
Algebraic Approaches to Program Verification

with Isabelle/HOL

—Lecture Notes—

Georg Struth

g.struth@sheffield.ac.uk

Contents

Preface v

Chapter 1. Introduction 1
1.1. What is program correctness? 1
1.2. Overview of content 3
1.3. Background on interactive theorem proving 4

Chapter 2. An Algebra of Programs 7
2.1. Intuitive semantics for a simple while-language 7
2.2. Algebraic laws for structural commands 8
2.3. From monoids to Kleene algebras 9
2.4. Kleene algebra with tests 15
2.5. Programming examples 20

Chapter 3. Formalising the Algebra of Programs 23
3.1. Engineering algebraic hierarchies with Isabelle 23
3.2. Examples: Program transformations with Isabelle 31
3.3. Integrating Models 32

Chapter 4. Two Semantics of Program Execution 35
4.1. Relational Semantics 35
4.2. State Transformer Semantics 40
4.3. Path Semantics 44

Chapter 5. Formalising the Two Semantics 47
5.1. Relational Semantics 47
5.2. State Transformer Semantics 49
5.3. Isomorphism Between the Semantics 51

Chapter 6. Propositional Hoare Logic 53
6.1. Partial Correctness Specifications 53
6.2. Rules of Propositional Hoare Logic 54
6.3. Formalising Propositional Hoare Logic 55

Chapter 7. Hoare Logic 59
7.1. Semantics of the Program Store 59
7.2. Semantics of Assignment Commands 61
7.3. Assignment Rules of Hoare Logic 61
7.4. Formalising the Program Store and Hoare Logic 63
7.5. Examples: Program Verification with Hoare Logic 64

Chapter 8. Program Refinement 73

iii

iv CONTENTS

8.1. Refinement Kleene Algebras with Tests 73
8.2. A Simple Refinement Calculus 75
8.3. Examples: Program Refinement 77

Chapter 9. Another Algebra of Programs 83
9.1. Modal Kleene Algebras 84
9.2. Formalising Modal Kleene Algebras 92
9.3. Predicate Transformers and Structural Verification Conditions 94
9.4. Integrating the Program Store 96
9.5. Examples: Program Verification with Predicate Transformers 97
9.6. Relative Completeness of Hoare Logic 98
9.7. KAT vs MKA 100

Preface

These are lecture notes for a course on Algebraic Approaches to Program Ver-
ification with Isabelle/HOL with Kleene algebras and similar formalisms and via
simple denotational semantics. I am using them for teaching program verification
at the University of Sheffield, and have used part of this material for similar courses
at École polytechnique and ENS de Lyon. The notes are work in progress and may
contain typos and errors. They will be updated and corrected during the course—I
am very grateful for comments and suggestions. Please email them to my University
of Sheffield address.

Other sources are not yet adequately acknowledged or cited. The underlying
algebraic approach has been inspired by John Conway’s book on regular algebras,
applications of regular algebra to program construction and verification by Roland
Backhouse, Dexter Kozen’s work on Hoare logic and Kleene algebra with tests, and
my own work on modal Kleene algebras with Jules Desharnais, Bernhard Möller
and others. The approach to designing verification components is my own. It
has been developed and refined in collaboration with Alasdair Armstrong, Victor
Gomes and Jonathan Julián Huerta y Munive. Yet it is strongly influenced by Mike
Gordon’s pioneering work on program verification with interactive theorem provers
and his beautiful Cambridge lecture notes on Hoare Logic.

Last changes: 05.10.2022

c○ Georg Struth, 2020; all rights reserved.

Georg Struth
Sheffield in Spring 2020

Paris in Spring 2021
Lyon in Autumn 2022

v

CHAPTER 1

Introduction

Seek simplicity and distrust it.
— A. N. Whitehead

1.1. What is program correctness?

The following classical algorithm takes the natural numbers x and y, a dividend
and a divisor, as its input, and it computes the natural numbers q and r, their
quotient and remainder, as its output:

q := 0;

r := x;

while y ≤ r do

q := q + 1;

r := r − y

Understanding this program is easy. It subtracts y from x as long as possible,
counts the number of subtraction to determine q and makes r the result of the
repeated subtraction just before it would become negative. Think about cutting a
piece of rope of length x into pieces of length y, counting the number q of y-pieces
obtained and measuring the length r of the leftover piece, which could be zero. So
who would doubt that this program is correct? But who could explain precisely
why? Or what program correctness even means in general terms?

As a first step towards answers we specify more precisely what our program is
meant to compute. Obviously, the relation x = q ·y+r must hold after the program
has terminated. But as it holds already after q and r have been initialised, we need
to be more specific: q must be the largest quotient and r the smallest non-negative
remainder for which x = q · y + r after termination. We thus require that r < y
holds as well.

Then of course we need to specify which natural numbers x and y should be
allowed as inputs. While it seems reasonable to allow any natural number as a
dividend, the divisor should certainly not be 0, because otherwise the program
would not terminate: the value of r in the body of the loop would always be x and
the test y ≤ r of the loop would always remain true. It goes without saying that
termination is important for program correctness as well.

Hence we deem our program correct if it terminates and its output values satisfy
x = q · y + r and r < y whenever it is executed from initial values x and y 6= 0.
For obvious reasons, y 6= 0 is called the precondition and x = q · y + r ∧ r < y the
postcondition of our program. More generally, a program is correct if it terminates

1

2 1. INTRODUCTION

and does so in states that satisfy its postcondition whenever it starts from states
satisfying its precondition.

Now that we know what program correctness means, and that we have a cor-
rectness specification for our integer division program, we turn to the question of
proving program correctness.

Verifying that our program terminates is easy: each iteration of the while-loop
decreases r strictly if y 6= 0. It must therefore become strictly smaller than y after
finitely many iterations. The test of the loop then becomes false and the loop stops
executing.

Verifying that its postcondition x = q · y+ r and r < y holds after termination,
whenever the precondition y 6= 0 holds, is less straightforward. Simply testing
the program using some admissible input values is of course not good enough: we
might miss precisely those for which the postcondition fails. Verification requires
considering all admissible inputs, which is often more than a finite enumeration,
and hence more abstract ways of reasoning.

A natural way of reasoning about loops such as

while y ≤ r do q := q + 1 ; r := r − y

is by induction on the number of repetitions. This requires a property that holds
before its execution (the base case) as well as before and after the execution of its
body in each repetition (the induction step). In our case, we need to check this
property after initialising q := 0 and r := x whenever y 6= 0 and verify that it
continues to hold each time q := q + 1 and then r := r − y are executed, so long
as the test y ≤ r of the loop remains true. Finally, when the loop of the integer
division program terminates because r < y, we need to show that our property
implies the postcondition. A property that continues to hold while the state of a
system changes is an invariant. Here, more specifically, we need a loop invariant.

For integer division, x = q · y + r is a natural loop invariant. We already know
that it holds after initialisation, immediately before the loop is executed. Further,
if it holds before an execution of the body of the loop, then it must also hold
afterwards because (q + 1) · y + (r − y) = q · y + r, when we first increment q and
then subtract y from r. Finally, it implies the postcondition x = q · y+ r and r < y
because x = q · y + r is the loop invariant and r < y is the negation of the test of
the loop.

In sum, we have now given a correctness specification for our program and
explained its correctness in a semiformal way. We have argued that the loop in our
program terminates and that it does so in states in which the postcondition holds,
whenever it is executed from states in which the precondition holds.

The calculations involved in our correctness proofs are certainly a big step
towards precision. It remains to turn them into a method that works for any im-
perative program—or at least for many imperative programs. Ultimately, we would
like to execute this method on a machine to rule out human error in complex veri-
fication tasks that require reasoning about complex data structures or complicated
corner cases (how does the integer division algorithm and our correctness argument
handle the case x < y, by the way?).

The formal verification of our simple division algorithm is also of mathematical
interest. It is part of the proof of the classical theorem that for all natural numbers x
and y 6= 0 there exist two unique natural numbers q and r such that x = q ·y+r and

1.2. OVERVIEW OF CONTENT 3

r < y.1 The proof of existence is simply the pair (q, r) computed by the division
algorithm for every input (x, y) together with its correctness proof. Uniqueness
of q and r, however, is not guaranteed by the algorithm. So suppose that some
other pair (q′, r′) satisfies x = q′ · y + r′ and r′ < y. But then |r′ − r| < y and
|q − q′| · y = |r′ − r|, which can only be the case if q = q′ and r = r′.

1.2. Overview of content

Chapter 2 introduces an abstract algebraic semantics for programs based on
a notion of program equivalence that considers programs as equal if they have
the same input-output behaviour. Starting from intuitive algebraic laws, it intro-
duces a series of algebraic structures—monoids, semilattices, Kleene algebras and
Kleene algebras with tests—which encapsulate them. Kleene algebras with tests, in
particular, yield an algebraic semantics for simple while-programs with sequential
composition, conditionals and while loops, but disregarding variable assignments
or structured tests. A first verification application of Kleene algebra with tests
considers the correctness of simple program transformations.

The entire content of Chapter 2 can be formalised with proof assistants. We
use the Isabelle/HOL proof assistant as an example. Chapter 3 explains how the al-
gebraic hierarchy from Chapter 2 can be engineered using Isabelle’s axiomatic type
classes, and how simple models for these algebras can be integrated. This chapter
also serves as a first introduction to formalised mathematics with Isabelle. It com-
plements more traditional approaches that start from a functional programming
perspective.

In Chapter 4, two more concrete semantics of program executions are intro-
duced. The first one models programs as binary relations between input and out-
put states, the second one as non-deterministic functions, or state transformers,
that map states to sets of states. These form isomorphic models of Kleene algebra
with tests. The content of this chapter is formalised in Chapter 5, except for an
additional trace semantics, which we outline at the end of Chapter 4.

After this mathematical groundwork, we develop an algebraic variant of Hoare
logic in Chapter 6. We show how partial program correctness specifications (as-
suming program termination instead of asking to prove it) can be expressed in
Kleene algebras with tests and we derive algebraic variants of the classical rules
of propositional Hoare logic—disregarding assignment laws—by simple equational
reasoning. We also derive variants in the relational and state transformer semantics
that are more suitable for automated verification condition generation with Isabelle
and summarise the Isabelle formalisation of the material in this chapter.

A full Hoare logic is introduced in Chapter 7. It is developed in the concrete
relational and state transformer semantics of the program store. We model pro-
gram stores simply as functions from program variables to values that range over
arbitrary data domains. We use a store update function to assign relational and
state transformer semantics to variable assignment commands. Assignment rules
in the style of Hoare logic are then derivable in these concrete program semantics.
With a full Hoare logic in place, we can start verifying programs. We present a
number of verification examples using proof outlines on paper as well as Isabelle
proofs on a machine.

1The theorem is usually stated for integers, yet we stated our algorithm for positive numbers
only.

4 1. INTRODUCTION

Chapter 8 briefly introduces an alternative approach to program verification:
the construction of programs from specifications using program refinement laws.
To this end we introduce a refinement Kleene algebra with tests and derive simple
refinement laws inspired by Carroll Morgan’s refinement calculus, as explained in
his book Programming from Specifications, in this algebra. After setting up the
relational and state transformer semantics for refinement Kleene algebra with tests
and deriving refinement laws for assignments in the concrete program store seman-
tics, we show how programs can be developed from specifications that are correct
by construction. Once again we formalise this approach with Isabelle.

Finally, we study a more powerful approach to program verification based on
modal Kleene algebras in Chapter 9. This leads not only to more computational
verification laws and verification conditions. It also increases flexibility, allowing
for instance the integration of symbolic execution approaches and those computing
weakest liberal preconditions. As an application of this formalism, we present an
algebraic relative completeness proof of Hoare logic. As always, we discuss the
Isabelle formalisation of this approach and present verification examples.

These lecture notes are complemented by an Isabelle formalisation of the entire
mathematical content, up to very minor omissions. These Isabelle theories should
be studied alongside this text. In the handouts of the theories provided, many
theorems are shown without proofs in order to provide exercises for reasoning with
the algebras formalised, their models, and finally for verifying simple programs.
This formalisation shows in particular how program verification components can
be built in a simple and principled way with proof assistants.

Using this approach, the entire formalisation, from the algebras and their mod-
els to the verification and refinement components, and the program verification
examples, is provably correct relative to the core inference engine of the proof as-
sistant. As the approach formalises a semantics of programs instead of starting
syntactically from a programming language, it is based on mathematical objects
such as functions, relations, predicates and various algebras, many of which are
already well supported in proof assistants. This is far less involved than formal-
ising grammars and interpretation functions for programming languages, let alone
implementing program verification tools from scratch.

Instead, our approach brings us to the mathematical foundations of program
correctness rather quickly: the algebras tell us quite generally when programs are
equal and when one is a refinement of another; they also describe the laws that
determine the behaviour of program constructs like sequential compositions, con-
ditionals and loops, and allow us to express correctness specifications. Their rela-
tional or state transformer models over program stores capture the basic commands
of programs in terms of updates to the program store. And those who like program
syntax and interpretation maps can easily add them if they wish.

1.3. Background on interactive theorem proving

Almost the entire mathematical development in these lecture notes, and in
particular all verification examples, have been formalised with the Isabelle proof
assistant, more precisely with Isabelle/HOL.

HOL stands for Higher-Order Logic, a powerful logic in which much of mathe-
matics can be formalised, including the algebraic structures from monoids to KAT
and the concrete semantics based on relations, state and predicate transformers.

1.3. BACKGROUND ON INTERACTIVE THEOREM PROVING 5

Beyond first-order logic, it allows quantifications over functions and predicates. The
logic is also typed like a functional programming language. Apart from formalising
mathematics, interactive theorem provers have been used very successfully for ver-
ifying programs and software systems—in academic case studies and increasingly
in industrial applications. Isabelle can be downloaded here:

https://isabelle.in.tum.de

A direct link to tutorials and reference manuals is

https://isabelle.in.tum.de/documentation.html

A tutorial to programming and proving with Isabelle can be found here:

https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/prog-prove.pdf

Additional material can be found in Nipkow and Klein’s book Concrete Seman-
tics. We will learn to work with Isabelle as we go along. By contrast to traditional
approaches to teaching Isabelle, which start from a (functional) programmer’s point
of view, we emphasise the formalisation of mathematics, specifying mathematical
structures incrementally and performing proofs of increasing complexity. Never-
theless, this introduction is not fully self-contained and the Isabelle documentation
should be consulted alongside.

The Isabelle theory files complementing these lecture notes can be found at

https://github.com/gstruth/verisa

They contain holes that can be filled in as exercises.

https://isabelle.in.tum.de
https://isabelle.in.tum.de/documentation.html
https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/prog-prove.pdf
https://github.com/gstruth/verisa

CHAPTER 2

An Algebra of Programs

2.1. Intuitive semantics for a simple while-language

Before introducing methods for verifying programs we need to explain what
kind of mathematical objects programs are. We start with an abstract algebra of
programs and refine it step by step to concrete semantics of program executions
over a simple program store model. Algebra manipulates objects and expresses their
relationships through equations. The equations x+y = y+x or x·(y+z) = x·y+x·z,
for instance, can be used for reasoning with numbers, matrices or elements of a
boolean algebra. Here we introduce algebraic laws for reasoning about programs,
starting from intuition and then at increasing levels of formality and precision.

We restrict our attention to simple while-programs, as defined by the syntax

C ::= x := e | C ; C | if P then C else C | while P do C .

The letter C indicates that we are defining the commands of this programming
language. Assignment commands x := e are basic commands, sequential compo-
sitions, conditionals and while loops are composite ones. The letters x, e and P
do not represent commands: x represents a program variable, e an expression and
P a test. Variables are elements of some suitable set; expressions and tests are
usually defined using other grammars. We return to them briefly in Chapter 7. A
common name for a simple while language with arithmetic expressions, interpreted
in the natural numbers, and a simple boolean algebra of tests based on comparisons
for equality and inequality of arithmetic expressions is Imp. For now we consider
assignments and tests as unstructured commands, and we simply identify programs
and commands. Moreover, we do not consider this programming language directly,
but start with an algebraic semantics that interprets commands, which we now
simply call “programs”, as abstract mathematical objects.

The most fundamental notion of algebra is equality or equivalence of objects.
Any algebra of programs thus requires a notion of program equivalence, which de-
scribes how we can identify and distinguish programs – no entity without identity.
Imperative programs act on state spaces by transforming input states into output
states. We simply assume that they are completely determined by this input/out-
put behaviour and ignore internal implementation details. Hence we deem two
programs equivalent if they compute the same outputs from the same inputs; if
their action on the state space has the same effect. There are of course more fine-
grained notions of program equivalence – ours could not even distinguish quicksort
from merge sort – but for program verification, where we consider correctness spec-
ifications between preconditions and postconditions, our notion is good enough.

We abstract further and allow that programs may compute several outputs
from a given input, or no output at all. Programs can thus be nondeterministic.
This has several benefits. One is that we may represent the output of a program

7

8 2. AN ALGEBRA OF PROGRAMS

that fails to execute from some state by the empty set. Another one is that it yields
a uniform view on programs and specifications, which need not be deterministic and
not executable. A final abstraction is that we consider tests as special programs
that measure or observe certain properties of states without changing them.

2.2. Algebraic laws for structural commands

Based on these semantic intuitions, we now introduce an algebra of programs as
an abstract program semantics. First we simply postulate equational laws, then we
organise them into an algebra – a Kleene algebra with tests. Concrete semantics of
programs that transform a program store are developed as models of this algebra in
later chapters. Yet most of the work for building program verification components
can be done in algebra, by simple equational reasoning.

