
 1994 A J H Simons Object-Oriented Type Systems 1

Exploring Object-Oriented Type
Systems

Tony Simons

A.Simons@dcs.shef.ac.uk

A J H Simons,
Department of Computer Science,

Regent Court, University of Sheffield,
211 Portobello Street,

SHEFFIELD, S1 4DP, United Kingdom.

OOPSLA '94 Tutorials
Portland Oregon, October 1994

 1994 A J H Simons Object-Oriented Type Systems 2

Overview

 Motivation

 Classes and Types

 Abstract Types and Subtyping

 Type Recursion and Polymorphism

 Implications for Language Design

 Reference Material and Appendix

 1994 A J H Simons Object-Oriented Type Systems 3

Motivation: Practical

Object-oriented languages have developed ahead
of underlying formal theory:

 Notions of "class" and "inheritance" may be ill-
defined.

 Programmers may confuse classes and types,
inheritance and subtyping.

 Type rules of OOLs may be compromised -
formally incorrect.

 Type security of programs may be compromised -
unreliable.

There is an immediate need...

 to uncover the relationship between classes (in
the object-oriented sense) and types (in the
abstract data type sense).

 to construct a secure type model for the next
generation of object-oriented languages.

 1994 A J H Simons Object-Oriented Type Systems 4

Motivation: Theoretical

OOLs introduce a powerful combination of language
features for which theory is immature.

Challenge to mathematicians:

 To extend the popular treatments of types in
strongly-typed languages to allow for systematic
sets of relationships between types.

 To present a convincing model of type recursion
under polymorphism.

 Plausible link between object-oriented type
systems and order-sorted algebras (Category
Theory).

 1994 A J H Simons Object-Oriented Type Systems 5

Classes and Types

First, a look at some of the issues surrounding
classes and types.

 What are types?

 What are classes?

 Convenience viewpoint:
"classes are not like types at all".

 Ambitious viewpoint:
"classes are quite like types".

 Conflict between viewpoints.

 Separation of viewpoints.

 The future of classification?

 1994 A J H Simons Object-Oriented Type Systems 6

What is a Type?

 Concrete: a schema for interpreting bit-strings in
memory

 Eg the bit string

01000001

is 'A' if interpreted as a CHARACTER;

is 65 if interpreted as an INTEGER;

 Abstract: a mathematical description of objects
with an invariant set of properties:

 Eg the type INTEGER

INTEGER Rec i . { plus : i i i;
minus : i i i; times : i i i;
div : i i i; mod : i i i }

i,j,k : INTEGER
plus(i,j) = plus(j,i)
plus(plus(i,j),k) = plus(i,plus(j,k))
plus(i,0) = i
...

 1994 A J H Simons Object-Oriented Type Systems 7

What is a Class?

Not obvious what the formal status of the object-
oriented class is:

 type - provides interface (method signatures)
describing abstract behaviour of some set of
objects;

 template - provides implementation template
(instance variables) for some set of objects;

 table - provides a table (class variables) for data
shared among some set of objects.

In addition, each of these views is open-ended,
through inheritance:

 incomplete type;

 incomplete template;

 incomplete table...

 1994 A J H Simons Object-Oriented Type Systems 8

Two Viewpoints

A class can be viewed as a kind of extensible
record:

 storage for data;

 storage for methods;

Class seen as a unit of implementation
(convenience viewpoint).

A class can be viewed as a kind of evolving
specification:

 adding new behaviours (adding method
signatures);

 making behaviours more concrete
(implementing/re-implementing methods);

 restricting set of objects (subclassing).

Class seen as a unit of specification (ambitious
viewpoint).

 1994 A J H Simons Object-Oriented Type Systems 9

Convenience Viewpoint

Class as a unit of implementation: formally lax; but
with some advantages...

 maximum reuse of implementations (but some
odd abstractions);

 economy in levels of indirection (in structures)
and levels of nesting (in call-graphs).

eg RECTANGLE as a subclass of POINT:

RECTANGLE

width

height

POINT

x

y

RECTANGLE

width

height

x

y

TEMPLATE

but is a RECTANGLE really a kind of POINT? Odd
taxonomy.

 1994 A J H Simons Object-Oriented Type Systems 10

Ambitious Viewpoint

Class as a unit of specification: formally strict;

eg providing abstract specifications with multiple
alternative implementations in Eiffel (Meyer, 1988
and 1992):

push
pop
top

QUEUE push
pop
top

STACK

LIST

LINKED_

(deferred) (deferred)

STACK

LINKED_
QUEUE

FIXED_
QUEUE

FIXED_
STACK

ARRAY

In Eiffel and Trellis (Schaffert et al, 1986):

 classes are types

 subclasses are subtypes

but is this formally correct? ...

 1994 A J H Simons Object-Oriented Type Systems 11

Strong and Weak Inheritance

Clash of ambitious/convenience views:

Strong inheritance: sharing specification -
functional interface and type axioms by which all
descendants should be bound.

Weak inheritance: sharing implementation -
opportunistic reuse of functions and declarations for
storage allocation.

POLYGON

TRIANGLE RECTANGLE

POLYGON

TRIANGLE

RECTANGLEdraw
move
rotate

eg in Smalltalk (Goldberg and Robson, 1983):

Maximising reuse of storage for corners of figures
{origin, extent, ... nth vertex} leads to strange type
taxonomies.

 1994 A J H Simons Object-Oriented Type Systems 12

Creeping Implementation

Clash of ambitious/convenience views:

Selective inheritance: introduced through
orthogonal export rules; undefinition rules, eg in
Eiffel (Meyer, 1988 and 1992):

POLYGON

RECTANGLE

AddVertex

Implementation concerns creep into abstract
specification of POLYGON:

 intended as abstract type for all closed figures;

 actually used to model concrete N-vertex
polygons.

...but a RECTANGLE can't add to its vertices!!

Leads to type violation - RECTANGLE does not
respond to all the functions of POLYGON, therefore
cannot be a POLYGON.

 1994 A J H Simons Object-Oriented Type Systems 13

Separation of Concerns

Separation of ambitious/convenience views:

In C++ (Stroustrup, 1991) classes are also types,
but sometimes inheritance is not subtyping:

LIST

SORTED_

insert_first
remove_first
insert_last

COLLECTION

INT_LIST FLOAT_
LIST

insert_before
remove
insert_after

Two kinds:

 private inheritance - subclass only inherits
implementation of its parent;

 public inheritance - subclass also inherits
specification of its parent.

