
Introduction to Separation Logic
Lectures at MGS’18

Georg Struth

on action short of strike at University of Sheffield, UK

Lecture 1: Statelets and Statelet Transformations

Plan

separation logic

◦ from algebraic point of view

◦ with some detours into algebra

◦ and Isabelle mathematical/verification components

lectures

1. statelets and statelet transformations

2. assertion algebra

3. predicate transformer semantics

4. verification conditions

exercises
depending on interest

This Lecture

◦ brief introduction

◦ partial abelian monoids and heaplets

◦ partial abelian monoids and statelets

◦ faults and zeros

◦ statelet transformations

Linked List Reversal

list

[a, b, c]

program

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

suppose X points to l

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = l , Y =?, Z =? l 7→ a, l + 1 7→ m, m 7→ b,m + 1 7→ n, n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = l , Y = nil , Z =? l 7→ a, l + 1 7→ m, m 7→ b,m + 1 7→ n, n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = l , Y = nil , Z = m l 7→ a, l + 1 7→ m, m 7→ b,m + 1 7→ n, n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = l , Y = nil , Z = m l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ n, n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = l , Y = l , Z = m l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ n, n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = m, Y = l , Z = m l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ n, n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = m, Y = l , Z = n l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ n, n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = m, Y = l , Z = n l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ l , n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = m, Y = m, Z = n l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ l , n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = n, Y = m, Z = n l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ l , n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = n, Y = m, Z = nil l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ l , n 7→ c, n + 1 7→ nil

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = n, Y = m, Z = nil l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ l , n 7→ c, n + 1 7→ m

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = n, Y = n, Z = nil l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ l , n 7→ c, n + 1 7→ m

Linked List Reversal

Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

store heap
X = nil , Y = n, Z = nil l 7→ a, l + 1 7→ nil , m 7→ b,m + 1 7→ l , n 7→ c, n + 1 7→ m

Linked List Reversal

“Hoare triple”

{X points to linked list holding α}
Y := nil;

while ¬(X = nil) do Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z od

{Y points to linked list holding rev α}

Defining Linked Lists

intuition
predicate list α e (σ, η) means that

◦ α is linked list in heap η

◦ starting at location specified by e σ in store σ

definition
by recursion

list [] e = (e
·

= nil)

list (x : xs) e = ∃e′. e 7→ x ∗ e + 1 7→ e′ ∗ list xs e′

remarks

◦ separating conjunction ∗ reads “and separately (in other heaplet)”

◦ with ∧, absence of sharing not specified!

Linked List Reversal Formalised

Hoare triple

{listαX}
Y := nil;

while ¬(X = nil) do (Z := [X + 1]; [X + 1] := Y ;Y := X ;X := Z)

{list (rev α)Y }

invariant of while-loop

∃β, γ. list β X ∗ list γ Y ∧ (rev(α) = rev(β) ++γ)

separating conjunction captures absence of sharing between X and Y

extended Hoare logic needed to verify this program

but let’s start at the beginning. . .

Heaplets

◦ heap memory area as partial abelian monoid

◦ heaplets are pieces of a heap

◦ operations of heaplet addition/subtraction, subheaplet relation

◦ similar to resource monoids . . .

◦ . . . but well known from foundations of quantum mechanics

Partial Semigroups

partial semigroup
structure (S , ·,D) with

◦ D ⊆ S × S domain of composition of ·
◦ · : D → S partial operation

◦ for all x , y , z ∈ S

D x y ∧ D (x · y) z ⇔ D y z ∧ D x (y · z)

D x y ∧ D (x · y) z ⇒ (x · y) · z = x · (y · z)

intuition

◦ if either side of x · (y · z) = (x · y) · z is defined then so is other side

◦ and in this case both sides are equal

Partial Monoids

partial monoid
structure (M, ·,D,E) with

◦ (M, ·,D) partial semigroup

◦ E ⊆ M such that

∃e ∈ E . D e x ∧ e · x = x ∃e ∈ E . D x e ∧ x · e = x

e1, e2 ∈ E ∧ D e1 e2 ⇒ e1 = e2

intuition

◦ every element has left/right unit

◦ in fact exactly one

◦ different units can’t be composed

definition similar to Mac Lane’s (meta)category axioms

Partial Abelian Monoids

partial abelian semigroup
partial semigroup (S ,⊕,D) with

D x y ⇒ D y x ∧ x ⊕ y = y ⊕ x

partial abelian monoid (PAM)
partial monoid + partial abelian semigroup

Examples

monoids
every (abelian) monoid (M, ·, 1) is a partial (abelian) monoid with
D = M ×M and E = {1}

ordered pairs
ordered pairs over X under cartesian fusion product (a, b) · (c , d) = (a, d)
if b = c form partial monoid with