First we even ignore tests and generalise from conditionals to nondeterministic
choices between programs and from while loops to finite unbounded iterations of
programs. In addition, we consider two special programs: 1 or skip, which can be
executed from any state without changing it, and 0 or abort, which can never be
executed and thus computes no output at all.

We henceforth write x, y, z, . . . for programs and = for program equivalence.

2.2.1. Sequential composition. In a sequential composition x ; y of pro-
grams x and y, outputs of x serve as inputs for y, if possible. The combined
program then executes from input states of x into output states of y – or not at all,
in which case the composite program equals 0. In the tradition of algebra we often
write x · y or even xy instead of x ; y. Which programs do we consider equivalent?
We postulate that

1x = x , x1 = x , 0x = 0 , x0 = 0 , (xy)z = x(yz) .

We expect the first two equations or identities because executing skip before or after
any program x has the same effect as executing x alone. By contrast, executing
abort before or after x aborts the whole program. In particular, if the abort happens
after the execution of x, all information is lost. This explains the third and fourth
identity. Finally, we postulate the fifth identity because the effect of executing x, y
and z in sequence only depends on the values that are passed from x to y and then
to z. We may therefore just write xyz, as usual in algebra.

Unlike the multiplication of numbers, sequential compositions of programs
rarely commute. The programs x := 5 ; y := x + 1 and y := x + 1 ; x := 5,
for instance, are not equivalent: the first terminates in a state where y = 6 when
executed from an input state where y = 0, the second in a state where y = 1.

2.2.2. Nondeterministic choice. In a conditional if p then x else y, the
test p determines which of its branches x or y executes. We generalise to programs
x+ y that choose to execute x or y nondeterministically, so that the effect of x+ y
can be any output of x or y, depending on this internal choice. We postulate

(x+ y) + z = x+ (y + z) , x+ y = y + x , x+ x = x, x+ 0 = x .

First, we expect that the order of binary choices made by the program in the
associativity law does not affect the global choice made: both lead to the output
in x, y or z from the inputs of these programs. Once again we may simply write
x+ y+ z. Similarly, we indentify the choices x+ y and y+x as they yield the same
output from the sam inputs. Third, x + x is meant to present no choice but x.

2.3. FROM MONOIDS TO KLEENE ALGEBRAS 9

Finally, as 0 does not allow any execution, we postulate that the effect of choosing
x+ 0 should simply be the outputs of x from its inputs.

2.2.3. Finite iteration. When program while p do x executes, it first tests
p. If successful, x executes and then the loop executes again from the outputs of x.
Otherwise, if the test p fails, the loop skips. We generalise this to the unbounded
finite repetition or iteration x∗ of program x, which chooses nondeterministically
to repeat x a finite number of time, including zero times when it just skips. If
xi stands for an i-fold iteration of x, then x∗ equals xi for a nondeterministically
chosen i ∈ N. We could generalise + to an unbounded nondeterministic choice
operator to model x∗. Yet we have no further use for it at this stage. Instead,
using the operations we have considered so far, we postulate

1 + xx∗ = x∗ and 1 + x∗x = x∗ .

These these identities state that a finite iteration x∗ of x chooses to either do
nothing or execute x and then continue the iteration (alternatively: to continue
the iteration and execute another x afterwards). Yet this alone is not enough:
1 +xy = y also holds of an iteration y that chooses to either execute x∗ or repeat x
infinitely often. Additional laws are therefore needed to distinguish an unbounded,
but finite iteration from an infinite one. But these require some preparation. We
leave a more precise description to Section 2.3.4 and 4.1.2.

2.2.4. Distributivity laws. It remains to consider the interactions between
the operations on programs. We postulate that sequential composition distributes
over nondeterministic choice in both arguments:

x(y + z) = xy + xz and (x+ y)z = xz + yz .

The second law expresses that choosing between x and y before executing z simply
means choosing to execute z either after x or after y. By the first law, the time
when an internal choice between y and z takes place – before or after the execution
of x – should not affect the input/output behaviour of a program.

Ultimately, the validity of these laws of programming depends on the behaviour
of real-world programs or at least a more concrete semantics of idealised program
executions, like the laws of rings have been abstracted from properties of numbers
or those of boolean algebras from properties of sets. We introduce such concrete
semantics of programs in Chapters 4 and 7. Before that, in the following two
sections, we develop an algebra of programs simply by assembling the equations
from this section – with some minor additions.

2.3. From monoids to Kleene algebras

First we wish to define an algebra (K, ·,+, 0, 1,∗), in which K is the set
of programs, 0, 1 ∈ K are special programs, the operations · : K × K → K,
+ : K × K → K and (−)∗ : K → K model the sequential compositions, non-
deterministic choices and finite iterations of programs, and they satisfy the equa-
tional laws outlined in the previous section. We build this algebra incrementally
from simpler ones for sequential compositions, nondeterministic choices and their
interactions.

10 2. AN ALGEBRA OF PROGRAMS

2.3.1. Monoids. We start from algebras with a composition · and an identity
1 that model the sequential composition of programs and the program skip.

Definition 2.1. A monoid (M, ·, 1) consists of a set M , a binary operation
· : M ×M →M and an element 1 ∈M such that, for all x, y, z ∈M ,

x(yz) = (xy)z , 1x = x , x1 = x .

The monoid M is commutative if xy = yx holds for all x, y ∈M .

We call M the carrier set of the monoid and write M both for this set and as a
name of the monoid. Monoids are everywhere in computer science and mathematics.

Example 2.2.

(1) Programs (in the language Imp and beyond) with sequential composition
and skip form a monoid; they form a commutative monoid with respect
to nondeterministic choice and abort.

(2) The set XX of all (endo)functions of type X → X with function compo-
sition ◦ and identity function idX forms a noncommutative monoid.

(3) The set of all n×n (real or complex) matrices with matrix multiplication
and the n× n identity matrix forms another noncommutative monoid.

(4) Classical examples of commutative monoids are (N,+, 0), (N, ·, 1) and
other kinds of numbers with respect to addition or multiplication. �

2.3.2. Semilattices. Next we consider algebras that model nondeterministic
choices of programs and abort.

Definition 2.3. A semilattice is a commutative monoid (S,+, 0) in which
addition is idempotent : x+ x = x holds for all x ∈ S.

Semilattices are often defined without 0, but we have no use for such variants.

Example 2.4.

(1) Programs with nondeterministic choice and abort form a semilattice.
(2) The power set PX of a set X, the set of all subsets of X, is a semilattice

with respect to ∪ and ∅, and another one with respect to ∩ and X. �

Obviously, X ⊆ Y holds in the semilattice PX if and only if X ∪ Y = Y or,
equivalently, if and only if X ∩Y = X. More generally, we define the relation ≤ on
the semilattice S, for all x, y ∈ S, as

x ≤ y ⇔ x+ y = y ,

Because inequalities in semilattices are still based on equations, we refer to them
as identities, too.

Recall that a partially ordered set (or poset) (P,≤) is a set P with a partial order
relation ≤ ⊆ X×X, a binary relation that is reflexive, transitive and antisymmetric.

Lemma 2.5. Relation ≤ is a partial order on the semilattice S.

Proof. We need to check that ≤ is reflexive, transitive and antisymmetric:
x ≤ x, x ≤ y ∧ y ≤ z ⇒ x ≤ z and x ≤ y ∧ y ≤ x⇒ x = y hold for all x, y, z ∈ S.

• Reflexivity: x ≤ x⇔ x+ x = x by idempotency of addition.
• Transitivity: If x ≤ y and y ≤ z, that is, x + y = y and y + z = z, then
x+ z = x+ y + z = y + z = z and therefore x ≤ z.

2.3. FROM MONOIDS TO KLEENE ALGEBRAS 11

• Antisymmetry: If x ≤ y and y ≤ x, then y = x + y = x follows from
commutativity of +. �

Remark 2.6. Our programming intuition for x ≤ y is that program x computes
less than program y, that is, the input/output behaviour of x is included in that of
y. This can happen when x executes from fewer inputs or is less nondeterministic
than y.

Remark 2.7. We might instead want to define x ≤ y ⇔ ∃z. x + z = y as for
numbers, indicating that some program z needs to be added to program x to obtain
program y. This makes no difference. If x + y = y, then there is a z such that
x + z = y. Conversely, if there is a z such that x + z = y, then there is a z such
that x+ y = x+ x+ z = x+ z = y. Both conditions – x+ y = y and ∃z. x+ z = y
– thus define the same partial order.

The partial order on a semilattice has further interesting properties.

Lemma 2.8. Let S be a semilattice. Then, for all x, y, z ∈ S,

(1) 0 ≤ x,
(2) x ≤ y ⇒ z + x ≤ z + y,
(3) x ≤ x+ y and y ≤ x+ y,
(4) x ≤ z ∧ y ≤ z ⇒ x+ y ≤ z,
(5) x+ y ≤ z ⇔ x ≤ z ∧ y ≤ z.

Proof. Exercise. �

According to (1), 0 is the least element of≤; by (2), addition is order-preserving,
also called monotone or isotone with respect to ≤. By (3), x+ y is an upper bound
of x and y, and in fact the least upper bound or supremum of x and y by (4).
Property (5) combines the upper and least upper bound conditions into one.

Remark 2.9. Our definition of semilattices is algebraic because it adds the alge-
braic operation + to a set and imposes algebraic laws on its elements. Alternatively,
in light of Lemma 2.5 and 2.8, one can define any semilattice order-theoretically as
a poset (S,≤) with least elements and in which each pair of elements has a supre-
mum. This means of course that properties (1) and (5) of Lemma 2.8 are used as
axioms. One then often writes ⊥ for 0 and x t y (join) for the binary supremum
of x, y ∈ S and calls (S,≤) a a sup- or join-semilattice. It is then routine to show
that t is associative, commutative and idempotent, and thus recover the algebraic
definition.

Alternatively, one can require that (S,≤) is a partially ordered set with a
greatest element > in which each pair of element has an infimum, indicated by u
(meet). Properties (1) and (5) of Lemma 2.8 are then need to hold with respect to
≥ instead of ≤. Such semilattices are known as inf - or meet-semilattices.

2.3.3. Semirings and dioids. Next we provide an algebra that captures the
interaction of sequential compositions and nondeterministic choices of programs.

Definition 2.10. A semiring is a structure (S, ·,+, 0, 1) such that (S, ·, 1) is a
monoid, (S,+, 0) a commutative monoid, and, for all x, y, z ∈ S,

x(y + z) = xy + xz, (x+ y)z = xz + yz, 0x = 0, x0 = 0.

A dioid is a semiring in which addition is idempotent.

12 2. AN ALGEBRA OF PROGRAMS

In any dioid S, (S,+, 1) is thus a semilattice with partial order ≤ defined as
above. Composition then preserves the order in both arguments.

Lemma 2.11. Let S be a dioid. Then, for all x, y, z ∈ S,

(1) x ≤ y ⇒ zx ≤ zy,
(2) x ≤ y ⇒ xz ≤ yz.

Proof. Exercise. �

Dioids therefore have both algebraic and order-theoretic structure.

Example 2.12.

(1) Programs with sequential composition, nondeterministic choice, skip and
abort form dioids.

(2) The set of all formal languages over a finite alphabet Σ forms a dioid (see
Example 2.19 below for details).

(3) The n × n real- or complex-valued matrices with the obvious operations
form non-idempotent non-commutative semirings.

(4) n × n matrices form dioids if the coefficients range over the booleans
B = {0, 1}. Addition of booleans is max and multiplication is min.

(5) the booleans form themselves a dioid with the operations just mentioned.
Mathematicians know this dioid as Z/2Z.

(6) (N, ·,+, 0, 1) and other algebras of numbers form of course non-idempotent
semirings in which multiplication is commutative. �

There are many other computationally interesting examples of semirings and
dioids that cannot be explained in these lecture notes.

Remark 2.13. An important symmetry or duality of semirings and dioids is
opposition. It swaps the order of composition: x ·op y = y · x. Intuitively, the
opposite of a program executes backwards in time. It is easy to check that the
opposite of every dioid axiom is a dioid axiom, so that opposites of dioids are
dioids and the opposite of every property of dioids is again a property of dioids.
Opposition duality often saves half of the work in proofs: If we have established
a property of a structure, a dual property, in which the order of multiplication is
swapped, holds automatically in its opposite whenever the class of structures is
closed under opposition. A proof of a dual statement can then be obtained simply
by swapping all multiplications in the proof of the original one.

2.3.4. Kleene algebras. Finally, we add unbounded finite iteration.

Definition 2.14. A Kleene algebra is a structure (K, ·,+, 0, 1,∗) such that
(K, ·,+, 0, 1) is a dioid and the Kleene star operation (−)∗ : K → K satisfies, for
all x, y, z ∈ K,

1 + xx∗ ≤ x∗ , z + xy ≤ y ⇒ x∗z ≤ y ,
1 + x∗x ≤ x∗ , z + yx ≤ y ⇒ zx∗ ≤ y .

The axioms in the second line are the opposites of those in the first one. The
axiom 1+xx∗ ≤ x∗ and its opposite are called unfold axioms; z+xy ≤ y ⇒ x∗z ≤ y
and its opposite are called induction axioms.

Lemma 2.16 below shows that the left unfold axiom 1 + xx∗ ≤ x∗ can be
strengthened to 1+xx∗ = x∗ and the left induction axiom to z+xy = y ⇒ x∗z ≤ y.

2.3. FROM MONOIDS TO KLEENE ALGEBRAS 13

On one hand, 1 +xx∗ = x∗ tells us that iterating x means either doing nothing
or executing x and then continuing to iterate, as explained in Section 2.2.

On the other hand, x∗ is the fixpoint of the function λy. 1 + xy, where λy
indicates that this function varies in y. Moreover the left induction axiom becomes
1 + xy = y ⇒ x∗ ≤ y for z = 1. This instance axiomatises x∗ as the least fixpoint
of λy. 1 + xy, which excludes any proper infinite iteration of x.

The induction axioms of Kleene algebra are more general than that for reasons
that are rather subtle. A practical explanation is that this generality is needed
for proofs about programs; a more detailed mathematical one can be found in
Remarks 4.7 and 4.8 in Section 4.1.2 below.

Remark 2.15. We use λ-notation throughout these lecture notes. It comes
from the λ-calculus, which provides a foundation of functional programming, type
theory and program semantics. We cannot explain it in detail. It suffices to know
that we can write λx. x + y in place of x 7→ x + y for an “anonymous” function,
which might otherwise be called addy x = x+y. We can then apply this function to
an argument, 5 say, so that (λx. x+ y) 5 = 5 + y, in the same way addy 5 evaluates
to 5 + y. This function application is called β-reduction. We may equally see it as
a substitution, (λx. x+ y) 5 = (x+ y)[5/x], where the right-hand side indicates the
result of substituting 5 for x in x+ y.

The following facts are useful for reasoning about the star.

Lemma 2.16. Let K be a Kleene algebra. Then, for all x, y, z ∈ K,

(1) 1 ≤ x∗,
(2) xx∗ ≤ x∗ and x∗x ≤ x∗,
(3) xi ≤ x∗ for all i ∈ N, x0 = 1 and xi+1 = xxi,
(4) x∗x∗ = x∗,
(5) x∗∗ = x∗,
(6) 1 + xx∗ = x∗ and 1 + x∗x = x∗,
(7) x ≤ y ⇒ x∗ ≤ y∗,
(8) (xy)∗x = x(yx)∗,
(9) (x+ y)∗ = x∗(yx∗)∗,

(10) (x+ y)∗ = (x∗y∗)∗,
(11) x ≤ 1⇔ x∗ = 1,
(12) zx ≤ yz ⇒ zx∗ ≤ y∗z and xz ≤ zy ⇒ x∗z ≤ zy∗,
(13) xy ≤ y ⇒ x∗y ≤ y and yx ≤ y ⇒ yx∗ ≤ y.

Proof. We prove (4) to illustrate the typical style of reasoning with stars in
Kleene algebra. The other properties are left as exercises.

First, we prove x∗x∗ ≤ x∗. By left star induction, it suffices to show that
x∗ + xx∗ ≤ x∗ and therefore x∗ ≤ x∗ and xx∗ ≤ x∗ by properties of suprema. The
first inequality is trivial, the second follows from (2).

Next we prove x∗ ≤ x∗x∗. We calculate x∗ = x∗1 ≤ x∗x∗, using (1) and
order-preservation of · in the second step.

Claim (4) then follows from antisymmetry of ≤. �

Remark 2.17. Using antisymmetry of ≤ to prove x ≤ y and y ≤ x separately
in order to establish x = y is generally a helpful proof strategy for Kleene stars.

Properties (1), (2) and (3) say that doing nothing (1), unfolding xx∗ and all
finite iterations xi are part of an iteration x∗. Properties (4) and (5) say that

14 2. AN ALGEBRA OF PROGRAMS

iterating x twice or iterating the iteration of x are as good as iterating x once.
Property (6) says that x∗ is a fixpoint of λy. 1 + xy and λy. 1 + yx, as already
mentioned. By property (7), the star is order-preserving. Property (8) says that
iterating xy and then executing another x is the same as executing x and then
iterating yx. Property (9) reduces the iteration of choices between x and y to
sequences of iterations of x and y. By commutativity of addition, we immediately
get that (x+y)∗ = y∗(xy∗)∗. By property (11), iterating an element x ≤ 1 amounts
to doing nothing. The properties in (11) are called simulation laws. We can read
zx ≤ yz as saying that whenever we can execute z and then x, then we can execute
y and then z, so we can imagine that z allows us to relate or simulate any execution
of x by an execution of y. The first simulation law then says that this relationship
extends to iterations of x and iterations of y. The second simulation law is obtained
by opposition. Finally, (13) presents two alternative simpler star induction laws.
They are equivalent to those in Definition 2.14.