An INT_LIST is type-compatible with LIST. A
SORTED_COLLECTION is not.

 1994 A J H Simons Object-Oriented Type Systems 14

Class/Type Independence

Objects seem to have class and type independently
(Snyder, 1987):

M:1 mappings from class hierarchies into type
hierarchies, due to multiple concrete
representations:

RECTANGLE

origin

width

height

RECTANGLE

origin

extent

POINT

x

y

POINT

x

y

POINT

x

y

M:1 mappings from class hierarchies into type
hierarchies due to free choice between inheritance
and composition:

WINDOW WINDOWBUFFER

BUFFEREDITOR

EDITOR

 1994 A J H Simons Object-Oriented Type Systems 15

Separate Sharing of Class and Type

Separation of notions of class and type, eg
CommonObjects (Snyder, 1987) and POOL-I
(America, 1990):

 can reason about implementation and type
independently;

 orthogonal class and type hierarchies:

SHAPE

ELLIPSE RECTANGLE

draw
move
rotate

CIRCLE SQUARE

POINT

CIRCLE SQUARE

ELLIPSE RECTANGLE

x, y : Integer

r : Integer w : Integer

p, q : Integer
h : Integers : Integerf1 = f2 w = h

Separation of specification and implementation
concerns, eg Emerald (Raj and Levy, 1989):

 hierarchy used to express type-sharing;

 implementation-sharing only through composition.

 1994 A J H Simons Object-Oriented Type Systems 16

A Failure of Nerve?

Is this impoverished view of class a failure of nerve?

Class fulfils the same role as type for OOP:

 classification a natural activity in Psychology,
undergirds types and abstraction;

 concept differentiation in AI can be compared with
coerceable typing systems;

 strong desire to capture abstraction even in the
type-free OOP languages;

 traditional languages have not addressed the
possibility of systematic sets of relationships
between types;

The fact that something systematic is possible in
OOP means that there probably is an underlying
type model which has not yet been discovered!

 1994 A J H Simons Object-Oriented Type Systems 17

Class and Type: Exercises

 Q1: Design a type-consistent inheritance
hierarchy (without deletions) for modelling the
abstract behaviour of different kinds of
COLLECTION, to include:

STACK , QUEUE, DEQUEUE and SET

What is it that unites the class of all
COLLECTIONs?

 Q2: Some OO methods advocate the discovery
of inheritance structures by identifying entities,
listing their attributes and factoring out common
attributes in local superclasses.

Explain why this approach fails to guarantee type-
consistent inheritance.

 1994 A J H Simons Object-Oriented Type Systems 18

Types and Subtyping

Now, a look at the foundations of type theory.

 Types as sorts and carrier sets.

 Function signatures and axioms.

 Recursive types and subtypes.

 Subtyping for sets and subranges.

 Subtyping for functions and axioms.

 Subtyping for record types.

Algebraic approach to type modelling (cf Goguen).
Advantage: you define abstract types, rather than
concrete ones.

 1994 A J H Simons Object-Oriented Type Systems 19

Type-Consistency

Is it possible to produce a type-consistent model of
object-oriented classes?

 Can classes be made to conform to types?

 Can inheritance be made to conform to
subtyping?

"A type A is included in (is a subtype of) another
type B when all the values of type A are also
values of B" (Cardelli and Wegner, 1985).

Intuitively, a subtype must:

 bear structural similarity with its parent;

 respect all of its parent's functions;

 behave in a similar way to its parent.

Need to define what an abstract type is, much more
closely...

 1994 A J H Simons Object-Oriented Type Systems 20

Types: Sorts and Carrier Sets

Initial idea is that all types are sets:

x : T x T

This concept used to 'bootstrap' the first few
abstract type definitions; Notion of sorts and
carrier sets.

A sort (eg NATURAL or BOOLEAN) is:

"an uninterpreted identifier that has a
corresponding carrier in the standard (initial)
algebra" (Danforth and Tomlinson, 1988).

A carrier set is some concrete set of objects which
you can use to model sorts.

BOOL {true, false} - finite set

NAT {0, 1, 2, ... } - infinite set

An algebra is a pair of a sort (carrier set) and a
set of operations over elements of the sort (carrier):

BOOLEAN <BOOL, {, , , , }>

 1994 A J H Simons Object-Oriented Type Systems 21

Types: Functions

However, it is too restrictive to model abstract types
as concrete sets - consider:

SIMPLE_ORDINAL {0, 1, 2, ... }

SIMPLE_ORDINAL {a, b, c ... }

The type SIMPLE_ORDINAL can be modelled by a
variety of carriers which have an ordering defined
over them.

"Types are not sets" (Morris, 1973).

SIMPLE_ORDINAL is more precisely defined as the
abstract type over which the functions First() and
Succ() are meaningfully applied:

SIMPLE_ORDINAL ord . {
First : ord;
Succ : ord ord }

NB: ord is an existentially quantified variable
awaiting the full definition of the type - to allow for
recursion in the type definition.

 1994 A J H Simons Object-Oriented Type Systems 22

Types: Axioms

But this is still not enough - consider the possibility
that:

Succ(1) 1
Succ(b) a

We need to constrain the semantics of operations
using logic axioms:

x : SIMPLE_ORDINAL
Succ(x) x
Succ(x) First()
Succ(x) = Succ(y) x = y

This, plus the principle of induction, is exactly
enough to ensure that the type behaves like a
SIMPLE_ORDINAL:

X X X0 1 2First()

Succ(x) Succ(x)

Types described with functions and axioms are
more general and more precise than sets.

 1994 A J H Simons Object-Oriented Type Systems 23

Types: Recursion

Do existential types exist? Problems with recursion
in type definitions:

SIMPLE_ORDINAL ord . {
First : ord;
Succ : ord ord }

Analogy: Consider the recursive function:

add a.b. if b = zero then a
else (add (succ a)(pred b))

This is merely an equation that add must satisfy:

 there is no guarantee that add exists;

 there may not be a unique solution.

cf x2 = 4 x = 2 | x = -2

Standard technique for dealing with recursion is to
'solve' the equation above using fixed point analysis
(Scott, 1976).

 see example in Technical Appendix.

 1994 A J H Simons Object-Oriented Type Systems 24

Subtypes: Partial Orders

We may use partial orders (POs) to model types
and subtypes.

