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Abstract

Although the ability of human listeners to perceptually segregate
concurrent sounds is well documented in the literature, there have
been few attempis to exploit this research in the design of
computational systems for sound source segregation. In this paper, we
present a segregation system that is consistent with psychological and
physiclogical findings. The system is able to segregate speech from a
variety of intrusive sounds, including other speech, with some suecess.

The segregation system consists of four stages. Firstly, the auditory
periphery is modelled by a bank of bandpass filters and a simulation
of neuromechanical transduction by inper hair cells. In the second
stage of the system, periodicities, frequency transitions, onsets and
offsets in auditory nerve firing patterns are made explicit by separate
auditory representations. The representations, auditory maps, are
based on the known topographical organization of the higher
auditory pathways. Information from the auditory maps is used to
construct a symbolic description of the auditory scene. Specifically,
the acoustic input is characterized as a collection of time-frequency
elements, each of which describes the movement of a spectral peak in
time and frequency.

In the final stage of the system, a search strategy is employed which
groups elements according to the similarity of their fundamental
frequencies, onset times and offset times, Following the search, a
waveform can be resynthesized from a group of elements so that
segregation performance may be assessed by informal listening tests.
The system has been evaluated using a database of voiced speech
mixed with a variety of intrusive noises such as music, “office” noise
and other speech. A technique for quantitative evaluation of the
system is described, in which the signal-to-noise ratio (SNR) is
compared before and after the segregation process. After segregation,
an increase in SNR is obtained for each noise condition. Additionally,
the performance of our system is significantly better than that of the
frame-based segregation scheme described by Meddis and Hewitt
{1992).

1. Introduction

In 1953, Colin Cherry noted the ahility of human listeners to atiend selectively to the
voice of one speaker in a mixture of many voices, and called this phenomenon the
“cocktail party problem”. Since then, the perceptual segregation of sound has been the
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subject of extensive psychological research. Recently, a coherent account of this work
has been presented by Bregman (1990). He contends that the mixture of sounds reaching
the ears is subjected to an auditory scene analysis (ASA), which occurs in two stages.
In the first stage, the acoustic signal is decomposed into a number of sensory components.
Subsequently, components that are likely to have arisen from the same source are
recombined into a perceptual stream.

Although ASA is documented comprehensively in the literature, there have been few
attempts to exploit the known mechanisms of auditory grouping in the design of
computational systems for sound source segregation. In this paper, we present a system
for the segregation of harmonic sounds which is consistent with psychological and
physiological auditory research. The motivation for our system is twofold. Firstly, the
performance of automatic speech recognizers in the presence of other interfering sounds
is poor compared to that of a human listener. Hence, a segregation system that exploits
perceptual grouping principles could provide an improved front-end for automatic
speech recognition in noise. Secondly, listeners with sensorineural hearing loss have
difficulty in understanding speech in noisy environments (Festen & Plomp, 1983). A
segregation system could form the basis for an “intelligent hearing aid”, which would
amplify a target voice while attenuating interfering noises (such as the voices of
competing talkers).

Previous computational systems for source segregation have generally addressed the
separation of a known number of sound sources with known characteristics. For
example, several perceptual modelling studies have attempted to expiain the finding of
Scheffers (1983) that the ability of listeners to separately identify concurrent vowels is
improved if the vowels have a different fundamental frequency (Scheffers, 1983; Assmann
& Summerfield, 1990; Meddis & Hewitt, 1992). Since the average spectral characteristics
of vowel sounds are constant over time, these schemes operate on a single auditory
excitation pattern. In contrast, nearly all environmental sounds are non-stationary.

Indeed, relatively few models of auditory processing have been described which are
able to segregate time-varying sounds. An early attempt is the work of Weintraub
{1985), which aims to segregate and reconstruct the voices of two simultaneous speakers.
He describes two systems, the most sophisticated of which consists of three main
processing stages. Firstly, the pitch period of each voice is determined by analysing the
interpeak intervals in the temporal fine structure of each channel of an auditory
filterbank. Secondly, the number of active sources and their characteristics are determined
by a pair of Markov models. The Markov model for a particular voice can be in one
of seven states, corresponding to silence, periodic, non-periodic, onset, offset, increasing
periodicity and decreasing periodicity. Finally, the amplitude spectrum of each voice is
estimated, given the current state of its Markov medel.

Beauvois & Meddis (1991) describe an auditory model in which stream segregation
phenomena ocour as emergent properties of low-level processing. The model is able
to reproduce some simple examples of auditory stream scgregation, but does not
incorporate a mechanism for grouping components in different spectral regions.

A number of segregation systems have also been proposed that are based on
conventional speech processing techniques rather than models of auditory function.
Generally, these systems have concentrated on the use of pitch information to segregate
simultaneous voices (e.g. Parsons, 1976; Stubbs & Summerfield, 1990) aithough the
work of Denbigh and Zhao (1992) also exploits information about the spatial location
of a target voice,
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Consideration of previous computational approaches 1o source segregation suggests
that they have suffered from two major limitations. Firstly, in an attempt to simplify
the problem, strong assumptions have been made aboui the number and type of sound
sources present. For example, schemes for speech enhancement often assume that the
interfering source is another talker with a different average pitch (Weintraub, 1985;
Denbigh & Zhag, 1992), These assumptions do not hold in natural acoustic en-
vironments, where many sound sources with characteristics that are unknown a priori
may be active at the same time.

A second limitation of previous approaches arises from the fact that they have been
heavily influenced by conventional speech processing techniques. Specifically, they
represent the acoustic signal as a series of short-term spectral estimates, so that no
information about temporal continuity is taken into account {e.g. Parsons, 1976;
Denbigh & Zhao, 1992). Since time and frequency are intrinsically linked in sound, it
seems more appropriate that strategies for source segregation should treat time and
frequency as equally important dimensions of the acoustic signal.

The segregation system described in this paper addresses these problems by char-
acterizing the auditory scene as a collection of time-frequency symbaols, This allows the
auditory scene to be searched rapidly, in order to identify symbols with similar properties
and combine them into explicit groups. Consequently, our approach does not make
strong assumptions about the number or type of sound sources present. A similar
philosophy has been adopted in the segregation systems described by Cooke (1993)
and Mellinger (1991).

A schematic diagram of the segregation system is shown in Fig. 1. The first stage
simulates outer/middie ear filtering, cochlear filtering and neuromechanical transduction
in the auditory periphery. In the second stage, information about periodicities, frequency
transitions, and onsets and offsets in auditory nerve firing patterns is made explicit by
scparate auditory representations. The representations, audifory maps, are motivated
by the known topography of the higher auditory system. In the third stage of the
system, information from the map representations is used to conmstruct a symbolic
description of the auditory scene, which we call auditory elements. The final stage of
the system employs a strategy for searching the auditory scene, which identifies elements
with common FOs or common onset/offset times and combines them into explicit
groups. A waveform may be resynthesized for each group of auditory elements, allowing
qualitative and quantitative cvaluation of segregation performance.

2. Auditory periphery model
2.1, Quter and middle ear resonances

The outer and middle ears constitute a complex acoustic cavity, which increases and
decreases the sound pressure at the tyinpanic membrane at different frequencies. Since
the outer and middle ears are approximately linear for small to moderate sound
intensities, their resonances can be modelled by a simple linear filter. Here, a high-pass
filter of the form

Y(By=x(0)~0-95x(:— 1) )

is used, where x(?) is the input signal at time step ¢ and p(¢) is the filtered output signal.
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The input signal is sampled at a rate of 16kHz, with 16 bit resolution. Although it is
possible to model the transfer function of the outer and middle ears quite closely (e.g.
Meddis & Hewitt, 1991), Equation (1) was considered to be an acceptable approximation
for the functional approach adopted here.

2.2. Cochlear filtering

The frequency selective properties of the basilar membrane are modelled by a filterbank,
in which each filter simulates the frequency response of a particular point along the
cochlear partition. Physiological measurements of auditory nerve impulse responses
have been made by de Boer and Kuyper (1968) using a “reverse correlation” paradigm.
The filterbank used here is based on an analytical approximation of their experimental
data, the “gammatone” function proposed by de Boer and de Jongh (1978). The impulse
response of the garnmatone filter of order r and centre frequency f,Hz is given by

gt()=""‘exp( —2nbi)ycos{2nfot + @) @

where ¢ is phase and b is related to bandwidth. Here, fourth order filters are used
(n=4).