Remark 2.18. Properties (3), in the special case x ≤ x∗, (5) and (7) are
interesting in their own right. A function f : P → P on a poset (P,≤) that is
extensive (or inflationary), transitive and order preserving,

x ≤ f x, f (f x) ≤ f x and x ≤ y ⇒ f x ≤ f y,
is a closure operator. So (−)∗ is a closure operator.

Example 2.19. Two models of Kleene algebra that serve as program semantics,
binary relations and non-deterministic functions (state transformers), are discussed
at length in Chapter 4. Here we only mention another model relevant to computer
science, which comes from language theory.

It is no coincidence that +, · and ∗ are precisely the operations on regular ex-
pressions over a finite alphabet Σ. In formal language theory, regular expressions
are interpreted as regular languages, as sets of finite words whose letters are ele-
ments of Σ. For languages X and Y one defines X + Y as the union of X and Y ,
the composition X · Y as the concatenation of all words in X with all words in Y ,
the language product

X · Y = {x · y | x ∈ X, y ∈ X},
and X∗ as the union of all i-fold compositions of language X with itself, including
the empty-word language {ε}, the Kleene star

X∗ =
⋃
Xi, for X0 = {ε} and Xn+1 = X ·Xn.

The set of all languages over Σ then forms a Kleene algebra under these operations
and with ∅ as 0 and {ε} as 1.

In particular, the set of all regular languages generated by Σ forms a sub-Kleene
algebra of the language Kleene algebra. These form the smallest set of languages
that contains ∅, {ε} and all singleton languages {a} with a ∈ Σ, and that is closed
with respect to union, language product and the Kleene star. �

Example 2.20. More generally, for any monoid (M, ·, 1) we obtain a Kleene
algebra on PM as follows. For X,Y ⊆ M , define the composition or complex
product · : PM × PM → PM as X · Y = {x · y | x ∈ X, y ∈ Y }. Define
addition as ∪, the unit as {1}, the zero as ∅ and X∗ as the union of all i-fold
compositions of language X with itself, including {1}, as for languages above. It is
then straightforward to check the Kleene algebra axioms. �

2.4. KLEENE ALGEBRA WITH TESTS 15

Remark 2.21. Historically, Kleene algebra did not originate in program verifi-
cation. Instead, such algebras were meant to axiomatise the equivalence of regular
expressions (two regular expressions are deemed equivalent if they are interpreted
as the same regular language). The relationship to language theory has interesting
consequences for program analysis with Kleene algebra. Regular expression equiv-
alence is decidable using tools and techniques from automata theory. It can be
shown that it is therefore decidable whether an identity in the language of Kleene
algebra holds, too. Consequently, restricted forms of program equivalence are also
decidable. Yet we do not make use of this in these lecture notes and refer to the
literature for further information.

2.4. Kleene algebra with tests

We now add tests to Kleene algebra to capture conditionals and while-loops
more faithfully. We model them as elements of a boolean algebra, so that we can
express their conjunction, disjunction and negation. As explained in Section 2.1,
we view tests as special programs that do not alter the program state. But before
that we recall the basics of boolean algebras.

2.4.1. Boolean algebras. We base the definition of boolean algebras on lat-
tices and distributive lattices, because we need these structures in Chapter 9.

Definition 2.22.

(1) A lattice is a structure (L,u,t,⊥,>) such that (L,u,>) and (L,t,⊥)
are semilattices and the following absorption laws hold for all x, y ∈ L:

x t (x u y) = x and x u (x t y) = x.

(2) A lattice L is distributive if one of the following distributivity laws holds
(and therefore both):

x t (y u z) = (x t y) u (x t z), x u (y t z) = (x u y) t (x u z).
(3) A boolean algebra is a structure (B,u,t, ,⊥,>) such that (B,u,t,⊥,>)

is a distributive lattice, (−) : B → B is a unary operation of complemen-
tation and, for all x, y, z ∈ B,

x t x = > and x u x = ⊥.

As for semilattices, lattices and distributive lattices are usually defined without
⊥ and > (lattices which have these least and greatest elements are then called
bounded). Yet we have no use for lattices without ⊥ and >.

First we list some equational properties.

Lemma 2.23. Let B be a boolean algebra. Then, for all x, y, z ∈ B,

(1) x = x,
(2) x u ⊥ = ⊥ and x t > = >,
(3) x t y = x u y and x u y = x t y.

Proof. Exercise. �

The properties in (3) called De Morgan laws.
Boolean algebras are ordered by the partial orders on their underlying semilat-

tices, that is,
x ≤ y ⇔ x t y = y ⇔ x u y = x .

16 2. AN ALGEBRA OF PROGRAMS

Thus in particular Lemma 2.5 and 2.8 apply. Boolean algebras show a form of
duality as well. It is given by interchanging⊥ with>, joins with meets and reversing
the partial order. As for semirings and Kleene algebras, the dual of each boolean
algebra axioms is another boolean algebra axiom. The class of boolean algebras is
therefore closed with respect to duality, and for each property of boolean algebra a
dual property holds automatically.

This duality is visible in the following lemma, which rephrases the properties for
join of Lemma 2.8 in the context of boolean algebras, and adds the dual properties
for meet – with one exception.

Lemma 2.24. Let B be a boolean algebra. Then, for all x, y, z ∈ B,

(1) ⊥ ≤ x and x ≤ >,
(2) x ≤ y ⇒ z t x ≤ z t y and x ≤ y ⇒ z u x ≤ z u y
(3) x ≤ x t y and y ≤ x t y,
(4) x ≤ z ∧ y ≤ z ⇒ x t y ≤ z,
(5) x t y ≤ z ⇔ x ≤ z ∧ y ≤ z,
(6) x u y ≤ x and x u y ≤ y,
(7) z ≤ x ∧ z ≤ y ⇒ z ≤ x u y,
(8) z ≤ x u y ⇔ z ≤ y ∧ z ≤ y,
(9) x ≤ y ⇔ y ≤ x,

(10) x u y ≤ z ⇔ x ≤ y t z and x ≤ y t z ⇔ x u y ≤ z.

Proof. Exercise. �

The exception is of course property (9), which shows that complementation is
antitone with respect to the order or order reversing. Properties (3)-(5) state once
again that t is a binary supremum operation. Dually, by properties (6)-(8), u is a
binary infimum or greatest lower bound operation.

Properties (1)-(8) hold already in lattices, distributivity or complementation
properties are not needed in their proofs. Order-theoretically, lattices can therefore
be defined as partially ordered sets that are both sup- and inf-semilattices, that
is, they have a least and and greatest element and all binary suprema and infima
exist. The lattice axioms, notably the two absorption laws, are then derivable.

Here are two boolean algebras we care about.

Example 2.25.

(1) The powerset PX of set X forms a boolean algebra with ∪ as join, ∩ as
meet, ∅ as the least element, X as the greatest element and set comple-
mentation − as complementation.

(2) The booleans B form a boolean algebra with max as join, min as meet, 0
as least element, 1 as greatest element and λx. 1−x as complementation.

Next we present a distributive lattice that is of interest to us.

Example 2.26. A poset (P,≤) is totally ordered if any pair of elements is
comparable by ≤, that is, x ≤ y or y ≤ x holds for all x, y ∈ P . Totally ordered
sets (or totally ordered subsets of partially ordered sets) are also known as chains.
Every finite chain is a distributive lattice with respect to suprema and infima. �

Example 2.27. Every distributive lattice is a dioid with maximal element
> = 1. Thus, in particular, every finite chain is such a dioid. �

2.4. KLEENE ALGEBRA WITH TESTS 17

Remark 2.28. Finally, another way of looking at boolean algebras is as follows.
A pair of elements x, y in a lattice are complements if x t y = > and x u y = ⊥.
More specifically, we then call each of these elements a complement of the other. In
a distributive lattice, each element can have at most one complement. For a proof,
first note that, in any distributive lattice, x u y = x u z and x t y = x t z implies
y = z:

y = y u (x t y)

= y t (x t z)
= (y t x) u (y u z)
= (x t z) u (y u z)
= (x t y) u z
= (x t z) u z
= z.

Now suppose element x has complements y and y′. Then x t y = 1 = x t y′ and
x u y = 0 = x u y′ and therefore y = y′.

A lattice is complemented if each element has a complement. Boolean algebras
and complemented distributive lattices are therefore the same structures.

2.4.2. Kleene algebras with tests.

Definition 2.29. A Kleene algebra with tests is a structure (K,B, ·,+, , 0, 1,∗)
such that (K,+, ·, 0, 1,∗) is a Kleene algebra and (B, ·,+, , 0, 1) a boolean algebra
that is a subalgebra of K.

In this definition, the operation (−) of complementation is only defined on B.
The operations · and + have two purposes: they model sequential composition and
nondeterministic choice of general programs in K, and at the same time meet and
join of tests in B. As the boolean algebra of tests B is a subalgebra of K, the
operations + and · must be closed with respect to B: adding and multiplying two
elements of B yields another element of B. Similarly, 0 and 1 model abort and skip
in K and at the same time the least and greatest element – true and false – in B.

We henceforth write p, q, r, . . . for tests in B and continue writing x, y, z, . . .
for arbitrary programs in K. We also write KAT for Kleene algebra with tests.

Remark 2.30. Alternatively, we can define a KAT as a structure (K,B, ι),
where ι : B → K is an order-embedding (it satisfies ι p ≤ ι q ⇒ p ≤ q) that
preserves the boolean operations:

ι (p t q) = ι p+ ι q, ι (p u q) = ι p · ι q, ι 0 = 0, ι 1 = 1.

It then follows that p ≤ q ⇔ ι p ≤ ι q and further that ι is injective. The image
ι(B) of B under ι is thus a copy of B in K and ι is an order isomorphism between
B and ι(B). The order structure of B and ι(B) is therefore the same, ι 0 is the least
and ι 1 the greatest element in ι(B). By preservation of the boolean operations,
sums and products of elements in ι(B) are again in ι(B). This shows that ι(B) is
indeed a boolean subalgebra of K.

KAT models tests or assertions as programs that allow some states as inputs
and have the same states as output, like in our intuitive semantics in Section 2.1.
As tests are elements below 1, they are partial identity or subidentity elements that

18 2. AN ALGEBRA OF PROGRAMS

may not be executable from some states, but execute like 1 whenever they are. We
henceforth freely identify tests with predicates and with the sets of states on which
they hold without making a clear distinction.

It then follows that program px corresponds to the restriction of program x to
input states where predicate p holds, whereas, by opposition, xp corresponds to the
restriction of x to output states where predicate q holds. In KAT, of course, px ≤ x
and xq ≤ x hold simply because p, q ≤ 1 and multiplication is order preserving.

The following facts describe the interaction between tests and programs. They
are useful for program verification in Chapter 6 and 8.

Lemma 2.31. Let K be a KAT. For all x ∈ K and p, q ∈ B, the following
identities are equivalent,

(1) px ≤ xq,
(2) pxq = 0,
(3) pxq = px.

By opposition, the following identities are equivalent,

(4) xq ≤ px,
(5) pxq = 0,
(6) pxq = xq.

Finally,

(7) px ≤ xq ⇔ xq ≤ px.

Proof. Exercise. �

Proposition 2.32. Every Kleene algebra can be extended to a Kleene algebra
with tests.

Proof. In any Kleene algebra K we define B = {0, 1} ⊆ K and complemen-
tation by 0 = 1 and 1 = 0. Checking that B forms a boolean subalgebra of K with
+ as join, · as meet is then routine. �

Remark 2.33. Could we not simply require that all subidentities form tests,
that is, that B = {x | x ≤ 1}? Though this would work for the semantics of
programs we have in mind, other models of interest would be excluded.

(1) The so-called min-plus semiring or min-tropical semiring is a dioid that
appears in combinatorial optimisation, the theory of algorithms or speech
recognition. Its carrier set is R≥0 ∪ {∞}, addition is min, multiplication
is +, ∞ is 0 and 0 is 1. It becomes a Kleene algebra with a star assigning
0 ∈ R≥0 to every element. The order of this min-plus Kleene algebra is≥R.
All elements are therefore subidentities, but they do not form a boolean
algebra, simply because multiplication + is not idempotent. Nevertheless
{∞, 1} is a suitable boolean subalgebra of tests by Proposition 2.32.

(2) The chain 0 < a < 1 on the set K = {0, a, 1} is a distributive lattice
according to Example 2.26 and a dioid with join as + and meet as ·
according to Example 2.27. It forms a Kleene algebra with x∗ = 1 for all
x ∈ K (there is no other choice for this map). Again, {x ∈ K | x ≤ 1} = K
is not a boolean algebra (a is not complemented), but B = {0, 1} yields a
boolean subalgebra of tests by Proposition 2.32.

2.4. KLEENE ALGEBRA WITH TESTS 19

2.4.3. Algebraic semantics of while-programs. We can now define an
algebraic semantics of conditionals and while-loops in KAT:

if p then x else y = px+ py ,

while p do x = (px)∗p .

That of conditionals is straightforward: from states where test p evaluates to true,
program x executes, and otherwise, from states where p evaluates to false, program
y. The semantics of the while-loop is slightly more complicated: so long as test p
evaluates to true, program x is executed; after the loop terminates, the program is
in a state where p evaluates to false.

As a sanity check, we show that our semantics of while-loops satisfies a least
fixpoint property, that models the unfolding of a loop: If test p is true, then the
body x of the loop executed and then the loop while p do x is executed again.
Otherwise, if p is false, the loop skips.

Lemma 2.34. Let K be a KAT. Then, for all x ∈ K and p ∈ B, the element
while p dox is the least fixpoint of the function

ϕy = if p then xy else skip .

Proof. First we show that while p dox is a fixpoint of ϕ, that is,

while p dox = if p then (x ·while p do x) else skip .

Folding and unfolding definitions and using laws of Kleene algebra,

if p then (x ·while p do x) else skip = px(px)∗p+ p1

= (px(px)∗ + 1)p

= (px)∗p

= while p dox .

The third step, in particular, uses the left star unfold law in equational form.
Next we show that while p dox is the least fixpoint of ϕ. Suppose y is another

fixpoint of ϕ, that is, ϕy = y and therefore pxy + p = y. Then (px)∗p ≤ y by left
star induction and therefore while p dox ≤ y, as required. �

The programming intuitions about conditionals and loops given are shown to
be consistent with concrete semantics of program executions in Chapter 4 and 7.

Remark 2.35. It seems tempting to model an infinite loop of x as

infinite loop of x = while 1 do x .

Yet expanding the loop semantics in KAT shows that while 1 do x = (1x)∗0 = 0,
so that this infinite loop is actually equal to abort. This should not surprise us.
Our failed attempt is based on the Kleene star, which models finite iteration. In
fact, for the result y of an infinite iteration, even the right annihilation equation
y0 = 0 should raise questions: how could we possibly execute another element after
y? We should rather expect that y0 = y, and more generally yx = y holds for a
non-terminating element y, if we are prepared to allow such sequential compositions
at all. KAT therefore yields an algebraic semantics for partial program correctness,
where all loops are assumed to terminate, but not for total correctness, where loops
may run forever. We exploit this further in Chapter 6 and 7

20 2. AN ALGEBRA OF PROGRAMS

2.5. Programming examples

The verification of the fixpoint equation for the while loop in KAT in the proof
of Lemma 2.34 is an example of a program transformation. Applied from right to
left it transforms a more complex program with a nested conditional and loop into
an equivalent simple while-loop – without changing the input/output behaviour of
the program. Such transformations are used, for instance, when compilers optimise
programs. One reason for the widespread attention of KAT is that it supports the
verification of some non-trivial program transformations and compiler optimisations
by equational reasoning. We present two further examples.

Example 2.36. We wish to verify that

if p then xy else xz = x · if p then y else z

holds whenever px = xp, which means that program x does not affect the outcome
of test p. This commutativity condition is obviously useful for pushing p into the
xy-branch of the conditional, but proceeding likewise in its xz-branch would require
px = xp. Fortunately, this identity is derivable in KAT by Lemma 2.31:

px = xp⇔ pxp+ pxp = 0

⇔ pxp+ pxp = 0

⇔ px = xp .

We can then finish the proof by calculating

if p then xy else xz = pxy + pxz

= xpy + xpz

= x(py + pz)

= x · if p then y else z .

�

The next example shows that one can denest while-loops with KAT, which is
generally important for program optimisation.

Example 2.37. We wish to verify that

while p do (x ·while q do y) =

if p then (x ·while (p+ q) do (if q then y else x)) else skip .

First we simplify the while loop in the second program using KAT:

while (p+ q) do (if q then y else x) = ((p+ q)(qy + qx))
∗
qp

= (qpx+ qy)
∗
qp

= (qy)∗ (qpx(qy)∗)
∗
qp

= (qy)∗q (px(qy)∗q)
∗
p .

The proof uses Lemma 2.16 (9) and then (8) in the last two steps and mainly
boolean algebra in the other ones. Rewriting the second program using this result
and unfolding the definition of conditional yields p(qy)∗q (px(qy)∗q)

∗
p + p. The

2.5. PROGRAMMING EXAMPLES 21

equivalence proof, from right to left, is then straightforward:

if p then (x ·while (p+ q) do (if q then y else x)) else skip

= px(qy)∗q (px(qy)∗q)
∗
p+ p

=
(
1 + px(qy)∗q (px(qy)∗q)

∗)
p

= (px(qy)∗q)
∗
p

= (px ·while q do y)
∗
p

= while p do (x ·while q do y) .

The star unfold axiom of Kleene algebra is used in the third step. �

Our next example uses Kleene algebra to prove a classical property of reduction
systems, which is important in program semantics and symbolic computation.

