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Motivation:  Practical

Object-oriented languages have developed ahead 
of underlying formal theory:

 Notions of "class" and "inheritance" may be ill-
defined.

 Programmers may confuse classes and types, 
inheritance and subtyping.

 Type rules of OOLs may be compromised -
formally incorrect.

 Type security of programs may be compromised -
unreliable.

There is an immediate need...

 to uncover the relationship between classes (in 
the object-oriented sense) and types (in the 
abstract data type sense).

 to construct a secure type model for the next 
generation of object-oriented languages.
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Motivation:  Theoretical

OOLs introduce a powerful combination of language 
features for which theory is immature.

Challenge to mathematicians: 

 To extend the popular treatments of types in 
strongly-typed languages to allow for systematic 
sets of relationships between types.

 To present a convincing model of type recursion 
under polymorphism.

 Plausible link between object-oriented type 
systems and order-sorted algebras (Category 
Theory).
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Classes and Types

First, a look at some of the issues surrounding 
classes and types.

 What are types?

 What are classes?

 Convenience viewpoint: 
"classes are not like types at all".

 Ambitious viewpoint: 
"classes are quite like types".

 Conflict between viewpoints.

 Separation of viewpoints.

 The future of classification?
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What is a Type?

 Concrete:  a schema for interpreting bit-strings in 
memory

 Eg the bit string

01000001

is 'A' if interpreted as a CHARACTER;

is 65 if interpreted as an INTEGER;

 Abstract:  a mathematical description of objects 
with an invariant set of properties:

 Eg the type INTEGER

INTEGER  Rec i . { plus : i  i  i;  
minus : i  i  i;  times : i  i  i;
div : i  i  i;  mod : i  i  i }

i,j,k : INTEGER
plus(i,j) = plus(j,i)
plus(plus(i,j),k) = plus(i,plus(j,k))
plus(i,0) = i
...
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What is a Class?

Not obvious what the formal status of the object-
oriented class is:

 type - provides interface (method signatures) 
describing abstract behaviour of some set of 
objects;

 template - provides implementation template 
(instance variables) for some set of objects;

 table - provides a table (class variables) for data 
shared among some set of objects.

In addition, each of these views is open-ended, 
through inheritance:

 incomplete type;

 incomplete template;

 incomplete table...
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Two Viewpoints

A class can be viewed as a kind of extensible 
record:

 storage for data;

 storage for methods;

Class seen as a unit of implementation
(convenience viewpoint).

A class can be viewed as a kind of evolving 
specification:

 adding new behaviours (adding method 
signatures);

 making behaviours more concrete 
(implementing/re-implementing methods);

 restricting set of objects (subclassing).

Class seen as a unit of specification (ambitious 
viewpoint).
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Convenience Viewpoint

Class as a unit of implementation:  formally lax; but 
with some advantages...

 maximum reuse of implementations (but some 
odd abstractions);

 economy in levels of indirection (in structures) 
and levels of nesting (in call-graphs).

eg  RECTANGLE as a subclass of POINT:

RECTANGLE

width

height

POINT

x

y

RECTANGLE

width

height

x

y

TEMPLATE

but is a RECTANGLE really a kind of POINT?  Odd 
taxonomy.
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Ambitious Viewpoint

Class as a unit of specification:  formally strict;

eg  providing abstract specifications with multiple 
alternative implementations in Eiffel (Meyer, 1988 
and 1992):

push
pop
top

QUEUE push
pop
top

STACK

LIST

LINKED_

(deferred) (deferred)

STACK

LINKED_
QUEUE

FIXED_
QUEUE

FIXED_
STACK

ARRAY

In Eiffel and Trellis (Schaffert et al, 1986):

 classes are types

 subclasses are subtypes

but is this formally correct? ...
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Strong and Weak Inheritance

Clash of ambitious/convenience views:

Strong inheritance:  sharing specification -
functional interface and type axioms by which all 
descendants should be bound.

Weak inheritance:  sharing implementation -
opportunistic reuse of functions and declarations for 
storage allocation.

POLYGON

TRIANGLE RECTANGLE

POLYGON

TRIANGLE

RECTANGLEdraw
move
rotate

eg in Smalltalk (Goldberg and Robson, 1983):

Maximising reuse of storage for corners of figures 
{origin, extent, ... nth vertex} leads to strange type 
taxonomies.
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Creeping Implementation

Clash of ambitious/convenience views:

Selective inheritance:  introduced through 
orthogonal export rules; undefinition rules, eg in 
Eiffel (Meyer, 1988 and 1992):

POLYGON

RECTANGLE

AddVertex

Implementation concerns creep into abstract 
specification of POLYGON:

 intended as abstract type for all closed figures;

 actually used to model concrete N-vertex 
polygons.

...but a RECTANGLE can't add to its vertices!!

Leads to type violation - RECTANGLE does not 
respond to all the functions of POLYGON, therefore 
cannot be a POLYGON.
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Separation of Concerns

Separation of ambitious/convenience views:

In C++ (Stroustrup, 1991) classes are also types, 
but sometimes inheritance is not subtyping:

LIST

SORTED_

insert_first
remove_first
insert_last

COLLECTION

INT_LIST FLOAT_
LIST

insert_before
remove
insert_after

Two kinds:

 private inheritance - subclass only inherits 
implementation of its parent;

 public inheritance - subclass also inherits 
specification of its parent.  