In our functional auditory model, it is advantageous to compensate for the phase
delays introduced by the filterbank. Specifically, phase is critical in the comparison of
onset and offset times in different frequency channels, and the performance of our
frequency transition map is improved if the filterbank is phase-compensated. Patterson,
Holdsworth, Nimmo-Smith and Rice (1988) describe two types of phase compensation,
both of which are employed. Firstly, the peaks of the envelopes of each impulse response
can be aligned by introducing a time lead

n—1
=5 (3)
to the output of the filter. Secondly, a peak in the temporal fine structure can be aligned
with a peak in the envelope by the phase correction

¢, = ~2nfyt.. 4)

Substituting Equations (3) and (4) intoc Equation (2), this leads to the phase-compensated
gammatone filter

gt.=(t+ 1) lexp(—2ab(t +t ) cos(2nfyt) (1= —t) (%)

in which the peak impulse response at time r=0 is aligned for each characteristic
frequency. Here, a digital approximation of Equation (5) is employed, where an impulse-
invariant transform is used to convert from the continuous domain to the digital
domain (Cooke, 1993).

Auditory filters are distributed across frequency according to their bandwidths,
which increase quasi-logarithmically with the centre frequency of the filter. Here, the
gammatone filters are spaced on the equivalent rectangular bandwith (ERB) scale of
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Glasberg and Moore (1990). Specifically, 128 overlapping filters were spaced equally in
ERB-rate in the range 50-5000Hz, according to the relation

E(fy=214log(437/+1) (6)
where E(f) is the number of ERBs and f is frequency in kHz.

2.3. Neuwromechanical transduction

The multiple-reservoir model of inner hair cell transduction described by Meddis (1986)
is employed to convert the activity in each filter channel to simulated auditory nerve
discharges. Given the output from the gammatone filterbank, the Meddis model
computes the probability of a spike occurring in the auditory nerve. Here, the model
is configured according to the parameters given in (Meddis, 1988}, which simulate an
auditory nerve fibre with a high spontaneous firing rate. The Meddis hair cell model
is described comprehensively in the literature and is not discussed further here.

2.4, Example representations

Fig. 2 shows a representation of average firing rate in the auditory nerve for three
sound sources. Here, the spike probabilities from the Meddis hair cell model have been
integrated over a 20 ms Hamming window, and displayed at 10 ms intervals to give a
rate map. Regions of spectral dominance in speech (harmonics and formants) are clearly
represented as dark bands of intense firing activity.

3. Higher auditory representations
3.1 Introduction

A recurring motif in neurophysiology is the computational map, a term which
describes an array of neurones that are systematically tuned for a particular
parameter value (Knudsen, dulLac & Esterley, 1982). There is good evidence that
computational maps in the higher auditory system have a two-dimensional form,
in which characteristic frequency and the value of some other parameter are
represented on orthogonal axes. Acoustic parameters that appear to be represented
in this way include intensity (Suga & Manabe, 1982), frequency modulation (Shamma,
Vranic & Wiser, 1992), amplitude modulation (Schreiner & Langner, 1988) and
spatial location (King & Hutchings, 1987).

Cur approach employs functional models of a number of auditory maps, in order
to provide primitive information for subsequent scene analysis processing. Effectively,
computational maps provide intermediate representations that bridge the gap between
the acoustic input and a symbolic auditory description of that input (Brown, 1992).
The following sections describe the map representations used in the segregation
system, and the motivation for them.

3.2. Autocorrelation map

3.2.1. Motivation

Recently, theories of pitch perception have been proposed which combine features of
pattern recognition models {e.g. Goldstein, 1973) and temporal models (e.g. Licklider,
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Figure 2. Average auditory nerve firing rate (“rate map”) representations of
female speech (a), rock music (b} and trill telephone (c). Dark areas indicate
regions of intense firing activity. The speech signal is utterance drl/fdaw(/sa2
(“don’t ask me to carry an oily rag like that”) from the TIMIT database
(Garofolo & Pallet, 1989).

1951) by integrating periodicity information across resolved and unresolved harmonic
regions (e.g. Meddis & Hewitt, 1991). Combined models of this type are able to account
for many classical psychophysical pitch phenomena. Additionally, it appears that
mechanisms similar to those underlying pitch perception can contribute to the perceptual
segregation of sounds which have a different fundamental frequency (Scheffers, 1983).
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3.2.2. Model description

The model presented here is based on the “duplex” theory of pitch perception proposed
by Licklider (1951). The essence of the duplex scheme is that a spectral analysis in the
frequency domain is performed simultaneously with a periodicity analysis in the time
domain. Licklider suggests that periodicities in the temporal fine structure of auditory
nerve firing patterns can be identified by an autocorrelation analysis at each characteristic
frequency.

Computational models of the duplex theory have been described by a number of
workers (e.g. Weintraub, 1985; Slaney & Lyon, 1990; Meddis & Hewitt, 1991) and have
been named “correlograms” or “antocorrelograms”. However, the model described here
will be referred to as an autocorrelation map, to emphasize the point that Licklider’s
scheme is compatible with the general framework of auditory map representations
discussed above,

For an auditory filter with characteristic frequency f, the running autocorrelation ¢
at a time lag At is given by

ot f, Aty = fr(r —THr(t—T—At HT) ¢l
<o

where
T=idr (8)

Here, dr is the sample period (0-0625 ms) and r is the probability of a spike in the
auditory nerve, derived from the Meddis hair cell model. When comparing periodicity
information across different auditory filter channels, it is preferable to normalize
Equation (7) so that the autocorrelation function is not influenced by the average firing
rate in the auditory nerve. The normalized response is given by

clt. f, AD)
et f,0)°

Autocorrelation functions are computed in the periodicity map for values of Ar between
0 and 20 ms (corresponding to a pitch of 50 Hz) in steps of dr. The longest lag of 20 ms
was considered to be a reasonable upper limit for the period of voiced speech.

The temporal resolution of the antocorrelation map is determined by the width of
the window A(T). In his original paper, Licklider (1951) suggests (without any jus-
tification) an exponential window with time constant 2-3 ms. However, this window
seems too short to give an accurate measurement of the period of sounds with a low
pitch, such as the voice of a male speaker. A longer window (about 10 ms) is suggested
by Plack and Moore’s (1990) study of temporal masking, and their window is an
asymmetrical bell-shape rather than the exponential suggested by Licklider. Here, A(T)
is a Hamming window of width 10ms, which gives a reasonable approximation to
Plack and Moore’s data.

a,(tf A= 9

3.2.3. Example representation

An auntocorrelation map for the vowel /®/, excised from the utterance shown in Fig. 2,
is shown in the left panel of Fig. 3. Periodicities in each channel are clearly delineated.
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Every channel has a peak at the period of the vowel (5:4 ms, corresponding to an FO
of approximately 185Hz) and its multiples, and these line up across frequency forming
“spines” that run vertically through the plot.

3.3. Cross-correlation map
3.3.1. Motivation

It is evident from Fig. 3 that the autocorrelation map contains redundant information.
Contiguous sections of the auditory filterbank respond to the same spectral dominance,
so that channels with centre frequencies close to the same harmonic or formant have
a similar pattern of periodicity. This redundancy provides an early constraint which
can be used to group channels of the autocorrelation map that are responding to the
same acoustic component. A similar cbservation has motivated the DOMIN algorithm
of Carlson and Granstrom (1982) and the “pseudospectrum” described by Deng and
Geisler (1987).

3.3.2. Model description

Regions of the autocorrelation map that have a similar pattern of periodicity can be
identified by cross-correlating the responses of adjacent filter channels. Formally, the
similarity at time ¢ of two channels with centre frequencies f, and f; is given by

ZZA:an(f'ﬂ: Af)a,,(:,fz, A!)
Y st fo A+ Y a8, fo A

sim{ f. 1 )= (10)

The cross-correlation given in Equation (10} is rate-normalized, so that a difference in
the average firing rate of two channels does not affect their similarity score. Consequently,
sim has a value between zero {no similarity in periodicity) and unity {identical pattern
of periodicity).

Given this metric, it is necessary to decide how high the similarity score of adjacent
channels in the autocorrelation map must be in order for them to form a group. The
approach employed here is t0 construct a cross-correlation map, which indicates the
groups that are formed at a serics of different similarity scores. A cross-correlation
map for the vowel /®/ is shown in the centre panel of Fig. 3. Like other auditory maps,
it is a two-dimensional organization in which characteristic frequency and a tuned
parameter (in this case, similarity score) are represented on orthogonal axes. Adjacent
channels of the autocorrelation map that have a value of sim equat to or greater than
the threshold similarity score are allowed to form a group, At the highest similarity
threshold (left of the map), no groups occur since adjacent channels ar¢ not identical.
However, as the threshold is relaxed, channels with a similar pattern of periodicity
begin to group together. In the figure, groups of channels that extend across frequency
and different threshold of similarity are represented by rectangles, and are referred to
as periodicity groups.

