Introduction to Separation Logic

Lectures at MGS’18

Georg Struth

on action short of strike at University of Sheffield, UK

Lecture 1: Statelets and Statelet Transformations
Plan

separation logic

- from algebraic point of view
- with some detours into algebra
- and Isabelle mathematical/verification components

lectures

1. statelets and statelet transformations
2. assertion algebra
3. predicate transformer semantics
4. verification conditions

exercises

depending on interest
This Lecture

- brief introduction
- partial abelian monoids and heaplets
- partial abelian monoids and statelets
- faults and zeros
- statelet transformations
Linked List Reversal

list

\[[a, b, c] \]

program

\begin{align*}
Y &:= \text{nil}; \\
\text{while } \neg (X = \text{nil}) \text{ do } Z &:= [X + 1]; [X + 1] := Y; Y := X; X := Z \text{ od}
\end{align*}

suppose \(X \) points to \(l \)
Y := nil;
while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y; Y := X; X := Z od
Y := nil;
while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y; Y := X; X := Z od
Linked List Reversal

\[Y := \text{nil}; \]
\[\text{while } \neg(X = \text{nil}) \text{ do } Z := [X + 1]; [X + 1] := Y; Y := X; X := Z \text{ od} \]

\begin{tabular}{|c|c|}
\hline
\textbf{store} & \textbf{heap} \\
\hline
\(X = l, \ Y = \text{nil}, \ Z = m \) & \(l \mapsto a, \ l + 1 \mapsto m, \ m \mapsto b, \ m + 1 \mapsto n, \ n \mapsto c, \ n + 1 \mapsto \text{nil} \) \\
\hline
\end{tabular}
Y := nil;
while \(\neg (X = \text{nil}) \) do
 Z := \([X + 1]\); \([X + 1] := Y\); \(Y := X\); \(X := Z\) od
Linked List Reversal

\[Y := \text{nil}; \]
\[\text{while } \neg (X = \text{nil}) \text{ do } Z := [X + 1]; [X + 1] := Y; Y := X; X := Z \od \]

\begin{tabular}{|c|c|}
 \hline
 \textbf{store} & \textbf{heap} \\
 \hline
 \(X = l, \ Y = l, \ Z = m\) & \(l \mapsto a, \ l + 1 \mapsto \text{nil}, \ m \mapsto b, \ m + 1 \mapsto n, \ n \mapsto c, \ n + 1 \mapsto \text{nil}\) \\
 \hline
\end{tabular}
Linked List Reversal

\[Y := \text{nil}; \]
\[\text{while } \neg (X = \text{nil}) \text{ do } Z := [X + 1]; [X + 1] := Y; Y := X; X := Z \text{ od} \]
Linked List Reversal

\[Y := \text{nil}; \]
\[\text{while } \neg (X = \text{nil}) \text{ do } Z := [X + 1]; [X + 1] := Y; Y := X; X := Z \text{ od} \]

\begin{tabular}{|c|c|}
\hline
\textbf{store} & \textbf{heap} \\
\hline
\(X = m, \ Y = l, \ Z = n\) & \(l \mapsto a, \ l + 1 \mapsto \text{nil}, \ m \mapsto b, \ m + 1 \mapsto n, \ n \mapsto c, \ n + 1 \mapsto \text{nil}\) \\
\hline
\end{tabular}
Linked List Reversal

\[Y := \text{nil}; \]

while \(\neg (X = \text{nil}) \) do
\[Z := [X + 1]; [X + 1] := Y; Y := X; X := Z \]
\od

\begin{tabular}{|c|c|}
\hline
store & heap \\
\hline
\(X = m, \ Y = l, \ Z = n \) & \(l \mapsto a, \ l + 1 \mapsto \text{nil}, \ m \mapsto b, \ m + 1 \mapsto l, \ n \mapsto c, \ n + 1 \mapsto \text{nil} \) \\
\hline
\end{tabular}
Y := nil;
while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y; Y := X; X := Z od
Y := nil;
while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y; Y := X; X := Z od
Linked List Reversal

\[Y := \text{nil}; \]
\[\text{while } \neg (X = \text{nil}) \text{ do } Z := [X + 1]; [X + 1] := Y; Y := X; X := Z \od \]