An INT_LIST is type-compatible with LIST.  A 
SORTED_COLLECTION is not.
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Class/Type Independence

Objects seem to have class and type independently 
(Snyder, 1987):

M:1 mappings from class hierarchies into type 
hierarchies, due to multiple concrete 
representations:

RECTANGLE

origin

width

height

RECTANGLE

origin

extent

POINT

x

y

POINT

x

y

POINT

x

y

M:1 mappings from class hierarchies into type 
hierarchies due to free choice between inheritance 
and composition:

WINDOW WINDOWBUFFER

BUFFEREDITOR

EDITOR
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Separate Sharing of Class and Type

Separation of notions of class and type, eg 
CommonObjects (Snyder, 1987) and POOL-I 
(America, 1990):

 can reason about implementation and type 
independently;

 orthogonal class and type hierarchies:

SHAPE

ELLIPSE RECTANGLE

draw
move
rotate

CIRCLE SQUARE

POINT

CIRCLE SQUARE

ELLIPSE RECTANGLE

x, y : Integer

r : Integer w : Integer

p, q : Integer
h : Integers : Integerf1 = f2 w = h

Separation of specification and implementation 
concerns, eg Emerald (Raj and Levy, 1989):

 hierarchy used to express type-sharing;

 implementation-sharing only through composition.
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A Failure of Nerve?

Is this impoverished view of class a failure of nerve?

Class fulfils the same role as type for OOP:

 classification a natural activity in Psychology, 
undergirds types and abstraction;

 concept differentiation in AI can be compared with 
coerceable typing systems;

 strong desire to capture abstraction even in the 
type-free OOP languages;

 traditional languages have not addressed the 
possibility of systematic sets of relationships 
between types;

The fact that something systematic is possible in 
OOP means that there probably is an underlying 
type model which has not yet been discovered!
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Class and Type:  Exercises

 Q1:  Design a type-consistent inheritance 
hierarchy (without deletions) for modelling the 
abstract behaviour of different kinds of 
COLLECTION, to include:

STACK , QUEUE, DEQUEUE and SET

What is it that unites the class of all 
COLLECTIONs?

 Q2:  Some OO methods advocate the discovery 
of inheritance structures by identifying entities, 
listing their attributes and factoring out common 
attributes in local superclasses.

Explain why this approach fails to guarantee type-
consistent inheritance.
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Types and Subtyping

Now, a look at the foundations of type theory.

 Types as sorts and carrier sets.

 Function signatures and axioms.

 Recursive types and subtypes.

 Subtyping for sets and subranges.

 Subtyping for functions and axioms.

 Subtyping for record types.

Algebraic approach to type modelling (cf Goguen).  
Advantage:  you define abstract types, rather than 
concrete ones.
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Type-Consistency

Is it possible to produce a type-consistent model of 
object-oriented classes?

 Can classes be made to conform to types?

 Can inheritance be made to conform to 
subtyping?

"A type A is included in (is a subtype of) another 
type B when all the values of type A are also 
values of B" (Cardelli and Wegner, 1985).

Intuitively, a subtype must:

 bear structural similarity with its parent;

 respect all of its parent's functions;

 behave in a similar way to its parent.

Need to define what an abstract type is, much more 
closely...
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Types:  Sorts and Carrier Sets

Initial idea is that all types are sets:

x : T    x  T

This concept used to 'bootstrap' the first few 
abstract type definitions;    Notion of sorts and 
carrier sets.

A sort (eg NATURAL or BOOLEAN) is:

"an uninterpreted identifier that has a 
corresponding carrier in the standard (initial) 
algebra"  (Danforth and Tomlinson, 1988).

A carrier set is some concrete set of objects which 
you can use to model sorts.

BOOL  {true, false} - finite set

NAT  {0, 1, 2, ... } - infinite set

An algebra is a pair of a sort ( carrier set) and a 
set of operations over elements of the sort (carrier):

BOOLEAN  <BOOL, {, , , , }>
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Types:  Functions

However, it is too restrictive to model abstract types 
as concrete sets - consider:

SIMPLE_ORDINAL  {0, 1, 2, ... }

SIMPLE_ORDINAL  {a, b, c ... }

The type SIMPLE_ORDINAL can be modelled by a 
variety of carriers which have an ordering defined 
over them.

"Types are not sets" (Morris, 1973).

SIMPLE_ORDINAL is more precisely defined as the 
abstract type over which the functions First() and 
Succ() are meaningfully applied:

SIMPLE_ORDINAL  ord . { 
First :  ord;
Succ : ord  ord }

NB:  ord is an existentially quantified variable 
awaiting the full definition of the type - to allow for 
recursion in the type definition.
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Types:  Axioms

But this is still not enough - consider the possibility 
that:

Succ(1)  1
Succ(b)  a

We need to constrain the semantics of operations 
using logic axioms:

x : SIMPLE_ORDINAL
Succ(x)  x
Succ(x)  First()
Succ(x) = Succ(y)  x = y

This, plus the principle of induction, is exactly 
enough to ensure that the type behaves like a 
SIMPLE_ORDINAL:

X X X0 1 2First()

Succ(x) Succ(x)

Types described with functions and axioms are 
more general and more precise than sets.
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Types:  Recursion

Do existential types exist?  Problems with recursion 
in type definitions:

SIMPLE_ORDINAL  ord . { 
First :  ord;
Succ : ord  ord }

Analogy:  Consider the recursive function:

add a.b. if b = zero then a 
else (add (succ a)(pred b))

This is merely an equation that add must satisfy:

 there is no guarantee that add exists;

 there may not be a unique solution.

cf x2 = 4    x = 2 | x = -2

Standard technique for dealing with recursion is to 
'solve' the equation above using fixed point analysis
(Scott, 1976).

 see example in Technical Appendix.
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Subtypes:  Partial Orders

We may use partial orders (POs) to model types 
and subtypes.