Example 2.38. An abstract reduction system is a structure (X,−→) of a set X
equipped with a binary reduction relation −→. Reduction steps a −→ b typically
model directed equations a = b or b = a in which b is in some sense simpler than

a. We write a
∗−→ b for a reduction sequence of finitely many reduction steps from

a to b, including a = b, and a
∗←→ b for a zig-zag reduction sequence from a to

b in which the direction of reduction steps may alternate. An abstract reduction

system is confluent if for each zig-zag with shape · ∗←− · ∗−→ · there exists a zig-zag

with shape · ∗−→ · ∗←− · between the same endpoints. It has the Church-Rosser

property if for each zig-zag with shape · ∗←→ · ∗−→ · there exists a zig-zag with shape

· ∗−→ · ∗←− · between the same endpoints. The Church-Rosser theorem states that
an abstract reduction system is confluent if and only if it has the Church-Rosser
property. It can be presented in terms of diagrams

·

· ⇓ ·

·

∗ ∗

∗ ∗

⇔
· ·

⇓

·

∗

∗ ∗

where the double arrows indicate that each upper shape can be replaced by a
lower shape. Its proof is often based on diagrams as well. One direction, that the
Church-Rosser property implies confluence, holds because every confluence diagram
is a special case of a Church-Rosser diagram. The other direction can be proved

by induction on the length of the zig-zag sequence
∗←→. In the base case, there is

no reduction step and both properties trivially hold. The induction step considers
two cases, omitting double arrows in the centre of diagrams:

·

· ·

·

∗

∗ ∗

and

· ·

·

·

·

∗

∗ ∗

∗
∗

The diagram on the left has the Church-Rosser property, using the induction hy-
pothesis to get the triangle. That on the right uses the induction hypothesis to get
the triangle, too, and the confluence assumption to complete the rectangle. The
whole diagram then shows the Church-Rosser property.

22 2. AN ALGEBRA OF PROGRAMS

With Kleene algebra we represent confluence and the Church-Rosser property
as y∗x∗ ≤ x∗y∗ and (x+ y)∗ ≤ x∗y∗, respectively. The calculation

y∗x∗ ≤ (x+ y)∗(x+ y)∗ = (x+ y)∗ ≤ x∗y∗

shows that the Church-Rosser property implies confluence, using Lemma 2.11,
Lemma 2.16(4) and (7), properties of sups and the Church-Rosser property in
the last step. For the converse implication, we apply star induction to the Church-
Rosser property, so it suffices to show that 1 + (x+ y)x∗y∗ ≤ x∗y∗ and further

1 ≤ x∗y∗, xx∗y∗ ≤ x∗y∗, yx∗y∗ ≤ x∗y∗

by properties of sups and distributivity laws. The first inequality formalises the
base case above. It is immediate from Lemma 2.16(1). The remaining two for-
malise the diagrams for the induction step. The second inequality is immediate by
Lemma 2.16(2). For the third we calculate

yx∗y∗ ≤ y∗x∗y∗ ≤ x∗y∗y∗ = x∗y∗,

using confluence in the second step and further properties from Lemma 2.16 in the
others. It is easy to check that these steps formalise the above diagrammatic proof
directly. The explicit induction on the length of the zig-zag sequence is captured
implicitly by an induction axiom of Kleene algebra.

An alternative diagrammatic proof of the Church-Rosser theorem performs
induction on the number of peaks in the zig-zag sequence. It is an interesting
exercise to formalise the following diagram representing the induction step with
Kleene algebra:

·

· · ·

·

·

∗ ∗

∗

∗

∗ ∗

∗

A first step consists in proving that (x+ y)∗ = (y∗x∗)∗.
Finally, note that confluence even implies that (x + y)∗ = x∗y∗. Once again

the proof is left as an exercise. �

The literature contains many other examples of proofs of program equivalences,
program transformations and similar properties in Kleene algebra. Such tasks were
traditionally considered tedious; proofs in concrete program semantics could fill
many pages. The first breakthrough, about 30 years ago, was the realisation that
such proofs could be performed much more concisely by equational reasoning in
algebra. KAT, in particular, was conceived about 25 years ago. The second break-
through, about 15 years, was the insight that such calculations could even be done
by machines, and often fully automatically.

CHAPTER 3

Formalising the Algebra of Programs

The hierarchy of algebras from Section 2.3 and 2.4 is formalised with the Is-
abelle/HOL proof assistant. This is a first step towards building program verifica-
tion components with Isabelle. I also show how some of the examples in Section 2.5
can be formalised with Isabelle. This section can be read as an brief introduction
to formalising mathematics, in particular algebra, with Isabelle. Yet it is not fully
self-contained and requires reading the Isabelle documentation in parallel. The en-
tire material in this section, and many additional definitions and proofs, can be
found in the Isabelle theories for this course at the git repository

https://github.com/gstruth/verisa

3.1. Engineering algebraic hierarchies with Isabelle

Isabelle offers two mechanisms for engineering mathematical hierarchies, type
classes and locales, with specific tutorials for both:

https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/classes.pdf

https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/locales.pdf

Type classes are available in many proof assistants. They are inspired by
those in functional programming languages like Haskell. A type class is roughly
a collection of types that are parametrically polymorphic. The types in a type class
thus share properties that are independent of their particular type, such as a set
of axioms, which hold in many models or situations. Operationally, type classes
allow the axiomatisation of algebraic structures, their extension and combination,
and their instantiation to models using the polymorphism mentioned. They also
provide contexts for proving facts that hold in a particular class. All this will
become clear by example.

Locales offer similar features, but outside of Isabelle’s type system within set
theory. The concrete relationships and differences between classes and locales and
the consequences of choosing one or the other are quite subtle and not very well
documented. I generally prefer type classes unless an algebra requires several type
parameters – simply because type classes do not support that. In fact, the entire
mathematical development in these lecture notes can be restricted to this setting,
and I show only one formalisation of a locale for KAT as an example. Neverthe-
less I am using tools from Isabelle’s locale package for relating type classes and
constructing models for them. I will explain these features as we go along.

23

https://github.com/gstruth/verisa
https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/classes.pdf
https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/locales.pdf

24 3. FORMALISING THE ALGEBRA OF PROGRAMS

3.1.1. Monoids. Let us start with formalising monoids as type classes in
Isabelle, translating the definitions of Section 2.3.1. Isabelle’s main libraries contain
type classes for monoids already; we switch to them when we build more complex
algebras. We begin with our own classes simply to explain the typical set-up.

But before that we take a quick look at the header of our Isabelle theory file
KA.thy. It starts by declaring the name KA of the Isabelle theory, which must be
identical with the file name, and by listing the Isabelle libraries imported. We start
from scratch and import only Isabelle’s main libraries. Then we open the theory
context with the keyword begin.

theory KA
imports Main

begin

Isabelle requires formalising multiplicative and additive monoids separately.

notation times (infixl · 70)

class mult-monoid = times + one +
assumes mult-assoc: x · (y · z) = (x · y) · z
and mult-unitl : 1 · x = x
and mult-unitr : x · 1 = x

class add-monoid = plus + zero +
assumes add-assoc: x + (y + z) = (x + y) + z
and add-unitl : 0 + x = x
and add-unitr : x + 0 = x

class abelian-add-monoid = add-monoid +
assumes add-comm: x + y = y + x

Type class mult-monoid extends the type classes times and one from Isabelle’s
main libraries. This extension is indicated by writing +. The classes times and one
simply introduce notation for the binary operation ∗ and the constant or nullary
operation 1. I have changed Isabelle’s notation for composition in class times from ∗
to · using the notation command. Hovering over the class name in Isabelle’s editor
jEdit and then clicking leads to the class definitions in Isabelle’s main libraries. This
shows that the identity and composition operations are parametrised by type ’a,
usually written α in text, and therefore polymorphic, so that their type can be
instantiated.

Class mult-monoids also declares the axioms of multiplicative monoids. Each
one carries a name so that users can tell Isabelle to use them as hypotheses in
proofs. In the mathematical chapters of these lecture notes, I have given such
names only sporadically. Instead I will often show detailed textbook style Isabelle
proofs in our theory files that expose the Isabelle names of the hypotheses used
(and the hypotheses themselves by hovering over the names and then clicking in
jEdit). In the theory files, the three monoid axioms are put in quotes. These are
usually not displayed in the Isabelle documentation. I follow this tradition.

3.1. ENGINEERING ALGEBRAIC HIERARCHIES WITH ISABELLE 25

Class add-monoid is built similarly from the classes plus and zero. Additive
monoids are extended to abelian additive monoids by adding the commutativity
axiom.

By contrast to Definition 2.1, Ido not specify the carrier sets of monoids ex-
plicitly. Instead, Isabelle assigns an implicit carrier set UNIV. Working without
carrier sets has limitations when formalising advanced mathematical concepts, but
is sufficient and more convenient for us as it leads to simpler classes and proofs.

3.1.2. Semilattices. It is straightforward to extend the class for commutative
additive monoids to the class sup-semilattice for semilattices. Now we start using
Isabelle’s built-in type class comm-monoid-add instead of add-monoid to have all
facts about commutative monoids from Isabelle’s main libraries in scope.

class sup-semilattice = comm-monoid-add + ord +
assumes add-idem: x + x = x
and order-def : x ≤ y ←→ x + y = y
and strict-order-def : x < y ←→ x ≤ y ∧ x 6= y

begin

Writing begin after the type class declaration opens a context in which facts about
semilattices can be proved, including those from Section 2.3.2. First let us show
that semilattices form partial orders (Lemma 2.5).

Formally, with Isabelle, we need to show that the class sup-semilattice of semi-
lattices forms a subclass of Isabelle’s class order for partial orders.

subclass order
proof unfold-locales

fix x y z
show (x < y) = (x ≤ y ∧ ¬ y ≤ x)

using add-commute order-def strict-order-def by auto
show x ≤ x

by (simp add : add-idem order-def)
show x ≤ y =⇒ y ≤ z =⇒ x ≤ z

by (metis add-assoc order-def)
show x ≤ y =⇒ y ≤ x =⇒ x = y

by (simp add : add-commute order-def)
qed

Declaring subclass order in the context of class sup-semilattice makes Isabelle gen-
erate the proof obligations for deriving the partial order axioms from the semilattice
axioms, unfolding the definitions of ≤ and < automatically. Typing proof unfold-
locales opens a proof context in which these proof obligations are accessible. We
can copy them from the proof window in jEdit into the proof context shown above.
The declaration fix x y z translates the universal quantifiers, which are implicit in
the equational laws, into parameters. The proof context is closed by typing qed.
After each line starting with show, a proof is required (in the first line, Isabelle uses
= instead of ←→, and I use this notation henceforth). We can search for a proof
by invoking Isabelle’s Sledgehammer tool from jEdit. When proofs are simple, as
in this case, Sledgehammer finds them quickly and fully automatically. It can call

26 3. FORMALISING THE ALGEBRA OF PROGRAMS

other methods like auto, simp or metis, which are part of Isabelle’s theorem prov-
ing infrastructure. Isabelle lists the (main) facts it uses in proofs explicitly. Axiom
add-commute from type class comm-monoid-add is used, for instance, to discharge
the first proof obligation.

After this subclass proof, everything Isabelle knows about partial orders—all
theorems proved within the context of class order—become available in the context
of class sup-semilattice. We can therefore use them for proving additional facts
about semilattices. Here are some of the proofs for Lemma 2.8 as examples.

lemma zero-least : 0 ≤ x
proof−

have 0 + x = x
by simp

thus 0 ≤ x
by (simp add : order-def)

qed

lemma add-isor : x ≤ y =⇒ x + z ≤ y + z
proof−

assume x ≤ y
hence a: x + y = y

by (simp add : order-def)
have x + z + y + z = x + y + z

by (metis add-commute local .add-assoc local .add-idem)
also have . . . = y + z

by (simp add : a)
finally have x + z + y + z = y + z .
thus x + z ≤ y + z

by (simp add : add-assoc order-def)
qed

They illustrate the basic features of Isabelle’s proof scripting language Isar, which
allows typing textbook-style proofs step-by-step and using Sledgehammer to dis-
charge the resulting proof obligations. We can decompose an implication by iso-
lating its assumption. The keyword hence indicates that the fact which follows it
can be derived by the line immediately above (have can be used otherwise).

lemma add-ubl : x ≤ x + y
proof−

have x + y = x + x + y
by (simp add : add-idem)

thus ?thesis
by (metis add-assoc order-def)

lemma add-ubr : y ≤ x + y
using add-commute add-ubl by fastforce

The proofs of add-ubl and add-ubr are very similar. In that of add-ubl, ?thesis
abbreviates the proof goal. Instead of performing that of add-ubr step by step with
Isar, we can call Sledgehammer directly and obtain a one-line automatic proof.

3.1. ENGINEERING ALGEBRAIC HIERARCHIES WITH ISABELLE 27

Beyond Sledgehammer, one can also use proof tools and simplifiers like auto,
simp, fastforce or blast directly and in particular by listing the relevant assumptions
explicitly. Details are described in the Isabelle documentation

https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/sledgehammer.pdf

The metis tool, however, is typically used by Sledgehammer. Sledgehammer calls
untrusted external automated theorem provers. Metis is an internally verified au-
tomated theorem prover that reconstructs their proofs to make them acceptable for
Isabelle.

3.1.3. Semirings and dioids. Building type classes for semirings and dioids
(Section 2.3.3) is now straightforward.

class semiring = comm-monoid-add + monoid-mult +
assumes distl : x · (y + z) = x · y + x · z
and distr : (x + y) · z = x · z + y · z
and annil [simp]: 0 · x = 0
and annir [simp]: x · 0 = 0

class dioid = semiring + sup-semilattice

Formalising Lemma 2.11 offers no new insight and can be left as an exercise.

3.1.4. Kleene algebras. The type class for Kleene algebras extends that for
dioids as expected. We star with a class star in which the type and notation for
the Kleene star is declared. We write (−)? for the Kleene star.

class star = fixes star :: ′a ⇒ ′a (-? [101] 100)

class kleene-algebra = dioid + star +
assumes star-unfoldl : 1 + x · x? ≤ x?

and star-unfoldr : 1 + x? · x ≤ x?

and star-inductl : z + x · y ≤ y =⇒ x? · z ≤ y
and star-inductr : z + y · x ≤ y =⇒ z · x? ≤ y

The type declaration star :: ′a ⇒ ′a in class star shows for the first time the
type parameter ′a of Kleene algebras explicitly.

After opening a context, we can start proving facts like those in Lemma 2.16.
I leave most of them as exercises and discuss only a few to highlight other Isabelle
features.

lemma star-infl : x ≤ x?

proof−
have x = x · 1

by simp
also have . . . ≤ x · x?

using mult-isol one-le-star by force
also have . . . ≤ x?

by (simp add : star-unfoldlr)
finally show x ≤ x?.

qed

https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/sledgehammer.pdf

28 3. FORMALISING THE ALGEBRA OF PROGRAMS

This proof shows how equational proof steps can be chained together in textbook
style using keyword also have. Such steps are combined (by transitivity) by finally
have, or else by finally show if this proves the overall goal.

Isabelle supports proofs by induction. In the one below, powers are defined
recursively in class monoid-mult. Isabelle supplies an induction principle and gen-
erates proof obligations for the base case and the induction step. I have slightly
rewritten the proof template suggested by jEdit to make the proof more readable.

lemma star-power : x ˆ i ≤ x?

proof (induct i)
case 0
show x ˆ 0 ≤ x?

by (simp add : one-le-star)
next

case (Suc i)
assume x ˆ i ≤ x?

have x ˆ Suc i = x · x ˆ i
by simp

also have . . . ≤ x · x?

by (simp add : Suc.hyps mult-isol)
also have . . . ≤ x?

by (simp add : star-unfoldlr)
finally show x ˆ Suc i ≤ x?.

qed

I have already mentioned that reasoning about the star is mainly inequational.
The following set-up, using the antisymmetry axiom of partial orders, splits equa-
tional proof goals automatically into two inequalities.

lemma star-unfoldl-eq [simp]: 1 + x · x? = x?

proof (rule antisym)
show le: 1 + x · x? ≤ x?

by (simp add : star-unfoldl)
have 1 + x · (1 + x · x?) = 1 + x + x · x · x?

by (simp add : add-assoc distl mult-assoc)
also have . . . ≤ 1 + x · x?

by (smt calculation le add-assoc distl add-idem order-def)
finally have 1 + x · (1 + x · x?) ≤ 1 + x · x?.
thus x? ≤ 1 + x · x?

using star-inductl by fastforce
qed

The keyword [simp] adds this fact as a rewrite rule (from left to right) to Isabelle’s
simplifiers so that tools like simp can apply it under the hood. Simplification rules
can greatly enhance proof performance, but must be added with care as it is easy
to make the simplifier loop. As a rule of thumb, an equation is a candidate for
simplification if its right-hand side is obviously simpler than its left-hand side.

The first line of the proof introduces the label le as a local name, which is
used in the proof of the third line. Labels are generally useful when hypotheses or
intermediate results cannot be linked immediately with hence.

3.1. ENGINEERING ALGEBRAIC HIERARCHIES WITH ISABELLE 29

3.1.5. Kleene algebras with tests. KAT, as defined in Section 2.4, requires
two type parameters: one for the Kleene algebra of programs and one for the
boolean algebra of tests. It is therefore impossible to formalise it in the style of
Definition 2.29 as a type class. Yet we can use a trick to encode tests via an
endofunction τ : K → K. The idea is to axiomatise τ in such a way that the image
τ(K) of K under τ forms the boolean subalgebra of test elements, that is, τ maps
elements of K to the boolean subalgebra B = τ(K) of K.