D = {((a, b), (c , d)) | b = c} E = IdX

Examples

intervals

◦ let (X ,≤) be linear poset

◦ closed interval in X is ordered pair [a, b] with a ≤ b

◦ closed intervals under interval fusion [a, b] · [c , d] = [a, d] if b = c
form partial monoid on X 2 with D and E like for relations

segments

◦ let (X ,≤) be a poset

◦ segment of X is is ordered pair (a, b) with a ≤ b

◦ segments under segment fusion form partial monoid on X 2

Examples

paths

◦ let G = (V ,E) be (di)graph

◦ path in G is sequence π = (v1, . . . vn) of vertices along edges

◦ paths in G under path fusion (glueing ends together) form partial
monoid on G with E = V

traces

◦ let G = (V ,E , λ) be edge-labelled (di)graph with λ : E → Σ

◦ trace in G is sequence τ = (v1, σ1, . . . , vn−1, σn−1, vn) along edges

◦ traces in G under trace fusion (glueing ends together) form partial
monoid on G with E = V

Examples

multisets
multisets f : X → N over X form (partial) abelian monoids under
(f + g) x = f x + g x and with E = {λx .0}

sets
sets with X + Y = X ∪ Y if X ∩ Y = ∅ form PAM with E = {∅}

multisets are paradigmatic resources

Examples

(generalised) effect algebras

◦ let Hilbert space H represent some quantum system

◦ an effect over H, a self-adjoint operator A on H such that
0 ≤ A ≤ idH, represents unsharp measurement

◦ let E(H) be set of all effects over H
◦ then (E(H),⊕, 0) with A⊕ B = A + B if A + B ≤ idH forms PAM

effect algebras have been studied for 25 years

Examples

heaplets
partial functions X ⇀ Y form PAM SH with

η1 ⊕ η2 = η1 ∪ η2

D = {(η1, η2) ∈ SH × SH | dom η1 ∩ dom η2 = ∅}
E = {ε}

where ε denotes empty heaplet

intuition

◦ heaplets are pieces of a heap

◦ ⊕ (heaplet addition) extends heaps by pieces

◦ it underlies heap allocation/mutation commands of separation logic

Remarks

◦ partial algebras have been studied for almost a century

◦ earliest reference I know is article by Brand (1927)

◦ PAMs are called resource monoids in separation logic

Remarks

◦ mutation/deallocation require more succinct description of heap

1. heaplet subtraction operation
2. subheap relation

◦ subtraction allows deleting pieces from heaps if these are subheaps

we study them abstractly in PAMs

Subheap Relation

Green’s preorder
defined in every PAM as x � y ⇔ ∃z . D x z ∧ x ⊕ z = y

remark
x � y if and only if x ⊕ z = y (exists and) has solution in z

lemma

◦ � is precongruence: x � y ∧ D z x ⇒ z ⊕ x � z ⊕ y (and D z y)

◦ every PAM is preordered by its Green’s relation

Subheap Relation

◦ in the literature � = �R = �L

◦ Green’s relations R, L and H are associated congruences

Green’s relations are the fundamental congruences of semigroup theory

Heaplet Subtraction

cancellation
PAM is cancellative if D x z ∧ D y z ∧ x ⊕ z = y ⊕ z ⇒ x = y

lemma
in cancellative PAM, if x � y then

◦ x ⊕ z = y is defined

◦ and has unique solution in z

subtraction
we write y 	 x for this solution

Heaplet Subtraction

lemma
in cancellative PAM

1. D x z ∧ x ⊕ z = y ⇔ x � y ∧ z = y 	 x

2. D x y ⇒ (x ⊕ y)	 x = y and x � y ⇒ x ⊕ (y 	 x) = y

3. if x � y then D x z ∧ x ⊕ z � y ⇔ z � y 	 x

4. D x y ⇒ x � x ⊕ y and x � y ⇒ y 	 x � y

Heaplet Subtraction

positivity
PAM is positive if D x y ∧ x ⊕ y ∈ E ⇒ x ∈ E

lemma
Green’s preorders are partial orders in positive cancellative PAMs

remark
positive cancellative PAMs with E = {1} are known as generalised effect
algebras in foundations of quantum mechanics