 Example: any powerset forms a PO:

S  {a, b, c}

(S)  {{}, {a}, {b}, {c}, {a, b}, {b, c},
{a, c}, {a, b, c}}

 Ordering relationship:   exists between (some) 
elements of the PO.

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{}

 Certain complete POs (CPOs) are called ideals
and form a complete lattice under  .
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Abstract Types:  Exercises

 Q1:  In mathematics, a monoid is an algebra <S, 
op, id> with certain properties, where

S is the sort ( set) of elements;

op : S  S  S  is an associative function taking a 
pair of elements back into the sort;

id  S is the identity element for which

(op id any)  any.

How many examples of monoids can you find in 
the standard data types provided in programming 
languages?

 Q2:  Provide a functional and axiomatic 
specification for the abstract types STACK and 
QUEUE.  How do they differ?
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Subtyping Rule for Sets

Going back to our original intuition of types-as-sets:

x :     x  

Since we can construct a CPO relating all our types 
(ie sets) in a lattice:

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{}

then we can assert that a subtype means the same 
thing as a subset:

      x (x    x  )

ie all the values (elements) of  are also values 
(elements) of .
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Subtyping Rule for Subranges

Type constructor for subranges:  s..t

where s  NATURAL; 
t  NATURAL; 
s  t;

The set of all subranges has useful partial order 
among its elements:

1..9

1..6 4..9

4..61..3 7..9

Subtyping for Subranges (Rule 1)

s..t  ..    s    t  

henceforward, we shall use the (weaker) implication 
and denote this using:

 s  , t  

  s..t  ..
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Functions:  Generalisation

Type constructor for functions:  

name : domain  codomain

Use subranges to model types in the domain and 
codomain of -expressions:

f : 2..5  3..6
   x . x +1 (f 3)  4

Consider how simple types generalise:  3 has type 
3..3 and also the type of any supertype:

3 : (3..3)  (3..4)  (2..4)  (2..5)

Now consider how function types generalise:

g : (2..5  4..5)  (2..5  3..6)

because it maps its domain to naturals between 4 
and 5 (and hence between 3 and 6);  however

h : (3..4  3..6)  (2..5  3..6)

because it only maps naturals between 3 and 4 
(and hence not between 2 and 5) to its codomain.
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Subtyping Rule for Functions

The inclusion (ie generalisation) rule for function 
types therefore demands that 

 the domain shrinks; but 

 the codomain expands:

f : (2..5  3..6)  (3..4  2..7)

Subtyping for Functions (Rule 2)

  s  ,  t  

 s  t    

This means that for two functions A  B if

 A is covariant with B in its result type;
ie  (result A)  (result B)

 A is contravariant with B in its argument type;  ie  
(argument A)  (argument B)

This is an important result for OOP.
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Axioms:  Specialisation

Consider that STACK and QUEUE have 
indistinguishable functional specifications:

SQ  sq . {push : ELEMENT  sq  sq;
 pop : sq  sq;  
 top : sq  ELEMENT}

without the appropriate constraints to ensure

 LIFO property of STACKs

 FIFO property of QUEUEs.

Imagine an unordered collection receiving an 
element - we may assert the constraint:

e : ELEMENT, c : COLLECTION
e  add(e,c)

Now, if we want to consider a STACK as a kind of 
COLLECTION, we may assert an additional axiom 
to enforce ordering:

e : ELEMENT, s : STACK
e  add(e,s);
top(add(e,s)) = e

which is a more stringent constraint.
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Subtyping Rule for Axioms

A constraint is more stringent, if it rules out more 
objects from a set:

{ x | STACK }  { y | COLLECTION }

and this is the subtyping condition.

Constraints can be made more stringent by:

 adding axioms

 modifying axioms

A modified axiom is one which necessarily entails 
the original one; here we can assert:

(top(add(e,s)) = e)    (e  add(e,s))

Subtyping for Axioms (Rule 3)

   1, ... k  1, ... k


{ x | 1, ... k, ... n }  { y | 1, ... k }

This means that for two constraints A  B if

 A has n-k more axioms than B

 The first k axioms in A entail those in B
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Objects as Records

Simple objects may be modelled as records whose 
components are labelled functions (Cardelli and 
Wegner, 1985):

 access to stored attributes represented using 
nullary functions;

 modification to stored attributes represented by 
constructing a new object.

Non-recursive records:

INT_POINT  {
x :  INTEGER;  y :  INTEGER }

Recursive records (assumes  pnt):

CART_POINT  Rec pnt . {
x :  INTEGER;  y :  INTEGER;
moveBy : INTEGER x INTEGER  pnt;
equal : pnt  BOOLEAN }

 assumes objects are applied to labels to select 
functions:  (obj label).
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Subtyping Rule for Records

Consider that objects of type:

COL_POINT  { x :  INTEGER;
y :  INTEGER;  color :  INTEGER }

may also be considered of type INT_POINT, since 
they respect all INT_POINT's functions;

Consider also that objects of type:

NAT_POINT  {
x :  NATURAL;  y :  NATURAL }

are a subset of all INT_POINTs defined by:

{ p  INT_POINT | p.x  0, p.y  0 }

Subtyping for Records (Rule 4)

                  1  1, ... k  k


{ x1:1, ... xk:k, ... xn:n }  { x1:1, ... xk:k }

This rule says that for two records A  B if

 A has n-k more fields than B;

 the first k fields of A are subtypes of those in B 
(could be the identical type).
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Inheritance as Subtyping

Combining the above Rules 1 - 4, we get:

Any two related classes, modelled as records 
containing sets of functions, are in a subtype 
relation A  B  if:

 extension:  A adds monotonically to the functions 
inherited from B (Rule 4); and

 overriding:  A replaces some of B's functions with 
subtype functions (Rule 4); and

 restriction:  A is more constrained than B (Rule 3) 
or a subrange/subset of B (Rule 1).