 Example: any powerset forms a PO:

S {a, b, c}

(S) {{}, {a}, {b}, {c}, {a, b}, {b, c},
{a, c}, {a, b, c}}

 Ordering relationship: exists between (some)
elements of the PO.

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{}

 Certain complete POs (CPOs) are called ideals
and form a complete lattice under .

 1994 A J H Simons Object-Oriented Type Systems 25

Abstract Types: Exercises

 Q1: In mathematics, a monoid is an algebra <S,
op, id> with certain properties, where

S is the sort (set) of elements;

op : S S S is an associative function taking a
pair of elements back into the sort;

id S is the identity element for which

(op id any) any.

How many examples of monoids can you find in
the standard data types provided in programming
languages?

 Q2: Provide a functional and axiomatic
specification for the abstract types STACK and
QUEUE. How do they differ?

 1994 A J H Simons Object-Oriented Type Systems 26

Subtyping Rule for Sets

Going back to our original intuition of types-as-sets:

x : x

Since we can construct a CPO relating all our types
(ie sets) in a lattice:

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{}

then we can assert that a subtype means the same
thing as a subset:

 x (x x)

ie all the values (elements) of are also values
(elements) of .

 1994 A J H Simons Object-Oriented Type Systems 27

Subtyping Rule for Subranges

Type constructor for subranges: s..t

where s NATURAL;
t NATURAL;
s t;

The set of all subranges has useful partial order
among its elements:

1..9

1..6 4..9

4..61..3 7..9

Subtyping for Subranges (Rule 1)

s..t .. s t

henceforward, we shall use the (weaker) implication
and denote this using:

 s , t

 s..t ..

 1994 A J H Simons Object-Oriented Type Systems 28

Functions: Generalisation

Type constructor for functions:

name : domain codomain

Use subranges to model types in the domain and
codomain of -expressions:

f : 2..5 3..6
 x . x +1 (f 3) 4

Consider how simple types generalise: 3 has type
3..3 and also the type of any supertype:

3 : (3..3) (3..4) (2..4) (2..5)

Now consider how function types generalise:

g : (2..5 4..5) (2..5 3..6)

because it maps its domain to naturals between 4
and 5 (and hence between 3 and 6); however

h : (3..4 3..6) (2..5 3..6)

because it only maps naturals between 3 and 4
(and hence not between 2 and 5) to its codomain.

 1994 A J H Simons Object-Oriented Type Systems 29

Subtyping Rule for Functions

The inclusion (ie generalisation) rule for function
types therefore demands that

 the domain shrinks; but

 the codomain expands:

f : (2..5 3..6) (3..4 2..7)

Subtyping for Functions (Rule 2)

 s , t

 s t

This means that for two functions A B if

 A is covariant with B in its result type;
ie (result A) (result B)

 A is contravariant with B in its argument type; ie
(argument A) (argument B)

This is an important result for OOP.

 1994 A J H Simons Object-Oriented Type Systems 30

Axioms: Specialisation

Consider that STACK and QUEUE have
indistinguishable functional specifications:

SQ sq . {push : ELEMENT sq sq;
 pop : sq sq;
 top : sq ELEMENT}

without the appropriate constraints to ensure

 LIFO property of STACKs

 FIFO property of QUEUEs.

Imagine an unordered collection receiving an
element - we may assert the constraint:

e : ELEMENT, c : COLLECTION
e add(e,c)

Now, if we want to consider a STACK as a kind of
COLLECTION, we may assert an additional axiom
to enforce ordering:

e : ELEMENT, s : STACK
e add(e,s);
top(add(e,s)) = e

which is a more stringent constraint.

 1994 A J H Simons Object-Oriented Type Systems 31

Subtyping Rule for Axioms

A constraint is more stringent, if it rules out more
objects from a set:

{ x | STACK } { y | COLLECTION }

and this is the subtyping condition.

Constraints can be made more stringent by:

 adding axioms

 modifying axioms

A modified axiom is one which necessarily entails
the original one; here we can assert:

(top(add(e,s)) = e) (e add(e,s))

Subtyping for Axioms (Rule 3)

 1, ... k 1, ... k

{ x | 1, ... k, ... n } { y | 1, ... k }

This means that for two constraints A B if

 A has n-k more axioms than B

 The first k axioms in A entail those in B

 1994 A J H Simons Object-Oriented Type Systems 32

Objects as Records

Simple objects may be modelled as records whose
components are labelled functions (Cardelli and
Wegner, 1985):

 access to stored attributes represented using
nullary functions;

 modification to stored attributes represented by
constructing a new object.

Non-recursive records:

INT_POINT {
x : INTEGER; y : INTEGER }

Recursive records (assumes pnt):

CART_POINT Rec pnt . {
x : INTEGER; y : INTEGER;
moveBy : INTEGER x INTEGER pnt;
equal : pnt BOOLEAN }

 assumes objects are applied to labels to select
functions: (obj label).

 1994 A J H Simons Object-Oriented Type Systems 33

Subtyping Rule for Records

Consider that objects of type:

COL_POINT { x : INTEGER;
y : INTEGER; color : INTEGER }

may also be considered of type INT_POINT, since
they respect all INT_POINT's functions;

Consider also that objects of type:

NAT_POINT {
x : NATURAL; y : NATURAL }

are a subset of all INT_POINTs defined by:

{ p INT_POINT | p.x 0, p.y 0 }

Subtyping for Records (Rule 4)

 1 1, ... k k

{ x1:1, ... xk:k, ... xn:n } { x1:1, ... xk:k }

This rule says that for two records A B if

 A has n-k more fields than B;

 the first k fields of A are subtypes of those in B
(could be the identical type).

 1994 A J H Simons Object-Oriented Type Systems 34

Inheritance as Subtyping

Combining the above Rules 1 - 4, we get:

Any two related classes, modelled as records
containing sets of functions, are in a subtype
relation A B if:

 extension: A adds monotonically to the functions
inherited from B (Rule 4); and

 overriding: A replaces some of B's functions with
subtype functions (Rule 4); and

 restriction: A is more constrained than B (Rule 3)
or a subrange/subset of B (Rule 1).

A function may only be replaced by another if:

 contravariance: arguments are more general
supertypes (Rule 2); and therefore preconditions
are weaker (Rule 3);

 covariance: the result is a more specific subtype
(Rule 2); and therefore postconditions are
stronger (Rule 3).

