Introduction to Separation Logic Lectures at MGS'18

Georg Struth

on action short of strike at University of Sheffield, UK

Lecture 1: Statelets and Statelet Transformations

Plan

separation logic

- o from algebraic point of view
- o with some detours into algebra
- o and Isabelle mathematical/verification components

lectures

- 1. statelets and statelet transformations
- 2. assertion algebra
- 3. predicate transformer semantics
- 4. verification conditions

exercises depending on interest

This Lecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- brief introduction
- o partial abelian monoids and heaplets
- o partial abelian monoids and statelets
- faults and zeros
- statelet transformations

program

Y := nil;while $\neg(X = nil)$ do Z := [X + 1]; [X + 1] := Y; Y := X; X := Z od suppose X points to I

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

store	heap
X = I, Y = ?, Z = ?	$l \mapsto a, l+1 \mapsto m, m \mapsto b, m+1 \mapsto n, n \mapsto c, n+1 \mapsto nil$

store	heap
X = I, Y = nil, Z =?	$l \mapsto a, l+1 \mapsto m, m \mapsto b, m+1 \mapsto n, n \mapsto c, n+1 \mapsto nil$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

store	heap
X = I, Y = nil, Z = m	$l \mapsto a, l+1 \mapsto m, m \mapsto b, m+1 \mapsto n, n \mapsto c, n+1 \mapsto nil$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

store	heap
X = I, Y = nil, Z = m	$l \mapsto a, l+1 \mapsto nil, m \mapsto b, m+1 \mapsto n, n \mapsto c, n+1 \mapsto nil$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

store	heap
X = I, Y = I, Z = m	$l \mapsto a, l+1 \mapsto nil, m \mapsto b, m+1 \mapsto n, n \mapsto c, n+1 \mapsto nil$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

store	heap
X = m, Y = l, Z = m	$l \mapsto a, l+1 \mapsto nil, m \mapsto b, m+1 \mapsto n, n \mapsto c, n+1 \mapsto nil$

store	heap
X = m, Y = l, Z = n	$l \mapsto a, l+1 \mapsto nil, m \mapsto b, m+1 \mapsto n, n \mapsto c, n+1 \mapsto nil$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

store	heap
X = m, Y = l, Z = n	$l \mapsto a, l+1 \mapsto nil, m \mapsto b, m+1 \mapsto l, n \mapsto c, n+1 \mapsto nil$

store	heap
X = m, Y = m, Z = n	$l \mapsto a, l+1 \mapsto nil, m \mapsto b, m+1 \mapsto l, n \mapsto c, n+1 \mapsto nil$

store	heap
X = n, Y = m, Z = n	$l \mapsto a, l+1 \mapsto nil, m \mapsto b, m+1 \mapsto l, n \mapsto c, n+1 \mapsto nil$

store	heap
X = n, Y = m, Z = nil	$l \mapsto a, l+1 \mapsto nil, m \mapsto b, m+1 \mapsto l, n \mapsto c, n+1 \mapsto nil$

store	heap
X = n, Y = m, Z = nil	$I \mapsto a, I + 1 \mapsto nil, m \mapsto b, m + 1 \mapsto I, n \mapsto c, n + 1 \mapsto m$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

store	heap
X = n, Y = n, Z = nil	$l \mapsto a, l+1 \mapsto nil, m \mapsto b, m+1 \mapsto l, n \mapsto c, n+1 \mapsto m$

store	heap
X = nil, Y = n, Z = nil	$l \mapsto a, l+1 \mapsto nil, m \mapsto b, m+1 \mapsto l, n \mapsto c, n+1 \mapsto m$

"Hoare triple"

{X points to linked list holding α } Y := nil; while $\neg(X = nil)$ do Z := [X + 1]; [X + 1] := Y; Y := X; X := Z od {Y points to linked list holding rev α }

Defining Linked Lists

intuition

predicate list $\alpha \ e \ (\sigma, \eta)$ means that

- α is linked list in heap η
- $\circ\,$ starting at location specified by $e\;\sigma$ in store $\sigma\,$

definition

by recursion

 $list [] e = (e \stackrel{\cdot}{=} nil)$ $list (x : xs) e = \exists e'. e \mapsto x * e + 1 \mapsto e' * list xs e'$

remarks

• separating conjunction * reads "and separately (in other heaplet)"

• with \wedge , absence of sharing not specified!