This technique is motivated by the “dendrogram™ method of acoustic-phonetic
segmentation described by Glass and Zue (1988). Whereas the dendrogram identifies
changes in the spectrum over time, the cross-correlation map identifies changes in
petiodicity over frequency. However, the principle is similar, since both techniques
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attempt to find features in a representation that are stable across different scales of
comparison. Clearly, the cross-correlation map in Fig. 3 contains many alternative
groupings at different thresholds of similarity. Here, “good” groups are taken to be
those that are stable across frequency and similarity threshold. Specifically, an “area
stability criterion” is used, in which periodicity groups are selected if they have no
descendents with a greater area in frequency-similarity space (the descendents of a
group lie to its left in the map). The selected groups are shown as grey rectangles in
the right panel of Fig. 3. As required, the groups delineate areas of similar periodicity
in the vicinity of harmonics and formants.

3.3.3. Example representations

Periodicity groups for three sound sources, selected from each frame of the cross-
correlation map by an area stability criterion, are shown in Fig. 4. The groups (black
blocks) indicate regions of the auditory filterbank that have a similar response across
characteristic frequency. Comparison of Fig. 4 with the rate maps in Fig. 2 indicates
that areas of spectral dominance (e.g. harmonics and formants of speech) are clearly
delingated by the periodicity groups.

3.4. Frequency transition map
3.4.1. Motivation

An early problem facing perceptual grouping mechanisms is how to match the auditory
representation of an acoustic event at a particular time with the representation of the
same event at a later time. This task is the auditory analogue of the correspondence
probiem which arises in the perception of visual motion (Ullman, 1979). It is likely that
the auditory system uses two cues, frequency proximity and alignment on a common
time-frequency trajectory, to solve the correspondence problem (Tougas & Bregman,
19835). Since many natural sounds (such as speech) consist of glides in frequency, it
might be supposed that trajectory is an important grouping cue, Indeed, there is some
evidence that the anditory system measures frequency transitions, and that it uses this
information to group frequency components across time according to their trajectories
(Ciocca & Bregman, 1987).

3.4.2. Model description

A schematic of the model frequency transition map is shown in Fig. 5. Cells in
the map (spheres) are arranged in a two-dimensional framework, with characteristic
frequency represented on one axis and frequency transition represented on the other.
Each neurone is tuned to a particular rate and direction of frequency sweep, depending
on the orientation of its receptive field. Similar schemes have been proposed by Mellinger
{1991) and, in a non-auditory context, by Riley (1989).

The firing rate of each neurone in the map is determined by convolving its receptive
field with the simulated auditory nerve response from the Meddis hair cell model.
Hence, for a cell with characteristic frequency £ and receptive field orientation 6, the
firing rate s{¢, £ 0) at time ¢ is given by

N M
s(r./,0)= ZN _ZMr(t +i.f+))ge( 1)) (1
t=—Nj=—
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Figure 4. Periodicity groups for the speech (a), music (b) and telephone sound
{c) sources. Black blocks indicate regions of similar temporal response across
channels of the auditory filterbank.

where 2N+ 1 and 234+ 1 define the width in time and frequency of the receptive field
g As before, r is the probability of a spike in the auditory nerve.

Each neurone in the map is required to be tuned to a particular rate of frequency
transition. This implies that the receptive field of a cell must elicit a maximal response
when it is aligned with a spectral peak which is moving at the cell’s preferred rate. The
function
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al
of?
suggested by Riley (1989) is used to satisfy this condition, where G{1.f) is a two-
dimensional Gaussian

gt N=xzG(tN (12)

2 )
G(t,f):exp(——z—;;.:.}—m . (13)

A plot of the receptive field g(z,f) is shown in the middle of Fig. 5. It consists of a
central excitatory (positive) region and two flanking inhibitory (negative) regions which
confer directional s¢lectivity. In the form given in Equation (12), g(t.f) responds
maximally when it is centred on a dominance that is static in frequency, such as a pure
tone. Receptive fields tuned to particular rates and directions of frequency transition
are obtained by rotating g(z,f) in the time-frequency plane. The operator

M!.ﬂ:( cosf sine)(}) (14)

—sin® cosO

rotates a point by 0 radians in time and frequency, and thus the receptive field at a
particular orientation may be written as
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gt f)=gRy(t ). (15)

The parameters ¢, and o,in Equation (13) determine the width of the receptive field
in time and frequency. The choice of these parameters depends on a compromise
between time-frequency localization and directional selectivity (Riley, 1989). When
G, # Gy, the receptive field has good directional selectivity in time-frequency, which gives
it an advantage in separating crossing dominances (as might occur when several sounds
sources are simultaneocusly active). However, when o,%# 6, optimum localization in
time-frequency results, and bends in the trajectory of a dominance are resolved more
effectively. Since many environmental sounds change rapidly in frequency (e.g. speech),
accurate localization was considered important and therefore ¢, was set to the same
value as o,

When considering the absolute width of the receptive field across frequency, it is
convenient to assume that the spacing of auditory filters is logarithmic. On a logarithmic
scale, frequency transitions which move at the same rate have the same slope, irrespective
of the initial and final frequency. Hence, it can be assumed that neurones centred on
different characteristic frequencies in the map have receptive fields which occupy the
same number of auditory filter channels, and sweep rates can be expressed in convenient
units such as oct/s, Clearly, this assumption is an approximation since the auditory
filters in the model are spaced in ERB-rate, which is not perfectly logarithmic. This
discrepancy would present a problem if the frequency transition map formed a basis
for grouping components with common rates of frequency modulation, since dominances
moving at the same rate in different frequency regions would not have the same slope,
However, the map is used here only to track spectral dominances across time, so the
error between ERB-rate and logarithmic spacing was considered acceptable.

The frequency width of the receptive field was determined by practical considerations.
Receptive fields that are wide in frequency do not localize spectral peaks as accurately
as receptive fields which are narrow in frequency. Conversely, the narrowness of the
receptive field in frequency is limited by the number of auditory filters used in the
model. For a filterbank with 128 channels in the range 50 Hz-5 kHz, a frequency spread
of seven channels (approximately 1-4 ERB) was found to be a good compromise.

The absolute width in time of the receptive field should be at least as wide as the
longest fundamental period expected for a periodic source, otherwise the map will be
integrating auditory nerve activity over an uneven temporal window. Since the lowest
fundamental frequency expected is 50 Hz, this suggests a lower limit of 20 ms for the
time width. Additionally, Nabelek and Hirsch (1969) have found that the ability of
listeners to discriminate between different rates of frequency transition is optimal for
sweep durations of 30 ms. Consequently, the time width of the receptive field was set
to 30 ms in the model. Since the frequency spread was seven auditory filter channels,
30ms of auditory nerve firings were collapsed into seven bins in order to give the
receptive field an equal width in time and frequency.

Since the mapisintended to detect frequency transitions in many types of environmental
sounds, it is necessary to know the maximum rate at which sweeps in frequency are likely
to occur. Some of the most rapid changes in frequency are observed in formant transitions
of speech, the majority of which occur at rates of less than 20 oct/s (Lehiste & Peterson,
1961). Accordingly, neurones were tuned to a maximum upward transition rate of 20 oct/
s, and a maximum downward transition rate of —20 oct/s.

A final consideration is the distribution of receptive fields across frequency. Here,
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the spacing of receptive fields is determined by deriving a tuning curve for the receptive
field g(r, /), which guantifies its selectivity to different rates of frequency sweep. Riley
(1989) has shown that the tuning curve for g(z,f) is given by

Mg, Do %@ (16)
v 1P 1)sinp

where

= (17

and ¢ is the slope of a pure tone rising linearly in log frequency. Since o, and o, are
equal in the model, £ 1s unity and Equation (16) reduces to

I'(p)=cos’. (18)

Here, receptive fields are spaced so that their tuning curves overlap at their 3 dB points.
This corresponds to a spacing of 1-82 oct/s between the preferred sweep rate of neurones
in the map.

3.5. Example representations

Although the map is intended to track peaks in the auditory nerve response, it actually
measures the rate of frequency transition at every characteristic frequency. Spectral
peaks can be located in the map by looking for maxima in response along the frequency
axis when 8=0. Formally, spectral peaks in the map occur at characteristic frequencies
which satisfy the condition

8
as(t,f,ﬂ)z(). (19)

This technique for identifying spectral peaks is generally very reliable, since g(¢.f) is
sufficiently wide to ensure that a moving dominance generates activity in the map along
the line where 8=0. The direction in which a dominance is moving is determined by
locating the maximum along the sweep rate axis of the map, at the characteristic
frequency of the spectral peak. Hence, the condition

]
757/ 9=0 {20)

identifies the rate of frequency transition at a particular characteristic frequency.
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Figure 6. Frequency transition map representations of female speech (a), rock
music (b) and trill telephone (c). Vector size is related to amplitude, and
direction is related to sweep rate.

