Introduction to Separation Logic
Lectures at MGS'18

Georg Struth

on action short of strike at University of Sheffield, UK

Lecture 1: Statelets and Statelet Transformations



Plan

separation logic

o from algebraic point of view
o with some detours into algebra
o and Isabelle mathematical/verification components

lectures
1. statelets and statelet transformations
2. assertion algebra
3. predicate transformer semantics
4

. verification conditions

exercises
depending on interest



o

[¢]

o

o

This Lecture

brief introduction

partial abelian monoids and heaplets
partial abelian monoids and statelets
faults and zeros

statelet transformations



Linked List Reversal

list
[a. b, c]
a m > b n > c nil
1+1 m m+1 n n+1
program
Y :=nil;

while =(X =nil)do Z :=[X 4+ 1];[X+1]:=Y;Y:=X; X :=Z od

suppose X points to /



Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X 4+ 1];[X+1]:=Y;Y:=X; X :=Z od

1+1 m m+1 n n+1

store heap

X=1LY=Z=|Il—al+1—m m—=bm+1l—n n—c, n+ 1 nil




Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X 4+ 1];[X+1]:=Y;Y:=X; X :=Z od

a m » b n » nil
1+1 m m+1 n n+1
store heap
X=01Y=nil Z=?|Il—a I+1—m m—bm+1—n n—c, n+1+— nil




Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X + 1];[X+1]:=Y;Y:=X; X :=Z od

1+1 m m+1 n n+1

store heap

X=1,Y=nil, Z=m | |l—a I+1—m m—bm+1—n n—c, n+1 nil




Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X+1];[X+1]:=Y;Y:=X; X :=Z od

1+1 m m+1 n n+1

store heap

X=1,Y=nily, Z=m | |+~ a, |+1—nil, m— b m+1+—n, n—c, n+ 1 nil




Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X +1];[X+1]:=Y;Y:=X; X :=Z od

1+1 m m+1 n n+1

store heap

X=LY=1LZ=m /| I|l—a I+1—nl m—bm+1l—n n—c, n+1+ nil




Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X +1];[X+1]:=Y;Y:=X; X :=Z od

1+1 m m+1 n n+1

store heap

X=m Y=I,Z=m | |l—a I+1—nil m—=bm+1l—n n—c, n+1 nil




Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X + 1];[X+1]:=Y;Y:=X; X :=Z od

a nil b n » nil
1+1 m m+1 n n+1
store heap
X=m Y=I,Z=n|l—a l+1—nl m—bm+1—n n—c, n+ 1w nil




Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X +1];[X+1]:=Y;Y:=X; X :=Z od

| I+1 m m+1 n n+1

store heap

X=m Y=I,Z=n|l—a l+1—nl m—bm+1—I n—c, n+1+— nil




Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X +1];[X+1]:=Y;Y:=X; X :=Z od

| I+1 m m+1

heap

store
I—a, I+1w—nil, m—bm+1—1[ n+—c, n+1 nil

X=m, Y=m Z=n




Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X +1];[X+1]:=Y;Y:=X; X :=Z od

| I+1 m m+1 n n+1

store heap

X=nY=m Z=n|l—a I+1—nil m—=bm+1—1I n—c, n+ 1 nil




Linked List Reversal

Y :=nil;
while =(X =nil)do Z :=[X + 1];[X+1]:=Y;Y:=X; X :=Z od

| I+1 m m+1 n n+1

store heap

X=nY=m Z=nil | l—a I+1—nl m—bm+1l—1I n—c, n+1w nil




Linked List Reversal

Y :=nil;
while =(X =nil)do Z:=[X+1];[X+1]:=Y;Y :=X; X :=Z od

i b
| I+1 m m+1 n n+1 —‘

store heap

X=nY=m Z=nil | l—a, I+1—nil, m—bm+1—1 n—c, n+1—m




Linked List Reversal

Y :=nil;
while =(X =nil)do Z:=[X+1];[X+1]:=Y;Y =X;X:=Z od

i b [« m
| I+1 m m+1 n n+1 —‘

store
X=n,Y=n, Z=nil

heap
I—a, I+1—nil, m—bm+1l—I n—c, n+1l—m




Linked List Reversal

Y :=nil;
while =(X =nil)do Z:=[X+1];[X+1]:=Y;Y :=X; X :=Z od

i b
| I+1 m m+1 n n+1 —‘

store heap

X=nil, Y=n Z=nil | I —a, I+1—nil, m—bm+1—1I n—c, n+1l—m




Linked List Reversal

“Hoare triple”

