V.  What do these properties mean?
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Types:  Ideals

Example: the powerset of natural numbers is an 
ideal.  Can approximate NAT and (NAT) with finite 
subsets:

NAT = {0, 1, 2}

(NAT) = {{}, {0}, {1}, {2}, {0,1}, {1,2},
{0,2}, {0,1,2}}

 Downward closed:  if {1,2} is in the type (set), 
then so are its approximations {1}, {2} and {} 
which are all 'less than' {1,2} under the cpo .

 Consistently closed:  if an approximation to the 
type (subset) is {{0}, {1,2}} then its least upper 
bound {0,1,2} is also in the type.

Here, LUB(S)  x,yS zS (x  z  y  z)

Two important results from using ideals (MacQueen 
et al., 1984):

 the set of all types (ideals) becomes a complete 
lattice under  ;

 recursive type equations have solutions.
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Abstract Types:  Exercises

 Q1:  In mathematics, a monoid is an algebra <S, 
op, id> with certain properties, where

S is the sort ( set) of elements;

op : S  S  S  is an associative function taking a 
pair of elements back into the sort;

id  S is the identity element for which

(op id any)  any.

How many examples of monoids can you find in 
the standard data types provided in programming 
languages?

 Q2:  Is the set of NATURAL numbers an ideal?  
Explain why, or why not.

 Q3:  Provide a functional and axiomatic 
specification for the abstract type STACK.
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Inheritance and Subtyping

At first glance, inheritance looks very similar to 
subtyping; both are kinds of partial order 
relationship.

 Subtyping Rule for Subranges

 Subtyping Rule for Functions

 Subtyping Rule for Axioms

 Subtyping Rule for Records

"A type A is included in (is a subtype of) another 
type B when all the values of type A are also 
values of B" (Cardelli and Wegner, 1985).
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Subtyping Rule for Subranges

Type constructor for subranges:  s..t

where s  NATURAL; 
t  NATURAL; 
s  t;

The set of all subranges is an ideal; useful partial 
order  among elements allowing the construction 
of a subtype graph:

1..9

1..6 4..9

4..61..3 7..9

Subtyping for Subranges (Rule 1)

s..t  .. iff s   and t  

henceforward, we shall use the (weaker) implication 
and denote this using:

 s  , t  

  s..t  ..
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Functions:  Generalisation

Type constructor for functions:  

name : domain  codomain

Use subranges to model types in the domain and 
codomain of -expressions:

f : 2..5  3..6
   x . x +1 (f 3)  4

Consider how simple types generalise:  3 has type 
3..3 and also the type of any supertype:

3 : (3..3)  (3..4)  (2..4)  (2..5)

Now consider how function types generalise:

g : (2..5  4..5)  (2..5  3..6)

because it maps its domain to naturals between 4 
and 5 (and hence between 3 and 6);  however

h : (3..4  3..6)  (2..5  3..6)

because it only maps naturals between 3 and 4 
(and hence not between 2 and 5) to its codomain.
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Subtyping Rule for Functions

The inclusion (ie generalisation) rule for function 
types therefore demands that 

 the domain shrinks; but 

 the codomain expands:

f : (2..5  3..6)  (3..4  2..7)

Subtyping for Functions (Rule 2)

  s  ,  t  

 s  t    

This means that for two functions A  B if

 A is covariant with B in its result type;
ie  (result A)  (result B)

 A is contravariant with B in its argument type;  ie  
(argument A)  (argument B)

This is an important result for OOP.
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Axioms:  Specialisation

Consider that STACK and QUEUE have 
indistinguishable functional specifications:

SQ   sq . {push : ELEMENT  sq  sq;
 pop : sq  sq;  
 top : sq  ELEMENT}

without the appropriate constraints to ensure

 LIFO property of STACKs

 FIFO property of QUEUEs.

Imagine an unordered collection receiving an 
element - we may assert the constraint:

e : ELEMENT, c : COLLECTION
e  add(e,c)

Now, if we want to consider a STACK as a kind of 
COLLECTION, we may assert an additional axiom 
to enforce ordering:

e : ELEMENT, s : STACK
e  add(e,s);
top(add(e,s)) = e

which is a more stringent constraint.
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Subtyping Rule for Axioms

A constraint is more stringent, if it rules out more 
objects from a set:

{ x  STACK }  { y  COLLECTION }

and this is the subtyping condition.