Fig. 6 shows the position and orientation of spectral dominances in three sound
sources, identified by applying the conditions given in Equations (19) and (20) to the
frequency transition map at 10 ms intervals. Spectral peaks are represented by vectors,
which have a size related to the amplitude of the peak in the map and a direction related
to the rate of frequency transition. Clearly, the map provides primitive information that
could be used to track spectral peaks across time using a trajectory principle.
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3.6. Onset and offset maps
3.6.1. Motivation

In normal listening situations, it is unlikely that independent sound sources will start
and end at the same time. There is good evidence that the auditory system exploits this
fact by grouping together acoustic components which have the same onset and offset
times. For example, it has been demonstrated that a harmonic which starts before or
ends after the other components of a synthetic vowel contributes less to the vowel
percept than a synchronous harmonic (Darwin, 1984).

3.6.2. Model description

Cells which respond with a brief burst of activity at the onset or offset of a tonal
stimulus are found throughout the higher auditory nuclei. One possible mechanism of
these cells would be an excitatory input to the cell at the start of the stimulus,
followed by a strong imhibitory input which prevents activity throughout the remaining
stimulation (Shofner & Young, 1985). This mechanism can be approximated by writing
the membrane potential p,.(¢) as a leaky sum of the excitatory and inhibitory inputs to
the cell,

Por8) =Ponlt = Dyt Epor(t) — L p(t — Al) 21

where E,,, and I, are the excitatory and inhibitory inputs respectively, Az, determines
the time before inhibition, and the decay constant ¢, is given by

= exp( —51—[) (22)

T4

The firing rate of the onset cell, s,,(7), 1s determined by the value of the membrane
potential when it exceeds a threshold Th,

sﬂﬂ(,)z{paam if Pl )>Th )

otherwise.

The input r to the cell is the envelope of the auditory nerve response at the
characteristic frequency of the onset cell, obtained by integrating the output of the
Meddis bair cell model over 20 ms with a Hamming window. A wide smoothing window
is used in order to remove amplitude fluctuations accompanying the glottal pulses of
speech stimuli. In order to model strong inhibition following excitation, the value of
the delayed inhibitory input 7, (1'01) is set larger than the value of the excitatory input
E,, (1-:00).

The parameter 1, determines the time taken for the membrane potential to decay to
1/e of its maximum deviation from the resting level. Onset cells are able to fire on every
click in a pulse train at rates of up to 400-700 clicks/s, which suggests that the membrane
can reset within a few ms of firing. Thus, 1; was set to a short value (1-5ms) in the
model.

The firing threshold Th is set depending on the inhibitory delay of the onset cell
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model. Cells with short inhibitory delays (1-5ms) only produce positive output at
abrupt onsets, so in these cases Th can be set to zero. For celis with longer delays, Th
can be increased to remove activity caused by small fluctuations in amplitude over
large time intervals. In the examples shown here, Th is set to zero.

The time delay before inhibition A#; determines the rate of amplitude change that
the cell is sensitive to. When the inhibitory delay is short, the model will be sensitive
to rapid increases in amplitude but will respond less vigorously to a stimulus with a
slow rise time. Here, At; is set to Sms in order to detect abrupt amplitude changes.

Intuitively, detecting an offset is rather like the “reverse” of detecting an onset, which
sugpests that offset cells may receive their excitatory and inhibitory inputs in the
opposite order to onset cells. Hence, the membrane potential p,(7) for an offset cell
can be written as

Pof 8y =Pt — Vyeg+ Eor(t — Atg) — L r(1) (24)

where excitation is now delayed relative to inhibition. Similarly, the firing rate of the
offset cell is given by

ott)  for p,(0)>Th
Sofl) = Pf:)() othgrﬁ(fis)e (25)

where the delay before excitation A¢; is S ms, The remaining parameters have the same
values as those in Equations (21)-(23).

3.6.3. Example representations

Fig. 7 shows onset map representations for three sound scurces, The positions of onsets
are identified by bands of brief firing activity extending across frequency. Representations
derived from the offset map identify the cessation of a sound source in a similar manner.

4. Auditory elements
4.1. Introduction

Thus far, the auditory representation of an acoustic source has been expressed in terms
of the activity in separate neural maps over time. Clearly, a representation of auditory
activity is required which combines the information from the different maps, and is
amenable to the application of grouping principles in a scene analysis strategy.

An important issue to be considered here is the representation of time. The majority
of auditory models described in the literature employ a frame-based representation of
time, in which the neural activity across characteristic frequencies is coded as a one-
dimensional vector of coefficients at regular time intervals. In many cases, this strategy
is adopted because the output of the auditory model is required in a form that is
compatible with frame-based automatic speech recognition system (e.g. Beet, 1990).
Similarly, frame-based representations of time have been used in the majority of systems
which attempt to segregate simultaneous sounds, principally because of the influence
of speech processing techniques (Parsons, 1976; Scheffers, 1983; Stubbs & Summerfield,
1990; Varga & Moore, 1990).
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Figure 7. Onset map representations of female speech (a), music (b} and trill
telephone {(¢). Dark areas of the image indicate regions of intense firing
activity.

Although frame-based auditory representations provide a good visual description of
acoustic events, they are inadequate as a basis for ASA algorithms. Specifically, they
do not contain explicit information about the way in which the acoustic components
vary across time. Examination of Fig. 2 suggests that time is an intrinsic dimension of
the anditory rate map representation—visually, we see a two-dimensional time-frequency
surface rather than a series of one-dimensional spectra. This observation has been made
by a number of workers (e.g. Riley, 1989; McAulay & Quatieri, 1986; Heinbach,
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Figure 8. Formation of auditory elements by birth—death peak tracking.
Spectral peaks (black dots) which lie within the acceptance region of an
auditory element are recruited together with their corresponding periodicity
groups (grey rectangies).

1988; Cooke, 1993). Consequently, the approach described here employs an auditory
representation in which time is made explicit. The auditory scene is characterized as a
collection of auditory elements, each of which describes the movement of a spectral
component in time and frequency. A number of workers have found descriptions of
this type to be powerful computational representations (Riley, 1989; Green, Brown,
Cooke, Crawford & Simons, 1990; Cooke, 1993).

4.2. Formation of auditory elements

Given the frequency transition and periodicity group primitives, auditory element
formation proceeds as shown in Fig. 8. Spectral peaks are tracked across time by
a birth-death strategy, sitnilar to the procedures described by McAulay and Quatieri
(1986) and Cooke (1993). Initially, the location and orientation of each spectral
peak in a particular time frame are derived by finding the maxima in the frequency
transition map, as described in Section 3.5. Subsequently, the movement of a peak
at time frame ¢ to a new frequency channel f at the next time frame r+1 is
predicted by a simple linear extrapolation of the peak’s orientation. In practice, it
is desirable to allow some tolerance in the predicted position of the peak, so an
acceptance region o(f) is computed which is centred on f. Formation of an auditory
element then proceeds according to the following three rules:

Rule 1. For an existing element at time frame #, a peak that lies within the acceptance
region w(f) at time frame ¢+ 1 is recruited to the element. If the recruited peak falls
within the boundaries of a periodicity group for time frame t+ i, then the frequency
spread of the element at that time is taken as the width of the periodicity group.
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Otherwise, the element is assumed 1o occupy a single channel of the filterbank at time
141 (steps 2, 3 and 4 in the figure).

Rule 2. If an existing element at time ¢ is unable to recruit a new peak at time 7+ 1,
the element “dies” (step 3 in the figure).

Rule 3. Peaks at time ¢+ 1 which do not fall within the acceptance region of an existing
element are “born” as new elements. Periodicity groups are matched to the new element
as described in the first rule (step 2 of the figure).

The use of an acceptance region arcund the predicted location of a peak is consistent
with the findings of Ciocca and Bregman (1987). They found that when listeners were
asked to judge the continuity of a glide through a band of noise, listeners tolerated a
disparity in the starting frequency of the post-noise glide. Unfortunately, Ciocca and
Bregman did not quantify the width of the acceptance region for different glide slopes,
so their data cannot be used to calibrate our system. Rather, the width of w(f) was
derived empirically. A tolerance of one channel either side of the predicted peak position
(corresponding to a @(f) of 0-6 ERB) was found to be suitable. Wider acceptance
regions tended to produce longer elements, but increased the number of tracking errors
{e.g. joining two components with different harmonic numbers).

Not all of the auditory elements are retained for further processing. Specifically,
elements that span fewer than two time frames arc eliminated. Very short auditory
elements are unlikely to have a significant acoustic correlate, and removing them eases
the computational burden on the subsequent scene analysis strategy.

4.3. Auditory element representations

The auditory element representations of three sound sources are shown in Fig. 9. Each
grey shape is a symbol which traces the path of a spectral dominance through time
and frequency. Individual harmonics and formants of speech are generally represented
as a single element.