 1994 A J H Simons Object-Oriented Type Systems 35

Subtyping: Exercises

 Q1: Is class B class A? Explain why, or why
not. (NB - here, model classes as records and
attributes as nullary functions).

class A class B inherit A
attributes attributes

x : INTEGER; b : BOOLEAN;
y : INTEGER; methods

methods foo : A D;
foo : B C; bar : B D;

end. end.

class C class D inherit C
attributes attributes

o : A; o : B;
methods methods

baz : A C baz : B D
end. end.

 1994 A J H Simons Object-Oriented Type Systems 36

Subtyping versus Type Recursion

We can now describe inheritance in terms of
subtyping; but soon will see how this is not
adequate to capture inheritance with polymorphism.

 Exploring the subtyping model of inheritance

 Polymorphism introduces type recursion

 Subtyping breaks down: positive recursion

 Subtyping breaks down: negative recursion

 F-bounded quantification

 Polymorphic subtyping

 1994 A J H Simons Object-Oriented Type Systems 37

Conforming to Subtyping

How do existing inheritance schemes measure up
to the subtyping model?

Smalltalk:

 variable argument lists and types

 derailment (selective inheritance)

C++:

 fixed argument lists and types

 linked export through public inheritance

Eiffel:

 covariant result and arguments

 undefinition, orthogonal export
(selective inheritance)

 weakened preconditions
strengthened postconditions

Trellis:

 covariant result
contravariant arguments

 1994 A J H Simons Object-Oriented Type Systems 38

Failure to Conform

What happens in languages that do not conform to
strict subtyping?

 Starting with two basic classes in Eiffel:

class SAMPLE
feature

data : INTEGER;
magnitude : INTEGER is
do -- absolute value of sample

if data < 0
then Result := - data
else Result := data

end
end; -- SAMPLE

class POWER_SAMPLE inherit SAMPLE
feature

power : INTEGER is
do -- square of sample

Result := data * data
end

end; -- POWER_SAMPLE

 1994 A J H Simons Object-Oriented Type Systems 39

Breaking a Rule

 Eiffel allows covariant argument redefinition -
strictly breaking a subtyping rule;

 at first, this looks reasonable enough...

class SIGNAL
feature

rectify(arg : SAMPLE) : INTEGER is
do -- simple strategy

Result := arg.magnitude
end

end; -- SIGNAL

class POWER_SIGNAL inherit SIGNAL
feature

-- redefining with new argument
rectify(arg : POWER_SAMPLE)

: INTEGER is
do -- more sophisticated strategy

Result := arg.power
end

end; -- POWER_SIGNAL

 1994 A J H Simons Object-Oriented Type Systems 40

Type Failure

 ...until you have a routine which expects a
SIGNAL and is given a POWER_SIGNAL:

local
sam : SAMPLE;
sig : SIGNAL;
pow : POWER_SIGNAL;

do
sam.Create;
pow.Create;

-- statically correct if pow sig
sig := pow;

-- statically correct for SIGNAL
sig.rectify(sam);

-- but invokes POWER_SIGNAL's
-- rectify(sam) which in turn invokes
-- sam.power!!! Runtime failure!!!

end; -- some routine

Failure to conform to subtyping can result in
programs being passed as type-correct, but hiding
run-time type failure (Cook,1989).

 1994 A J H Simons Object-Oriented Type Systems 41

Inheritance with Polymorphism

Even a subtype-conformant language may fail to
express what we want. Consider the type:

OBJECT Rec obj . {
identity : obj;
equal : obj BOOLEAN }

So, identity and equal are functions with the types:

identity : OBJECT (OBJECT)

equal : OBJECT (OBJECT BOOLEAN)

But what should happen when we apply these
functions polymorphically to some inheriting class,
such as POINT? We would like:

identity : POINT (POINT)

equal : POINT (POINT BOOLEAN)

 the types of polymorphic functions need to
change under inheritance;

 the desired type modifications seem to violate
subtyping rules.

 1994 A J H Simons Object-Oriented Type Systems 42

Mutual Type Recursion

Inheritance with polymorphism is analogous to
mutual type-recursion (Cook & Palsberg,1989):

Consider a function F and a derived (modified)
version M which depends on F...

Direct derivation - encapsulation is preserved:-

client M F

Naive derivation from recursive structure:-

client M F

 In the naive case, the modification only affects
external clients, not recursive calls.

Derivation analogous to inheritance:-

client M F

 In the case of polymorphic inheritance, self-
reference in the original class must be changed to
refer to the modification.

 1994 A J H Simons Object-Oriented Type Systems 43

Polarity in Type Expressions

When we examine our inheritance-as-subtyping
model in the context of polymorphism, different
things go wrong depending on the location of
recursive type variables.

Analogy with polarity in logic (Canning, Cook, Hill,
Olthoff & Mitchell 1989):

Definition: Positive and Negative Polarity

In the type expression:

 appears negatively and positively.

Positive Type Recursion:

 occurs when the recursive type variable appears
on the RHS of the constructor.

Negative Type Recursion:

 occurs when the recursive type variable appears
on the LHS of the constructor.

 1994 A J H Simons Object-Oriented Type Systems 44

Positive Type Recursion

Consider classes in a simple screen graphics
package. We would like a move function:

MOVEABLE Rec mv . {
move : INTEGER INTEGER mv }

to apply polymorphically to all descendants of
MOVEABLE, such as SQUARE and CIRCLE.

However move does not have the type:

move : t MOVEABLE . t
(INTEGER INTEGER t)

but rather the type:

move : t MOVEABLE . t
(INTEGER INTEGER MOVEABLE)

 Whenever we move SQUAREs or CIRCLEs we
always obtain an object of exactly the type
MOVEABLE (we lose type information).

 The algebra does not force the function's result
type to mirror its polymorphic target.

 Cannot cope with positive type recursion.

 1994 A J H Simons Object-Oriented Type Systems 45

Negative Type Recursion

Consider now that we would like a < function

COMPARABLE Rec cp . {
< : cp BOOLEAN }

to apply polymorphically to all descendants of
COMPARABLE such as INTEGER and
CHARACTER, which inherit the < operation.

Now, the function < does not have the type:

< : t COMPARABLE . t
(t BOOLEAN)

but rather the type:

< : t COMPARABLE . t
(COMPARABLE BOOLEAN)

 Whenever we compare INTEGERs, the < function
always expects an argument of exactly the type
COMPARABLE.

 The algebra does not force < to compare
operands of the same type.