{X points to linked list holding «}

Y :=nil;

while =(X =nil)do Z:=[X +1];[X+1]:=Y;Y:=X;X:=Z od
{Y points to linked list holding rev '}



Defining Linked Lists

intuition
predicate list « e (o,7) means that
o « is linked list in heap 7
o starting at location specified by e o in store o

definition
by recursion
list [] e = (e = nil)

list (x:xs) e=3€. ers xxe+ 1+ € xlist xs €

remarks

o separating conjunction * reads “and separately (in other heaplet)”

o with A, absence of sharing not specified!



Linked List Reversal Formalised

Hoare triple

{lista X}

Y :=nil;

while =(X =nil) do (Z := [ X+ 1;[X+1]:=Y; Y = X; X = 2)
{list (reva) Y}

invariant of while-loop
38,7. list B X «list v Y A (rev(a) = rev(B) ++7)

separating conjunction captures absence of sharing between X and Y

extended Hoare logic needed to verify this program



but let's start at the beginning. ..



o

[¢]

o

Heaplets

heap memory area as partial abelian monoid

heaplets are pieces of a heap

operations of heaplet addition/subtraction, subheaplet relation
similar to resource monoids ...

... but well known from foundations of quantum mechanics



Partial Semigroups

partial semigroup

structure (S, -, D) with
o D C S x S domain of composition of -
o - : D — S partial operation
o forall x,y,z€ S

Dxy ND(x-y)z=Dyz ADx(y-z)
Dxy AND(x-y)z=(x-y)-z=x-(y-2)

intuition
o if either side of x - (y - z) = (x - y) - z is defined then so is other side

o and in this case both sides are equal



Partial Monoids

partial monoid

structure (M, -, D, E) with
o (M,-, D) partial semigroup
o E C M such that

dec E.Dex Ne-x=x dec E.Dxe AN x-e=x
e, €EENDeey=e =6

intuition
o every element has left/right unit
o in fact exactly one

o different units can't be composed

definition similar to Mac Lane's (meta)category axioms



Partial Abelian Monoids

partial abelian semigroup
partial semigroup (S, &, D) with

Dxy=DyxA\Nx®&y=y®x

partial abelian monoid (PAM)

partial monoid + partial abelian semigroup



Examples

monoids
every (abelian) monoid (M, -, 1) is a partial (abelian) monoid with
D=Mx M and E ={1}

ordered pairs
ordered pairs over X under cartesian fusion product (a, b) - (c, d) = (a, d)
if b = ¢ form partial monoid with

D={((ab).(c.d)) | b=c} E=ldy



Examples

intervals
o let (X, <) be linear poset
o closed interval in X is ordered pair [a, b] with a < b

o closed intervals under interval fusion [a, b] - [c,d] = [a,d] if b= ¢
form partial monoid on X? with D and E like for relations

segments

o let (X, <) be a poset
o segment of X is is ordered pair (a, b) with a < b
o segments under segment fusion form partial monoid on X?



Examples

paths
o let G = (V,E) be (di)graph
o path in G is sequence ™ = (v1,...Vv,) of vertices along edges

o paths in G under path fusion (glueing ends together) form partial
monoid on G with E =V

traces
o let G = (V,E,\) be edge-labelled (di)graph with A : E — X
o trace in G is sequence T = (vi,01, ..., Vp_1,0n_1, Vs) along edges

o traces in G under trace fusion (glueing ends together) form partial
monoid on G with E =V



Examples

multisets
multisets  : X — N over X form (partial) abelian monoids under

(f+g)x ="fx+ gx and with E = {\x.0}

sets
sets with X + Y = XU Y if XNY =0 form PAM with E = {(}}

multisets are paradigmatic resources



Examples

(generalised) effect algebras

o let Hilbert space H represent some quantum system

o an effect over H, a self-adjoint operator A on H such that
0 < A < idy, represents unsharp measurement

o let £(H) be set of all effects over H
o then (£(H),®,0) with A® B=A+ B if A+ B < idy forms PAM

effect algebras have been studied for 25 years



Examples

heaplets
partial functions X — Y form PAM Sy with

MmO =nUn
D= {(7717772) S SH X SH ‘ domnl ﬁdOITHb = @}
E- {2}

where ¢ denotes empty heaplet

intuition
o heaplets are pieces of a heap
o @ (heaplet addition) extends heaps by pieces
o it underlies heap allocation/mutation commands of separation logic