Linked List Reversal Formalised

Hoare triple

{list αX } Y := nil;while $\neg (X = nil)$ do (Z := [X + 1]; [X + 1] := Y; Y := X; X := Z){list (*rev* α) Y}

invariant of while-loop

$$\exists \beta, \gamma$$
. list $\beta X * \text{list } \gamma Y \land (rev(\alpha) = rev(\beta) + +\gamma)$

separating conjunction captures absence of sharing between X and Y

extended Hoare logic needed to verify this program

but let's start at the beginning...

<□ > < @ > < E > < E > E のQ @

Heaplets

- o heap memory area as partial abelian monoid
- heaplets are pieces of a heap
- o operations of heaplet addition/subtraction, subheaplet relation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- similar to resource monoids . . .
- o ... but well known from foundations of quantum mechanics

Partial Semigroups

partial semigroup structure (S, \cdot, D) with $\circ D \subseteq S \times S$ domain of composition of \cdot $\circ \cdot : D \rightarrow S$ partial operation \circ for all $x, y, z \in S$

$$D \times y \wedge D(x \cdot y) z \Leftrightarrow D y z \wedge D x (y \cdot z)$$
$$D \times y \wedge D(x \cdot y) z \Rightarrow (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

intuition

- if either side of $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ is defined then so is other side
- o and in this case both sides are equal

Partial Monoids

partial monoid structure (M, \cdot, D, E) with $\circ (M, \cdot, D)$ partial semigroup $\circ E \subseteq M$ such that

 $\exists e \in E. \ D \ e \ x \land \ e \ x = x \qquad \exists e \in E. \ D \ x \ e \ \land \ x \cdot e = x \\ e_1, e_2 \in E \land \ D \ e_1 \ e_2 \Rightarrow e_1 = e_2$

intuition

- every element has left/right unit
- o in fact exactly one
- different units can't be composed

definition similar to Mac Lane's (meta)category axioms

Partial Abelian Monoids

partial abelian semigroup partial semigroup (S, \oplus, D) with

 $D \times y \Rightarrow D \times x \wedge x \oplus y = y \oplus x$

partial abelian monoid (PAM) partial monoid + partial abelian semigroup

monoids every (abelian) monoid $(M, \cdot, 1)$ is a partial (abelian) monoid with $D = M \times M$ and $E = \{1\}$

ordered pairs

ordered pairs over X under cartesian fusion product $(a, b) \cdot (c, d) = (a, d)$ if b = c form partial monoid with

 $D = \{((a, b), (c, d)) \mid b = c\}$ $E = Id_X$

intervals

- let (X, \leq) be linear poset
- closed interval in X is ordered pair [a, b] with $a \leq b$
- closed intervals under interval fusion $[a, b] \cdot [c, d] = [a, d]$ if b = c form partial monoid on X^2 with D and E like for relations

segments

- let (X, \leq) be a poset
- segment of X is is ordered pair (a, b) with $a \le b$
- segments under segment fusion form partial monoid on X^2

paths

- let G = (V, E) be (di)graph
- path in G is sequence $\pi = (v_1, \ldots, v_n)$ of vertices along edges
- paths in G under path fusion (glueing ends together) form partial monoid on G with E = V

traces

- let $G = (V, E, \lambda)$ be edge-labelled (di)graph with $\lambda : E \to \Sigma$
- trace in G is sequence $\tau = (v_1, \sigma_1, \dots, v_{n-1}, \sigma_{n-1}, v_n)$ along edges
- traces in G under trace fusion (glueing ends together) form partial monoid on G with E = V

multisets multisets $f : X \to \mathbb{N}$ over X form (partial) abelian monoids under (f + g)x = f x + g x and with $E = \{\lambda x.0\}$

sets sets with $X + Y = X \cup Y$ if $X \cap Y = \emptyset$ form PAM with $E = \{\emptyset\}$

multisets are paradigmatic resources

(generalised) effect algebras

- $\circ~$ let Hilbert space ${\cal H}$ represent some quantum system
- an effect over \mathcal{H} , a self-adjoint operator A on \mathcal{H} such that $0 \le A \le id_{\mathcal{H}}$, represents unsharp measurement
- let $\mathcal{E}(\mathcal{H})$ be set of all effects over \mathcal{H}
- then $(\mathcal{E}(\mathcal{H}), \oplus, 0)$ with $A \oplus B = A + B$ if $A + B \leq id_H$ forms PAM

effect algebras have been studied for 25 years

heaplets partial functions $X \rightarrow Y$ form PAM S_H with

$$\eta_1 \oplus \eta_2 = \eta_1 \cup \eta_2$$
$$D = \{(\eta_1, \eta_2) \in S_H \times S_H \mid \operatorname{dom} \eta_1 \cap \operatorname{dom} \eta_2 = \emptyset\}$$
$$E = \{\varepsilon\}$$

where ε denotes empty heaplet

intuition

- o heaplets are pieces of a heap
- $\circ \oplus$ (heaplet addition) extends heaps by pieces
- o it underlies heap allocation/mutation commands of separation logic