Suitable axioms need to ensure that addition and multiplication is closed on
the subalgebra and that multiplication on the subalgebra corresponds to meet. In
particular, τ should be an identity on tests, that is, τ (τ x) = τ x. It then follows
that τ x = x⇔ x ∈ τ(K), so that the tests are precisely the fixpoints of τ . We can
then write τ x to express that x is a test.

The only problem is that τ does not allow us to express boolean complemen-
tation on the subalgebra. We therefore start from an antitest function α : K → K
that maps each element of K to the boolean complement of a test, in the sense
that τ = α ◦α, αx+ τ x = 1 and αx · τ x = 0. The precise choice of the axioms for
antitests that meet these requirements are not important for us. What matters is
that they construct the boolean subalgebra B of tests as described.

class kat = kleene-algebra +
fixes atest :: ′a ⇒ ′a (α)
assumes test-one [simp]: α (α 1) = 1
and test-mult [simp]: α (α (α (α x) · α (α y))) = α (α y) · α (α x)
and test-mult-comp [simp]: α x · α (α x) = 0
and test-de-morgan: α x + α y = α (α (α x) · α (α y))

The test function τ can then be defined in class kat as expected.

definition test :: ′a ⇒ ′a (τ) where
τ x = α (α x)

Proofs in KAT can now be performed as usual, see the theory files for examples
and exercises. In particular, I have proved that the algebra of test elements forms
indeed a boolean subalgebra. To express that an element x is a test we can simply
write τ x. Further, we can indicate test complementation by writing αx, which is
equal to α (τ x). More importantly, we can now formalise the algebraic semantics
of conditionals and while loops in Isabelle.

definition cond :: ′a ⇒ ′a ⇒ ′a ⇒ ′a (if - then - else - fi [64 ,64 ,64] 63) where
if p then x else y fi = τ p · x + α p · y

definition while :: ′a ⇒ ′a ⇒ ′a (while - do - od [64 ,64] 63) where
while p do x od = (τ p · x)? · α p

3.1.6. Finding models and counterexamples. Remark 2.33 in Chapter 2
shows a 3-element KAT which refutes the proposition that all subidentities in a
KAT must be tests. Such counterexamples can often be found with Isabelle, using
its Nitpick tool. Nitpick is essentially at SAT-solver that enumerates small finite

30 3. FORMALISING THE ALGEBRA OF PROGRAMS

structures that falsify a given proof goal. In our case, it would try to find a KAT
in which the proposition x ≤ 1⇒ τx = x is false. With Isabelle, we write

lemma (in kat) x ≤ 1 =⇒ τ x = x
nitpick

oops

to invoke Nitpick. The command oops allows Isabelle to ignore this lemma and
proceed. Indeed, after a short search, the 3-element KAT from Remark 2.33 appears
in the output window, represented as a list of elements and tables for α, <, ≤, +
and ·. Bringing Isabelle’s output into more standard mathematical form yields the
carrier set {0, a, 1} (using simpler names for elements), the chain 0 < a < 1 and
the tables

+ 0 a 1
0 0 a 1
a a a 1
1 1 1 1

· 0 a 1
0 0 0 0
a 0 a a
1 0 a 1

α
0 1
a 0
1 0

The table for ≤ does not yield any additional information. In fact, even the table for
+ is determined by the chain 0 < a < 1. The table for · shows that multiplication
coincides with meet. The table for α allows us to determine τ : 0 7→ 0, a 7→ 1, 1 7→
1. The set of fixpoints of τ and hence the elements of the boolean algebra of
tests is indeed B = {0, 1}, the antidomain operations complements these elements.
Element a, by contrast, is not a fixpoint of α and not in B—but it is of course a
subidentity.

Beyond this particular counterexample, Nitpick can be very useful for detecting
typos and other errors in axiom systems, checking whether expected consequences
fail to hold, or that a given set of axioms is irredundant in the sense that some of
these axioms do not follow from the remaining ones, in particular in combination
with Sledgehammer.

Example 3.1.

(1) To show that the left distributivity axiom x · (y + z) = x · y + x · z is
irredundant as an axiom for semirings, we can comment it out in the
corresponding type class and ask Nitpick to find a model in which this
axiom is false, while the remaining semiring axioms are true. This implies
that the left distributivity axiom is not derivable from the other axioms
(by soundness of first-order logic) and therefore irredundant.

(2) The right unfold axiom 1 + x∗ · x ≤ x∗ of Kleene algebra, by contrast, is
redundant and hence not needed as an axiom. When we comment this
axiom out and add it as a lemma, Sledgehammer can find an proof. Nev-
ertheless it is usually kept as an axiom because it highlights an important
duality.

(3) Is the right induction axiom z + y · x ≤ y ⇒ z · x∗ ≤ y of Kleene algebras
redundant? In this case, Nitpick neither finds a counterexample, nor
does Sledgehammer find a proof – at least not on my machine. In fact,
the axiom is irredundant, but to my knowledge, all counterexamples that
separate Kleene algebras with and without this axiom are infinite, and
hence beyond the scope of Nitpick.

3.2. EXAMPLES: PROGRAM TRANSFORMATIONS WITH ISABELLE 31

For more information on Nitpick, see

https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/nitpick.pdf

Sledgehammer internally reconstructs proofs supplied by external automated the-
orem provers, but the counterexamples provided by Nitpick are not internally ver-
ified. In the example related to Remark 2.33 above, for example, Isabelle has not
checked whether the algebra displayed is indeed a KAT. In principle, therefore, the
structures supplied by Nitpick could therefore been deemed less trustworthy than
the proofs found by Sledgehammer. In practice, however, the SAT-solvers used by
Isabelle have large user communities and should thus be reasonably safe.

Those who do not trust external tools can of course formalise and verify coun-
terexamples directly with Isabelle. This can be quite complicated and is beyond
the scope of these lecture notes.

3.1.7. Formalising KAT as a locale. Alternatively, KAT can be formalised
as a locale with two type parameters. The syntax is very similar to that of type
classes, although locales are generally more difficult to set up. I model the order-
embedding of the boolean algebra in the Kleene algebra explicitly.

locale katloc =
fixes test :: ′a::boolean-algebra ⇒ ′b::kleene-algebra (ι)
and not :: ′b::kleene-algebra ⇒ ′b::kleene-algebra (!)
assumes test-sup: ι (sup p q) = ι p + ι q
and test-inf : ι (inf p q) = ι p · ι q
and test-top: ι top = 1
and test-bot : ι bot = 0
and test-not : ι (− p) = ! (ι p)
and test-ord-emb: ι p ≤ ι q =⇒ p ≤ q

The fixes statement shows that the names of the classes boolean-algebra, which is
from Isabelle’s main libraries, and kleene-algebra can be used as sort parameters
that restrict the types α and β. Function ι embeds the boolean algebra of tests into
the Kleene algebra; function ! lifts complementation on the boolean algebra to the
Kleene algebra. The following lemma shows that tests now need to be decorated
with ι’s.

lemma test-eq : p = q ←→ ι p = ι q
by (metis eq-iff test-iso-eq)

I do not use this locale-based formalisation of KAT any further, though there
is little difference in proof performance relative to the class-based one.

3.2. Examples: Program transformations with Isabelle

With type classes and definitions for KAT in place we can formalise the program
transformations from Section 2.5 with Isabelle, translating the proofs in this section
line-by-line into Isabelle most of the time. I only show the simple transformation
in the proof of Lemma 2.34 and leave the more advanced ones as exercises.

lemma while-rec: while p do x od = if p then x · (while p do x od) else 1 fi

https://isabelle.in.tum.de/dist/Isabelle2021-1/doc/nitpick.pdf

32 3. FORMALISING THE ALGEBRA OF PROGRAMS

proof−
have if p then x · (while p do x od) else 1 fi = τ p · x · (τ p · x)? · α p + α p · 1

by (simp add : cond-def mult-assoc while-def)
also have . . . = (τ p · x · (τ p · x)? + 1) · α p

by (simp add : distr)
also have . . . = (τ p · x)? · α p

by (simp add : add-commute)
also have . . . = while p do x od

by (simp add : while-def)
finally show ?thesis..

qed

3.3. Integrating Models

Chapter 2 discusses briefly models of the algebras introduced. Isabelle’s in-
stantiation mechanism allows formalising the model relation between algebras
formalised as type classes and algebraic structures given by more concrete types.
This uses the parametric polymorphism supported by type classes. As usual, the
constant and operation symbols of the algebra must be interpreted as elements
and functions defined in the model, and it must be checked that the axioms of the
algebra are satisfied by this interpretation.

I have formalised most of the models from Chapter 2 with Isabelle in the git
repository. Here I present three examples which highlight important aspects of the
approach. The first considers the semilattice of sets with union and the empty set
from Example 2.4.

instantiation set :: (type) sup-semilattice
begin

definition plus-set :: ′a set ⇒ ′a set ⇒ ′a set where
plus-set x y = x ∪ y

definition zero-set :: ′a set where
zero-set = {}

instance
proof

fix x y z :: ′a set
show x + y + z = x + (y + z)

by (simp add : KA.plus-set-def sup-assoc)
show 0 + x = x

by (simp add : plus-set-def zero-set-def)
show x + x = x

by (simp add : KA.plus-set-def)
show x + y = y + x

by (simp add : KA.plus-set-def sup-commute)
show (x ⊆ y) = (x + y = y)

by (simp add : KA.plus-set-def subset-Un-eq)
show (x ⊂ y) = (x ⊆ y ∧ x 6= y)

by force
qed

3.3. INTEGRATING MODELS 33

end

The instantiation statement asserts that sets – elements of Isabelle’s type set
of arbitrary type type – form semilattices and hence an instance of the type sup-
semilattice. Isabelle asks us first to supply interpretation of the function symbol +
and the constant symbol 0 from the class sup-semilattice in sets. It provides the
binary operation plus-set and the set zero-set that must be matched with concrete
set-theoretic counterparts, in this case, the operation ∪ and the element ∅. An
instance proof is then required to checks that the semilattice axioms hold in this
set-theoretic model. The command intro-classes generates the proof obligations
needed. Discharging them one by one is automatic using Sledgehammer. After
typing end, all facts Isabelle knows about semilattices are available in the context
of sets.

Our second example formalises Example 2.2 and shows that endofunctions form
a monoid. The instantiation statement requires a type of endofunctions. We define
it as a subtype of Isabelle’s function type. It is inhabited by all functions of type
α ⇒ α.

typedef ′a endo = {f :: ′a ⇒ ′a . True}
by simp

setup-lifting type-definition-endo

A proof is required to show that this new type is inhabited. Function composition
and the identity function can then be lifted to it. Isabelle’s lifting package is set up
to supply the type coercion functions Abs-endo, which projects on the endofuctions
among the functions, and Rep-endo, which injects endofunctions into functions.
More information about type definitions and the lifting package can be found in
the Isabelle documentation.

The instantiation declaration below now requires lifting the operation of func-
tion composition and the identity function to type α endo before the instance proof.

instantiation endo :: (type) mult-monoid
begin

lift-definition one-endo :: ′a endo is
Abs-endo id .

lift-definition times-endo :: ′a endo ⇒ ′a endo ⇒ ′a endo is
λx y . Abs-endo (Rep-endo x ◦ Rep-endo y).

instance
proof

fix x y z :: ′a endo
show x · (y · z) = (x · y) · z

by transfer (simp add : Abs-endo-inverse fun.map-comp)
show 1 · x = x

by transfer (simp add : Abs-endo-inverse Rep-endo-inverse)
show x · 1 = x

by transfer (simp add : Abs-endo-inverse Rep-endo-inverse)

34 3. FORMALISING THE ALGEBRA OF PROGRAMS

qed
end

The lifting of the identity function id to type α endo uses function Abs-endo. The
(trival) proof indicated by . checks that the object defined has the right type. The
lifting of function composition injects the endofunctions x and y into the func-
tion type using Rep-endo, composes them using ordinary function composition and
projects the resulting function to an endofunction using Abs-endo. The associated
proof checks that endofunctions are closed under composition. Command transfer
uses generic properties of Abs- and Rep-functions to simplify the instance proof.

As a final example we show that sets under intersection and the set UNIV
of all sets (the implicit carrier set mentioned) forms another semilattice. Isabelle,
however, allows only one instance per type in an instantiation. We therefore need
to include sets with meets by an interpretation statement. These are part of
Isabelle’s locale infrastructure. We use this mechanism quite frequently in later
chapters for building verification components, as it is not restricted to types such
as set or endo.

interpretation inter-sl : sup-semilattice (∩) UNIV (⊇) (⊃)
proof unfold-locales

fix X Y Z :: ′a set
show X ∩ Y ∩ Z = X ∩ (Y ∩ Z)

by (simp add : Int-assoc)
show X ∩ Y = Y ∩ X

by (simp add : inf-commute)
show UNIV ∩ X = X

by simp
show X ∩ X = X

by simp
show (Y ⊆ X) = (X ∩ Y = Y)

by blast
show (Y ⊂ X) = (Y ⊆ X ∧ X 6= Y)

by auto
qed

The list of operations and relations in the interpretation declaration associates
the function and predicate symbols of the semiattice class with the set-theoretic
model, as before. Typing unfold-locales now exposes the proof obligations. This
time we have chosen to discharge them step by step in an Isar proof. We could have
given a similar instance proof for union and the empty set above. We could also
have given an interpretation proof for endofunctions without defining a subtype,
adding the type declaration for functions explicitly to the list of operations after
the interpretation statement.

CHAPTER 4

Two Semantics of Program Execution

KAT is a simple, but impressive tool for reasoning equational about while pro-
grams. Yet it is too abstract for describing in detail how variable assignments act
on program stores. In this chapter I discuss two models of KAT as an intermediate
step towards such concrete semantics. They describe how programs transform un-
structured state spaces without any concerte notion of program store or assignment.
The first semantics models programs as binary relations between input and output
states. The inherent nondeterminism of relations makes modelling while-loops and
failure easier. Alternatively, we model programs as (nondeterministic) state trans-
formers that map input states to sets of output states. This model is rooted in
category theory and the theory of monads, but we leave these connections implicit.
Both semantics are standard. We start with binary relations.

4.1. Relational Semantics

Suppose that the set X is the state space of Imp, the set of program stores on
which programs act. We consider state spaces based on concrete program stores
in detail in Chapter 7. For now it suffices to assume that state spaces form un-
structured sets. We model programs as binary relations R ⊆ X ×X on X. Recall
that (a, b) ∈ R means that a ∈ X is an input state and b ∈ X an output state that
program R relates with a. In other words, if R is executed from a, then b is one
of the states in which R may terminate. We write RelX = P(X ×X) for the set
of all binary relations on X. Thus RelX can be seen as the set of all programs on
state space X.

Relations admit nondeterminism when an element is related to more than one
element, for instance,

b

a

c

where we simply write a→ b instead of (a, b) ∈ R. They also allow that an element
is related to no other element. This distinguishes relations on X from functions,
and even partial functions on X that need not be defined everywhere on X.

4.1.1. Basic Algebra of Binary Relations. Relations, as sets, form (pow-
erset) boolean algebras. The least element in the boolean algebra of relations is
the empty relation ∅X on X × X; the greatest element is the universal relation
UX = X ×X. One can take unions and intersections of relations as their joins and
meets, and complements of any relation like in Example 2.25.

The union of relations is arguably more important for modelling programs than
intersection or complementation: the union of two relational programs models their

35

36 4. TWO SEMANTICS OF PROGRAM EXECUTION

nondeterministic choice. Intersecting two programs may seem less interesting, and
few people may ever have attempted to take the complement of a program in
practice.

Building a relational model of KAT requires one additional element and two
additional operations. Recall that the identity relation on X is

IdX = {(a, a) | a ∈ X},

and that the relational composition of R,S ∈ RelX is the relation

R ;S = {(a, b) | ∃c. (a, c) ∈ R ∧ (c, b) ∈ S}.

Hence (a, b) ∈ R ;S ⇔ ∃c. (a, c) ∈ R ∧ (c, b) ∈ S.

c

a b

SR

R ;S

Finally recall that, with R0 = IdX and Ri+1 = R ;Ri for all i ∈ N, the reflexive
transitive closure of R ∈ RelX is the relation

R∗ =
⋃
i∈N

Ri .

Hence (a, b) ∈ R∗ ⇔ ∃i ∈ N. (a, b) ∈ Ri, which means that R∗ is Ri for some
nondeterministically chosen i ∈ N.

Remark 4.1. Binary relations on RelX correspond to directed graphs with
vertices in X and arrows in R. Finite relations with |X| = n, for some n ∈ N, can
be modelled by n× n (adjacency) matrices over the booleans B with addition and
multiplication defined as in Example 2.12. The union of relations then corresponds
to matrix addition; relational composition to matrix multiplication. The empty
relation corresponds to the zero matrix and the identity relation to the diagonal
matrix. The reflexive transitive closure becomes a sum of matrix iterations. It
becomes stationary after at most n2 steps.

Example 4.2. Relation R = {(1, 2), (1, 3), (2, 1), (3, 3)} over X = {1, 2, 3} is
represented by the digraph and matrix

1 2

3

0 1 1
1 0 0
0 0 1

where rows are implicitly indexed by 1, 2 and 3 from left to right and columns by
1, 2 and 3 from top to bottom.

Relation R ;R = {(1, 1), (1, 3), (2, 2), (2, 3), (3, 3)} captures two-step reachabil-
ity with respect to R.

1 2

3

0 1 1
1 0 0
0 0 1

 ·
0 1 1

1 0 0
0 0 1

 =

1 0 1
0 1 1
0 0 1

4.1. RELATIONAL SEMANTICS 37

The reflexive-transitive closure R∗ = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 3)
thus captures global reachability in R, including self-reachability.