Remarks

o partial algebras have been studied for almost a century
o earliest reference | know is article by Brand (1927)

o PAMs are called resource monoids in separation logic



Remarks

o mutation/deallocation require more succinct description of heap

1. heaplet subtraction operation
2. subheap relation

o subtraction allows deleting pieces from heaps if these are subheaps

we study them abstractly in PAMs



Subheap Relation

Green's preorder
defined in every PAM as x Xy < Jz. DxzAxdz=y

remark
x 2y if and only if x @ z = y (exists and) has solution in z

lemma

o =< is precongruence: x Xy ADzx=z®&x<z®y (and Dzy)

o every PAM is preordered by its Green's relation



Subheap Relation

o in the literature < = <p = <

o Green's relations R, L and H are associated congruences

Green's relations are the fundamental congruences of semigroup theory



Heaplet Subtraction

cancellation
PAM is cancellative if DxzADyzAx@z=y®Dz=x=y

lemma
in cancellative PAM, if x < y then

o x@® z =y is defined

o and has unique solution in z

subtraction
we write y © x for this solution



Heaplet Subtraction

lemma
in cancellative PAM

DxzANx@z=yox3yAz=yox
Dxy=(xdy)ox=yandx=<y=xd(yox)=y
ifx<ythen DxzAx®Pz<yszySx
Dxy=x<x®yandx<y=>yoxy

Ll e



Heaplet Subtraction

positivity
PAM is positive if Dxy Ax@&y € E=x¢cE

lemma
Green's preorders are partial orders in positive cancellative PAMs

remark
positive cancellative PAMs with E = {1} are known as generalised effect
algebras in foundations of quantum mechanics

everything so far is known from foundations of physics



Heaplet Summary

in PAM Sy of heaplets
o n1 = 1 iff 71 is subheaplet of 7,
> 72 can be obtained by adding some piece to n;
o Sy is cancellative and positive

» adding different pieces to heaplet yields different heaplets
> € has no subheaplets

o

=< is partial order

¢]

m © 12 defined whenever 7, is subheaplet of 7;

@ and & are inverses up-to definedness

[¢]

o

© needed for heap deallocation/mutation in separation logic



Statelets

o program states of separation logic are store-heap pairs

o they correspond to PAMs of cartesian products



Statelets

lemma
if X is asetand (S,®,D, E)aPAM

1. then (X x S,@’, D', E") forms PAM with

(x1,01) &' (X2, y2) = (x1, 51 © y2)
D" = {((x1,51), (x2,2)) | x1 = x2 A (y1,¥2) € D}
E'={(x,e) | xe XNe€E}

2. if S is cancellative or positive, then so is X x S

lemma
if X is a set and S a PAM then

1. (x1,51) 2 (x2,02) © x1 =x2 A y1 = y» is Green's order

2. (x1,51) 2 (x2,)2) = (x2,2) © (x1,¥2) = (X1, ¥2 © y1)
if X x S cancellative



Statelets

o heaplets have often type L — E with LC E
» L is set of locations
» E is set of expressions/values
» locations/expressions are evaluated in store
o program store is set of functions of type V — E
> V is set of program variables
o store-heaplet pairs (o, n) forms positive cancellative PAM Ss
of statelets
> substatelet relation < compares heaplets with same store

» @ and © on statelets adds/subtracts heaplets with same store
» statelets have units Es = {(0,¢) | 0 € EV} ... one per store



Faults and Zeros

o in program semantics, undefinedness is often captured in total
setting by bottom elements

o in standard semantics of separation logic, these denote program
faults due to partiality of heaplet operations

we now explain this relationship



Faults and Zeros

Zeros
o annihilator 0 of PAM S satisfies DOx and 0& x =0

o annihilators are unique whenever they exist

morphisms

o partial semigroup morphism ¢ : S5; — S, satisfies

> Dixy = Da(px)(py)
> p(x®1y) = (px) D2 (py)

o it is strong if Dy (¢ x)(¢y) = Dixy

o partial monoid morphism is partial semigroup morphism satisfying
> e€bEi=pechk

o itisstrongif pe€ B, =>ec E



Faults and Zerios

proposition
1. Every PAS (PAM with E = {1}) can be strongly embedded into an
abelian semigroup (monoid) with zero