A function may only be replaced by another if:

 contravariance:  arguments are more general 
supertypes (Rule 2); and therefore preconditions 
are weaker (Rule 3);

 covariance:  the result is a more specific subtype 
(Rule 2); and therefore postconditions are 
stronger (Rule 3).
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Subtyping:  Exercises

 Q1:  Is class B  class A?  Explain why, or why 
not.  (NB - here, model classes as records and 
attributes as nullary functions).

class A class B inherit A
attributes attributes

x : INTEGER;    b : BOOLEAN;
y : INTEGER; methods

methods    foo : A  D;
foo : B  C;    bar : B  D;

end. end.

class C class D inherit C
attributes attributes

o : A;    o : B;
methods methods

baz : A  C    baz : B  D
end. end.
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Subtyping versus Type Recursion

We can now describe inheritance in terms of 
subtyping; but soon will see how this is not 
adequate to capture inheritance with polymorphism.

 Exploring the subtyping model of inheritance

 Polymorphism introduces type recursion

 Subtyping breaks down:  positive recursion

 Subtyping breaks down:  negative recursion

 F-bounded quantification

 Polymorphic subtyping
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Conforming to Subtyping

How do existing inheritance schemes measure up 
to the subtyping model?

Smalltalk:

 variable argument lists   and types 

 derailment ( selective inheritance) 

C++: 

 fixed argument lists   and types 

 linked export through public inheritance 

Eiffel:

 covariant result   and arguments 

 undefinition, orthogonal export
( selective inheritance) 

 weakened preconditions 
strengthened postconditions 

Trellis:

 covariant result 
contravariant arguments 
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Failure to Conform

What happens in languages that do not conform to 
strict subtyping?

 Starting with two basic classes in Eiffel:

class SAMPLE 
feature

data : INTEGER;
magnitude : INTEGER is 
do -- absolute value of sample

if data < 0
then Result := - data
else Result := data

end
end; -- SAMPLE

class POWER_SAMPLE inherit SAMPLE
feature

power : INTEGER is 
do -- square of sample

Result := data * data
end

end; -- POWER_SAMPLE



 1994  A J H Simons Object-Oriented Type Systems  39

Breaking a Rule

 Eiffel allows covariant argument redefinition -
strictly breaking a subtyping rule;

 at first, this looks reasonable enough...

class SIGNAL 
feature

rectify(arg : SAMPLE) : INTEGER is 
do -- simple strategy

Result := arg.magnitude
end

end; -- SIGNAL

class POWER_SIGNAL inherit SIGNAL
feature

-- redefining with new argument
rectify(arg : POWER_SAMPLE) 

: INTEGER is 
do -- more sophisticated strategy

Result := arg.power
end

end; -- POWER_SIGNAL
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Type Failure

 ...until you have a routine which expects a 
SIGNAL and is given a POWER_SIGNAL:

local
sam : SAMPLE;
sig : SIGNAL;
pow : POWER_SIGNAL; 

do
sam.Create;
pow.Create;

-- statically correct if pow  sig
sig := pow;

-- statically correct for SIGNAL
sig.rectify(sam);

-- but invokes POWER_SIGNAL's
-- rectify(sam) which in turn invokes
-- sam.power!!!  Runtime failure!!!

end; -- some routine

Failure to conform to subtyping can result in 
programs being passed as type-correct, but hiding 
run-time type failure (Cook,1989).
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Inheritance with Polymorphism

Even a subtype-conformant language may fail to 
express what we want.  Consider the type:

OBJECT  Rec obj . {
identity :  obj;
equal : obj  BOOLEAN }

So, identity and equal are functions with the types:

identity : OBJECT  (  OBJECT)

equal : OBJECT  (OBJECT  BOOLEAN)

But what should happen when we apply these 
functions polymorphically to some inheriting class, 
such as POINT?  We would like:

identity : POINT  (  POINT)

equal : POINT  (POINT  BOOLEAN)

 the types of polymorphic functions need to 
change under inheritance;

 the desired type modifications seem to violate 
subtyping rules.
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Mutual Type Recursion

Inheritance with polymorphism is analogous to 
mutual type-recursion (Cook & Palsberg,1989):

Consider a function F and a derived (modified) 
version M which depends on F...

Direct derivation - encapsulation is preserved:-

client M F

Naive derivation from recursive structure:-

client M F

 In the naive case, the modification only affects 
external clients, not recursive calls.

Derivation analogous to inheritance:-

client M F

 In the case of polymorphic inheritance, self-
reference in the original class must be changed to 
refer to the modification.
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Polarity in Type Expressions

When we examine our inheritance-as-subtyping 
model in the context of polymorphism, different 
things go wrong depending on the location of 
recursive type variables.

Analogy with polarity in logic (Canning, Cook, Hill, 
Olthoff & Mitchell 1989):

Definition:  Positive and Negative Polarity

In the type expression:

  

 appears negatively and  positively.

Positive Type Recursion:

 occurs when the recursive type variable appears 
on the RHS of the  constructor.