everything so far is known from foundations of physics

Heaplet Summary

in PAM SH of heaplets

◦ η1 � η2 iff η1 is subheaplet of η2

. η2 can be obtained by adding some piece to η1

◦ SH is cancellative and positive

. adding different pieces to heaplet yields different heaplets

. ε has no subheaplets

◦ � is partial order

◦ η1 	 η2 defined whenever η2 is subheaplet of η1

◦ ⊕ and 	 are inverses up-to definedness

◦ 	 needed for heap deallocation/mutation in separation logic

Statelets

◦ program states of separation logic are store-heap pairs

◦ they correspond to PAMs of cartesian products

Statelets

lemma
if X is a set and (S ,⊕,D,E) a PAM

1. then (X × S ,⊕′,D ′,E ′) forms PAM with

(x1, y1)⊕′ (x2, y2) = (x1, y1 ⊕ y2)

D ′ = {((x1, y1), (x2, y2)) | x1 = x2 ∧ (y1, y2) ∈ D}
E ′ = {(x , e) | x ∈ X ∧ e ∈ E}

2. if S is cancellative or positive, then so is X × S

lemma
if X is a set and S a PAM then

1. (x1, y1) � (x2, y2)⇔ x1 = x2 ∧ y1 � y2 is Green’s order

2. (x1, y1) � (x2, y2)⇒ (x2, y2)	 (x1, y2) = (x1, y2 	 y1)
if X × S cancellative

Statelets

◦ heaplets have often type L⇀ E with L ⊆ E

. L is set of locations

. E is set of expressions/values

. locations/expressions are evaluated in store

◦ program store is set of functions of type V → E

. V is set of program variables

◦ store-heaplet pairs (σ, η) forms positive cancellative PAM SS
of statelets

. substatelet relation � compares heaplets with same store

. ⊕ and 	 on statelets adds/subtracts heaplets with same store

. statelets have units ES = {(σ, ε) | σ ∈ EV } . . . one per store

Faults and Zeros

◦ in program semantics, undefinedness is often captured in total
setting by bottom elements

◦ in standard semantics of separation logic, these denote program
faults due to partiality of heaplet operations

we now explain this relationship

Faults and Zeros

zeros

◦ annihilator 0 of PAM S satisfies D 0 x and 0⊕ x = 0

◦ annihilators are unique whenever they exist

morphisms

◦ partial semigroup morphism ϕ : S1 → S2 satisfies

. D1 x y ⇒ D2 (ϕ x) (ϕ y)

. ϕ (x ⊕1 y) = (ϕ x)⊕2 (ϕ y)

◦ it is strong if D2 (ϕ x) (ϕ y)⇒ D1 x y

◦ partial monoid morphism is partial semigroup morphism satisfying

. e ∈ E1 ⇒ ϕ e ∈ E2

◦ it is strong if ϕ e ∈ E2 ⇒ e ∈ E1

Faults and Zerios

proposition

1. Every PAS (PAM with E = {1}) can be strongly embedded into an
abelian semigroup (monoid) with zero

2. Every abelian semigroup (monoid with zero) contains a PAS (PAM
with single unit) as submonoid

Faults and Zeros

example

◦ let S⊥ = S ∪ {⊥} for any PAM S

. extend ⊕ to ⊕⊥ such that x ⊕⊥ y = ⊥ iff (x , y) /∈ D

. then ⊥⊕⊥ x = ⊥ for any x ∈ S⊥

. extend � to �⊥

. then ⊥ �⊥ x for all x ∈ S

(S⊥,⊕⊥) forms an abelian semigroup (abelian monoid with unit 1 if
E = {1} in S)

◦ remove ⊥ from abelian semigroup S⊥
. restrict ⊕⊥ to ⊕ with D = {(x , y) ∈ S⊥ × S⊥ | x ⊕⊥ y 6= ⊥}

(S ,⊕,D) is PAS (PAM with E = {1} if S⊥ is abelian monoid with
unit 1)