2. Every abelian semigroup (monoid with zero) contains a PAS (PAM
with single unit) as submonoid



Faults and Zeros

example

oletS; =SU{L} for any PAM S

extend @ to @ such that x®, y = L iff (x,y) ¢ D

then L &, x =1 forany x € S|

extend < to <

then L <, xforallxe S
(51,4, ) forms an abelian semigroup (abelian monoid with unit 1 if
E={1}inS)

o remove | from abelian semigroup S|

b restrict @, to @ with D= {(x,y) € S. xS, |x®Ly# 1}

(5,4, D) is PAS (PAM with E = {1} if S, is abelian monoid with
unit 1)

vV Vv Vv Vv



Faults and Zeros

example

o construction of semigroup (monoid) from X x S requires two zeros

1. expand S to Sy, as before
2. adjoin L to the product PAS (PAM) which yields (X x S1,) 1,

o the extensions of ¢ and < follow the previous construction
o we write @, and =, at outer level
o this yields abelian semigroup

» multiple units are forgotten in construction

> (%) @1, (1,y2) = Lo iff i # yporxa - yo =
> then (Xl,J—l) @Lz (y17y2) =1

o faults propagated from heaplets to statelets
o recovery of PAM X x S from (X x S, ), straightforward
o instantiation to statelets £V x Sy is straightforward as well



o

[¢]

o

o

Statelet Dynamics

@ and © underly 3 of 5 basic commands of separation logic

> heap mutation
> heap allocation
> heap deallocation

heap lookup and store assignment are discussed as well
we define state update function acting on PAM Ss for each of them
if s € Ss is statelet then we write

» 0s = m1 S for its store
> 1s = T2 s for its heaplet

we use semi-algebraic approach in concrete model Ss



Addition /Subtraction of Single Heap Cells

domains of definition

Dg s(os,| — €) < los ¢ domn;
Dgs(os,l— €) < los € domns A e =ns (o)

heap cell addition

update function fg : E — Ss — P Ss defined (nondeterministically) by
fopes={(os,ns B {los+— eos})|los & domns}

heap cell deallocation

update function f5 : L — Ss — Ss defined by

fols=(0s,ns©{los—ns(los)}) if los € domns



Heap Mutation

heap mutation
update function f,, : L - E — Ss — Ss defined by

fnle = (fsle)o(fs1)

where fy, les = (05,1s ® {l 05 — e0s}) if |0 & domns

l[emma

fmles = (os,ns[los + eod]) if los € dommn;

where f[x < a] indicates that value of x in f has been updated to a



Store Assignment and Heap Lookup

store assignment
update function f, : V — E — Sg — Sg defined by

faxes = (0s[x < eos],ns)
heap lookup
update function f;: V — L — Ss — Ss defined by

fixls = (os[x < ns (1 0s)],ns) if eos € domns



Heap Allocation

heap allocation
update function f. : V — E — Sg — P Ss defined by

foxe=(P(£x)0 (fs )
where P f computes image of given set under f

lemma

fexes={(os[x = log|,ns ® {los— eos}) | los ¢ domns}

remark

o several cells are usually allocated in one fell-swoop

o such deterministic update functions can be obtained by refinement



Conclusion

o abstract PAM-based model of program states (statelets)
o link with algebraic fault model
o basic assignments of separation logic modelled by update functions
that act on state space
> store assignment
> heap mutation
> heap lookup
> heap allocation
> heap deallocation

next lecture: assertion algebra of separation logic



Exercises



Further Reading

Calcagno et al, Local Action and Abstract Separation Logic
Clifford, Preston, The Algebraic Theory of Semigroups

Dongol, Gomes, Struth, A Program Construction and Verification Tool for
Separation Logic

Dongol, Hayes, Struth, Convolution as a Unifying Concept

Foulis, Bennett, Effect Algebras and Unsharp Quantum Logics

Gordon, Lecture Notes on Hoare Logic

Hedlikova, Pulmannova, Generalized Difference Posets and Orthoalgebras
O'Hearn, A Primer on Separation Logic

Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures

Isabelle components:
https://wuw.isa-afp.org/entries/PSemigroupsConvolution.html


https://www.isa-afp.org/entries/PSemigroupsConvolution.html