 Cannot cope with negative type recursion.

 1994 A J H Simons Object-Oriented Type Systems 46

Subtyping Breaks Down

If we unroll the inherited type definitions for
CHARACTER or INTEGER, we can force the
function < to accept the types we desire:

CHARACTER Rec ch . { ...; print : ch ;
< : ch BOOLEAN; ... }

By explicit redefinition, < now has the type

< : t CHARACTER . t
(CHARACTER BOOLEAN)

To ensure CHARACTER COMPARABLE, we
need to obtain subtyping among functions in the
pair of records:

{...; < : CHARACTER BOOLEAN; ... }
 { < : COMPARABLE BOOLEAN }

requiring COMPARABLE CHARACTER in turn by
contravariance!

 CHARACTER COMPARABLE cannot be
derived using the rules of subtyping unless in fact
CHARACTER COMPARABLE.

 The subtyping model breaks down.
polymorphism.

 1994 A J H Simons Object-Oriented Type Systems 47

Inheritance not Subtyping

Mathematically, subtyping involves bounded
universal quantification (Cardelli & Wegner, 1985):

t T . (t) where T Rec r . F(r)

For inheritance to conform to subtyping, we would
either need:

 no recursive types; or

 no polymorphic functions.

Instead, we desire a typing construct which permits
full type recursion:

t F[t] . (t)

and this is called function-bounded quantification
(Canning, Cook, Hill, Olthoff & Mitchell 1989).

In this model (Cook, Hill & Canning, 1990):

 classes are not types;

 inheritance is not subtyping.

 1994 A J H Simons Object-Oriented Type Systems 48

Deriving Typing Functions

(Canning, Cook, Hill, Olthoff & Mitchell 1989) obtain
typing functions which have the recursive properties
we desire.

Consider the polymorphic move function.

Working backwards, we seek the condition on a
type t so that for any variable x : t we can derive ""
that x.move(1, 1) is also of type t.

x : t x.move(1, 1) : t { by assumption }

Using a type rule for function application:

f : , v :
APP

 (f v) :

x : t x.move : (INTEGER INTEGER t)

Using a type rule for record selection:

 r : { 1:1, ..., n:n }
SEL i 1..n

 r.i : i

x : t x : { move : INTEGER INTEGER t }

 1994 A J H Simons Object-Oriented Type Systems 49

F-Bounded Quantification

x : t x : { move : INTEGER x INTEGER t }

is the minimal constraint on the record type of x.
Using the subtyping rule, we can introduce more
specific record types such that:

 { move : INTEGER INTEGER t }

x : t x :

Since the type does not occur in any other
assumption, we may simplify using { t / } to the
requirement

t { move : INTEGER INTEGER t }

which cannot be proved without additional
assumptions.

Expressing this condition as t F-Moveable[t],
where F-Moveable[t] is a typing function:

F-Moveable[t] {
move : INTEGER INTEGER t }

it is clear that this condition fits the format for the
kind of quantification we desire.

 1994 A J H Simons Object-Oriented Type Systems 50

Polymorphic Types

Classes are now modelled as typing functions
containing bound parameters. These describe
spaces of possible types, hence they are
polymorphic type descriptions:

F-Moveable[t] {
move : INTEGER INTEGER t }

F-Comparable[t] { < : t BOOLEAN }

Actual types are obtained by the application of
these typing functions to specific types, whereby the
parameter is replaced:

F-Moveable[SQUARE] = { move :
INTEGER INTEGER SQUARE }

F-Moveable[CIRCLE] = { move :
INTEGER INTEGER CIRCLE }

F-Comparable[CHARACTER] = {
< : CHARACTER BOOLEAN }

F-Comparable[INTEGER] = {
< : INTEGER BOOLEAN }

 1994 A J H Simons Object-Oriented Type Systems 51

Polymorphic Subtyping

If we unroll the type definitions for SQUARE or
CIRCLE we get:

SQUARE Rec sqr . { ...;
move : INTEGER INTEGER sqr; ... }

CIRCLE Rec cir . { ...;
move : INTEGER INTEGER cir; ... }

thereby demonstrating that:

SQUARE F-Moveable[SQUARE]
CIRCLE F-Moveable[CIRCLE] ...etc

which is precisely what we want.

Note that the most general type satisfying the
condition is the type over whose body we
abstracted:

MOVEABLE F-Moveable[MOVEABLE]

but we do not have any other simple subtyping
relationships:

SQUARE MOVEABLE
CIRCLE MOVEABLE

 1994 A J H Simons Object-Oriented Type Systems 52

Type Recursion: Exercises

 Q1: Given the following classes, explain the type
of

x.fetch;

when x is of type CAR. What is the type of a
CAR's home?

class VEHICLE class GARAGE
attributes attributes

home : GARAGE; holds : VEHICLE;
methods methods

park is put(v : VEHICLE) is
 home.put(self) holds := v
end; end;
fetch : VEHICLE is get : VEHICLE is
 return home.get() return holds
end; end;

end. end.

class CAR inherit
VEHICLE

end.

 1994 A J H Simons Object-Oriented Type Systems 53

Implications for Language Design

The problem is that we have been treating classes
as though they were actual types, when in fact they
are type constructors.

 Distinguishing class and type semantics

 Classes as type constructors

 Type recursion, substitution, rebinding

 Bound and free type parameters

 Homogenous and heterogenous types

 Full recursive capture of type

 Solving the type failure problem

 1994 A J H Simons Object-Oriented Type Systems 54

Classes: Semantic Ambiguity

So, what is a class? In most languages, class
identifiers are used ambiguously.

A class may denote either:

 polymorphic: a space of possible types (the
bounded, but possibly infinite set of descendent
classes derived from it); or

 monomorphic: a specific type (the type of new
objects created from the class template);

Implicitly we adopt the polymorphic class
interpretation:

 when designing open-ended class libraries using
inheritance;

 when assigning types to polymorphic variables;

but may switch to the monomorphic type
interpretation:

 when creating new objects.

 1994 A J H Simons Object-Oriented Type Systems 55

Type Space and Fixed Points

Let us try to distinguish class and type:

Imagine the space of all possible recursive abstract
types (RATs) - this type domain:

 contains RATs corresponding to the powerset of
all functions;

 forms a complete lattice under the cpo .

General

Specific

Actual Type

Polymorphic Type

Classes define bounded, closed volumes in the type
domain - these are true polymorphic types - with a
least fixed point at the apex - this is the most
general actual type satisfying the bound.