Faults and Zeros

example

◦ construction of semigroup (monoid) from X × S requires two zeros

1. expand S to S⊥1 as before
2. adjoin ⊥2 to the product PAS (PAM) which yields (X × S⊥1)⊥2

◦ the extensions of ⊕ and � follow the previous construction

◦ we write ⊕⊥2 and �⊥2 at outer level

◦ this yields abelian semigroup

. multiple units are forgotten in construction

. (x1, x2)⊕⊥2 (y1, y2) = ⊥2 iff x1 6= y1 or x2 · y2 = ⊥1

. then (x1,⊥1)⊕⊥2 (y1, y2) = ⊥2

◦ faults propagated from heaplets to statelets

◦ recovery of PAM X × S from (X × S⊥1)⊥2 straightforward

◦ instantiation to statelets EV × SH is straightforward as well

Statelet Dynamics

◦ ⊕ and 	 underly 3 of 5 basic commands of separation logic

. heap mutation

. heap allocation

. heap deallocation

◦ heap lookup and store assignment are discussed as well

◦ we define state update function acting on PAM SS for each of them

◦ if s ∈ SS is statelet then we write

. σs = π1 s for its store

. ηs = π2 s for its heaplet

◦ we use semi-algebraic approach in concrete model SS

Addition/Subtraction of Single Heap Cells

domains of definition

D⊕ s (σs , l 7→ e)⇔ l σs /∈ dom ηs

D	 s (σs , l 7→ e)⇔ l σs ∈ dom ηs ∧ e = ηs (l σs)

heap cell addition
update function f⊕ : E → SS → P SS defined (nondeterministically) by

f⊕ e s = {(σs , ηs ⊕ {l σs 7→ e σs}) | l σs /∈ dom ηs}

heap cell deallocation
update function f	 : L→ SS → SS defined by

f	 l s = (σs , ηs 	 {l σs 7→ ηs (l σs)}) if l σs ∈ dom ηs

Heap Mutation

heap mutation
update function fm : L→ E → SS → SS defined by

fm l e = (f̂⊕ l e) ◦ (f	 l)

where f̂⊕ l e s = (σs , ηs ⊕ {l σs → e σs}) if l σs 6∈ dom ηs

lemma

fm l e s = (σs , ηs [l σs ← e σs]) if l σs ∈ dom ηs

where f [x ← a] indicates that value of x in f has been updated to a

Store Assignment and Heap Lookup

store assignment
update function fa : V → E → SS → SS defined by

fa x e s = (σs [x ← e σs], ηs)

heap lookup
update function fl : V → L→ SS → SS defined by

fl x l s = (σs [x ← ηs (l σs)], ηs) if e σs ∈ dom ηs

Heap Allocation

heap allocation
update function fc : V → E → SS → P SS defined by

fc x e = (P (fa x)) ◦ (f⊕ e)

where P f computes image of given set under f

lemma

fc x e s = {(σs [x → l σs], ηs ⊕ {l σs 7→ e σs}) | l σs /∈ dom ηs}

remark

◦ several cells are usually allocated in one fell-swoop

◦ such deterministic update functions can be obtained by refinement

Conclusion

◦ abstract PAM-based model of program states (statelets)

◦ link with algebraic fault model

◦ basic assignments of separation logic modelled by update functions
that act on state space

. store assignment

. heap mutation

. heap lookup

. heap allocation

. heap deallocation

next lecture: assertion algebra of separation logic

Exercises

?

Further Reading

◦ Calcagno et al, Local Action and Abstract Separation Logic

◦ Clifford, Preston, The Algebraic Theory of Semigroups

◦ Dongol, Gomes, Struth, A Program Construction and Verification Tool for
Separation Logic

◦ Dongol, Hayes, Struth, Convolution as a Unifying Concept

◦ Foulis, Bennett, Effect Algebras and Unsharp Quantum Logics

◦ Gordon, Lecture Notes on Hoare Logic

◦ Hedĺıková, Pulmannová, Generalized Difference Posets and Orthoalgebras

◦ O’Hearn, A Primer on Separation Logic

◦ Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures

◦ Isabelle components:
https://www.isa-afp.org/entries/PSemigroupsConvolution.html

https://www.isa-afp.org/entries/PSemigroupsConvolution.html