<table>
<thead>
<tr>
<th>store</th>
<th>heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X = n, \ Y = m, \ Z = \text{nil})</td>
<td>(l \mapsto a, \ l + 1 \mapsto \text{nil}, \ m \mapsto b, \ m + 1 \mapsto l, \ n \mapsto c, \ n + 1 \mapsto \text{nil})</td>
</tr>
</tbody>
</table>
Linked List Reversal

Y := nil;
while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y; Y := X; X := Z od

<table>
<thead>
<tr>
<th>store</th>
<th>heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = n$, $Y = m$, $Z = nil$</td>
<td>$l \mapsto a$, $l + 1 \mapsto \text{nil}$, $m \mapsto b$, $m + 1 \mapsto l$, $n \mapsto c$, $n + 1 \mapsto m$</td>
</tr>
</tbody>
</table>
Y := nil;
while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y; Y := X; X := Z od

<table>
<thead>
<tr>
<th>store</th>
<th>heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = n, Y = n, Z = nil</td>
<td>l → a, l + 1 → nil, m → b, m + 1 → l, n → c, n + 1 → m</td>
</tr>
</tbody>
</table>
Linked List Reversal

\[
Y := \text{nil}; \\
\text{while } \neg (X = \text{nil}) \text{ do } Z := [X + 1]; [X + 1] := Y; Y := X; X := Z \text{ od}
\]
Linked List Reversal

“Hoare triple”

\[
\begin{align*}
\{ & X \text{ points to linked list holding } \alpha \} \\
Y & := \text{nil;} \\
\text{while } \neg (X = \text{nil}) \text{ do } Z & := [X + 1]; [X + 1] := Y; Y := X; X := Z \text{ od} \\
\{ & Y \text{ points to linked list holding } \text{rev } \alpha \}
\end{align*}
\]
Defining Linked Lists

intuition
predicate list α e (σ, η) means that
 ○ α is linked list in heap η
 ○ starting at location specified by e σ in store σ

definition
by recursion

list [] e = (e \equiv nil)
list (x : xs) e = \exists e'. e \mapsto x \ast e + 1 \mapsto e' \ast list xs e'

remarks
 ○ separating conjunction \ast reads “and separately (in other heaplet)”
 ○ with \&, absence of sharing not specified!
Linked List Reversal Formalised

Hoare triple

\{\text{list } \alpha \ X\}\nY := \text{nil};\nwhile \neg (X = \text{nil}) \text{ do } (Z := [X + 1]; [X + 1] := Y; Y := X; X := Z)\n\{\text{list } (\text{rev } \alpha) \ Y\}\n
invariant of while-loop

\exists \beta, \gamma. \text{list } \beta \ X * \text{list } \gamma \ Y \land (\text{rev}(\alpha) = \text{rev}(\beta) ++ \gamma)\n
separating conjunction captures absence of sharing between \textbf{X} and \textbf{Y}\n
extended Hoare logic needed to verify this program
but let's start at the beginning...
Heaplets

- heap memory area as partial abelian monoid
- **heaplets** are pieces of a heap
- operations of heaplet addition/subtraction, subheaplet relation
- similar to resource monoids . . .
- . . . but well known from foundations of quantum mechanics
Partial Semigroups

partial semigroup
structure \((S, \cdot, D)\) with

- \(D \subseteq S \times S\) domain of composition of \(\cdot\)
- \(\cdot : D \to S\) partial operation
- for all \(x, y, z \in S\)

\[
D x y \land D (x \cdot y) z \iff D y z \land D x (y \cdot z)
\]

\[
D x y \land D (x \cdot y) z \implies (x \cdot y) \cdot z = x \cdot (y \cdot z)
\]

intuition

- if either side of \(x \cdot (y \cdot z) = (x \cdot y) \cdot z\) is defined then so is other side
- and in this case both sides are equal
Partial Monoids

partial monoid
structure \((M, \cdot, D, E)\) with
- \((M, \cdot, D)\) partial semigroup
- \(E \subseteq M\) such that