1 2

3

R∗ =

1 1 1
1 1 1
0 0 1

�

Remark 4.3. For proper reachability, the transitive closure of R can be used.
It is defined as R+ =

⋃
i∈NR

i+1. It is easy to check that R∗ = IdX ∪ R+ and
R+ = R ;R∗.

4.1.2. Relation KAT. To show that binary relations form KATs we proceed
via dioids and Kleene algebras.

Proposition 4.4. (RelX, ;,∪, ∅X , IdX) forms a dioid.

Proof. We need to show that (RelX, ;, IdX) is a monoid, that (RelX,∪, ∅X) is
a semilattice, that relational composition distributes over union in both arguments
and that ∅X is a left and right zero of relational composition. We prove associativity
of relational composition as an example. Let R,S, T ∈ RelX. Then

(a, b) ∈ R ;(S ;T)⇔ ∃c. (a, c) ∈ R ∧ (c, b) ∈ S ;T

⇔ ∃c. (a, c) ∈ R ∧ (∃d. (c, d) ∈ S ∧ (d, b) ∈ T)

⇔ ∃c, d. (a, c) ∈ R ∧ (c, d) ∈ S ∧ (d, b) ∈ T
⇔ ∃d. (∃c. (a, c) ∈ R ∧ (c, d) ∈ S) ∧ (d, b) ∈ T
⇔ ∃d. (a, d) ∈ R ;S ∧ (d, b) ∈ T
⇔ (a, b) ∈ (R ;S) ;T.

Associativity of relational composition then follows because two sets are equal if
and only if they have the same elements. �

The following generalised distributivity or continuity laws for relational com-
position are useful for showing that RelX forms a Kleene algebra.

Lemma 4.5. Let X be a set, R,S ∈ RelX and R,S ⊆ RelX. Then

(1) R ; (
⋃
S) =

⋃
S∈S R ;S,

(2) (
⋃
R) ;S =

⋃
R∈RR ;S.

Proof. We only show (1); (2) follows by opposition.

(a, b) ∈ R ;
(⋃
S
)
⇔ ∃c. (a, c) ∈ R ∧ (c, b) ∈

⋃
S

⇔ ∃c. (a, c) ∈ R ∧ ∃S ∈ S. (c, b) ∈ S
⇔ ∃S ∈ S.∃c. (a, c) ∈ R ∧ (c, b) ∈ S
⇔ ∃S ∈ S. (a, b) ∈ R ;S

⇔ (a, b) ∈
⋃
S∈S

R ;S.

�

38 4. TWO SEMANTICS OF PROGRAM EXECUTION

Proposition 4.6. (RelX, ;,∪, ∅X , IdX ,
∗) forms a Kleene algebra.

Proof. Relative to Proposition 4.4, it remains to verify the star axioms. This
is left as an exercise. �

Remark 4.7. Continuity of relational composition can be used for proving the
star axioms in the relational model. This sheds further light on these laws. Strictly
speaking, the function λx. z + x · y has a binary least fixpoint x∗2z that depends
on the parameters z and x and satisfies

z + x · (x∗2z) = x∗2z and z + x · y = y ⇒ x∗2z ≤ y.
In the proof of Proposition 4.6 we see how, continuity allows decomposing this
binary fixpoint into a unary one and a relational composition, that is, x∗2z = x∗ ·z,
while relating the unary fixpoint with an iteration. The left star induction axiom
z + x · y ≤ y ⇒ x∗ · z ≤ y of Kleene algebra therefore captures the least fixpoint
property of the binary fixpoint x∗2z and its decomposition into the unary fixpoint
x∗ · z at the same time, using continuity implicitly. The left star unfold axiom
1+x·x∗ ≤ x∗ becomes the fixpoint law for the binary fixpoint simply by multiplying
both sides of the inequality with z and using x∗2z = x∗ · z. In sum, the left star
axioms of Kleene algebra thus do not axiomatise x∗, but x∗2y and its decomposition
into x∗ · z by continuity, without being able to express continuity in the language
of Kleene algebra. A dual argument holds for the right star axioms.

Remark 4.8. The relationship between fixpoints, continuity and iteration can
be studied more algebraically. By Knaster-Tarski’s fixpoint theorem, every order-
preserving function over a complete lattice has a least fixpoint. A complete lattice is
a partial order in which each set has a supremum. Boolean algebras need only have
binary suprema or joins, but powerset boolean algebras and therefore algebras of
binary relations have arbitrary suprema, represented by

⋃
. The function λX. R ∪

S ;X is order-preserving over the complete lattice of binary relations in RelX, hence
the binary least fixpoint R∗2S exists.

By Kleene’s fixpoint theorem, every continuous function (which means that the
function distributes over suprema in the sense of Lemma 4.5) can be represented
by an iteration. The function λX. R∪S ;X is continuous over the complete lattice
of binary relations in RelX, but continuity cannot be expressed in Kleene algebra
because + can only model finite suprema.

Finally, fixpoint fusion theorems provide conditions for decomposing fixpoints
of functions over a complete lattice. Without mentioning details, it can be shown
that the functions f = λX. X ;R and g = λX. Id ∪ S ;X satisfy these conditions,
in particular, f needs to be continuous, so that the fixpoint of f ◦g = λX. R∪S ;X
becomes function f applied to the fixpoint of g. Once again these conditions can
be shown to hold in the relational model.

Further details can be found in the literature.

The main theorem in this section – that relations form KATs – requires addi-
tional definitions. First, I write

Id↓X = {R ∈ RelX | R ⊆ IdX}
for the set of all subidentity relations. All elements of a subidentity are therefore of
the form (a, a) with a ∈ X, so they relate elements of X either with themselves or
with no other element. I write P,Q, . . . for relational subidentities. Subidentities

4.1. RELATIONAL SEMANTICS 39

are in one-to-one correspondence with predicates ranging over X and with subsets
of X. Hence one can identify Id↓X with PX and write P a instead of (a, a) ∈ P .
Next, P = IdX − P defines the complement of P ∈ Id↓X within Id↓X .

Theorem 4.9. (RelX, Id↓X , ;,∪, (−), ∅X , IdX ,
∗) forms a KAT.

Proof. Relative to Proposition 4.6 it remains to show that Id↓X forms a sub-

algebra of RelX that is a boolean algebra with ; as intersection and (−) as com-
plementation restricted to this subalgebra. In particular, it must be shown that all
unions, intersections, complements (with respect to (−)) and stars of elements in
Id↓X are again in Id↓X . Details are left as an exercise. �

Because of this result, we call RelX the relation Kleene algebra with tests over
X. As RelX can be identified with the set of (abstract) programs with state space
X, Theorem 4.9 puts the programming intuitions for KAT from Chapter 2 on solid
semantic foundations. Accordingly, two programs are equivalent if they are equal
as relations, and a program R is smaller than a program S if R ⊆ S. Theorem 4.9
yields a soundness proof for KAT and its abstract program semantics with respect
to the more concrete relational semantics. It remains to link it with program stores.

Remark 4.10. Every partial order is of course a binary relation. More gener-
ally, a relation R ∈ RelX is called reflexive if (a, a) ∈ R for all a ∈ X and transitive
if (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R for all a, b, c ∈ X. It is easy to show
that R is reflexive if and only if IdX ⊆ R and transitive if and only if R ;R ⊆ R.
It then follows from Theorem 4.9, Lemma 2.16 and remark 2.18 that R∗ is indeed
the reflexive-transitive closure of R.

Remark 4.11. I have claimed in Chapter 2 that px and xq model the restriction
of program x to input states where predicate p holds and output states where
predicate q holds in KAT. This can now be checked in the relational semantics. Let
R ∈ RelX and P,Q ∈ Id↓X . Then, identifying subidentities and predicates,

P ;R = {(a, b) | ∃c. (a, c) ∈ P ∧ (c, b) ∈ R} = {(a, b) | P a ∧ (a, b) ∈ R}
and R ;Q = {(a, b) | (a, b) ∈ R ∧Qb} by opposition.

4.1.3. Further Operations on Binary Relations. The algebra of binary
relations admits further operations. I briefly mention three of them. The converse
of relation R ∈ RelX is the relation

R` = {(a, b) | (b, a) ∈ R}.
Hence (a, b) ∈ R` ⇔ (b, a) ∈ R.

a b
R`

R

In the relational program semantics (but outside of relation KAT), conversion swaps
the execution order of programs. One can therefore express opposition explicitly in
terms of conversion, using the following lemma.

Lemma 4.12. Let R ∈ RelX. Then

(1) ∅`X = ∅X , Id`
X = IdX and U`

X = UX ,
(2) R`` = R,
(3) (R ∪ S)` = R` ∪ S` and (R ∩ S)` = R` ∩ S`,

40 4. TWO SEMANTICS OF PROGRAM EXECUTION

(4) (R ;S)` = S` ;R`,
(5) (−R)` = −(R`),
(6) (R∗)` = (R`)∗.

Proof. We check (6) as an example. First, we prove by induction on i that(
Ri
)`

=
(
R`
)i

for all i ∈ N. In the base case,(
R0
)`

= Id`
X = IdX =

(
R`
)0
.

For the inductive step, suppose (Ri)` =
(
R`
)i

. Then(
Ri+1

)`
=
(
R ;Ri

)`
=
(
Ri
)`

;R` =
(
R`
)i

;R` =
(
R`
)i+1

.

Finally,

(a, b) ∈ (R∗)` ⇔ (b, a) ∈ R∗

⇔ ∃i ∈ N. (b, a) ∈ Ri

⇔ ∃i ∈ N. (a, b) ∈
(
Ri
)`

⇔ ∃i ∈ N. (a, b) ∈
(
R`
)i

⇔ (a, b) ∈
(
R`
)∗
.

�

The domain and range (codomain) of R ∈ RelX are defined as

dom R = {a | ∃b. (a, b) ∈ R} and ran R = {b | ∃a. (a, b) ∈ R}.

Hence x ∈ dom R⇔ ∃b. (a, b) ∈ R and b ∈ ran R⇔ ∃a. (a, b) ∈ R.
Relations satisfy even more complex laws such as R` ;(−(R ;S)) ⊆ −S, but

these are irrelevant for our purposes.

4.2. State Transformer Semantics

Next, I present a state transformer semantics that considers programs as non-
deterministic functions that transform program states. This is perhaps a more
natural view of programs as transformations on a state space than binary relations,
but the two models are isomorphic, as we will see.

4.2.1. Basic Algebra of State Transformers. A state transformer is a
function of type X → PX. It maps elements of X to subsets of X, including the
empty set. I write StaX for the set of all state transformers on X. The aim of this
section is to define the Kleene algebra operations on StaX.

To compose two state transformers f, g : X → PX, f after g, we first map an
element a by f : a 7→ B to some B ⊆ X. Then we map every b ∈ B by g : b 7→ Cb

to some Cb ⊆ X. Combining both steps yields c ∈ (f ◦K g) a⇔ ∃b. b ∈ f a∧c ∈ g b,
which defines the Kleisli composition

(f ◦K g) a =
⋃
{g b | b ∈ f a}.

Remark 4.13. In the standard definition of Kleisli composition in category
theory, the composition is executed in the order of function composition (f ◦ g)x =
f (g x), that is, the right-hand side in the definition above would in fact define
(g ◦K f). I have chosen the reverse order that works in the direction of relational

4.2. STATE TRANSFORMER SEMANTICS 41

composition. Otherwise all algebraic definitions would have to be reversed, so that
if p then x else y, for instance, would become x · p+ y · p.

The identity state transformer ηX : X → PX maps every element a ∈ X to
the singleton set {a} containing it,

ηX = {−}.

And indeed, it is easy to check that, for all a ∈ X,

(f ◦K ηX) a =
⋃
{{b} | b ∈ f a} = f a,

(ηX ◦K f) a =
⋃
{f b | b ∈ {a}} =

⋃
{f a} = f a,

The sum f + g : X → PX of state transformers f, g : X → PX is defined by
so-called pointwise extension as

(f + g) a = f a ∪ g a.

It is immediate from this definition that + is associative, commutative and idem-
potent. It also follows that

f ≤ g ⇔ ∀a ∈ X. f a ⊆ g a.

The star of state transformer f : X → PX is defined, with f0K = ηX and
f (i+1)K = f ◦K f iK , as

f∗K a =
⋃
i∈N

f iK a,

for all a ∈ X. Thus b ∈ f∗K a⇔ ∃i ∈ N. b ∈ f iK .
Finally, the zero state transformer is

0X = λx. ∅.

Next we consider the boolean subalgebra of KAT in the context of StaX.
A state transformer f ∈ StaX is a subidentity if f ≤ ηX . By definition, it

maps elements a ∈ X either to {a} or to ∅:

b ∈ f a ⇔ b = a ∧ f a 6= ∅ ⇔ b = a ∧ f a = {a}.

I write η↓X for the set of all subidentity state transformers and P,Q . . . for subiden-
tities, for notational coherence with respect to relations and predicates. Subiden-
tities are once again in one-to-one correspondence with predicates and sets. Hence
one can identify η↓X with PX and write P a instead of P a 6= ∅. The relationship
between subidentity state transformers and relational subidentities is discussed in
the following section.

It remains to define the complementation of a subidentity state transformer
P ∈ η↓X as P = ηX − P , where (f − g) a = f a − g a is defined by pointwise
extension, as expected. Unfolding definitions,

P a =

{
{a}, if P a = ∅,
∅, if P a = {a}.

Remark 4.14. It is easy to check that f ◦K Q and P ◦K f restrict once again
the inputs of program f to states where P ∈ η↓X holds and its outputs to states
where Q ∈ η↓X holds. This is left as an exercise.

42 4. TWO SEMANTICS OF PROGRAM EXECUTION

One could now show that StaX forms a KATs. However, I do not perform this
proof directly and obtain if from that for binary relations in the next section. A
direct proof can be found in the Isabelle theories.

4.2.2. Isomorphism Between Relations and State Transformers. It is
often important to compare and formally relate different models and semantics of
programs. One way is to use mappings between models that relate or even preserve
their structure, which implies that mappings preserve operations. In mathemat-
ics, structure-preserving functions between algebras are known as homomorphisms.
Models that have the same structure are related by isomorphisms, which are bi-
jective pairs that preserve all operations. As an example, I define an isomorphism
between RelX and StaX that preserves the KAT operations.

We associate the state transformer fR = λx. {b | (x, b) ∈ R} in StaX with
each relation R ∈ RelX and the relation Rf = {(a, b) | b ∈ f a} in RelX with each
state transformer f ∈ StaX. This defines two functors S : RelX → StaX and
R : StaX → RelX by

S Ra = {b ∈ X | (a, b) ∈ R} and R f = {(a, b) | b ∈ f a} .

These are essentially the curry and uncurry functions known from functional
programming. We wish to show that they are isomorphisms between RelX and
StaX. This requires proving that they are a pair of injective and surjective functions
that map between ; and ◦K , ∪ and +K , ∅ and 0X , IdX and ηX , and (−)∗ and (−)∗K

and preserve subidentities. This is the subject of the following lemma.

Lemma 4.15. The functions S and R are a bijective pair. They also satisfy

(1) S (R ;S) = S R ◦K S S and R (f ◦K g) = R f ;R g,
(2) S IdX = ηX and R ηX = IdX ,
(3) S ∅ = 0K and R 0K = ∅,
(4) S (R ∪ S) = S R+ S S and R (f + g) = R f ∪R g,
(5) S R∗ = (S R)∗K and R f∗K = (R f)∗.

Proof. We first show that S ◦ R = idStaX and R ◦ S R = idRelX :

S (R f) a = {b | (a, b) ∈ R f} = {b | b ∈ f a} = f a,

R (S R) = {(s, b) | b ∈ (S R) a} = {(a, b) | (a, b) ∈ R} = R.

It follows that S and R are injective,

S R = S S ⇒ R (S R) = R (S S)⇒ R = S,

and likewise for R. Beyond that, S and R are surjective by definition of Rf and
fR. Thus S and R form a bijective pair. Next I show (2) as an example.

S IdX a = {b | (a, b) ∈ IdX} = {a} = ηX a.

R ηX = {(a, b) | b ∈ {a}} = {(a, b) | a = b} = IdX .

The remaining proofs are left as an exercise. �

Lemma 4.16. The functors S and R satisfy

S R = S R and R f = R f.

4.2. STATE TRANSFORMER SEMANTICS 43

Proof.

S Ra = {b | (a, b) ∈ IdX ∧ (a, b) 6∈ R} = {b | b ∈ S ηX a− S Ra} = S Ra,
R f = {(a, b) | b ∈ ηX a ∧ y 6∈ f a} = R ηX −R f = IdX −R f = R f.

�

Remark 4.17. The functorsR and S set up the isomorphisms between subiden-
tity state transformers, subidentity relations, predicates and sets as well. For every
P ∈ Id↓X we can use S to calculate the isomorphic fP ∈ η↓X :

fP a = {b ∈ X | P a} =

{
{a}, if P a,

∅, otherwise,

identifying subidentity relations with predicates in this definition.
For every P ∈ η↓X we can useR to calculate the isomorphic subidentity relation

RP ∈ Id↓X as Rp = RP = {(a, a) | P a 6= ∅}. The isomorphic set is therefore given
by {a | P a}, identifying subidentity state transformers with predicates.

4.2.3. State Transformer KAT. We can now use R and S to infer the KAT
structure on StaX from that in RelX.

Proposition 4.18. (StaX, ◦K ,+, 0X , ηX ,∗K) forms a Kleene algebra.

Proof. This is an immediate consequence of the isomorphism with RelX.
Concretely, we can calculate instances of axioms in StaX from their counterparts
in RelX using R and S. We derive associativity of ◦K from that of ; as an example.

f ◦K (g ◦K h) = S (R (f ◦K (g ◦K h)))

= S (R f ;(R g ;Rh))

= S ((R f ;R g) ;Rh)

= (S (R f) ◦K S (R g)) ◦K S (Rh)

= (f ◦K g) ◦K h.