Negative Type Recursion:

 occurs when the recursive type variable appears 
on the LHS of the  constructor.
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Positive Type Recursion

Consider classes in a simple screen graphics 
package.  We would like a move function:

MOVEABLE  Rec mv . {
move : INTEGER  INTEGER  mv }

to apply polymorphically to all descendants of 
MOVEABLE, such as SQUARE and CIRCLE.

However move does not have the type:

move : t  MOVEABLE . t 
(INTEGER  INTEGER  t)

but rather the type:

move : t  MOVEABLE . t 
(INTEGER  INTEGER  MOVEABLE) 

 Whenever we move SQUAREs or CIRCLEs we 
always obtain an object of exactly the type 
MOVEABLE (we lose type information).

 The algebra does not force the function's result 
type to mirror its polymorphic target.

 Cannot cope with positive type recursion.
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Negative Type Recursion

Consider now that we would like a < function

COMPARABLE  Rec cp . { 
< : cp  BOOLEAN }

to apply polymorphically to all descendants of 
COMPARABLE such as INTEGER and 
CHARACTER, which inherit the < operation.

Now, the function < does not have the type:

< : t  COMPARABLE . t 
(t  BOOLEAN)

but rather the type:

< : t  COMPARABLE . t 
(COMPARABLE  BOOLEAN)

 Whenever we compare INTEGERs, the < function 
always expects an argument of exactly the type 
COMPARABLE.

 The algebra does not force < to compare 
operands of the same type.

 Cannot cope with negative type recursion.
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Subtyping Breaks Down

If we unroll the inherited type definitions for 
CHARACTER or INTEGER, we can force the 
function < to accept the types we desire:

CHARACTER  Rec ch . { ...;  print : ch ;
< : ch  BOOLEAN; ... }

By explicit redefinition, < now has the type

< : t  CHARACTER . t 
(CHARACTER  BOOLEAN)

To ensure CHARACTER  COMPARABLE, we 
need to obtain subtyping among functions in the 
pair of records:

{...; < : CHARACTER  BOOLEAN; ... }
 { < : COMPARABLE  BOOLEAN }

requiring COMPARABLE  CHARACTER in turn by 
contravariance!

 CHARACTER  COMPARABLE cannot be 
derived using the rules of subtyping unless in fact 
CHARACTER  COMPARABLE.

 The subtyping model breaks down. 
polymorphism.
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Inheritance not Subtyping

Mathematically, subtyping involves bounded 
universal quantification (Cardelli & Wegner, 1985):

t  T . (t)  where T  Rec r . F(r)

For inheritance to conform to subtyping, we would 
either need:

 no recursive types; or

 no polymorphic functions.

Instead, we desire a typing construct which permits 
full type recursion:

t  F[t] . (t)

and this is called function-bounded quantification
(Canning, Cook, Hill, Olthoff & Mitchell 1989).

In this model (Cook, Hill & Canning, 1990):

 classes are not types;

 inheritance is not subtyping.
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Deriving Typing Functions

(Canning, Cook, Hill, Olthoff & Mitchell 1989) obtain 
typing functions which have the recursive properties 
we desire.

Consider the polymorphic move function.

Working backwards, we seek the condition on a 
type t so that for any variable x : t we can derive "" 
that x.move(1, 1) is also of type t.

x : t  x.move(1, 1) : t { by assumption }

Using a type rule for function application:

f :    ,  v : 
APP 

     (f v) : 

x : t  x.move : (INTEGER  INTEGER  t)

Using a type rule for record selection:

 r : { 1:1, ..., n:n }
SEL  i  1..n

    r.i : i

x : t  x : { move : INTEGER  INTEGER  t }
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F-Bounded Quantification

x : t  x : { move : INTEGER x INTEGER  t }

is the minimal constraint on the record type of x.  
Using the subtyping rule, we can introduce more 
specific record types  such that:

  { move : INTEGER  INTEGER  t }


x : t    x : 

Since the type  does not occur in any other 
assumption, we may simplify using { t /  } to the 
requirement

t  { move : INTEGER  INTEGER  t }

which cannot be proved without additional 
assumptions.

Expressing this condition as t  F-Moveable[t], 
where F-Moveable[t] is a typing function:

F-Moveable[t]  { 
move : INTEGER  INTEGER  t }

it is clear that this condition fits the format for the 
kind of quantification we desire.
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Polymorphic Types

Classes are now modelled as typing functions
containing bound parameters.  These describe 
spaces of possible types, hence they are 
polymorphic type descriptions:

F-Moveable[t]  { 
move : INTEGER  INTEGER  t }

F-Comparable[t]  { < : t  BOOLEAN }

Actual types are obtained by the application of 
these typing functions to specific types, whereby the 
parameter is replaced:

F-Moveable[SQUARE] = { move : 
INTEGER  INTEGER  SQUARE }

F-Moveable[CIRCLE] = { move : 
INTEGER  INTEGER  CIRCLE }

F-Comparable[CHARACTER] = {
< : CHARACTER  BOOLEAN }

F-Comparable[INTEGER] = {
< : INTEGER  BOOLEAN }
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Polymorphic Subtyping

If we unroll the type definitions for SQUARE or 
CIRCLE we get:

SQUARE  Rec sqr . { ...; 
move : INTEGER  INTEGER  sqr; ... }

CIRCLE  Rec cir . { ...;
move : INTEGER  INTEGER  cir; ... }

thereby demonstrating that:

SQUARE  F-Moveable[SQUARE]
CIRCLE  F-Moveable[CIRCLE] ...etc

which is precisely what we want.  