Remarks

(ロ)、(型)、(E)、(E)、 E) の(の)

- o partial algebras have been studied for almost a century
- o earliest reference I know is article by Brand (1927)
- PAMs are called resource monoids in separation logic

Remarks

o mutation/deallocation require more succinct description of heap

- 1. heaplet subtraction operation
- 2. subheap relation
- o subtraction allows deleting pieces from heaps if these are subheaps

we study them abstractly in PAMs

Subheap Relation

Green's preorder defined in every PAM as $x \preceq y \Leftrightarrow \exists z. \ D \times z \land x \oplus z = y$

remark $x \leq y$ if and only if $x \oplus z = y$ (exists and) has solution in z

lemma

• \leq is precongruence: $x \leq y \land D z x \Rightarrow z \oplus x \leq z \oplus y$ (and D z y)

o every PAM is preordered by its Green's relation

Subheap Relation

- in the literature $\leq = \leq_R = \leq_L$
- Green's relations R, L and H are associated congruences

Green's relations are the fundamental congruences of semigroup theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Heaplet Subtraction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

cancellation PAM is cancellative if $D \times z \wedge D y z \wedge x \oplus z = y \oplus z \Rightarrow x = y$

lemma

in cancellative PAM, if $x \leq y$ then

- $x \oplus z = y$ is defined
- $\circ\,$ and has unique solution in z

subtraction

we write $y \ominus x$ for this solution

Heaplet Subtraction

lemma

in cancellative PAM

- 1. $D \times z \wedge x \oplus z = y \Leftrightarrow x \preceq y \wedge z = y \ominus x$
- 2. $D \times y \Rightarrow (x \oplus y) \ominus x = y$ and $x \preceq y \Rightarrow x \oplus (y \ominus x) = y$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 3. if $x \leq y$ then $D \times z \wedge x \oplus z \leq y \Leftrightarrow z \leq y \ominus x$
- 4. $D \times y \Rightarrow x \preceq x \oplus y$ and $x \preceq y \Rightarrow y \ominus x \preceq y$

Heaplet Subtraction

positivity PAM is positive if $D \times y \wedge x \oplus y \in E \Rightarrow x \in E$

lemma

Green's preorders are partial orders in positive cancellative PAMs

remark

positive cancellative PAMs with $E = \{1\}$ are known as generalised effect algebras in foundations of quantum mechanics

everything so far is known from foundations of physics

Heaplet Summary

in PAM S_H of heaplets

- $\circ \ \eta_1 \preceq \eta_2 \ \text{iff} \ \eta_1 \ \text{is subheaplet of} \ \eta_2$
 - $_{\triangleright}~\eta_{2}$ can be obtained by adding some piece to η_{1}
- $\circ~S_{H}$ is cancellative and positive
 - adding different pieces to heaplet yields different heaplets
 - $\triangleright \ \epsilon$ has no subheaplets
- $\circ \preceq$ is partial order
- $\circ \ \eta_1 \ominus \eta_2$ defined whenever η_2 is subheaplet of η_1
- $\circ~\oplus$ and \ominus are inverses up-to definedness
- $\circ \ \ominus$ needed for heap deallocation/mutation in separation logic

Statelets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- o program states of separation logic are store-heap pairs
- o they correspond to PAMs of cartesian products

Statelets

lemma if X is a set and (S, \oplus, D, E) a PAM 1. then $(X \times S, \oplus', D', E')$ forms PAM with $(x_1, y_1) \oplus' (x_2, y_2) = (x_1, y_1 \oplus y_2)$ $D' = \{((x_1, y_1), (x_2, y_2)) \mid x_1 = x_2 \land (y_1, y_2) \in D\}$ $E' = \{(x, e) \mid x \in X \land e \in E\}$