\[
\begin{align*}
\exists e \in E. \quad & D e x \land e \cdot x = x \\
\exists e \in E. \quad & D x e \land x \cdot e = x \\
& e_1, e_2 \in E \land D e_1 e_2 \Rightarrow e_1 = e_2
\end{align*}
\]

intuition
- every element has left/right unit
- in fact exactly one
- different units can’t be composed

definition similar to Mac Lane’s (meta)category axioms
Partial Abelian Monoids

partial abelian semigroup
partial semigroup \((S, \oplus, D)\) with

\[D \times y \Rightarrow D \times x \land x \oplus y = y \oplus x \]

partial abelian monoid (PAM)
partial monoid + partial abelian semigroup
Examples

monoids

every (abelian) monoid \((M, \cdot, 1)\) is a partial (abelian) monoid with
\(D = M \times M\) and \(E = \{1\}\)

ordered pairs

ordered pairs over \(X\) under cartesian fusion product
\((a, b) \cdot (c, d) = (a, d)\) if \(b = c\) form partial monoid with

\[
D = \{((a, b), (c, d)) \mid b = c\} \quad E = ld_X
\]
Examples

intervals

- let \((X, \leq)\) be linear poset
- closed interval in \(X\) is ordered pair \([a, b]\) with \(a \leq b\)
- closed intervals under interval fusion \([a, b] \cdot [c, d] = [a, d]\) if \(b = c\)
 form partial monoid on \(X^2\) with \(D\) and \(E\) like for relations

segments

- let \((X, \leq)\) be a poset
- segment of \(X\) is ordered pair \((a, b)\) with \(a \leq b\)
- segments under segment fusion form partial monoid on \(X^2\)
Examples

paths

- let $G = (V, E)$ be (di)graph
- path in G is sequence $\pi = (v_1, \ldots, v_n)$ of vertices along edges
- paths in G under path fusion (glueing ends together) form partial monoid on G with $E = V$

traces

- let $G = (V, E, \lambda)$ be edge-labelled (di)graph with $\lambda : E \to \Sigma$
- trace in G is sequence $\tau = (v_1, \sigma_1, \ldots, v_{n-1}, \sigma_{n-1}, v_n)$ along edges
- traces in G under trace fusion (glueing ends together) form partial monoid on G with $E = V$
Examples

multisets
multisets $f : X \rightarrow \mathbb{N}$ over X form (partial) abelian monoids under $(f + g)x = fx + gx$ and with $E = \{\lambda x.0\}$

sets
sets with $X + Y = X \cup Y$ if $X \cap Y = \emptyset$ form PAM with $E = \{\emptyset\}$

multisets are paradigmatic resources
Examples

(generalised) effect algebras

- let Hilbert space \mathcal{H} represent some quantum system
- an effect over \mathcal{H}, a self-adjoint operator A on \mathcal{H} such that $0 \leq A \leq \text{id}_{\mathcal{H}}$, represents unsharp measurement
- let $\mathcal{E}(\mathcal{H})$ be set of all effects over \mathcal{H}
- then $(\mathcal{E}(\mathcal{H}), \oplus, 0)$ with $A \oplus B = A + B$ if $A + B \leq \text{id}_{\mathcal{H}}$ forms PAM

effect algebras have been studied for 25 years
Examples

heaplets

partial functions $X \to Y$ form PAM S_H with

$$\eta_1 \oplus \eta_2 = \eta_1 \cup \eta_2$$

$$D = \{(\eta_1, \eta_2) \in S_H \times S_H \mid \text{dom } \eta_1 \cap \text{dom } \eta_2 = \emptyset\}$$

$$E = \{\varepsilon\}$$

where ε denotes empty heaplet

intuition

- heaplets are pieces of a heap
- \oplus (heaplet addition) extends heaps by pieces
- it underlies heap allocation/mutation commands of separation logic
Remarks

- partial algebras have been studied for almost a century
- earliest reference I know is article by Brand (1927)
- PAMs are called resource monoids in separation logic
Remarks