Note that the most general type satisfying the 
condition is the type over whose body we 
abstracted:

MOVEABLE  F-Moveable[MOVEABLE]

but we do not have any other simple subtyping 
relationships:

SQUARE  MOVEABLE
CIRCLE  MOVEABLE
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Type Recursion:  Exercises

 Q1:  Given the following classes, explain the type 
of 

x.fetch;

when x is of type CAR.  What is the type of a 
CAR's home?

class VEHICLE class GARAGE
attributes attributes

home : GARAGE;   holds : VEHICLE;
methods methods

park is    put(v : VEHICLE) is
  home.put(self) holds := v
end;    end;
fetch : VEHICLE is    get : VEHICLE is
  return home.get() return holds
end;    end;

end. end.

class CAR inherit
VEHICLE

end.
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Implications for Language Design

The problem is that we have been treating classes 
as though they were actual types, when in fact they 
are type constructors.

 Distinguishing class and type semantics

 Classes as type constructors

 Type recursion, substitution, rebinding

 Bound and free type parameters

 Homogenous and heterogenous types

 Full recursive capture of type

 Solving the type failure problem
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Classes:  Semantic Ambiguity

So, what is a class?  In most languages, class 
identifiers are used ambiguously.

A class may denote either:

 polymorphic:  a space of possible types (the 
bounded, but possibly infinite set of descendent 
classes derived from it);  or

 monomorphic:  a specific type (the type of new 
objects created from the class template);

Implicitly we adopt the polymorphic class
interpretation:

 when designing open-ended class libraries using 
inheritance;

 when assigning types to polymorphic variables;

but may switch to the monomorphic type
interpretation:

 when creating new objects.
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Type Space and Fixed Points

Let us try to distinguish class and type:

Imagine the space of all possible recursive abstract 
types (RATs) - this type domain:

 contains RATs corresponding to the powerset of 
all functions;

 forms a complete lattice under the cpo  .

General

Specific

Actual Type

Polymorphic Type

Classes define bounded, closed volumes in the type 
domain - these are true polymorphic types - with a 
least fixed point at the apex - this is the most 
general actual type satisfying the bound.
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Classes as Type Constructors

Compare with other familiar mechanisms for 
handling polymorphic types:

eg:  the type constructor for ARRAYs contains 
explicit type parameters denoting 'unknown' or 
'incomplete' parts of the type:

ARRAY [s  SUBRANGE] OF [t  TOP]

Classes are also type constructors, containing an 
implicit type parameter which:

 abstracts over the entire class body; 

 corresponds to the 'known' parts of the type;

 must permit full recursive instantiation with any 
suitable type satisfying the class bound.

F-OBJECT[t]   { identity :  t;
equal : t  BOOLEAN }

So, a class is a higher-order construct in type 
theory, cf parameterised types in ML (Milner, 1978).
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Distinguishing Class and Type

Object-oriented languages need to distinguish 
actual (albeit general) types, eg:

m : MOVEABLE;

from F-bounded polymorphic classes, 

m : t  F-Moveable[t];

which we might represent syntactically by 
introducing an explicit parameter M in:

m : MOVEABLE[M];

such that it is clear when expressions have a 
recursively instantiated polymorphic type:

class MOVEABLE[M]
{ position : POINT;

move (x, y : INTEGER) : MOVEABLE[M];
}

 position returns a type POINT;

 move returns a class M of types constrained by 
the F-bound MOVEABLE;

 cf T and T'Class in Ada9X.
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Type Recursion:  Inheritance

Parameterising the self-type gives us a  simple 
mechanism - unification - for expressing type 
recursion under inheritance (Simons et al, 1994):

class MOVEABLE[M]
{ position : POINT;

move (x, y : INTEGER) : MOVEABLE[M];
}

Now, CIRCLE inherits from MOVEABLE:

class CIRCLE[C] : MOVEABLE[M]
{ radius : INTEGER;
}

 By unification, we have C' = C  M, and the 
resulting constraint CIRCLE[C'] since 
t CIRCLE[t]  MOVEABLE[t].

 inherited move now returns a class C' of types 
constrained by the F-bound CIRCLE.

This captures the self-type recursion in:

 x : like Current; -- in Eiffel

 self class new. "in Smalltalk"
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Type Substitution:  Genericity

Records may contain other parameterised 
components, eg the generalised coordinate:

class NUM_POINT[P]
{ x, y : NUMBER[N];

set (p, q : NUMBER[N]) : NUM_POINT[P];
}

where N is a parameter to be replaced by any type 
satisfying NUMBER[ ].

A simple scheme for type substitution permits the 
generation of many useful types:

intPoint : NUM_POINT { INTEGER/N };

realPoint : NUM_POINT { REAL/N };

This captures:

 parametric polymorphism in ML;

 generic packages in Ada;

 constrained genericity in Eiffel.