2. if S is cancellative or positive, then so is $X \times S$

lemma if X is a set and S a PAM then

- 1. $(x_1, y_1) \preceq (x_2, y_2) \Leftrightarrow x_1 = x_2 \land y_1 \preceq y_2$ is Green's order
- 2. $(x_1, y_1) \preceq (x_2, y_2) \Rightarrow (x_2, y_2) \ominus (x_1, y_2) = (x_1, y_2 \ominus y_1)$ if $X \times S$ cancellative

Statelets

- heaplets have often type $L \rightarrow E$ with $L \subseteq E$
 - L is set of locations
 - E is set of expressions/values
 - locations/expressions are evaluated in store
- $\circ\,$ program store is set of functions of type $V \to E$
 - V is set of program variables
- $\circ\,$ store-heaplet pairs (σ,η) forms positive cancellative PAM S_S of statelets
 - \triangleright substatelet relation \leq compares heaplets with same store
 - $_{\triangleright}~\oplus$ and \ominus on statelets adds/subtracts heaplets with same store

▶ statelets have units $E_S = \{(\sigma, \varepsilon) \mid \sigma \in E^V\}$... one per store

- in program semantics, undefinedness is often captured in total setting by bottom elements
- in standard semantics of separation logic, these denote program faults due to partiality of heaplet operations

we now explain this relationship

zeros

- annihilator 0 of PAM S satisfies D 0 x and $0 \oplus x = 0$
- o annihilators are unique whenever they exist

morphisms

- \circ partial semigroup morphism $arphi:S_1 o S_2$ satisfies
 - $\triangleright D_1 x y \Rightarrow D_2 (\varphi x) (\varphi y)$
 - $\triangleright \varphi(x \oplus_1 y) = (\varphi x) \oplus_2 (\varphi y)$
- it is strong if $D_2(\varphi x)(\varphi y) \Rightarrow D_1 x y$
- partial monoid morphism is partial semigroup morphism satisfying
 e ∈ *E*₁ ⇒ φ *e* ∈ *E*₂

• it is strong if $\varphi e \in E_2 \Rightarrow e \in E_1$

proposition

- 1. Every PAS (PAM with $E = \{1\}$) can be strongly embedded into an abelian semigroup (monoid) with zero
- 2. Every abelian semigroup (monoid with zero) contains a PAS (PAM with single unit) as submonoid

example

• let $S_{\perp} = S \cup \{\perp\}$ for any PAM S

- ▶ extend \oplus to \oplus_{\perp} such that $x \oplus_{\perp} y = \perp$ iff $(x, y) \notin D$
- $\triangleright \ \text{ then } \bot \oplus_{\bot} x = \bot \text{ for any } x \in S_{\bot}$
- \triangleright extend \preceq to \preceq_{\perp}
- ▶ then $\bot \preceq_{\bot} x$ for all $x \in S$

 $(S_{\perp}, \oplus_{\perp})$ forms an abelian semigroup (abelian monoid with unit 1 if $E = \{1\}$ in S)

• remove \perp from abelian semigroup S_{\perp}

▶ restrict \oplus_{\perp} to \oplus with $D = \{(x, y) \in S_{\perp} \times S_{\perp} \mid x \oplus_{\perp} y \neq \bot\}$ (S, \oplus, D) is PAS (PAM with $E = \{1\}$ if S_{\perp} is abelian monoid with unit 1)

example

- construction of semigroup (monoid) from $X \times S$ requires two zeros
 - 1. expand S to S_{\perp_1} as before
 - 2. adjoin \perp_2 to the product PAS (PAM) which yields $(X \times S_{\perp_1})_{\perp_2}$
- $\,\circ\,$ the extensions of \oplus and $\preceq\,$ follow the previous construction
- $\circ\,$ we write \oplus_{\perp_2} and \preceq_{\perp_2} at outer level
- this yields abelian semigroup
 - multiple units are forgotten in construction
 - ▷ $(x_1, x_2) \oplus_{\perp_2} (y_1, y_2) = \bot_2$ iff $x_1 \neq y_1$ or $x_2 \cdot y_2 = \bot_1$
 - ▶ then $(x_1, \bot_1) \oplus_{\bot_2} (y_1, y_2) = \bot_2$
- faults propagated from heaplets to statelets
- recovery of PAM $X \times S$ from $(X \times S_{\perp_1})_{\perp_2}$ straightforward
- instantiation to statelets $E^{V} \times S_{H}$ is straightforward as well

Statelet Dynamics

 $\circ~\oplus$ and \ominus underly 3 of 5 basic commands of separation logic

- heap mutation
- heap allocation
- heap deallocation
- o heap lookup and store assignment are discussed as well
- \circ we define state update function acting on PAM S_S for each of them