�

Theorem 4.19. (StaX, η↓X , ◦K ,+, (−), 0X , ηX ,
∗K) forms a KAT.

Proof. Straightforward from Theorem 4.18 using the isomorphisms S and R
on subidentity relations and subidentity state transformers. �

We have now constructed two computationally important models of KAT: the
relational KAT RelX and the state transformer KAT StaX. Our programming
intuitions for KAT are therefore standing on solid ground. It remains to relate state
space X with program stores. But before that, in Chapter 6, we use KAT to derive
inference rules for reasoning about while programs abstractly, and we will use them
for generating structural verification conditions for imperative programs.

The benefits of algebra in mathematics and computer science are well known.
One of them is that one can reason equationally about objects, which is easy to
automate on a machine. Another one is that algebraic axioms may hold uniformly
in many models of interest. Here, we could still argue that StaX and RelX are
simply two isomorphic incarnations of the same underlying structure, namely non-
deterministic functions. Yet there are nonisomorphic models of KAT that offer more

44 4. TWO SEMANTICS OF PROGRAM EXECUTION

detailed views of program execution in terms of program traces. These are partic-
ularly interesting for concurrent program executions, yet beyond the scope of these
lecture notes. I only present a model of program traces briefly in the following and
final section of this chapter.

4.3. Path Semantics

In more refined semantics of programs than RelX or StaX one may wish to
consider execution sequences of programs in which information about the states a
program visits and their state transitions alternates. This is in particular important
for concurrent programs that interact and interfere with each other or for reactive
systems, which are not even meant to terminate.

Definition 4.20. A directed graph G = (V,E, s, t) is formed by a set V of
vertices, a set E of edges and a source map and a target map s, t : E → V .

By definition, digraphs can have multiple edges between pairs of vertices as
well as loops on vertices. A path in a digraph G is a sequence

π = (v1, e1, v2, . . . , vn−1, en−1, vn)

that starts and ends with an element of V and in which elements of V and E
alternate. These must be compatible with source and target maps in the obvious
way: s(ei) = vi and t(ei) = vi+1 for 0 < i < n in the example above. We extend
source and target maps from digraphs to paths in the obvious way. For instance,
s(π) = v1 and t(π) = vn. In the context of programs, the set V represents the state
space of a program and the set E the set of transitions between states. Paths then
correspond to possible execution traces of programs.

Composition of paths π = (v1, . . . , em−1, vm) and π′ = (v′1, e
′
1 . . . , v

′
n) is defined

if vm = v′1, in which case it yields the path

π · π′ = (v1, . . . , vm−1, em−1, vm, e
′
1, . . . , v

′
n).

It concatenates the two paths while identifying the vertices at the ends if possible.
I write π : v1 → v2 to indicate sources and targets of paths.

It is easy to check that path composition is associative whenever it is defined.
Let π1 : v1 → v2, π2 : v3 → v4 and π3 : v5 → v6. Then π1 · (π2 · π3) = (π1 · π2) · π3
whenever v2 = v3 and v4 = v5. It is also easy to check that paths (v) of length 0
are identities of composition. For π : v1 → v2, for example, (v1) · π · (v2) = π.

We write Path(G) for the set of all paths over digraph G and IdG for the set
of all zero-length paths.

Proposition 4.21. (P Path(G), ·,∪, ∅, IdG) forms a Kleene algebra with, for
all X,Y ⊆ Path(G),

X · Y = {π · π′ | π ∈ X,π′ ∈ Y and π · π′ defined}, X∗ =
⋃
i≥0

Xi.

Proof. Exercise. �

Once again, the subidentities of paths, that is, the subsets of IdG, form a
boolean algebra. So let IdG↓ = {X ⊆ Path(G) | X ⊆ IdG}. We can then state the
main result of this section.

Theorem 4.22. (P Path(G), IdG↓) forms a KAT.

4.3. PATH SEMANTICS 45

Proof. Exercise. �

Remark 4.23. The path algebra over a digraph G can be seen as the free
category generated by G, in which the objects are the vertices of G and the paths
π : v → v′ the morphisms. Details can be found in any textbook on category theory,
but are beyond the scope of these lecture notes.

Remark 4.24. We have already seen that languages form Kleene algebras. It is
easy to check that very language model is isomorphic to a path model over a digraph
with one vertex. For languages over alphabet Σ, take the digraph ({∗},Σ, s, t),
where s, t : a 7→ ∗ for every a ∈ Σ. The paths over this digraph, which all ∗’s
deleted, are nothing but Σ∗, the set of all words over Σ. Conversely, we can map
words to path by injecting ∗ in the obvious way.

Lemma 4.25. Every path model P Path(G) is isomorphic to a relational model
on P (Path(G)× Path(G)) via the Cayley map

c(X) = {(π, ππ′) | π ∈ Path(G) and π′ ∈ X}, for X ⊆ V.

Proof. For c(X · Y) = c(X); c(Y), for instance,

c(X · Y) = {(π1, π1π2π3) | π1 ∈ Path(G), π2 ∈ X,π3 ∈ Y }
= {(π1, π1π2) | π1 ∈ Path(G), π2 ∈ X}; {(π1π2, π1π2π3) | π1 ∈ Path(G), π2 ∈ X,π3 ∈ Y }
= {(π1, π1π2) | π1 ∈ Path(G), π2 ∈ X}; {(π4, π4π3) | π4 ∈ Path(G), π3 ∈ Y }
= c(X); c(Y).

For injectivity, if X 6= Y , suppose π ∈ X − Y , the other case being symmetric, and
suppose e is a left unit of π, looping on the source vertex of π. Then (e, x) ∈ h(X),
but not in h(Y). The relational model is then the image of P Path(G) under c. �

Conversely, not every relational model is isomorphic to a path model. It is easy
to see that X2 = IdG ⇒ X = IdG holds for all X ∈ Path(G), but the analogous
property fails for the relation R = {(0, 1), (1, 0)}.

CHAPTER 5

Formalising the Two Semantics

Before formalising the relational and state transformer semantics with Isabelle
and showing that they form models of KAT we prove two useful induction laws
for powers in the context of class dioid. The second law follows from the first by
opposition.

lemma power-inductl : z + x · y ≤ y =⇒ x ˆ i · z ≤ y
proof (induct i)

case 0
have x ˆ 0 · z = z

by simp
also have . . . ≤ y

using 0 .prems local .add-lub by fastforce
finally show ?case.

next
case (Suc i)
have x ˆ Suc i · z = x · x ˆ i · z

by simp
also have . . . ≤ x · y

by (simp add : Suc.hyps Suc.prems local .mult-assoc local .mult-isol)
also have . . . ≤ y

using Suc.prems local .add-lub by auto
finally show ?case.

qed

lemma power-inductr : z + y · x ≤ y =⇒ z · x ˆ i ≤ y
〈Proof 〉

5.1. Relational Semantics

We follow Section 4.1.2 and formalise the model relationship between relations
and KAT with Isabelle in three steps, starting from dioids. First we add notation
for relational composition.

notation relcomp (infixl ; 70)

Showing that relations form dioids is straightforward and automatic because
relations are well supported in Isabelle. We use an interpretation statement as
Isabelle has no direct type for binary relations on a set X.

interpretation rel-d : dioid (∪) {} Id (;) (⊆) (⊂)
by unfold-locales auto

47

48 5. FORMALISING THE TWO SEMANTICS

Showing that relations form Kleene algebras requires a few technical lemmas,
mainly because Isabelle’s standard reflexive-transitive closure operation has not
been defined as a union of powers. We need to relate it with the operation powers
in the relation dioid rel-d, which comes from multiplicative monoids.

lemma power-is-relpow : rel-d .power X i = X ˆˆ i
〈Proof 〉

Here, rel-d.power referes to the power operation for multiplicative monoids instan-
tiated to relation dioids. The proof uses induction on i and poses no difficulty.

lemma rel-star-def : R∗ = (
⋃

i . rel-d .power R i)
by (simp add : power-is-relpow rtrancl-is-UN-relpow)

In addition, the following distributivity or continuity laws are helpful for de-
riving the star induction laws in the relational model.

lemma rel-star-contl : R ; S∗ = (
⋃

i . R ; rel-d .power S i)
proof−

have R ; S∗ = R ; (
⋃

i . rel-d .power S i)
unfolding rel-star-def by simp

also have . . . = (
⋃

i . R ; rel-d .power S i)
by (simp add : relcomp-UNION-distrib)

finally show ?thesis.
qed

lemma rel-star-contr : R∗ ; S = (
⋃

i . (rel-d .power R i) ; S)
by (simp add : rel-star-def relcomp-UNION-distrib2)

Their proofs use the more general continuity laws from Lemma 4.5. Next we show
that relations form Kleene algebras.

interpretation rel-ka: kleene-algebra (∪) {} Id (;) (⊆) (⊂) rtrancl
proof unfold-locales

fix x y z :: ′a rel
show Id ∪ x ; x∗ ⊆ x∗

by (simp add : rel-star-unfoldl)
show Id ∪ x∗ ; x ⊆ x∗

by fastforce
show z ∪ x ; y ⊆ y =⇒ x∗ ; z ⊆ y

by (simp add : rel-star-inductl)
show z ∪ y ; x ⊆ y =⇒ z ; x∗ ⊆ y

by (simp add : rel-star-inductr)
qed

These depend on lemmas proving the unfold and induction axioms, which can be
found in the Isabelle theories. Finally, it remains to define the antitest operation
in the relational model.

definition rel-atest :: ′a rel ⇒ ′a rel (αr) where

5.2. STATE TRANSFORMER SEMANTICS 49

αr R = Id ∩ −R

The interpretation statement showing that relations form KATs is then routine.

interpretation rel-kat : kat (∪) {} Id (;) (⊆) (⊂) rtrancl αr

by unfold-locales (auto simp: rel-atest-def)

After this result, all laws proved about KAT within the context of class kat are
available in the relational program semantics.

5.2. State Transformer Semantics

State transformers are not part of Isabelle’s main libraries. We need to define
their type and operations and do some background theory engineering. This de-
velopment is not within the context of a type class or locale. First we introduce ′a
sta as an abbreviation for the function type ′a ⇒ ′a set. Then we define the most
important operations on state transformers.

type-synonym ′a sta = ′a ⇒ ′a set

abbreviation eta :: ′a sta (η) where
η x ≡ {x}

abbreviation nsta :: ′a sta (ν) where
ν x ≡ {}

definition kcomp :: ′a sta ⇒ ′a sta ⇒ ′a sta (infixl ◦K 75) where
(f ◦K g) x =

⋃
{g y |y . y ∈ f x}

definition kadd :: ′a sta ⇒ ′a sta ⇒ ′a sta (infixl +K 65) where
(f +K g) x = f x ∪ g x

definition kleq :: ′a sta ⇒ ′a sta ⇒ bool (infix v 50) where
f v g = (∀ x . f x ⊆ g x)

definition kle :: ′a sta ⇒ ′a sta ⇒ bool (infix < 50) where
f < g = (f v g ∧ f 6= g)

Next we prove some helper lemmas for these operations.

lemma sta-iff : ((f :: ′a sta) = g) = (∀ x y . y ∈ f x ←→ y ∈ g x)
unfolding fun-eq-iff by force

lemma kcomp-iff : y ∈ (f ◦K g) x = (∃ z . y ∈ g z ∧ z ∈ f x)
unfolding kcomp-def by force

lemma kadd-iff : y ∈ (f +K g) x = (y ∈ f x ∨ y ∈ g x)
unfolding kadd-def by simp

lemma kleq-iff : f v g = (∀ x y . y ∈ f x −→ y ∈ g x)
unfolding kleq-def by blast

50 5. FORMALISING THE TWO SEMANTICS

This makes the interpretation proof for dioids straightforward. But first we prove
associativity of Kleisli composition as an example.

lemma kcomp-assoc: (f ◦K g) ◦K h = f ◦K (g ◦K h)
proof−
{fix x y
have y ∈ ((f ◦K g) ◦K h) x = (∃ v . y ∈ h v ∧ (∃w . v ∈ g w ∧ w ∈ f x))

unfolding kcomp-iff by simp
also have . . . = (∃w . (∃ v . y ∈ h v ∧ v ∈ g w) ∧ w ∈ f x)

by force
also have . . . = (y ∈ (f ◦K (g ◦K h)) x)

unfolding kcomp-iff by simp
finally have y ∈ ((f ◦K g) ◦K h) x = (y ∈ (f ◦K (g ◦K h)) x).}
thus ?thesis

by force
qed

The braces allow us to give a point-wise proof with element x first, and then gen-
eralise it to a point-free one.

interpretation sta-monm: monoid-mult η (◦K)
by unfold-locales (transfer , force)+

interpretation sta-di : dioid (+K) ν η (◦K) (v) (<)
by unfold-locales (transfer , force)+

The interpretation statement for multiplicative monoids brings once again powers
in scope. It allows us to define the Kleene star for state transformers with respect
to Kleisli composition.

abbreviation kpow ≡ sta-monm.power

definition kstar :: ′a sta ⇒ ′a sta where
kstar f x = (

⋃
i . kpow f i x)

Helper lemmas analogous to those of the relational model then allow us to show
that state transformers form Kleene algebras. We do not show the details.

interpretation sta-ka: kleene-algebra (+K) ν η (◦K) (v) (<) kstar
by unfold-locales (transfer , auto simp: rel-star-inductl rel-star-inductr)+

After defining the antitest operation and a helper lemma for it, the final interpre-
tation proof for KAT is equally simple.

definition sta-atest :: ′a sta ⇒ ′a sta (αs) where
αs f x = η x − f x

lemma katest-iff : y ∈ αs f x ←→ y ∈ η x ∧ ¬ y ∈ f x
unfolding sta-atest-def by simp

interpretation sta-kat : kat (+K) ν η (◦K) (v) (<) kstar αs

apply unfold-locales

5.3. ISOMORPHISM BETWEEN THE SEMANTICS 51

unfolding sta-iff katest-iff eta-def kcomp-iff kadd-iff nsta-def by auto

It remains to mention that all interpretation proofs are incremental. In those for
KAT, for instance, only the antitest axioms need to be checked relative those for
Kleene algebra, if an interpretation proof for this class has already been given.

5.3. Isomorphism Between the Semantics

Setting up the isomorphisms from Section 4.2.2 with Isabelle is straightforward.
Like the definitions for state transformers, this happens outside a type class or locale
context. Manipulating functors, that is, functions that act on functions or relations
poses no problem for Isabelle. However, Sledgehammer may struggles with such
higher-order functions. Many proofs rely rather on simp, auto, force or blast ; they
require more user interaction and experience than previous ones. We only show the
main definitions and a few example lemmas.

The two functors S and R are formalised as

definition r2s :: ′a rel ⇒ ′a sta (S) where
S R = Image R ◦ η

definition s2r :: ′a sta ⇒ ′a rel (R) where
R f = {(x ,y). y ∈ f x}

Next we show one of the star preservation laws in Lemma 4.15.

lemma r2s-pow : rel-d .power (R f) i = R (kpow f i)
by (induct i , simp-all add : r2s-id r2s-comp)

lemma r2s-star : R (kstar f) = (R f)∗

proof−
{fix x y

have (x ,y) ∈ R (kstar f) = (∃ i . y ∈ kpow f i x)
by (simp add : kstar-def s2r-def)

also have . . . = ((x ,y) ∈ (
⋃

i . R (kpow f i)))
unfolding s2r-def by simp

also have . . . = ((x ,y) ∈ (
⋃

i . rel-d .power (R f) i))
using r2s-pow by fastforce

finally have (x ,y) ∈ R (kstar f) = ((x ,y) ∈ (R f)∗)
using rel-star-def by blast}

thus ?thesis
by auto

qed

The Isar proof has been translated more or less one-to-one from the stepwise proof
on paper Chapter 4.

Taken together these Isabelle proofs illustrate the impressive capability of trans-
lating non-trivial mathematical proofs essentially one-to-one into an interactive the-
orem prover. And beyond that, many of these proofs can even be fully automated.

CHAPTER 6

Propositional Hoare Logic

After the mathematical ground work of the previous chapters we start to de-
velop our first formalism for program verification—an algebraic variant of Hoare
logic. First we derive the inference rules of an algebraic variant of propositional
Hoare logic, which continues to disregard the internal structure of tests and basic
commands, and therefore lacks a rule for variable assignments. The main use of
propositional Hoare logic is the generation of algebraic verification conditions. This
is achieved in a recursive way with respect to the program constructs modelled by
KAT expressions. It can be fully automated using Isabelle tactics.

6.1. Partial Correctness Specifications

A program is partially correct with respect to a precondition and a postcondi-
tion if, whenever the program is assumed to start in states that satisfy the precon-
dition and to terminate, then it terminates in states that satisfy the postcondition
(a program is totally correct if it is partially correct and all loops terminate).

In KAT we assume that all assertions, including preconditions, postconditions
and tests, are modelled within its boolean algebra of tests. Then px expresses that
program x executes from states where precondition p holds. By opposition, xq
expresses that program x terminates in states where postcondition q holds. The
above partial correctness specification can thus be formalised in KAT as

px ≤ xq.

It is equivalent to pxq = 0 by Lemma 2.31, which means that if program x executes
from states where precondition p holds and is assumed to terminate, then it will
never end up in states where postcondition q fails.

In the tradition of Hoare logic we use Hoare triples to express such partial
correctness specifications for programms, defining

H p x q ⇔ px ≤ xq .

Alternatively, we may view this equivalence as an algebraic semantics to Hoare
triples in KAT. The simple identity in its right-hand side allows us to reason
equationally about program correctness. Its adequacy for partial correctness is can
be confirmed in relation and state transformer KAT.