Note that: NUM_POINT   NUM_POINT[P] 
{ NUM_POINT/P }
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Type Restriction:  Rebinding

Type parameters can be rebound through 
unification to derive classes with extra semantics:

class LIST[L]
{ head : OBJECT[O]; ...any object

tail : LIST[L];
add (x : OBJECT[O]) : LIST[L];

}

Sorted lists are like lists except that their elements 
must be comparable:

class SORTED_LIST[S] : 
LIST[L] { COMPARABLE[C/O] }

{ add (x : COMPARABLE[C]) :
SORTED_LIST[S]; ...redefined add

}

 By unification, we have C' = C  O, and the 
resulting constraint COMPARABLE[C'] since 
t COMPARABLE[t]  OBJECT[t].

 inherited head now returns a class C' of types 
constrained by the F-bound COMPARABLE.
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Tied Parameters

By linking the instantiation of type parameters, we 
can force polymorphic functions to accept 
homogenous types of argument:

class COMPARABLE[C]
{ lessThan (x : COMPARABLE[C]) :

BOOLEAN }

3.lessThan(4) ...true
4.5.lessThan(3.2) ...false
3.lessThan(4.5) ...static type error

Separate, non-linked parameters permit 
polymorphic functions to accept heterogenous
argument types:

class COMPARABLE[C]
{ lessThan (x : COMPARABLE[D]) :

BOOLEAN }

3.lessThan(4.5) ...true

This captures aspects of:

 parametric polymorphism in ML;

 template functions in C++.
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Static Type Resolution

Parameter unification and type substitution allow 
polymorphic functions to acquire static types at 
compile time:

class MOVEABLE[M]
{ position : POINT;

move (x, y : INTEGER) : MOVEABLE[M];
}

class SQUARE[S] : MOVEABLE[M]
{ side : INTEGER;
}

 move : SQUARE[S] 
(INTEGER  INTEGER  SQUARE[S])

because of tying through unification S  M;

s : SQUARE;
s.move(3, 4);

 move : SQUARE 
(INTEGER  INTEGER  SQUARE)

because of implicit substitution due to
SQUARE  SQUARE[S] { SQUARE/S }.
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Free Parameters

Parameters have the effect of linking the type-
instantiations of parts of polymorphic structures:

m : MOVEABLE[X];
s : SQUARE;  c : CIRCLE;
m := s; ...{ SQUARE/X }
m.move(3, 4);
m := c; ...static type error
m.move(6, 8);

 Within the same scope, a tied parameter cannot 
be instantiated twice.

The symbol ? is a free type parameter, not linked to 
any other part of a structure:

n : MOVEABLE[?];
n := s; ...{ SQUARE/?#1 }
n.move(3, 4);
n := c; ...{ CIRCLE/?#2 }
n.move(6, 8);

 Within the same scope, a free parameter may be 
instantiated many times.  Dynamic type checks 
may be needed.
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Dynamic Type Resolution

Free parameters lead to situations where dynamic 
type checks may be needed:

class COL_SQUARE[C] : SQUARE[S]
{ shade : COLOR;
}

m : MOVEABLE[X]; n : SQUARE[?];
c : COL_SQUARE; s : SQUARE;

m := c; ...{ COL_SQUARE/X }
n := s; ...{ SQUARE/? }
m := n.move(6, 8); ...static type error?

In this case, move has the type:

 move : SQUARE[?] 
   (INTEGER  INTEGER  SQUARE[?])

but since m has the type:

 m : MOVEABLE[X] { COL_SQUARE/X }
 m : COL_SQUARE 

the move expression is only type-correct if it returns 
a COL_SQUARE.  Other languages cannot detect 
this.
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Homogenous and Heterogenous 
Collections

Tied and free parameters distinguish the types of 
homogenous and heterogenous collections:

class LIST[L]
{ head : OBJECT[O]; ...any object

tail : LIST[L]; ...like self
add (x : OBJECT[O]) : LIST[L];

}

 The tail of the list must be in the same type L as 
the current list;

 So, the head of the tail of the list must be in the 
same type O as the head of the current list, etc...

class LIST[H]
{ head : OBJECT[?]; ...any object

tail : LIST[H]; ...like self
add (x : OBJECT[?]) : LIST[H];

}

 Here, even the head and the item added need not 
be in the same types ?#1, ?#2.
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Mutual Type Recursion

There is a mutual recursive relationship between 
type parameters in recursive data types:

class LIST[L]
{ head : OBJECT[O]; ...any object

tail : LIST[L]; ...like self
add (x : OBJECT[O]) : LIST[L];

}

intList : LIST { INTEGER/O }:

The head of intList has the type:

 head : OBJECT[O] { INTEGER/O }
 head : INTEGER

and the tail of intList has the type:

 tail : LIST[L] { LIST{INTEGER/O} / L }
 tail : LIST { INTEGER/O }

ie modifications to the type of the head O affect the 
type of the tail L;

 cf recursive capture in BOPL (Palsberg & 
Schwartzbach, 1994).
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Type Failure Solved:  Type Error

Back to the Eiffel type failure problem:  

class SIGNAL[S]
{ rectify (x : SAMPLE[X]) : INTEGER;   }

class POWER_SIGNAL[P] :
SIGNAL[S] { POWER_SAMPLE[Y/X] }

{ rectify (y : POWER_SAMPLE[Y]) :
INTEGER;   } ...redefined rectify

First approach, using a tied parameter - type 
information propagated from sig:

sam : SAMPLE; ...created
sig : SIGNAL[T];
pow : POWER_SIGNAL; ...created

sig := pow; ...{ POWER_SIGNAL/T }
sig.rectify(sam); ...static type error

because the type of rectify is now:

 rectify : POWER_SIGNAL 
   (POWER_SAMPLE[Y]  INTEGER)

 and { SAMPLE/Y } is a type error.
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Type Failure Solved:  Type Check

Second approach, using a free parameter - type 
information propagated from sam: 

sam : SAMPLE; ...created
sig : SIGNAL[?];
pow : POWER_SIGNAL; ...created

sig := pow; ...{ POWER_SIGNAL/? }
sig.rectify(sam); ...{ SAMPLE/X }

Here, we need a dynamic type check, because the 
available types of rectify are:

 rectify : SIGNAL[S] 
   (SAMPLE[X]  INTEGER)

 rectify : POWER_SIGNAL[P] 
   (POWER_SAMPLE[Y]  INTEGER)

and { SAMPLE/X } yields the only solution:

 rectify : SIGNAL  (SAMPLE  INTEGER)

which is only type-correct if the object stored in sig
is in fact of type SIGNAL.
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Reference Material

The introductory material is still difficult for 
beginners, but may prove rewarding after the 
exposition of this tutorial.