- if $s \in S_S$ is statelet then we write
 - $\flat \ \sigma_{s} = \pi_{1} \ s \ \text{for its store}$
 - $\triangleright \ \eta_{s} = \pi_{2} \ s \text{ for its heaplet}$
- we use semi-algebraic approach in concrete model S_S

Addition/Subtraction of Single Heap Cells

domains of definition

 $D_{\oplus} s (\sigma_s, l \mapsto e) \Leftrightarrow l \sigma_s \notin dom \eta_s$ $D_{\ominus} s (\sigma_s, l \mapsto e) \Leftrightarrow l \sigma_s \in dom \eta_s \land e = \eta_s (l \sigma_s)$

heap cell addition update function $f_{\oplus}: E \to S_S \to \mathcal{P}S_S$ defined (nondeterministically) by

 $f_{\oplus} e s = \{ (\sigma_s, \eta_s \oplus \{ I \sigma_s \mapsto e \sigma_s \}) \mid I \sigma_s \notin dom \eta_s \}$

heap cell deallocation update function $f_{\ominus}: L \rightarrow S_S \rightarrow S_S$ defined by

 $f_{\ominus} \, I \, s = (\sigma_s, \eta_s \ominus \{ I \, \sigma_s \mapsto \eta_s \, (I \, \sigma_s) \}) \qquad \text{if } I \, \sigma_s \in dom \, \eta_s$

Heap Mutation

heap mutation

update function $f_m: L \to E \to S_S \to S_S$ defined by

$$f_m \, l \, e = (\hat{f}_\oplus \, l \, e) \circ (f_\ominus \, l)$$

where $\hat{f}_{\oplus} \mid e s = (\sigma_s, \eta_s \oplus \{ \mid \sigma_s \to e \sigma_s \})$ if $\mid \sigma_s \notin dom \eta_s$

lemma

$f_m \, l \, e \, s = (\sigma_s, \eta_s [l \, \sigma_s \leftarrow e \, \sigma_s]) \qquad \text{if } l \, \sigma_s \in dom \, \eta_s$

where $f[x \leftarrow a]$ indicates that value of x in f has been updated to a

Store Assignment and Heap Lookup

store assignment update function $f_a: V \rightarrow E \rightarrow S_S \rightarrow S_S$ defined by

 $f_{a} x e s = (\sigma_{s} [x \leftarrow e \sigma_{s}], \eta_{s})$

heap lookup

update function $f_l: V \to L \to S_S \to S_S$ defined by

 $f_{l} \times I s = (\sigma_{s}[x \leftarrow \eta_{s} (I \sigma_{s})], \eta_{s}) \quad \text{if } e \sigma_{s} \in dom \eta_{s}$

Heap Allocation

heap allocation update function $f_c: V \to E \to S_S \to \mathcal{P} S_S$ defined by

 $f_{c} \times e = (\mathcal{P}(f_{a} \times)) \circ (f_{\oplus} e)$

where $\mathcal{P} f$ computes image of given set under f

lemma

 $f_c \, x \, e \, s = \{ (\sigma_s[x \to I \, \sigma_s], \eta_s \oplus \{ I \, \sigma_s \mapsto e \, \sigma_s \}) \mid I \, \sigma_s \notin dom \, \eta_s \}$

remark

- o several cells are usually allocated in one fell-swoop
- o such deterministic update functions can be obtained by refinement

Conclusion

- abstract PAM-based model of program states (statelets)
- link with algebraic fault model
- basic assignments of separation logic modelled by update functions that act on state space
 - store assignment
 - heap mutation
 - heap lookup
 - heap allocation
 - heap deallocation

next lecture: assertion algebra of separation logic

?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Further Reading

- Calcagno et al, Local Action and Abstract Separation Logic
- o Clifford, Preston, The Algebraic Theory of Semigroups
- Dongol, Gomes, Struth, A Program Construction and Verification Tool for Separation Logic
- o Dongol, Hayes, Struth, Convolution as a Unifying Concept
- Foulis, Bennett, Effect Algebras and Unsharp Quantum Logics
- o Gordon, Lecture Notes on Hoare Logic
- Hedlíková, Pulmannová, Generalized Difference Posets and Orthoalgebras
- o O'Hearn, A Primer on Separation Logic
- Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures

 Isabelle components: https://www.isa-afp.org/entries/PSemigroupsConvolution.html