Constraints can be made more stringent by:

 adding axioms

 modifying axioms

A modified axiom is one which necessarily entails 
the original one; here we can assert:

(top(add(e,s)) = e)    (e  add(e,s))

Subtyping for Axioms (Rule 3)

   1  1, ... k  k


{ 1, ... k, ... n }  { 1, ... k }

This means that for two constraints A  B if

 A has n-k more axioms than B

 the first k axioms in A entail those in B (could be 
identical).
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Objects as Records

Simple objects may be modelled as records whose 
components are a set of labelled functions 
representing methods:

 access to stored attributes represented using 
nullary functions;

 modification to stored attributes represented by 
constructing a new object.

Non-recursive records:

INT_POINT  {
x :  INTEGER;  y :  INTEGER }

Recursive records (assumes  pnt):

CART_POINT  Rec pnt . {
x :  INTEGER;  y :  INTEGER;
moveBy : INTEGER x INTEGER  pnt;
equal : pnt  BOOLEAN }

 assumes objects are applied to labels to select 
functions:  (obj label).
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Subtyping Rule for Records

Consider that objects of type:

COL_POINT  { x :  INTEGER;
y :  INTEGER;  color :  INTEGER }

may also be considered of type INT_POINT, since 
they respect all INT_POINT's functions;

Consider also that objects of type:

NAT_POINT  {
x :  NATURAL;  y :  NATURAL }

are a subset of all INT_POINTs defined by:

{ p  INT_POINT | p.x  0, p.y  0 }

Subtyping for Records (Rule 4)

                  1  1, ... k  k


{ x1:1, ... xk:k, ... xn:n }  { x1:1, ... xk:k }

This rule says that for two records A  B if

 A has n-k more fields than B;

 the first k fields of A are subtypes of those in B 
(could be the identical type).
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Subtyping:  Exercises

 Q1:  Is class B  class A?  Explain why, or why 
not.  (NB - here, model classes as records and 
attributes as nullary functions).

class A class B inherit A
attributes attributes

x : INTEGER;    b : BOOLEAN;
y : INTEGER; methods

methods    foo : A  D;
foo : B  C;    bar : B  D;

end. end.

class C class D inherit C
attributes attributes

o : A;    o : B;
methods methods

baz : A  C    baz : B  D
end. end.
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Polymorphism and Type Recursion

We can now describe inheritance in terms of 
subtyping; but soon will see how this is not enough.

 Inheritance considered as subtyping

 Polymorphism introduces type recursion

 Polarity in type expressions

 Subtyping breaks down:  positive recursion

 Subtyping breaks down:  negative recursion

The type model we have introduced cannot yet 
handle the kind of type recursion introduced by 
inheritance with polymorphism.
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Inheritance as Subtyping

Any two related classes, modelled as records 
containing sets of functions, are in a subtype 
relation A  B  if:

 extension:  A adds monotonically to the functions 
inherited from B (Rule 4); and

 overriding:  A replaces some of B's functions with 
subtype functions (Rule 4); and

 restriction:  A is more constrained than B (Rule 3) 
or a subrange/subset of B (Rule 1).

A function may only be replaced by another if:

 contravariance:  arguments are more general 
supertypes (Rule 2); and therefore preconditions 
are weaker (Rule 3);

 covariance:  the result is a more specific subtype 
(Rule 2); and therefore postconditions are 
stronger (Rule 3).

Many current OOLs violate these constraints.  
However, even this is not sufficient...
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Polymorphism and Type Recursion

Inheritance with polymorphism is analogous to 
mutual type-recursion (Cook & Palsberg,1989):

Consider a function F and a derived (modified) 
version M which depends on F...

Direct derivation - encapsulation is preserved:-

client M F

Naive derivation from recursive structure:-

client M F

 In the naive case, the modification only affects 
external clients, not recursive calls.

Derivation analogous to inheritance:-

client M F

 In the case of polymorphic inheritance, self-
reference in the original class must be changed to 
refer to the modification.
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Polarity in Type Expressions

When we examine our inheritance-as-subtyping 
model in the context of polymorphism, different 
things go wrong depending on the location of 
recursive type variables.

Analogy with polarity in logic (Canning, Cook, Hill, 
Olthoff & Mitchell 1989):

Definition:  Positive and Negative Polarity

In the type expression:

  

 appears negatively and  positively.

Positive Type Recursion:

 occurs when the recursive type variable appears 
on the RHS of the  constructor.