- mutation/deallocation require more succinct description of heap
 1. heaplet subtraction operation
 2. subheap relation

- subtraction allows deleting pieces from heaps if these are subheaps

we study them abstractly in PAMs
Subheap Relation

Green’s preorder
defined in every PAM as \(x \preceq y \iff \exists z. \ D x z \land x \oplus z = y \)

remark
\(x \preceq y \) if and only if \(x \oplus z = y \) (exists and) has solution in \(z \)

lemma

○ \(\preceq \) is precongruence: \(x \preceq y \land D z x \Rightarrow z \oplus x \preceq z \oplus y \) (and \(D z y \))
○ every PAM is preordered by its Green’s relation
Subheap Relation

- In the literature $\leq = \leq_R = \leq_L$
- Green’s relations R, L and H are associated congruences

Green’s relations are the fundamental congruences of semigroup theory
Heaplet Subtraction

cancellation
PAM is cancellative if \(D x z \land D y z \land x \oplus z = y \oplus z \Rightarrow x = y \)

lemma
in cancellative PAM, if \(x \preceq y \) then
- \(x \oplus z = y \) is defined
- and has unique solution in \(z \)

subtraction
we write \(y \ominus x \) for this solution
Heaplet Subtraction

lemma in cancellative PAM

1. $D x z \land x \ominus z = y \iff x \preceq y \land z = y \ominus x$
2. $D x y \Rightarrow (x \ominus y) \ominus x = y$ and $x \preceq y \Rightarrow x \ominus (y \ominus x) = y$
3. if $x \preceq y$ then $D x z \land x \ominus z \preceq y \iff z \preceq y \ominus x$
4. $D x y \Rightarrow x \preceq x \ominus y$ and $x \preceq y \Rightarrow y \ominus x \preceq y$
Heaplet Subtraction

positivity
PAM is positive if $D \times y \land x \oplus y \in E \Rightarrow x \in E$

lemma
Green’s preorders are partial orders in positive cancellative PAMs

remark
positive cancellative PAMs with $E = \{1\}$ are known as generalised effect algebras in foundations of quantum mechanics

everything so far is known from foundations of physics
Heaplet Summary

in PAM S_H of heaplets

- $\eta_1 \preceq \eta_2$ iff η_1 is subheaplet of η_2
 - η_2 can be obtained by adding some piece to η_1
- S_H is cancellative and positive
 - adding different pieces to heaplet yields different heaplets
 - ε has no subheaplets
- \preceq is partial order
- $\eta_1 \ominus \eta_2$ defined whenever η_2 is subheaplet of η_1
- \ominus and \ominus are inverses up-to definedness
- \ominus needed for heap deallocation/mutation in separation logic
Statelets

- program states of separation logic are store-heap pairs
- they correspond to PAMs of cartesian products
lemma
if X is a set and (S, \oplus, D, E) a PAM

1. then $(X \times S, \oplus', D', E')$ forms PAM with

 $$(x_1, y_1) \oplus' (x_2, y_2) = (x_1, y_1 \oplus y_2)$$

 $D' = \{((x_1, y_1), (x_2, y_2)) \mid x_1 = x_2 \land (y_1, y_2) \in D\}$

 $E' = \{(x, e) \mid x \in X \land e \in E\}$

2. if S is cancellative or positive, then so is $X \times S$

lemma
if X is a set and S a PAM then

1. $(x_1, y_1) \preceq (x_2, y_2) \iff x_1 = x_2 \land y_1 \preceq y_2$ is Green’s order

2. $(x_1, y_1) \preceq (x_2, y_2) \Rightarrow (x_2, y_2) \oplus (x_1, y_2) = (x_1, y_2 \ominus y_1)$

 if $X \times S$ cancellative
Statelets

- Heaplets have often type $L \rightarrow E$ with $L \subseteq E$
 - L is set of locations
 - E is set of expressions/values
 - Locations/expressions are evaluated in store
- Program store is set of functions of type $V \rightarrow E$
 - V is set of program variables
- Store-heaplet pairs (σ, η) forms positive cancellative PAM S_S of statelets
 - Substatelet relation \preceq compares heaplets with same store
 - \oplus and \ominus on statelets adds/subtracts heaplets with same store
 - Statelets have units $E_S = \{(\sigma, \varepsilon) \mid \sigma \in E^V\}$ one per store
Faults and Zeros