 1994 A J H Simons Object-Oriented Type Systems 56

Classes as Type Constructors

Compare with other familiar mechanisms for
handling polymorphic types:

eg: the type constructor for ARRAYs contains
explicit type parameters denoting 'unknown' or
'incomplete' parts of the type:

ARRAY [s SUBRANGE] OF [t TOP]

Classes are also type constructors, containing an
implicit type parameter which:

 abstracts over the entire class body;

 corresponds to the 'known' parts of the type;

 must permit full recursive instantiation with any
suitable type satisfying the class bound.

F-OBJECT[t] { identity : t;
equal : t BOOLEAN }

So, a class is a higher-order construct in type
theory, cf parameterised types in ML (Milner, 1978).

 1994 A J H Simons Object-Oriented Type Systems 57

Distinguishing Class and Type

Object-oriented languages need to distinguish
actual (albeit general) types, eg:

m : MOVEABLE;

from F-bounded polymorphic classes,

m : t F-Moveable[t];

which we might represent syntactically by
introducing an explicit parameter M in:

m : MOVEABLE[M];

such that it is clear when expressions have a
recursively instantiated polymorphic type:

class MOVEABLE[M]
{ position : POINT;

move (x, y : INTEGER) : MOVEABLE[M];
}

 position returns a type POINT;

 move returns a class M of types constrained by
the F-bound MOVEABLE;

 cf T and T'Class in Ada9X.

 1994 A J H Simons Object-Oriented Type Systems 58

Type Recursion: Inheritance

Parameterising the self-type gives us a simple
mechanism - unification - for expressing type
recursion under inheritance (Simons et al, 1994):

class MOVEABLE[M]
{ position : POINT;

move (x, y : INTEGER) : MOVEABLE[M];
}

Now, CIRCLE inherits from MOVEABLE:

class CIRCLE[C] : MOVEABLE[M]
{ radius : INTEGER;
}

 By unification, we have C' = C M, and the
resulting constraint CIRCLE[C'] since
t CIRCLE[t] MOVEABLE[t].

 inherited move now returns a class C' of types
constrained by the F-bound CIRCLE.

This captures the self-type recursion in:

 x : like Current; -- in Eiffel

 self class new. "in Smalltalk"

 1994 A J H Simons Object-Oriented Type Systems 59

Type Substitution: Genericity

Records may contain other parameterised
components, eg the generalised coordinate:

class NUM_POINT[P]
{ x, y : NUMBER[N];

set (p, q : NUMBER[N]) : NUM_POINT[P];
}

where N is a parameter to be replaced by any type
satisfying NUMBER[].

A simple scheme for type substitution permits the
generation of many useful types:

intPoint : NUM_POINT { INTEGER/N };

realPoint : NUM_POINT { REAL/N };

This captures:

 parametric polymorphism in ML;

 generic packages in Ada;

 constrained genericity in Eiffel.

Note that: NUM_POINT NUM_POINT[P]
{ NUM_POINT/P }

 1994 A J H Simons Object-Oriented Type Systems 60

Type Restriction: Rebinding

Type parameters can be rebound through
unification to derive classes with extra semantics:

class LIST[L]
{ head : OBJECT[O]; ...any object

tail : LIST[L];
add (x : OBJECT[O]) : LIST[L];

}

Sorted lists are like lists except that their elements
must be comparable:

class SORTED_LIST[S] :
LIST[L] { COMPARABLE[C/O] }

{ add (x : COMPARABLE[C]) :
SORTED_LIST[S]; ...redefined add

}

 By unification, we have C' = C O, and the
resulting constraint COMPARABLE[C'] since
t COMPARABLE[t] OBJECT[t].

 inherited head now returns a class C' of types
constrained by the F-bound COMPARABLE.

 1994 A J H Simons Object-Oriented Type Systems 61

Tied Parameters

By linking the instantiation of type parameters, we
can force polymorphic functions to accept
homogenous types of argument:

class COMPARABLE[C]
{ lessThan (x : COMPARABLE[C]) :

BOOLEAN }

3.lessThan(4) ...true
4.5.lessThan(3.2) ...false
3.lessThan(4.5) ...static type error

Separate, non-linked parameters permit
polymorphic functions to accept heterogenous
argument types:

class COMPARABLE[C]
{ lessThan (x : COMPARABLE[D]) :

BOOLEAN }

3.lessThan(4.5) ...true

This captures aspects of:

 parametric polymorphism in ML;

 template functions in C++.

 1994 A J H Simons Object-Oriented Type Systems 62

Static Type Resolution

Parameter unification and type substitution allow
polymorphic functions to acquire static types at
compile time:

class MOVEABLE[M]
{ position : POINT;

move (x, y : INTEGER) : MOVEABLE[M];
}

class SQUARE[S] : MOVEABLE[M]
{ side : INTEGER;
}

 move : SQUARE[S]
(INTEGER INTEGER SQUARE[S])

because of tying through unification S M;

s : SQUARE;
s.move(3, 4);

 move : SQUARE
(INTEGER INTEGER SQUARE)

because of implicit substitution due to
SQUARE SQUARE[S] { SQUARE/S }.

 1994 A J H Simons Object-Oriented Type Systems 63

Free Parameters

Parameters have the effect of linking the type-
instantiations of parts of polymorphic structures:

m : MOVEABLE[X];
s : SQUARE; c : CIRCLE;
m := s; ...{ SQUARE/X }
m.move(3, 4);
m := c; ...static type error
m.move(6, 8);

 Within the same scope, a tied parameter cannot
be instantiated twice.

The symbol ? is a free type parameter, not linked to
any other part of a structure:

n : MOVEABLE[?];
n := s; ...{ SQUARE/?#1 }
n.move(3, 4);
n := c; ...{ CIRCLE/?#2 }
n.move(6, 8);

 Within the same scope, a free parameter may be
instantiated many times. Dynamic type checks
may be needed.

 1994 A J H Simons Object-Oriented Type Systems 64

Dynamic Type Resolution

Free parameters lead to situations where dynamic
type checks may be needed:

class COL_SQUARE[C] : SQUARE[S]
{ shade : COLOR;
}

m : MOVEABLE[X]; n : SQUARE[?];
c : COL_SQUARE; s : SQUARE;

m := c; ...{ COL_SQUARE/X }
n := s; ...{ SQUARE/? }
m := n.move(6, 8); ...static type error?