Negative Type Recursion:

 occurs when the recursive type variable appears
on the LHS of the  constructor.
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Positive Type Recursion

Consider classes in a simple screen graphics 
package.  We would like a move function:

MOVEABLE  Rec mv . {
move : INTEGER  INTEGER  mv }

to apply polymorphically to all descendants of 
MOVEABLE, such as SQUARE and CIRCLE.

However move does not have the type:

move : t  MOVEABLE . t 
(INTEGER  INTEGER  t)

but rather the type:

move : t  MOVEABLE . t 
(INTEGER  INTEGER  MOVEABLE) 

 Whenever we move SQUAREs or CIRCLEs we 
always obtain an object of exactly the type 
MOVEABLE (we lose type information).

 The algebra does not force the function's result 
type to mirror its polymorphic target.

 Cannot cope with positive type recursion.
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Negative Type Recursion

Consider now that we would like a < function

COMPARABLE  Rec cp . { 
< : cp  BOOLEAN }

to apply polymorphically to all descendants of 
COMPARABLE such as INTEGER and 
CHARACTER, which inherit the < operation.

Now, the function < does not have the type:

< : t  COMPARABLE . t 
(t  BOOLEAN)

but rather the type:

< : t  COMPARABLE . t 
(COMPARABLE  BOOLEAN)

 Whenever we compare INTEGERs, the < function 
always expects an argument of exactly the type 
COMPARABLE.

 The algebra does not force < to compare 
operands of the same type.

 Cannot cope with negative type recursion.
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Subtyping Breaks Down

If we unroll the inherited type definitions for 
CHARACTER or INTEGER, we can force the 
function < to accept the types we desire:

CHARACTER  Rec ch . { ...;  print : ch ;
< : ch  BOOLEAN; ... }

By explicit redefinition, < now has the type

< : t  CHARACTER . t 
(CHARACTER  BOOLEAN)

To ensure CHARACTER  COMPARABLE, we 
need to obtain subtyping among functions in the 
pair of records:

{...; < : CHARACTER  BOOLEAN; ... }
 { < : COMPARABLE  BOOLEAN }

requiring COMPARABLE  CHARACTER in turn by 
contravariance!

 CHARACTER  COMPARABLE cannot be 
derived using the rules of subtyping unless in fact 
CHARACTER  COMPARABLE.

 A simple subtyping model breaks down in the 
presence of polymorphism.
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Type Recursion:  Exercises

 Q1:  Given the following classes, explain how the 
expression 

x.park;

involves mutual type recursion when x is of type 
CAR.

class VEHICLE class CAR inherit
attributes    VEHICLE

home : GARAGE;attributes
methods    home : PORT;

park is end.
  home.take(self)
end;

end. class GARAGE
attributes
   keep : VEHICLE:

class PORT inherit methods
GARAGE    take(v : VEHICLE) is

attributes keep := v
keep : CAR;    end;

end. end.
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Polymorphic Type Space

The problem is that we have been treating classes 
as though they were actual types, when in fact they 
are type constructors.

 Ambiguous semantics of class

 Type space and fixed points

 F-bounded quantification

 Polymorphic subtyping

 Relationship with Category Theory
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Classes:  Semantic Ambiguity

Problem stems from semantic ambiguity which we 
have not captured:

A class may denote either:

 open semantics:  a space of possible types (the 
bounded, but possibly infinite set of descendent 
classes derived from it);  or

 closed semantics:  a specific type (the type of 
new objects created from the class template);

Implicitly we adopt the open semantics 
interpretation:

 when designing open-ended class libraries using 
inheritance;

 when assigning types to polymorphic variables;

but may switch to the closed semantics 
interpretation:

 when creating new objects.
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Type Space and Fixed Points

Imagine the space of all possible recursive abstract 
types (RATs) - this type domain:

 is quantal in single functions (and axioms);

 contains RATs corresponding to the powerset of 
all functions;

 forms a complete lattice under the cpo  .

General

Specific

Actual Type

Polymorphic Type

Classes define bounded, closed volumes in the type 
domain - these are true polymorphic types - with a 
least fixed point at the apex - this is the most 
general actual type satisfying the bound.
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Classes as Type Constructors

The type constructor for ARRAYs contains explicit
type parameters denoting 'unknown' or 'incomplete' 
parts of the type:

ARRAY [s  SUBRANGE] OF [t  TOP]

Classes are also constructors, containing an implicit 
type parameter which:

 abstracts over the entire class body; 

 corresponds to the 'known' parts of the type;

 must permit full recursive instantiation with any 
suitable type satisfying the class bound.