5. Grouping auditory elements

Now that the auditory scene is'represented as a collection of symbolic auditory elements,
the scene analysis process can be phrased as the problem of finding elements that are likely
to have originated from the same acoustic source. Such e¢lements can be identified by
exploiting the Gestalt principle of common fate. The Gestalt psychologists (e.g., Koffka,
1936) described many principles of perceptual organization which, although generally
described first in relation to vision, are also applicable 1o avdition. The term “common
fate” describes the tendency to group sensory elements which change in the same way at
the same time, In our segregation system, auditory ¢lements are grouped if they have a
common F0 or a common onset or offset time. These perceptual grouping cues have been
documented extensively in the psychophysical literature (see Sections 3.2.1 and 3.6.1).

6. Grouping by common fundamental frequency

A strategy for segregating concurrent periodic sounds is now described, which partitions
the channels of the autocorrelation map into groups that are likely to have the same
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Figure 9. Auditory element representations of speech (a), music (b) and trill
telephone (c).

FO. Before proceeding, some previous autocorrelation-based approaches to source
segregation are considered.

6.1. Frame-based segregation schemes

Assmann and Summerfield (A&S) (1990) and Meddis and Hewitt (M&H) (1992) have
proposed autocorrelation-based segregation strategies, which attempt to model the
perceptual processes underlying the ability of human listeners to identify concurrent
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vowels with different FOs. As such, they are limited to processing static sounds, and
operate on a single frame of an autocorrelation map. However, the strategies could
equally be applied to successive frames of a map in order to segregate time-varying
stimuli. Weintraub (1985) describes a segregation system based on this principle.

A&S propose several schemes for segregating double vowels. Their “non-linear place-
time” model is considered here, which employs an autocorrelation map similar to that
described in Equations (7) and (8). Imitially, a summary autocorrelation function is
formed by averaging the channel autocorrelation functions across frequency,

M
s, At)=;:}Za,,(t, 1, A1) (26)
J=1

where M is the number of auditory filter channels. The two largest peaks in the summary
are identified, and the delays at which these peaks occur are assumed to correspond to
the fundamental periods of the two vowels. Subsequently, the spectrum of each
vowel is estimated by sampling the channcls of the autocorrelation map at the delay
corresponding to the vowel’s period. Hence, two “synchrony spectra” are obtained,
which indicate the degree of synchronization to each vowel in the auditory nerve.

An alternative strategy has been proposed by M&H. Given that there are two vowels
present with different FOs, the M&H scheme partitions the autocorrelation map into
two mutually exclusive sets of channels. Initially, the largest peak in the summary
autocorrelation is identified, and this is taken to be the period of the dominant vowel.
Channels with a peak in their autocorrelation functions at this delay are removed from
the map, and the remaining channels are assumed to belong to the second vowel.

Although both of these schemes provide a good match to listeners’ responses for
vowel segregation tasks, they suffer from potential problems as algorithms for the
segregation of arbitrary concurrent sounds. In particular, both the A&S and M&H
strategies require a priori knowledge of the number of sound sources that are present.
Additionally, the A&S and M&H segregation strategies assume that the FO of a source
is identified first, and then this FO is used to group the components of the source
together. However, the work of Darwin and Ciocca (1992) suggests that mechanisms
of pitch perception must take into account the temporal history of the components of
a harmonic complex, in order to exclude those that differ in onset time. Hence, it
appears that perceptual grouping determines perceived pitch, rather than vice versa,

6.2. Principles of the new strategy

A new autocorrelation-based segregation strategy is now presented which avoids many
of the limitations of the A&S and M&H schemes. In particuiar, it exploits the fact that
temporal continuity has been made explicit in the auditory element representation [see
Brown and Cooke (1992) for further details].

QOur strategy differs from the other s¢gregation schemes in that it identifies a “local”
FO contour for each element in the auditory scene. Subsequently, elements are grouped
if their FOQ contours are similar. In contrast, the A&S and M&H schemes attempt to
partition the energy in the autocorrelation map using “global” pitch information derived
from the summary autocorrelation function.

The summary autocorrelation of a periodic sound has peaks at integer multiples of
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Figure 10. Svmmary avtocorrelation functions for a mixture of the synthetic
vowels faf (FO 112 Hz) and /e/ (FO 100 Hz), before weighting (a) and after
weighting (b).

the fundamental period, as well as a peak at the fundamental period itself. In order to
reduce the influence of these “false™ peaks on the segregation strategy described here,
a weighting is applied to the summary autocorrelation which attenuates peaks at longer
delay times. Specifically, a modified summary autocorrelation

s, 80 ="C0% 0 1 1 A1 @)
7=1

is computed, where the weighting function w(Ar) is defined by

At

WA)=10-09

(28)

max

as suggested by Weintraub (1985). Here, At,,, is the longest autocorrelation delay, and
the other parameters are defined in Section 3.2.2. The function w(Af) imposes a linear
weighting on the summary autocorrelation, which varies from 1-0 at zero delay to 0-1
at the longest delay. This ensures that the peak at the period of a source is larger than
the peaks at integer multiples of the pericd. For example, Fig. 10 shows summary
autocorrslation functions for a mixture of the synthetic vowels fa/ (FO 112 Hz) and /e
(FO 100 Hz). A peak occurs in the summary autocorrelation at the period of each
vowel (893 and 10:0ms), and also at twice the period of the /a/ (17-86 ms). After
weighting, this spurious peak has been attenuated.
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The next stage in the algorithm exploits the fact that auditory elements generally
occupy more than one channel of the autocorrelation map at each time frame, since
they have been dertved by tracking periodicity groups across time. Specifically, a local
summary autocorrelation is computed, which averages the channel autocorrelation
functions over the frequency spread of the element. For an auditory element which
occupies channels £, to f; of the autocorrelation map at time ¢, the local surnmary
autocorrelation f is given by

f
It £ o, Ay = ﬁ-_—fl—]-ﬁzan(r, fAD. (29)

J=h

Note that the effect of this averaging will be small, since the channels occupied by an
element at a particular time frame are, by definition, very similar.

The weighted summary antocorrelation s5,.(t, Af) is an average measure of the pen-
odicities present in the autocorrelation map. As such, it indicates the likelihood of a
period At occurring in the map at time 7. Similarly, the local summary autocorrelation
functions Xz, /1. /2, At) indicate the likelihood of a particular period occurring in 2 channel
of the map. Therefore, the product of these two quantities gives an estimate of the
probability' that the response of a channel f is dominated by a source with period Az
at time ¢,

Pr(t, f1. [ A =K1, 11, £, A5 (3, AD). (30)

From Equation (30), it is possible 1o predict the period of the source that a channel
18 most likely to be dominated by. Specifically, the predicted period is given by the
autocorrelation delay at which Pr(z, /), /2, Af) is highest. Although Pr could be computed
in a frame-by-frame manner, such an approach would not take advantage of temporal
continuity. Rather, Pr is computed at every time frame occupied by the auditory
glement, and the best path through this series of functions is found by a dynamic
programming algorithm (Cooper & Cooper, 1981). Since the optimum F0 contour
passes through peaks in Pr, the dynamic programming algorithm actually finds the
best path through the series of functions

Pr(fifo Ad) if é—g;}’r(t, fifo A1) =0.

0 otherwise

it At}={ 31)

Here, m(t, At) is zero except at delays where a local maximum occurs. Equation (31) is
computed by using a finite difference approximation to the differential, checking the
size of zero crossings to ensure that a maximum has been found rather than a minimum.

The dynamic programming algorithm proceeds as follows. The dynamic programming
score ds(z, Ar) for a period Az at time frame 7 is defined as the dynamic programming
score 4t the previous frame, plus the transition score gained by moving to the current
period. Formally, the recursive relation

! Note that the term “probability” is used loosely. Pr(s,f Af) is not a true probability since, in general,
Y Prt.f,AD 1.
A1
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ds(t,Af)=

max .
<r<i,
{ds(t LAz) Af ts(At, At 1) if 1<r <t (32)

ift=t,

is calculated for each time frame r between the start time ¢, and end time ¢, of the auditory
clement, for values of Az between 2 and 20ms (corresponding to pitches in the range
50-500 Hz). The transition score ts{(At,, At, 1) quantifies the cost of moving from a period
At, in the previous frame to a period At in the current frame, and is given by

Ay
5(At,, At )= m(1, A7) exp( —ﬂzs—f’i). (33)

Hence, the transition score for a new period depends upon its probability, and its distance
from the previous period. The exponential term in Equation (33) applies a Gaussian
weighting to the difference in period, so that smaller changes in period give a higher
transition score. In the absence of any experimental data, the standard deviation 3, of the
Gaussian was derived empirically. A value of 0-6 ms was found to give good results,

A dynamic programming score ds(t, Ar) i1s computed for each initial period At at time
t, and the period with the highest score is taken to be the start of the best path.
Subsequently, the best path is retraced through the series of functions m(z, Ar) in order
to determine the FO contour. This process is repeated for each element in the auditory
scene, as shown in the left panel of Fig. 11. Here, the FO contours have been derived
for each element in a mixture of speech and a synthetic siren. The contours cluster into
two distinct groups, corresponding to the FOs of the two sources. Additionally, a small
number of contours occur at twice the fundamental period of the speech, which are
due to suboctave errors in the tracking procedure.