- in program semantics, undefinedness is often captured in total setting by bottom elements
- in standard semantics of separation logic, these denote program faults due to partiality of heaplet operations

we now explain this relationship
Faults and Zeros

zeros
- annihilator 0 of PAM S satisfies $D \cdot 0 \times x$ and $0 \ominus x = 0$
- annihilators are unique whenever they exist

morphisms
- partial semigroup morphism $\varphi : S_1 \rightarrow S_2$ satisfies
 - $D_1 \times y \Rightarrow D_2 (\varphi x) (\varphi y)$
 - $\varphi (x \oplus_1 y) = (\varphi x) \oplus_2 (\varphi y)$
- it is strong if $D_2 (\varphi x) (\varphi y) \Rightarrow D_1 \times y$
- partial monoid morphism is partial semigroup morphism satisfying
 - $e \in E_1 \Rightarrow \varphi e \in E_2$
- it is strong if $\varphi e \in E_2 \Rightarrow e \in E_1$
Faults and Zerios

proposition

1. Every PAS (PAM with $E = \{1\}$) can be strongly embedded into an abelian semigroup (monoid) with zero
2. Every abelian semigroup (monoid with zero) contains a PAS (PAM with single unit) as submonoid
Faults and Zeros

element

- let $S_{\perp} = S \cup \{\perp\}$ for any PAM S
 - extend \oplus to \oplus_{\perp} such that $x \oplus_{\perp} y = \perp$ iff $(x, y) \notin D$
 - then $\perp \oplus_{\perp} x = \perp$ for any $x \in S_{\perp}$
 - extend \leq to \leq_{\perp}
 - then $\perp \leq_{\perp} x$ for all $x \in S$

$(S_{\perp}, \oplus_{\perp})$ forms an abelian semigroup (abelian monoid with unit 1 if $E = \{1\}$ in S)

- remove \perp from abelian semigroup S_{\perp}
 - restrict \oplus_{\perp} to \oplus with $D = \{(x, y) \in S_{\perp} \times S_{\perp} | x \oplus_{\perp} y \neq \perp\}$

(S, \oplus, D) is PAS (PAM with $E = \{1\}$ if S_{\perp} is abelian monoid with unit 1)
Faults and Zeros

example

- construction of semigroup (monoid) from $X \times S$ requires two zeros
 1. expand S to $S_{\perp 1}$ as before
 2. adjoin \perp_2 to the product PAS (PAM) which yields $(X \times S_{\perp 1})_{\perp 2}$

- the extensions of \oplus and \preceq follow the previous construction

- we write $\oplus_{\perp 2}$ and $\preceq_{\perp 2}$ at outer level

- this yields abelian semigroup
 - multiple units are forgotten in construction
 - $(x_1, x_2) \oplus_{\perp 2} (y_1, y_2) = \perp_2$ iff $x_1 \neq y_1$ or $x_2 \cdot y_2 = \perp_1$
 - then $(x_1, \perp_1) \oplus_{\perp 2} (y_1, y_2) = \perp_2$

- faults propagated from heaplets to statelets

- recovery of PAM $X \times S$ from $(X \times S_{\perp 1})_{\perp 2}$ straightforward

- instantiation to statelets $E^V \times S_H$ is straightforward as well
Statelet Dynamics