In this case, move has the type:

 move : SQUARE[?]
 (INTEGER INTEGER SQUARE[?])

but since m has the type:

 m : MOVEABLE[X] { COL_SQUARE/X }
 m : COL_SQUARE

the move expression is only type-correct if it returns
a COL_SQUARE. Other languages cannot detect
this.

 1994 A J H Simons Object-Oriented Type Systems 65

Homogenous and Heterogenous
Collections

Tied and free parameters distinguish the types of
homogenous and heterogenous collections:

class LIST[L]
{ head : OBJECT[O]; ...any object

tail : LIST[L]; ...like self
add (x : OBJECT[O]) : LIST[L];

}

 The tail of the list must be in the same type L as
the current list;

 So, the head of the tail of the list must be in the
same type O as the head of the current list, etc...

class LIST[H]
{ head : OBJECT[?]; ...any object

tail : LIST[H]; ...like self
add (x : OBJECT[?]) : LIST[H];

}

 Here, even the head and the item added need not
be in the same types ?#1, ?#2.

 1994 A J H Simons Object-Oriented Type Systems 66

Mutual Type Recursion

There is a mutual recursive relationship between
type parameters in recursive data types:

class LIST[L]
{ head : OBJECT[O]; ...any object

tail : LIST[L]; ...like self
add (x : OBJECT[O]) : LIST[L];

}

intList : LIST { INTEGER/O }:

The head of intList has the type:

 head : OBJECT[O] { INTEGER/O }
 head : INTEGER

and the tail of intList has the type:

 tail : LIST[L] { LIST{INTEGER/O} / L }
 tail : LIST { INTEGER/O }

ie modifications to the type of the head O affect the
type of the tail L;

 cf recursive capture in BOPL (Palsberg &
Schwartzbach, 1994).

 1994 A J H Simons Object-Oriented Type Systems 67

Type Failure Solved: Type Error

Back to the Eiffel type failure problem:

class SIGNAL[S]
{ rectify (x : SAMPLE[X]) : INTEGER; }

class POWER_SIGNAL[P] :
SIGNAL[S] { POWER_SAMPLE[Y/X] }

{ rectify (y : POWER_SAMPLE[Y]) :
INTEGER; } ...redefined rectify

First approach, using a tied parameter - type
information propagated from sig:

sam : SAMPLE; ...created
sig : SIGNAL[T];
pow : POWER_SIGNAL; ...created

sig := pow; ...{ POWER_SIGNAL/T }
sig.rectify(sam); ...static type error

because the type of rectify is now:

 rectify : POWER_SIGNAL
 (POWER_SAMPLE[Y] INTEGER)

 and { SAMPLE/Y } is a type error.

 1994 A J H Simons Object-Oriented Type Systems 68

Type Failure Solved: Type Check

Second approach, using a free parameter - type
information propagated from sam:

sam : SAMPLE; ...created
sig : SIGNAL[?];
pow : POWER_SIGNAL; ...created

sig := pow; ...{ POWER_SIGNAL/? }
sig.rectify(sam); ...{ SAMPLE/X }

Here, we need a dynamic type check, because the
available types of rectify are:

 rectify : SIGNAL[S]
 (SAMPLE[X] INTEGER)

 rectify : POWER_SIGNAL[P]
 (POWER_SAMPLE[Y] INTEGER)

and { SAMPLE/X } yields the only solution:

 rectify : SIGNAL (SAMPLE INTEGER)

which is only type-correct if the object stored in sig
is in fact of type SIGNAL.

 1994 A J H Simons Object-Oriented Type Systems 69

Reference Material

The introductory material is still difficult for
beginners, but may prove rewarding after the
exposition of this tutorial.

The more advanced material provides much of the
mathematical foundation for the arguments
presented here and should only be handled by
properly-trained mathematicians!

 1994 A J H Simons Object-Oriented Type Systems 70

Bibliography

 P America (1990), 'Designing an object-oriented
language with behavioural subtyping', Proc. Conf.
Foundations of Object-Oriented Languages, 60-
90.

 L Cardelli (1984), 'A semantics of multiple
inheritance', in: Semantics of Data Types, LNCS
173, Springer Verlag, 51-68.

 L Cardelli and P Wegner (1985), 'On
understanding types, data abstraction and
polymorphism', ACM Computing Surveys 17 (4),
471-521.

 P Canning, W Cook, W Hill, W Olthoff and J
Mitchell (1989), 'F-bounded polymorphism for
OOP', Proc. Func. Prog. Langs. and Comp. Arch.
4th Int. Conf, 273-280.

 P Canning, W Cook, W Hill and W Olthoff (1989),
'Interfaces for strongly-typed OOP', Proc.
OOPSLA-89, 457-467.

 W Cook (1989), 'A proposal for making Eiffel
type-safe', Proc. ECOOP-89, 57-72.

 1994 A J H Simons Object-Oriented Type Systems 71

Bibliography

 W Cook, W Hill and P Canning (1990),
'Inheritance is not subtyping', Proc. POPL-90,
125-135.

 W Cook and J Palsberg (1989), 'A denotational
semantics of inheritance and its correctness',
Proc. OOPSLA-89, 433-443.

 S Danforth and C Tomlinson (1988), 'Type
theories and OOP', ACM Computing Surveys, 20
(1), 29-72.

 A Goldberg and D Robson (1983), Smalltalk-80:
the Language and its Implementation, Addison-
Wesley.

 D MacQueen, G Plotkin and R Sethi (1984), 'An
ideal model for recursive polymorphic types',
Proc. POPL-84, 165-174.

 B Meyer (1988), Object-Oriented Software
Construction, Prentice-Hall.

 B Meyer (1992), Eiffel: the Language, Prentice-
Hall.

 1994 A J H Simons Object-Oriented Type Systems 72

Bibliography

 R Milne and C Strachey (1976), A Theory of
Programming Language Semantics, Chapman
and Hall.

 R Milner (1978), 'A theory of type polymorphism
in programming', J. Comp. and Sys. Sci. 17, 348-
375.

 J H Morris (1973), 'Types are not sets', Proc.
POPL-73, 120-124.

 J Palsberg and M Schwartzbach (1994), Object-
Oriented Type Systems, John Wiley.

 R Raj and H Levy (1989), 'A compositional model
for software reuse', Proc. ECOOP-89, 3-24.