Given a predicted FO contour for each element in the auditory scene, segregation
can now be achieved by application of the following grouping principle;

Auditory elements which overlap in time are grouped together
if their predicted FO contours are sufficiently similar.

For two elements that overlap in time, the similarity of their FO contours p(r) and
(1) can be quantified by the metric

2
sim(ppd=— +12 ( s ) G4

Here, 1, and ¢, define the first and last time frames at which the two c¢lements overtap.
This similarity metric computes the average Gaussian-weighted difference between the
two FO contours. As such, sim{p,, p;) varies between unity (identical FO contours) and
zero {very different FO contours). The standard deviation 3, of the Gaussian determines
the amount of tolerance in the comparison. Here, §, was set to 0-3 ms by inspection.
Finally, two elements are allowed to form a group if their sim(p,,p,} score exceeds a
threshold value, In practice, the FO contours of elements that belong to the same source
tend to be very similar, so the threshold can be set quite high. A value of 09 is used
here. Clearly, this process groups auditory elements in a pairwise manner. Section 3.2
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describes a strategy for searching the auditory scene which forms larger groups from
these pairwise comparisons.

This autocorrelation-based approach has a couple of advantages when compared
with the A&S and M&H segregation strategies. Firstly, no prior knowledge of the
number of sources present in the stimulus is required. Rather, the number of groups
that are formed is determined by the number of different predicted fundamental periods.
Secondly, the new strategy does not attempt to identify a global pitch for each source.
Rather, it predicts a local pitch for every channel in the map, and groups chaanels with
the same local pitch. This approach is consistent with the view that grouping determines
the perceived pitch of a source, rather than vice versa.

7. Grouping by common onset and offset

A simple way of grouping by common onset and offset would be to group auditory
elements which start and end at the same time. However, auditory elements are formed
by a tracking strategy that prefers to break an element rather than make a tracking
¢rrot. Therefore, the start and end times of an auditory element do not necessarily
correspond to the appearance and disappearance of an acoustic event.

The onset and offset maps provide a solution to this problem, since the presence of
activity in the maps indicates that an onset or offset of an acoustic event has occurred.
Therefore, the following principle can be applied to group elements with a common
onset or offset time:

Auditory elements which start or end synchronously are more
likely to form a group, providing that there is sufficient activity
in the onset or offset map at the appropriate time.

In practice, elements tend not to be exactly synchronous, so it is desirable to allow
a tolerance in the comparison of onset and offset times. Darwin (1984) finds onset and
offset segregation effects at disparities of 30 ms, so the tolerance should clearly be less
than this. Here, elements are judged to be synchronous if the difference between their
start or end times is not more than two time frames, corresponding to a tolerance of
20 ms.

Given the start or end time of an element, the onset or offset map is checked 10
ensure that an acoustic event has actually started or stopped. Again, it is desirable to
allow a tolerance when comparing the start/end time of an element with the time of
activity in the onset/offset map. This is because auditory filters tend to ring at their
centre frequencies for a few milliseconds after an abrupt onset, which delays the
formation of periodicity groups. Similarly, periodicity groups may extend for a few
milliseconds after a sudden offset, because the filters continue to ring at the frequency
of the stimulus. Therefore, the activity aci(r) in the onset or offset map o(t.f) at the
start/end time ¢ of an auditory element is quantified by

5 2
acl(t)=z Z o(t+1,1). (35)

=fi1=-12
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Here, f, and f, define the range of channels in the filterbank occupied by the element
during its first (in the case of onset) or last (in the case of offset) time frame. As before,
a two frame (20 ms) tolerance is allowed either side of the start/end time 7. An onset
or offset is indicated when the activity in the map act(r) exceeds zero.

When two auditory elements start or end at the same time, and an onset or offset is
indicated by the maps, the tendency of two elements to group is increased by adding
a constant weighting to the similarity score sim(p;,p,) defined in Equation (34). The
weightings for common onset and common offset are both set to 0-5. Recall that
elements are allowed to fuse if their sim(p,,p.) score exceeds a threshold value of 0-9,
Therefore, elements which have a common onset and a common offset will form a
group regardless of their FO contour similarity, since their onset and offset score (1-0)
exceeds the threshold. However, elements with a common onset or a common offset
must also have an F0O contour similarity of at least 0-4, in order to exceed the threshold
and form a group. This requirement is consistent with the suggestion of Darwin and
Sutherland (1984} that common onset and common offset are neither necessary nor
sufficient conditions for grouping the components of speech. In natural speech, formants
move rapidly in frequency so that nearby harmonics are amplified and attenuated at
different times. Hence, it would be inappropriate to group only those harmonics which
are exactly synchronous.

8. Searching the auditory scene

An algorithmic search strategy is now described, which aims to partition the auditory
scene into groups of elements that are likely to have arisen from the same environmental
event. Similar schemes have been proposed by Cooke (1993) and Mellinger {1991).
Curtently, the strategy groups elements according to their FQs, onset times and otfset
times, As such, the algorithm is restricted to primitive grouping, and does not attempt
to use learned (schema-driven) grouping principles (Bregman, 1990). Additionally, the
strategy is limited to searching for simultaneous organization in the auditory scene,
and is therefore unable to group elements that are widely separated in time, However,
the time-frequency nature of the auditory element representation does allow the
sequential propagation of groups in situations where elements overlap.

8.1. Motivation

The issues that arise in formulating a strategy for searching the auditory scene have
been comprehensively discussed by Cooke (1993). Here, a new strategy is proposed
that is motivated by several of Cooke’s observations.

Firstly, the strategy employed here assumes that every element in the auditory scene
must be allocated to a group. Hence, the search terminates when all of the elements in
the scene have been accounted for. In some cases, a group may consist of a single
element.

A second point concerns the allocation of auditory elements between groups. Since
the segregation strategy described in Section 6.2 allocates channels of the autocorrelation
map exclusively to a single source, an auditory element cannot belong to more than
one group. Hence, once an element has been assigned to a group by the search strategy,
it is effectively “removed” from the auditory scene, As such, our system applies a
“principle of exclusive allocation™ (Bregman, 1990).
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One potential problem in rigidly applying a principle of exclusive allocation is
that the search strategy may find different organizations in the auditory scene if it
starts from different elements. For example, a frequency component which could
beleng to two harmonic series might be assigned arbitrarily to the harmonic series
that was identified first by the search strategy. However, the algorithm proposed
here does not suffer from this problem, for two reasons. Firstly, clements are
grouped according to the similarity of their predicted FO contours, rather than by
harmonicity per se. It is very unlikely that the FO contours of two groups will be
so similar that they will compete for the same elements. Secondly, exclusive allocation
is not 1mposed at the level of the search strategy. Rather, it emerges as a consequence
of the fact that elements are assigned to a single predicted F0O contour.

In practice, the search time can be reduced by starting from “dominant” elements
in the auditory scene. Here, the length of an element is taken as an indication of
its dominance, although other properties (such as time-frequency area) could also
be used. Long elements generally give rise to large groups, and are likely to have
a significant acoustic correlate. Therefore, the search for a new group starts with
the longest element in the auditory scene, and long elements are recruited to groups
before shorter elements.

8.2. The search strategy

The algorithm used to search the auditory scene proceeds as follows. Initially, the
longest element in the auditory scene is selected as the start of a new group. Then,
every clement remaining in the scene is considered as a possible match (“focus”) to the
group. A similarity score sim(p,,p2) is calculated between the FO contour of the focus
element and every element in the group that it overlaps in time, as described in Section
6.1. Subsequently, the score is adjusted if the elements being compared have a common
onset or a common offset (sec Section 7). If the focus element has a simp,,p,) score
greater than (-9 for every clement in the group that it overlaps, it is added to the group.
This process iterates until the group cannot recruit any more clements. Then, a new
group is started if there are any ¢lements remaining in the auditory scene.

Note that elements are recruited to groups under very tight constraints. Specifically,
a focus element can only be recruited to a group if it is sufficiently similar to all the
members of the group that it overlaps in time. This constraint is imposed to prevent
small elements in a group from acting as a “bridge” to dissimilar elements. For example,
a focus element which generally has a different FO contour to a group, but is similar
for a short time, could be recruited by a short ¢lement in the group that spans the
period when the pitch tracks are similar. Checking that the focus element is consistent
with every member of the group alleviates this problem.