- ◦ and ◌ underly 3 of 5 basic commands of separation logic
 - ▶ heap mutation
 - ▶ heap allocation
 - ▶ heap deallocation
- ◦ heap lookup and store assignment are discussed as well
- ◦ we define state update function acting on PAM \(S_s \) for each of them
- ◦ if \(s \in S_s \) is statelet then we write
 - ▶ \(\sigma_s = \pi_1 s \) for its store
 - ▶ \(\eta_s = \pi_2 s \) for its heaplet
- ◦ we use semi-algebraic approach in concrete model \(S_s \)
Addition/Subtraction of Single Heap Cells

domains of definition

\[D_\oplus s (\sigma_s, l \mapsto e) \iff l \sigma_s \notin \text{dom} \eta_s \]
\[D_\ominus s (\sigma_s, l \mapsto e) \iff l \sigma_s \in \text{dom} \eta_s \land e = \eta_s (l \sigma_s) \]

heap cell addition

update function \(f_\oplus : E \to S_S \to \mathcal{P} S_S \) defined (nondeterministically) by

\[f_\oplus e s = \left\{ (\sigma_s, \eta_s \oplus \{ l \sigma_s \mapsto e \sigma_s \}) \mid l \sigma_s \notin \text{dom} \eta_s \right\} \]

heap cell deallocation

update function \(f_\ominus : L \to S_S \to S_S \) defined by

\[f_\ominus l s = (\sigma_s, \eta_s \ominus \{ l \sigma_s \mapsto \eta_s (l \sigma_s) \}) \quad \text{if} \ l \sigma_s \in \text{dom} \eta_s \]
Heap Mutation

heap mutation

update function $f_m : L \rightarrow E \rightarrow S_S \rightarrow S_S$ defined by

$$f_m l e = (\hat{f} \oplus l e) \circ (f \ominus l)$$

where $\hat{f} \oplus l e s = (\sigma_s, \eta_s \oplus \{ l \sigma_s \rightarrow e \sigma_s \})$ if $l \sigma_s \not\in \text{dom} \eta_s$

lemma

$$f_m l e s = (\sigma_s, \eta_s[l \sigma_s \leftarrow e \sigma_s]) \quad \text{if} \: l \sigma_s \in \text{dom} \eta_s$$

where $f[x \leftarrow a]$ indicates that value of x in f has been updated to a
Store Assignment and Heap Lookup

store assignment
update function $f_a : V \rightarrow E \rightarrow S_S \rightarrow S_S$ defined by

$$f_a x e s = (\sigma_s[x \leftarrow e \sigma_s], \eta_s)$$

heap lookup
update function $f_l : V \rightarrow L \rightarrow S_S \rightarrow S_S$ defined by

$$f_l x l s = (\sigma_s[x \leftarrow \eta_s (l \sigma_s)], \eta_s) \quad \text{if } e \sigma_s \in dom \eta_s$$
Heap Allocation

heap allocation
update function $f_c : V \rightarrow E \rightarrow S_S \rightarrow \mathcal{P} S_S$ defined by

$$f_c \times e = (\mathcal{P} (f_a x)) \circ (f \oplus e)$$

where $\mathcal{P} f$ computes image of given set under f

lemma

$$f_c \times e s = \{ (\sigma_s[x \rightarrow l \sigma_s], \eta_s \oplus \{ l \sigma_s \mapsto e \sigma_s \}) \mid l \sigma_s \notin \text{dom} \eta_s \}$$

remark

- several cells are usually allocated in one fell-swoop
- such deterministic update functions can be obtained by refinement
Conclusion

- abstract PAM-based model of program states (statelets)
- link with algebraic fault model
- basic assignments of separation logic modelled by update functions that act on state space
 - store assignment
 - heap mutation
 - heap lookup
 - heap allocation
 - heap deallocation

next lecture: assertion algebra of separation logic
Exercises
Further Reading

- Calcagno et al, *Local Action and Abstract Separation Logic*
- Clifford, Preston, *The Algebraic Theory of Semigroups*
- Dongol, Gomes, Struth, *A Program Construction and Verification Tool for Separation Logic*
- Dongol, Hayes, Struth, *Convolution as a Unifying Concept*
- Foulis, Bennett, *Effect Algebras and Unsharp Quantum Logics*
- Gordon, *Lecture Notes on Hoare Logic*
- Hedlíková, Pulmannová, *Generalized Difference Posets and Orthoalgebras*
- O’Hearn, *A Primer on Separation Logic*
- Reynolds, *Separation Logic: A Logic for Shared Mutable Data Structures*
- Isabelle components: https://www.isa-afp.org/entries/PSemigroupsConvolution.html