Mathematically, we have been modelling 
polymorphism inadequately using bounded 
universal quantification:

t  (Rec r . F(r)) . (t)

whereas we need a construct which permits type 
recursion in the constraining typing function itself:

t  F[t] . (t)
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Deriving Typing Functions

(Canning, Cook, Hill, Olthoff & Mitchell 1989) obtain 
typing functions which have the recursive properties 
we desire.

Consider the polymorphic move function.

Working backwards, we seek the condition on a 
type t so that for any variable x : t we can derive "" 
that x.move(1, 1) is also of type t.

x : t  x.move(1, 1) : t { by assumption }

Using a type rule for function application:

f :    ,  v : 
APP 

     (f v) : 

x : t  x.move : (INTEGER  INTEGER  t)

Using a type rule for record selection:

 r : { 1:1, ..., n:n }
SEL  i  1..n

    r.i : i

x : t  x : { move : INTEGER  INTEGER  t }
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F-Bounded Quantification

x : t  x : { move : INTEGER x INTEGER  t }

is the minimal constraint on the record type of x.  
Using the subtyping rule, we can introduce more 
specific record types  such that:

  { move : INTEGER  INTEGER  t }


x : t    x : 

Since the type  does not occur in any other 
assumption, we may simplify using { t /  } to the 
requirement

t  { move : INTEGER  INTEGER  t }

which cannot be proved without additional 
assumptions.

Expressing this condition as t  F-Moveable[t], 
where F-Moveable[t] is a typing function:

F-Moveable[t]  { 
move : INTEGER  INTEGER  t }

it is clear that this condition fits the format for the 
kind of quantification we desire.
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Polymorphic Types

Using such typing functions which preserve 
recursion in type parameters, we can give an 
intuitively pleasing type to polymorphic spaces in 
the type domain:

F-Moveable[t]  { 
move : INTEGER  INTEGER  t }

F-Comparable[t]  { < : t  BOOLEAN }

Actual types are obtained by the application of 
these typing functions to specific types, whereby the 
parameter is replaced:

F-Moveable[SQUARE]  { move : 
INTEGER  INTEGER  SQUARE }

F-Moveable[CIRCLE]  { move : 
INTEGER  INTEGER  CIRCLE }

F-Comparable[CHARACTER]  {
< : CHARACTER  BOOLEAN }

F-Comparable[INTEGER]  {
< : INTEGER  BOOLEAN }
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Polymorphic Subtyping

If we unroll the type definitions for SQUARE or 
CIRCLE we get:

SQUARE  Rec sqr . { ...; 
move : INTEGER  INTEGER  sqr; ... }

CIRCLE  Rec cir . { ...; 
move : INTEGER  INTEGER  cir; ... }

thereby demonstrating that:

SQUARE  F-Moveable[SQUARE]
CIRCLE  F-Moveable[CIRCLE] ...etc

which is precisely what we want.  

Note that the most general type satisfying the bound 
is the type over whose body we abstracted:

MOVEABLE  F-Moveable[MOVEABLE]

but we do not have any other simple subtyping 
relationships:

SQUARE  MOVEABLE
CIRCLE  MOVEABLE
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Links with Category Theory

One semantic interpretation of F-bounded 
quantification relies on Category Theory.

 A category is a collection of abstract objects with 
similar structure and behaviour,

cf  all objects conforming to some type.

 Structure-preserving maps, called morphisms, f : 
x  y, exist from object to object in a category,

cf correspondences between different 
representations of objects within a type.

 A morphism f with an inverse, g : y  x, results in 
two isomorphic objects x  y,

cf  two objects with identical type.

 The initial object in each category has a single 
morphism extending to every other object,

cf  the most abstract denotation of all objects 
conforming to some type.
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-Algebra Semantics

 Morphism-preserving maps, called functors,  : C 
 D, exist from category to category,

cf polymorphic inheritance which maps behaviour 
for one type into behaviour for another type (with 
"more structure").

 An endofunctor is a  which maps from a 
category into itself, ie  f : ( t)  t,

cf  recursive construction of a type (with "more 
structure", in the same category).

 A -algebra is the category of pairs <t, f>, where f 
: ( t)  t are morphisms among a recursively 
constructed type,

cf category of all objects in a recursive type.

 An initial -algebra is the solution to the equation 
( t)  t, a fixed point of ,

cf the most abstract denotation of a recursive 
type.