An example of grouping by the system is shown in Fig. 11. The left panel shows the
auditory elements for a mixture of speech and a synthetic siren, together with the F0
contour for each element. After application of the search strategy, two groups of
clements have been identified which correspond to the speech (centre panel) and siren
(right panel). Examination of the FO contours for these groups suggests that the two
sources have been segregated very effectively.
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Figure 12. Schematic diagram of the resynthesis process, showing the
segregation of speech from a synthetic siren and the resynthesis of each source.

9. Resynthesis
9.1. Motivation

A number of workers have used resynthesis to determine whether an auditory rep-
resentation preserves perceptually important features of the acoustic input (e.g. Hein-
bach, 1988; Hukin & Damper, 1989). Resynthesis also provides a convenient means of
assessing the performance of systems that attempt to segregate concurrent sounds
(Parsons, 1976; Weiniraub, 1985; Denbigh & Zhao, 1992; Cooke, 1993). By listening
to the segregated output, it is possible to assess how much of the signal has been
retained, and how much of the noise intrusion has been rejected.

9.2. Resynthesis from auditory elements

The resynthesis technique employed here is similar to the scheme described by Weintraub
(1985). Fig. 12 illustrates the process for a mixture of speech and a siren intrusion,
although the technique can be applied to any arbitrary input.

Segregation by the system produces a number of groups of auditory elements. The
first stage in resynthesizing a waveform for a group is to form a mask. If a channel of
the auditory filterbank is occupied by an element in the group at a particular time
frame, the value of the mask at that time and channel is unity. Otherwise, the value of
the mask is zero, Hence, the mask consists of a matrix of binary weights, that indicate
which frequency channels of the filterbank belong to the group at each time frame.

Subsequently, a resynthesized waveform is constructed from the gammatone filter
output. In order to remove any across-channel! phase differences, the output of each
filter is time-reversed, filtered a second time, and time-reversed again. Then, each time-
frequency region of the phase-corrected filter output is multiplied by the corresponding
weight in the mask. The weights are applied to 20 ms segments of the filter output,
which overlap by 10 ms and are windowed with a raised cosine. Finally, the resynthesized
waveform is obtained by summing the weighted filter outputs across all channels of
the filterbank.
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The validity of this resynthesis technique has been confirmed by resynthesizing a
signal when every clement in the mask is unity, so that all of the time-frequency
regions of the filterbank output are included. Speech resynthesized in this way is
of very high quality. Additionally, segregated speech obtained after grouping by the
system has been resynthesized from each of the 100 mixtures described in Section
10.3. Generally, the resynthesized speech is highly intelligible and quite natural. The
best exemplars occur when the noise intrusion is narrowband (1 kHz tone, siren),
and the worst occur when the noise is random and wideband (laboratory noise,
random noise).

10. Quantitative evaluation
10.1. Motivation

If a resynthesis path is available from a source segregation system, performance can
be quantified by assessing the intelligibility of the segregated output in formal listening
tests (Hanson & Wong, 1984; Stubbs & Summerfield, 1990). However, this approach
may be time-consuming, and subjects require training in order to perform the task.
Alternatively, listeners can be replaced in intelligibility tests by an automatic recognizer
(e.g. Weintraub, 1985). Unforiunately, interpretation of results may be difficult if an
auditory representation is used as an input to the recognizer. For example, Beet (1990)
has shown that the output of an auditory model can be an unsuitable input for a
conventional speech recognition system.

In the following section, a new evaluation technique is described which allows an
SNR to be computed before and after segregation by the system. This evaluation
methodology is fast, simple to implement and leads to an easily interpreted metric.
Additionally, quoting the performance of the system in terms of an improvement in
SNR allows our results to be compared with those of other workers.

10.2. Comparison of SNRs

Generally, the sounds in the test set of mixtures used here are non-stationary. Therefore,
a running short-term SNR is computed, which takes the form

Yo+ a‘J)

DR e

snr(t) :%atan(

where s and » are the speech and noise waveforms, respectively. Here, a 10-ms non-
overlapping window of size w samples is used, and results are expressed as the mean
sar(¢) over every time frame 7 in the mixture.

Following segregation by the system, all of the noise intrusion » may have been
removed within a particular time window. Clearly, this is an ideal result, but it gives
rise to an infinitc SNR. Hence, an arctangent compression is applied in Equation (36),
which ensures that sur(f) is always finite. In practice, this leads to a highly intuitive
metric. When there is no signal in the mixture, snr(z) is zero. Similarly, when there is
1o noise in the mixture, snr(2) 1s unity. An szr(?} of 0-5 indicates that the levels of signal
and noise are equal.
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In order to express the performance of the system as an improvement in SNR, it
must be possible to obtain separate signal and noise wavefors after segregation. This
is possible because the resynthesis process is linear, since the gammatone is a linear
filter and resynthesis essentially consists of two passes of gammatone filtering. A linear
system R satisfies the property of superposition, namely,

Ris+n)=R(s)+ R(n). (37

Consider the case where the system R represents the resynthesis of a waveform from a
mask, and s and » represent the signal and noise, respectively. Equation (37) implies
that the proportion of signal in a segregated mixture can be obtained by resynthesizing
the signal waveform from the mask, and that the proportion of noise can be obtained
by resynthesizing the noise waveform from the mask. Hence, separate signal and noise
waveforms can be obtained from a segregated mixture. Furthermore, this technique
can be applied to any representation from which a linear resynthesis path is available.

This approach has a number of useful properties. Firstly, it is possible to compute
snr(?) after segregation. Secondly, visual examination of the resynthesized speech and
noise waveforms indicates how much of the signal has been retained, and how much
of the noise has been removed, Finally, it is possible to listen separately to the proportion
of signal and proportion of noise in the segregated output. Hence, the degradation of
the signal and noise waveforms after segregation can be assessed in informal listening
tests.

10.3. Mixture test set

The database of speech and noise mixtures employed by Cooke (1993) has been used
as a test set for quantifying the performance of the system. Although the majority of
segregation systems have been evaluated using the task of separating speech from other
interfering speech (e.g. Parsons, 1976; Hanson & Wong, 1984; Weintraub, 1985), it is
clear that a wide variety of noise intrusions occur in natural listening environments.
Hence, Cooke’s test set contains a range of 10 different noise sources, which include
synthetic stimuli (1 kHz tone, random noise) and environmental sounds (music and
“office” noise),

Here, our system is evaluated on a set of 100 mixtures, obtained by adding the
waveforms of each of the 10 intrusions to each of 10 voiced utterances (five sentences
spoken by two male speakers). Fully voiced utterances have been used since our system
is not able to sequentially group a stream of voiced—unvoiced speech sounds.

10.4. Results

Each of the 100 mixtures of speech and nois¢ in the test set were processed by the
system. The groups corresponding to the speech were identified visually from the
auditory clement representation, or by listening to the resynthesized waveforms of each
group.

Two evaluation metrics are used here. Firstly, the proportions of speech and noise
in each group have been derived, allowing the mean snr(f) to be computed after
segregation using Equation (36). Similarly, the mean snr(f) has been computed for the
original mixture, so that performance can be quantified as an improvement in SNR.
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Figure 13. Comparison of signal-to-noise ratio before and after segregation
by the system (a). Percentage time-frequency regions allocated to the speech
source {(b). The intrusions are n0=1 kHz tone; nl =random noise; n2 =noise
bursts; n3="cocktail party” noise; nd =rock music; n5 =siren, n6=trill
telephone; n7 =female speech; n8 =male speech; n9 =female speech. (M),
Original mixture; (B8), after segregation.

Secondly, the number of non-zero time-frequency regions {TFRs) in the mask is
determined for each group. This gives an estimate of how much of the auditory scene
has been recovered by the grouping process.

In each of the noise conditions the voiced utterances gave similar results using the
SNR and TFR metrics. Hence, the results for each intrusion have been averaged over
the 10 utterances.

10.4.1. Segregation by the svstem using common FO contour, onset and offset cues

The mean sar(f) for each noise condition is shown in Fig, 13(a), for the original mixture
and for segregated speech obtained after processing by our system using common FO
contour, onset and offset grouping cues. It is apparent that segregation has improved
the mean sur(¢) in each case. For some intrusions (n0, nl and n3) the improvement is
very significant. Fig. 13(b} shows the mean number of TFRs allocated to the speech
component of the mixture after grouping by our system. About 10-30% of the TFRs
in the mask are allocated to the speech, depending on the noise condition. Clearly,
more of the TFRs will be allocated to the speech when the intrusion is narrowband
(e.g. n0) than when it is broadband (¢.g. nl).