 C Schaffert, T Cooper, B Bullis, M Kilian and C
Wilpolt (1986), 'An introduction to Trellis/Owl',
Proc. OOPSLA-86, 9-16.

 D Scott (1976), 'Data types as lattices', SIAM J.
Computing, 5 (3), 523-587.

 1994 A J H Simons Object-Oriented Type Systems 73

Bibliography

 A Simons and A Cowling (1992), 'A proposal for
harmonising types, inheritance and polymorphism
for OOP', Report CS-92-13, Dept. Comp. Sci,
University of Sheffield.

 A Simons (1993), Introduction to Object-Oriented
Type Theory, OOPSLA-93 and ECOOP-93
Tutorials.

 A Simons, Low E-K and Ng Y-M (1994), 'An
optimising delivery system for object-oriented
software, J. of Object-Oriented Systems, 1 (1).

 A Snyder (1986), 'Encapsulation and inheritance
in OOP languages', Proc. OOPSLA-86, 38-45.

 A Snyder (1987), 'Inheritance and the
development of encapsulated software
components', in B Shriver and P Wegner,
Research Directions in OOP, MIT Press, 165-
188.

 B Stroustrup (1991), The C++ Programming
Language, 2nd Edn., Addison-Wesley.

 1994 A J H Simons Object-Oriented Type Systems 74

Technical Appendix

This appendix includes technical material on
lambda calculus, domain theory and category
theory ancilliary to the exposition of this tutorial.

 Fixed point analysis method

 Derivation of a recursive function

 Domain theory

 Category theory

 Semantics of recursive types

 Semantics of polymorphic classes

 1994 A J H Simons Object-Oriented Type Systems 75

Recursion: Fixed Point Analysis

Approach to solving recursive equations:

 transform body into non-recursive form by
replacing recursive call with abstraction:

add a.b. if b = zero then a
else (add (succ a)(pred b))

ADD f.a.b. if b = zero then a
else (f (succ a)(pred b))

 use this new function to generate the recursive
version:

add (ADD <some fn>)

 It so happens that what we really need is:

add (ADD add)

 ie add is defined as a value which is unchanged
by the application of ADD:

 such a value is called a fixed point of ADD.

 1994 A J H Simons Object-Oriented Type Systems 76

Recursion: Fixed Point Finder

We have transformed the task of finding a recursive
solution for add into finding fixed points for ADD.

 There might be many such fixed points;

 Under certain conditions, it is possible to define
the least fixed point of any function using the fixed
point finder, .

 has the property that:

f = (F) (F f) = f

 Here is a definition of . Note how it also is not
recursive, but does contain delayed self-
application:

 f.(s.(f (s s)) s.(f (s s)))

 Calculus Reduction Rules:

(x.x a) a

((x.y.(x y) a) b) (y.(a y) b) (a b)

(f a b) ((f a) b)

 1994 A J H Simons Object-Oriented Type Systems 77

Recursion: Derivation of add

ADD g.a.b. if b = zero then a
else (g (succ a)(pred b))

 f.(s.(f (s s)) s.(f (s s)))

add (ADD) {ADD / f}

 (s.(ADD (s s)) {(s s) / g}
s.(ADD (s s)))

 (s.a.b. if b = zero then a {... / s}
else ((s s)(succ a)(pred b))

s.(ADD (s s)))

 a.b. if b = zero then a
else ((s.(ADD (s s)) s.(ADD (s s)))

(succ a)(pred b))

 ... {... / s; (succ a) / a; (succ b) / b}

 a.b. if b = zero then a
 else (if (pred b) = zero then (succ a)

else ((s.(ADD (s s)) s.(ADD (s s)))
(succ (succ a))(pred (pred b)))

... etc

 1994 A J H Simons Object-Oriented Type Systems 78

Types: Domain Theory

Finding fixed point solutions to existential types
requires certain conditions - denotational semantics
of calculus (Scott, 1976) needs domain theory.

 V is the domain of all computable values, ie

V BOOLEAN + NATURAL +
[V V] + [V V].

 A complete partial order (cpo) relationship is
constructed among some sets of values in V.

 Certain sets of values are used as carriers for
types - can solve recursive equations using set-
theoretic interpretation.

'Useful' carrier sets known as ideals, which have the
following properties:

 downward closed under cpo;

 consistently closed under cpo;

on the domain V (Danforth & Tomlinson, 1986).

 1994 A J H Simons Object-Oriented Type Systems 79

Links with Category Theory

One semantic interpretation of F-bounded
quantification relies on Category Theory.

 A category is a collection of abstract objects with
similar structure and behaviour,

cf all objects conforming to some type.

 Structure-preserving maps, called morphisms, f :
x y, exist from object to object in a category,

cf correspondences between different
representations of objects within a type.

 A morphism f with an inverse, g : y x, results in
two isomorphic objects x y,

cf two objects with identical type.

 The initial object in each category has a single
morphism extending to every other object,

cf the most abstract denotation of all objects
conforming to some type.

 1994 A J H Simons Object-Oriented Type Systems 80

-Algebra Semantics

 Morphism-preserving maps, called functors, : C
 D, exist from category to category,

cf polymorphic inheritance which maps behaviour
for one type into behaviour for another type (with
"more structure").

 An endofunctor is a which maps from a
category into itself, ie f : (t) t,

cf recursive construction of a type (with "more
structure", in the same category).

 A -algebra is the category of pairs <t, f>, where f
: (t) t are morphisms among a recursively
constructed type,

cf category of all objects in a recursive type.

 An initial -algebra is the solution to the equation
(t) t, a fixed point of ,

cf the most abstract denotation of a recursive
type.

 Since (t) t, the inverse g : t (t) must also
exist.

 1994 A J H Simons Object-Oriented Type Systems 81

Quantification over -Coalgebras

The dual of a category theory construct is one in
which "arrows are reversed":

 morphisms are replaced by their inverse;

 initial objects become terminal objects.

The dual of a -algebra is a -coalgebra or
category of pairs <t, g>, with g : t (t).

 Both the initial -algebra and terminal -
coalgebra satisfy t (t).

When we use F-bounded quantification, we say t
 F[t]

 which implies a map g : t (t), ie

 quantification over pairs <t, g> or some family of
-coalgebras.

Since any recursive type Rec t . F[t] may be
regarded as a particular -coalgebra,

F-bounded quantification is over a category whose
objects are "generalisations" of the recursive type
Rec t . F[t].