 Since ( t)  t, the inverse g : t  ( t) must also 
exist.
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Quantification over -Coalgebras

The dual of a category theory construct is one in 
which "arrows are reversed":

 morphisms are replaced by their inverse;

 initial objects become terminal objects.

The dual of a -algebra is a -coalgebra  or 
category of pairs <t, g>, with g : t  ( t).  

 Both the initial -algebra and terminal -
coalgebra satisfy t  ( t).

When we use F-bounded quantification, we say t 
 F[t] 

 which implies a map g : t  ( t), ie

 quantification over pairs <t, g> or some family of 
-coalgebras.

Since any recursive type Rec t . F[t] may be 
regarded as a particular -coalgebra, 

F-bounded quantification is over a category whose 
objects are "generalisations" of the recursive type 
Rec t . F[t].
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Type Spaces:  Exercises

 Q1:  What kind of semantics (open or closed) do 
we typically give to the following kinds of 
expression?

p : POINT; ...
p.Create(2,4);

a : ARRAY[GRAPHIC]; ...
a.put(sqare1, 1);
a.put(circle3, 2);

x : like Current;  ...
x.Create(...);

 Q2:  What morphisms exist, in the category of 
monoids, between <LIST, append, nil>, and 
<STRING, concat, ""> ?

 Q3:  Describe the category theoretic relationship 
between the algebras <SEQUENCE, {append}> 
and <SEQUENCE, {append, length}> .
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Implications for Language Design

If classes are considered properly as type 
constructors, then various considerations arise in 
relation to resolving the number and scope of 
implicit parameters (Simons and Cowling, 1992).

 Type recursion with self-reference.

 Single and multiple parameters.

 Homogenous and heterogenous collections.

 Combining polymorphism and genericity.
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Type Recursion:  Self-Reference

Object-oriented languages need to distinguish 
actual (albeit general) types, eg:

m : MOVEABLE;

from F-bounded polymorphic types, 

m : t  F-Moveable[t];

which we might represent syntactically using an 
explicit parameter:

m : MOVEABLE(M);

such that it is clear when expressions have a 
recursively instantiated polymorphic type:

move : M  (INTEGER  INTEGER  M);

The parameterised construct correctly handles the 
flexible typing of expressions such as:

x : like <anchor>; in Eiffel
x class new; in Smalltalk

in the same manner as (Milner, 1978) for the 
functional languages.
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Single and Multiple Parameters

Object-oriented languages need to be able to 
distinguish polymorphic functions accepting 
homogenous arguments:

< : t  COMPARABLE . t 
(t  BOOLEAN)

from polymorphic functions accepting heterogenous
arguments:

< : s, t  COMPARABLE . s 
(t  BOOLEAN)

where this might be represented syntactically using 
two type parameters:

class COMPARABLE(S|T) ...

< : S  (T  BOOLEAN)

permitting different instantiations of each parameter.  
Such a function would accept:

3 < 'a'; 'b' < 70;

as legal expressions (possibly implemented over 
byte-size representations).
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Homogenous and Heterogenous 
Collections

Object-oriented languages need to be able to 
distinguish properly the types of homogenous 
collections from heterogenous collections.  For 
example,

d : LIST [GRAPHIC];

should denote homogenous lists of objects precisely 
of the (albeit general) type GRAPHIC; whereas:

d : LIST [GRAPHIC(T)]

should denote polymorphic, but homogenous lists of 
any type constrained by

t  F-Graphic[t]

and finally

d : LIST [GRAPHIC(S|T)]

should denote polymorphic, heterogenous lists of 
any types constrained by

s, t  F-Graphic[s, t] .
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Combining Polymorphism and 
Genericity

The introduction of a bound parameter for 
polymorphic types brings these closer to generic 
constructs (eg in Ada and Eiffel).

Instead of a special generic syntax:

x : LIST [ANY(S|T)]

we could treat all recursively and iteratively defined 
collections as recursive record types:

class LIST(L) ...
item : ANY(S|T);
next : L; ...

and apply generic type constructors using the same 
syntax as for inheritance:

class ORDERED_LIST(O)
inherit LIST(O)
redefine

item : COMPARABLE(C); ...

here, obtaining a homogenous list of ordered items 
from a heterogenous list of any item.
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Reference Material

The basic bibliography is still difficult for beginners, 
but may prove rewarding after the exposition of this 
tutorial.

The more advanced material provides much of the 
mathematical foundation for the arguments 
presented here and should only be handled by 
properly-trained mathematicians!
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