10.4.2. Random grouping

The significance of the previous results can be assessed by determining how well a
segregation system would perform if it grouped frequency channels randomly at each
time frame. Fig. 14 shows the mean values of sir(r) before and after random grouping.
As might be expected, the proportions of signal and noise in a random group are
approximately the same as they are in the original mixture. However, small increases
in snr(2) accur with some intrusions (n0, nl, n5 and n9). Comparison with Fig. 13(a)
confirms that the performance of our system is better than random grouping for every
noise condition.
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Figure 14, Comparison of signal-to-noise ratio before and after random
grouping. The intrusions are n0=1 kHz tone; nl =random noise; n2=noise
bursts; n3=“cocktail party” noise; n4 =rock music; n5=siren; né = trill
telephone; n7 =female speech; n8 = male speech; n9 =female speech. {I),
Original mixture; (&), after random grouping.

10.4.3, Comparison with a frame-based segregation strategy

it is instructive to compare the performance of our system with that of a conventional
frame-based autocorrelation segregation strategy. Here, a frame-based strategy similar
to the one proposed by Meddis and Hewitt (1992) has been used. Initially, FO contours
were derived for each of the 10 voiced utterances. This was achieved by computing a
summary autocorrelation representation for the clean speech, and identifying the
location of the largest peak in each time frame, Where necgssary, octave errors were
manually corrected. Subsequently, these FO contours were used to guide the segregation
of speech from mixtures of speech and noise. Specifically, an autocorrelation map of
the mixture was computed at each time frame, and channels of the map which had a
peak at the given fundamental period were allocated to the speech source.

Clearly, this approach gives the frame-based strategy an unfair advantage in the
comparison, since it has a priori knowledge of the fundamental period of the speech
at each time frame. Normally, the periods of the two sources would have to be estimated
from the summary autocorrelation function of the mixture. The results here assume
that this difficult task has been performed without any errors. As such, the results
represent the optinuen performance of a frame-based autocorrelation segregation strat-
egy on the test set.

Fig. 15(a) shows the mean value of snr(f) after segregation, for our system and the
frame-based strategy. The performance of our system is better for every intrusion except
n9, for which it is the same. In the majority of conditions, our system also recruits
more TFRs than the frame-based strategy [Fig. 15(b)). Generally, therefore, our system
is able to recover more of the speech source from the auditory scene. Undoubtedly,
the poorer performance of the frame-based autocorrelation strategy arises from the
fact that it does not exploit temporai continuity.

11. Summary and discussion

This paper has described a source segregation system which is able to group acoustic
components on the basis of their FO contours and onset/offset times. The novel
contributions and limitations of the system are now discussed.
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Figure 15. Comparison of signal-to-noise ratio before and after segregration
by the system and by a frame-based segregation scheme (a). Comparison of
time-frequency regions allocated to the speech source by the system and a
frame-based segregation scheme (b). The intrusions are n0=1 kHz tone; nl =
random noise; n2=noise bursts; n3 ="“cocktail party” noise; n4=rock music;
n5 =siren; né=trill telephone; n7 =female speech; n8 =male speech; n%=
female speech. (W), Original mixture; (B), after segregation; ({7}, after
segregation by a frame-based autocorrelation scheme.

I1.1. Signals and symbols in hearing

Perhaps the most significant characteristic of the system is its physiologically-principled,
multi-representational view of auditory function. Here, computational models of aud-
itory maps have been employed to provide a rich representational description of the
auditory scene. Specifically, the maps extract information about onsets, offsets, frequency
transitions and periodicities in different spectral regions. A similar approach has
previously been advocated by Darwin (1934).

This approach is similar in concept to the computational approach to vision described
by Marr (1982). Marr suggested that the first stage in the description of a visual image
should be a rich representation of intensity-level changes, which he called the primal
sketch. In subsequent stages, a number of processes operate on the primal sketch to
identify more abstract levels of structure. Similarly, the auditory maps employed here
provide a primitive, but rich, representation of the auditory scene. These primitives
form the basis for deriving abstract time-frequency elements, which can be manipulated
rapidly and effectively. Hence, auditory maps play a central role in bridging the gap
between an acoustic signal and its description as a collection of symbolic auditory
elements.

It should be stressed that we are not claiming that auditory elements are actually
computed and manipulated at high levels of the anditery pathway. Rather, auditory
elements are an abstraction which has been introduced to support a functional de-
scription of ASA. The principle advantage of the auditory element representation is
the ease with which it allows subseguent grouping algorithms to proceed. For example,
there is good evidence that the auditory system is able to correlate patterns of periodicity
in widely separated frequency regions in order to identify spectral components that are
excited by a common fundamental (Carlyon, Demany & Semal, 1992). Such cross-
correlation of filter channels is very expensive in computational terms. However,
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auditory elements can be correlated very rapidly, since channels with a sirnilar temporal
response have been grouped early in the processing sequence.

11.2. Limitations of the system

A possible limitation of the system arises from the fact that auditory elements are
exclusively allocated to one group. When an intrusion is removed from the auditory
scene, it leaves a “gap” in the spectrum which can often be heard in the resynthesized
waveform. In Cooke and Brown (1993), we describe some preliminary work which
addresses this problem by using principles of perceived continuity to extrapolate missing
parts of the spectrum.

The system is also limited by the small number of grouping principles that are
currently implemented. In particular, the search strategy described in Section 8.2 is
unable to group components which are widely separated in time, such as a sequence
of speech sounds from a single speaker. Such sequential grouping (Bregman, 1990) is
infivenced by the timbre, spatial location, temporal proximity, FO and intensity of
successive sounds. Incorporating these cues into the system is a challenging issue for
future research.

Currently, only primitive (data-driven) grouping principles are employed in the
system. However it is known that listeners are also able to use learned (schema-driven)
principles to segregate concurrent sounds. Incorporating schema-driven processing into
the system will require a flexible computational framework in which top-down and
bottom-up information can influence the groups that are formed. Some preliminary
work on this problem, which employs a “blackboard” expert system architecture (Erman
& Lesser, 1975), is reported in (Crawford, Cooke & Brown, 1993).

Once formed, auditory elements are not subjected to any further modification in the
system. For example, an element cannot be split across time or frequency. A possible
limitation of this approach is suggested by an experiment by Darwin and Sutherland
(1984). They measured the changes in vowel percept that were caused by adding a tone
to the first formant region of a vowel. In one condition, the tone started 30 ms before
the vowel. When a harmonic of the leading tone was added which stopped as the vowel
started, listeners were more likely to hear a change in the vowel colour, This suggests
that the two leading tones formed a separate perceptual group, which ended at the
start of the vowel. Currently, the system cannot reproduce this result, since it requires
the element representing the leading tone to be broken at the point where the vowel
starts. Clearly, this limitation questions the validity of the time-frequency auditory
element representation used here. Further research is required to address this issue.

Another limitation of the auditory element representation is that impulsive sounds,
such as plosives, are poorly represented (see Fig. 9). Finally, the high computational
load of our segregation system currentiy precludes its use for real-time speech processing
tasks.’

11.3. Role of common onset and common offset
Grouping by common onset and common offset is subject to tight constraints in the
system. Specifically, auditory clements must have some similarity in their FO contours

2The segregation System operdtes at approximately 4000 times real time, running under UNIX on a SUN
SPARCstation 1.
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in order for grouping by common onset or common offset to become effective. As a
result, common onset and offset cues only contribute to grouping when an auditory
element has been excluded from a group because of small irrregularities in its F0
contour (Brown, 1992). In order to reproduce the results of Darwin (1984), speech-
specific constraints would have to be included in the system which would allow
components of the same voice to be grouped even if they had different onset or offset
times.

11.4. Default grouping condition

In the system, it is assumed that elements in the auditory scene are segregated unless
there is evidence to group them together. However, segregation may not be the default
condition of organization. Rather, the auditory system may prefer to fuse all the
components in the auditory scene, so that elements are only segregated when there is
evidence for doing so (Bregman, 1990). Fusion could be made the defauit condition in
the system by rejecting an element from a group if its sim(p,,p,) score with the members
of the group was sufficiently low. Whether this approach would have any advantages
over the strategy presented here is an issue for further investigation.

11.5. Retroactive effects in grouping

The search algorithm allows auditory elements at a particular time to be recruited to
a group that starts at a later time. In fact, there is good evidence that perceptual
grouping mechanisms are able to operate retroactively (e.g. Darwin, 1984). However,
in our system there is no limit on how far the scene analysis strategy can search back
through time. Perceptual grouping mechanisms may actually operate over a temporal
window of a few hundred milliseconds.

12. Conclusions

This article has presented a source segregation system which is motivated by the known
mechanisms of ASA. The system ¢onstructs a symbolic description of the auditory
scene, which is searched for acoustic components with common F0 contours, common
onset times and common offset times. Components with similar properties are combined
into explicit groups, from which a waveform can be obtained by a resynthesis path.
The system has been tested on a database of speech mixed with various noise intrusions,
with encouraging results. In particular, our results suggest that the use of temporal
continuity constraints in the system gives it an advantage in performance over frame-
based segregation strategies.
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