The more advanced material provides much of the 
mathematical foundation for the arguments 
presented here and should only be handled by 
properly-trained mathematicians!
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Technical Appendix

This appendix includes technical material on 
lambda calculus, domain theory and category 
theory ancilliary to the exposition of this tutorial.

 Fixed point analysis method

 Derivation of a recursive function

 Domain theory

 Category theory

 Semantics of recursive types

 Semantics of polymorphic classes
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Recursion:  Fixed Point Analysis

Approach to solving recursive equations:

 transform body into non-recursive form by 
replacing recursive call with  abstraction:

add a.b. if b = zero then a 
else (add (succ a)(pred b))

ADD f.a.b. if b = zero then a 
else (f (succ a)(pred b))

 use this new function to generate the recursive 
version:

add  (ADD <some fn>)

 It so happens that what we really need is:

add  (ADD add)

 ie add is defined as a value which is unchanged 
by the application of ADD:

 such a value is called a fixed point of ADD.
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Recursion:  Fixed Point Finder

We have transformed the task of finding a recursive 
solution for add into finding fixed points for ADD.

 There might be many such fixed points;

 Under certain conditions, it is possible to define 
the least fixed point of any function using the fixed 
point finder, .

  has the property that:

f = ( F)  (F f) = f

 Here is a definition of .  Note how it also is not 
recursive, but does contain delayed self-
application:

 f.(s.(f (s s)) s.(f (s s)))

 Calculus Reduction Rules:

(x.x a)  a

((x.y.(x y) a) b)  (y.(a y) b)  (a b)

(f a b)  ((f a) b)
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Recursion:  Derivation of add

ADD g.a.b. if b = zero then a 
else (g (succ a)(pred b))

 f.(s.(f (s s)) s.(f (s s)))

add  ( ADD) {ADD / f}

 (s.(ADD (s s)) {(s s) / g}
s.(ADD (s s)))

 (s.a.b. if b = zero then a {... / s}
else ((s s)(succ a)(pred b))

s.(ADD (s s)))

 a.b. if b = zero then a
else ((s.(ADD (s s)) s.(ADD (s s)))

(succ a)(pred b))

 ...        {... / s; (succ a) / a; (succ b) / b}

 a.b. if b = zero then a
   else (if (pred b) = zero then (succ a)

else ((s.(ADD (s s)) s.(ADD (s s)))
(succ (succ a))(pred (pred b)))

... etc
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Types:  Domain Theory

Finding fixed point solutions to existential types 
requires certain conditions - denotational semantics 
of  calculus (Scott, 1976) needs domain theory.

 V is the domain of all  computable values, ie

V  BOOLEAN + NATURAL +
[V  V] + [V  V].

 A complete partial order (cpo) relationship is 
constructed among some sets of values in V.

 Certain sets of values are used as carriers for  
types - can solve recursive equations using set-
theoretic interpretation.

'Useful' carrier sets known as ideals, which have the 
following properties:

 downward closed under cpo;

 consistently closed under cpo;

on the domain V (Danforth & Tomlinson, 1986).
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Links with Category Theory

One semantic interpretation of F-bounded 
quantification relies on Category Theory.

 A category is a collection of abstract objects with 
similar structure and behaviour,

cf  all objects conforming to some type.

 Structure-preserving maps, called morphisms, f : 
x  y, exist from object to object in a category,

cf correspondences between different 
representations of objects within a type.

 A morphism f with an inverse, g : y  x, results in 
two isomorphic objects x  y,

cf  two objects with identical type.

 The initial object in each category has a single 
morphism extending to every other object,

cf  the most abstract denotation of all objects 
conforming to some type.
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-Algebra Semantics

 Morphism-preserving maps, called functors,  : C 
 D, exist from category to category,

cf polymorphic inheritance which maps behaviour 
for one type into behaviour for another type (with 
"more structure").

 An endofunctor is a  which maps from a 
category into itself, ie  f : ( t)  t,

cf  recursive construction of a type (with "more 
structure", in the same category).

 A -algebra is the category of pairs <t, f>, where f 
: ( t)  t are morphisms among a recursively 
constructed type,

cf category of all objects in a recursive type.

 An initial -algebra is the solution to the equation 
( t)  t, a fixed point of ,

cf the most abstract denotation of a recursive 
type.

 Since ( t)  t, the inverse g : t  ( t) must also 
exist.
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Quantification over -Coalgebras

The dual of a category theory construct is one in 
which "arrows are reversed":

 morphisms are replaced by their inverse;

 initial objects become terminal objects.

The dual of a -algebra is a -coalgebra  or 
category of pairs <t, g>, with g : t  ( t).  

 Both the initial -algebra and terminal -
coalgebra satisfy t  ( t).

When we use F-bounded quantification, we say t 
 F[t] 

 which implies a map g : t  ( t), ie

 quantification over pairs <t, g> or some family of 
-coalgebras.

Since any recursive type Rec t . F[t] may be 
regarded as a particular -coalgebra, 

F-bounded quantification is over a category whose 
objects are "generalisations" of the recursive type 
Rec t . F[t].