Lemma 6.1.

(1) In RelX, for all R ∈ RelX and P,Q ∈ Id↓x ,

HP RQ ⇔ (∀a, b ∈ X. P a ∧ (a, b) ∈ R⇒ Qb) ,

(2) In StaX, for all f ∈ StaX and P,Q ∈ η↓X ,

HP f Q ⇔ (∀a, b ∈ X. P a ∧ b ∈ f a⇒ Qb) .

53

54 6. PROPOSITIONAL HOARE LOGIC

Both formulas clearly express partial correctness.

6.2. Rules of Propositional Hoare Logic

We can now derive the following facts, which correspond to the standard struc-
tural rules of Hoare logic.

Theorem 6.2. Let (K,B) be a KAT. For all x, y ∈ K and p, p′, q, q′, t ∈ B,
the following rules of propositional Hoare logic (PHL) are derivable:

H p 1 p ,(H-skip)

p ≤ p′ ∧ H p′ x q′ ∧ q′ ≤ q ⇒ H p x q ,(H-cons)

H p x r ∧ H r y q ⇒ H p (xy) q ,(H-seq)

H (tp)x q ∧ H (tp) y q ⇒ H p (if t then x else y) q ,(H-cond)

H (tp)x p⇒ H p (while t do x) (tp) .(H-while)

Proof. We verify (H-while) as an example.

H (tp)x p⇒ ptx ≤ txp
⇒ p(tx)∗ ≤ (tx)∗p

⇒ p(tx)∗t ≤ (tx)∗pt

⇔ H p (while t do x) (tp) .

The first step unfolds the definition of Hoare triples and applies monotonicity as
well as some boolean laws for tests; the second one applies a simulation law from
Lemma 2.16. The third one uses order-preservation of composition and the fourth
one the definition of while loops and Hoare triples. �

We now explain these inference rules in detail.

• The skip rule (H-skip) states that any assertion continues to hold if a
program does nothing.

• The consequence rule (H-cons) allows weakening preconditions and strength-
ening postconditions.

Rules (H-seq)-(H-while) are compositional with respect to the program struc-
ture. They derive partial correctness specifications of complex programs from those
for simpler ones.

• The sequential composition rule (H-seq) states that for proving a sequen-
tial composition partially correct it suffices to prove its components par-
tially correct, using an assertion r as a postcondition for the first compo-
nent and a precondition for the second one.

• The conditional rule (H-cond) states that for proving a conditional par-
tially correct it suffices to prove its two branches partially correct—the
first when the test holds and the second when it doesn’t.

• The while rule (H-while) states that for proving a loop partially correct,
the postcondition must be the meet of the precondition p and the com-
plement of test t of the loop. It then suffices to prove partial correctness
of the body of the loop with precondition tp and postcondition p.

PHL offers one structural rule per program construct in (H-seq)-(H-while). This
makes their application deterministic.

6.3. FORMALISING PROPOSITIONAL HOARE LOGIC 55

The rules (H-cons) and (H-seq) introduce new assertions when applied back-
wards. In fact, the whole point of (H-cons) is to rewrite pre- and postconditions
in proofs so that parts of proofs can be composed. Finding suitable intermediate
assertions in (H-seq) may be non-trivial. We return to this issue later. The rule
(H-while) is more restrictive than the other rules because p must appear in all pre-
and postconditions. Formally, an element i ∈ B of a KAT (K,B) is an invariant of
program x ∈ K if

ix ≤ xi.
Thus H i x i holds if i is an invariant for x. Reasoning with while loops in PHL
therefore requires finding loop invariants. This can be hard in practice as well.

In addition, (H-cons) must usually be invoked in combination with (H-while) to
link invariants with the pre- and postconditions of correctness specifications. This
can be internalised by deriving a macro-rule for while loops annotated by invariants
in KAT. First, a general purpose invariant law

p ≤ i ∧ H i x i ∧ i ≤ q ⇒ H p x q

is derivable in KAT using (2). Next we provide notation for annotating while loops
with invariants:

while p inv i do x = while p do x.

Operationally, adding this invariant does not change the semantics of the while
rule, yet it triggers the following macro inference rule.

Lemma 6.3. Let (K,B) be a KAT. Then, for all x ∈ K and p, q, i, t ∈ B,

(H-while-inv) p ≤ i ∧ H (it)x i ∧ ti ≤ q ⇒ H p (while t inv i do x) (qt).

Proof. Combine (H-while) with the rule for reasoning with invariants. �

Inference rule (H-while-inv) captures precisely the approach for reasoning with
simple while-loops outlined in Chapter 1: Show that

• the precondition implies the invariant;
• the invariant is preserved by the body of the loop when its test is true;
• the invariant implies the postcondition when the test is false.

By Theorem 4.9 and 4.19, the rules of PHL hold a fortiori in the relational and
state transformer semantics. By deriving the rules of PHL in KAT and proving that
binary relations and state transformers form KATs in Theorem 4.9 and 4.19, we
have thus proved PHL sound with respect to these two program semantics.

6.3. Formalising Propositional Hoare Logic

We now outline the Isabelle formalisation of PHL. We also show how more
specific PHL rules can be derived in the relational and state transformer seman-
tics, where subidentities are replaced by predicates ranging over unstructured state
spaces. This enhances reasoning with Isabelle.

6.3.1. PHL in KAT. First we define Hoare triples and while loops decorated
with invariants.

definition Ho :: ′a ⇒ ′a ⇒ ′a ⇒ bool where
Ho p x q = (τ p · x ≤ x · τ q)

definition while-inv :: ′a ⇒ ′a ⇒ ′a ⇒ ′a (while - inv - do - od [64 ,64 ,64] 63) where

56 6. PROPOSITIONAL HOARE LOGIC

while p inv i do x od = while p do x od

The derivation of the inference rules of PHL within KAT in Isabelle can then
be left as an exercise. For program verification with Isabelle, the following variant
of the conditional rule is interesting.

lemma H-cond-iff :
Ho p (if r then x else y fi) q = (Ho (τ p · τ r) x q ∧ Ho (τ p · α r) y q)
〈Proof 〉

6.3.2. Specialised PHL in Relation KAT. In relation and state transformer
KAT we can derive more specialised inference rules that work with predicates in-
stead of subidentity relations or subidentity state transformers. These are beneficial
for Isabelle, as we cannot simply identify subidentity relations or state transformers
with predicates in a proof assistant—we need to make the isomorphisms between
subidentities and predicates explicit. We start with relation KAT. First we intro-
duce a type for predicates that depend on one single parameter. This parameter
will later be instantiated to program stores. Then we introduce an explicit type co-
ercion function that formalises the isomorphism between predicates and subidentity
relations. Predicates are boolean-valued functions in Isabelle.

type-synonym ′a pred = ′a ⇒ bool

abbreviation p2r :: ′a pred ⇒ ′a rel (d-er) where
dPer ≡ {(s,s) |s. P s}

After proving some helper lemmas that do the right kind of magic to translate
subidentities to predicates in verification proofs, we can derive specialised structural
rules of Hoare logic based on predicate logic.

abbreviation rH :: ′a pred ⇒ ′a rel ⇒ ′a pred ⇒ bool (H r) where
H r P R Q ≡ rel-kat .H dPer R dQer

abbreviation
rcond :: ′a pred ⇒ ′a rel ⇒ ′a rel ⇒ ′a rel (rif - then - else - fi [64 ,64 ,64] 63) where
rif P then R else S fi ≡ rel-kat .cond dPer R S

abbreviation
rwhile-inv :: ′a pred ⇒ ′a pred ⇒ ′a rel ⇒ ′a rel
(rwhile - inv - do - od [64 ,64 ,64] 63) where
rwhile P inv I do R od ≡ rel-kat .while-inv dPer dI er R

lemma rH-unfold : H r P R Q = (∀ x y . P x −→ (x ,y) ∈ R −→ Q y)
〈Proof 〉

lemma rH-skip: H r P Id Q = (∀ x . P x −→ Q x)
〈Proof 〉

lemma rH-cons1 :
assumes H r P ′ R Q
and ∀ x . P x −→ P ′ x

6.3. FORMALISING PROPOSITIONAL HOARE LOGIC 57

shows H r P R Q
〈Proof 〉

lemma rH-cons2 :
assumes H r P R Q ′

and ∀ x . Q ′ x −→ Q x
shows H r P R Q
〈Proof 〉

lemma rH-cons:
assumes H r P ′ R Q ′

and ∀ x . P x −→ P ′ x
and ∀ x . Q ′ x −→ Q x
shows H r P R Q
〈Proof 〉

lemma rH-cond [simp]:
(H r P (rif T then R else S fi) Q)

= (H r (λs. P s ∧ T s) R Q ∧ H r (λ s. P s ∧ ¬T s) S Q)
〈Proof 〉

lemma rH-while-inv :
assumes H r (λs. I s ∧ T s) R I
and ∀ x . P x −→ I x
and ∀ x . I x ∧ ¬ T x −→ Q x
shows H r P (rwhile T inv I do R od) Q
〈Proof 〉

In all these rules, subidentity relations have been replaced by predicates, which
are more amenable to automated reasoning with Isabelle. Alternatively we could
have replaced subidentities with sets. Under the hood, making such replacements
smooth requires setting up some simplification rules for d−er. This can be quite
subtle; details can be found in our Isabelle theories.

6.3.3. Specialiced PHL in State Transformer KAT. The development in
state transformer KAT parallels that of relation KAT.

abbreviation p2s :: ′a pred ⇒ ′a sta (d-es) where
dPes x ≡ if P x then {x} else {}

After proving some helper lemmas, we specialise Hoare triples and the defini-
tions of conditionals and while-loops with invariants.

abbreviation Hs :: ′a pred ⇒ ′a sta ⇒ ′a pred ⇒ bool (H s) where
H s P f Q ≡ sta-kat .H dPes f dQes

abbreviation
scond :: ′a pred ⇒ ′a sta ⇒ ′a sta ⇒ ′a sta (sif - then - else - fi [64 ,64 ,64] 63) where
sif P then f else g fi ≡ sta-kat .cond dPes f g

abbreviation
swhile-inv :: ′a pred ⇒ ′a pred ⇒ ′a sta ⇒ ′a sta

58 6. PROPOSITIONAL HOARE LOGIC

(swhile - inv - do - od [64 ,64 ,64] 63) where
swhile P inv I do f od ≡ sta-kat .while-inv dPes dI es f

We can then derive specialised structural rules for Hoare logic that have the
same shape as those for relations. They differ only with respect to typing and
syntax indicating state transformers instead of relations. It thus remains to model
the program store, integrate it into the relational and state transformer semantics,
define the relational and state transformer semantics of assignment commands and
derive assignment rules for Hoare logic in these concrete program semantics.

CHAPTER 7

Hoare Logic

We now integrate a simple mathematical model of the program store into the
relational and state transformer semantics, instantiating the unstructured state
space X of relations or state transformers to a structured state space of program
stores. We define the semantics of variable assignments in the relational and state
transformer semantics over the program store and derive semantic variants of the
standard assignment rules of Hoare logic. This completes the derivation of semantic
variants of the rules of Hoare logic and allows us to verify simple while programs
in languages like Imp.

Our semantic approach is not a Hoare logic in the strict sense. We do not work
with a program syntax for command, tests and expressions and hence not with a
symbolic logic. Instead we consider programs as actions on a program store like
in a discrete dynamical system. Compared to classical Hoare logic, our approach
is more detailed and precise, but also more verbose. At the end of this section,
we present a more standard style of program analysis as a semi-formal notational
simplification of the semantic approach.

7.1. Semantics of the Program Store

There are many ways of modelling the program store, from simple to complex
and from abstract to concrete. We pick one of the simplest models.

7.1.1. Program Store. We model program stores as functions s : V → D
from variables in the set V to values in the semantic domain D. Semantic domains
could be the integers, strings, or any other kind of data. We write S = DV for the
set of program stores, where DV stands for the set of functions of type V → D.

In simple while-languages like Imp, the store dynamics is generated by assign-
ment commands x := e, which assign values of expressions e, taken in the program
store, to program variables x. Expressions are part of the program syntax. They
can be defined by a grammar and evaluated in the program store by a function of
type E → S → D, which maps expressions of type E and stores of type S to values
of type D. In our semantic approach, we use functions of type S → D instead. We
explain the difference by example.

Example 7.1. In languages like Imp, simple arithmetic expressions are typically
defined by a syntax similar to

E ::= v | n | E + E | E · E ,

where v ∈ V and n stands for a numeral, a string of decimal digits 0, . . . , 9, denoting
a natural number nN. Such numerals can be defined by another grammar. Examples
of arithmetic expressions are v, 42, 2 + 6 or 3 · v + 9.

59

60 7. HOARE LOGIC

Arithmetic expressions are evaluated in semantic domains such as the natural
numbers, D = N. Program stores then specialise to functions s : V → N; they
parametrise the evaluation function J−K(−) : E → S → N, which can be defined
recursively as

JvKs = s v ,

JnKs = nN ,

Je1 + e2Ks = Je1Ks +N Je2Ks ,
Je1 · e2Ks = Je1Ks ·N Je2Ks .

Here, we write somewhat tediously +N, ·N and likewise to distinguish the semantic
data of numbers and operations on them from the syntactic data of variables,
constant symbols and function symbols such as + and ·.

In a store s in which s : v 7→ 11N, expression 3 · v + 9 thus evaluates to

J3 · v + 9Ks = J3 · vKs +N J9Ks
= J3Ks ·N JvKs +N 9N

= 3N ·N s v +N 9N

= 3N ·N 11N +N 9N

= 42N .

In our semantic approach, we use functions S → N instead. Obviously, for
every expression e of type E and evaluation function E → S → N, the function
λs. JeKs has this type. Evaluating e in store s thus yields the same natural number
as applying λs. JeKs to s. Instead of expression 3 · v + 9, for instance, we use the
function λs. J3 · v+ 9Ks = λs. 3N ·N s v+N 9N. It is already evaluated to the level of
variables. Applying it to store s : v 7→ 11N yields

(λs′. 3N ·N s′ v +N 9N) s = 3N ·N s v +N 9N = 3N ·N 11N +N 9N = 42N ,

as expected. �

7.1.2. Store Updates. Variable assignments v := e form the basic commands
in simple while languages like Imp. In our semantic approach, a variable assignment
v := e, with v ∈ V and e : S → D, acts on a program store s ∈ S as follows: the
value e s ∈ D is computed and then used to construct a new store s′, which is the
same as s except that now s′ : v 7→ e s.

Store updates are therefore functions of type V → D → S → S that take a
variable, a value (such as e s) and a store and yield another store. As stores are
themselves functions, store update functions are higher-order functions that act on
functions by updating one of their arguments. They can of course be defined for
functions of arbitrary type X → Y .

The function update function ∆ : X → Y → Y X → Y X that updates functions
of type X → Y in an argument of type X by a value of type Y is defined as

(∆x y f)x′ =

{
y if x = x′,

f x′ if x 6= x′.

It takes elements x ∈ X and y ∈ Y and a function f : X → Y and yields the
function f ′ : X → Y that maps x to y and every other x′ ∈ X to f x′.

Program verification requires calculating with ∆. The following properties may
simplify such proofs.

7.3. ASSIGNMENT RULES OF HOARE LOGIC 61

Lemma 7.2. For all x, y ∈ X, a, b ∈ Y and f : X → Y ,

(1) (∆x a f)x = a,
(2) (∆x a f) y = f y for x 6= y,
(3) ∆x a ◦∆x b = ∆x a,
(4) ∆x a ◦∆ y b = ∆ y b ◦∆x a for x 6= y,
(5) ∆x (f x) f = f .

Proof. Exercise. �

Items (1) and (2) correspond to the two cases in the definition of ∆. By (3), the
last update in a sequence of consecutive updates to the same variable overwrites
all previous updates. By (4), updates to different variables are independent; they
can be performed in any order. Finally, by (5), an update of a variable to a value
it already has does not change a function.

We define the following variant of ∆ for convenience. Let S = V → D be a set of
program stores. A store update function is a function set : V → (S → D)→ S → S
such that, for all v ∈ V . e : S → V and s ∈ S,

set v e s = ∆ v (e s) s.

Store update functions thus act on the store by changing the value of a variable to
a value that depends on the previous store.

Example 7.3. For function e : S → N defined by e = (λs′. 3N ·N s′ v +N 9N)
and store s that maps v to 11N, the updated store

s′ = set v e s = ∆ v (e s) s = ∆ v 42N s

maps v to 42N and every other variable v′ to s v′. �

7.2. Semantics of Assignment Commands

We can now define the semantics of assignment commands in the relational and
state transformer semantics.

In StaS we define, for v ∈ V , e : S → V and s ∈ S,

(v := e) = η ◦ (set v e).

In other words, (v := e) s = {set v e s}. An assignment (v := e) : S → PS is thus
simply a store update function lifted to a state transformer by decorating it with
braces.

In RelS, we calculate

R (v := e) = {(s, set v e s) | s ∈ S} .

We henceforth write v := e uniformly for both semantics.

7.3. Assignment Rules of Hoare Logic

With the semantics of assignment commands in place it is now straightforward
to derive inference rules for them in the style of Hoare logic in the concrete relational
and state transformer semantics of the program store. These are uniform and we
can therefore drop indices in the following proposition.

62 7. HOARE LOGIC

Proposition 7.4. Let P and Q be in η↓S or in Id↓S, and let v ∈ V and
e ∈ S → D. The following assignment rules are derivable in StaS or RelS.

HP (v := e)Q⇔ (∀s ∈ S. P s⇒ Q (set v e s)),(H-assign-iff)

H (Q ◦ (set v e)) (v := e)Q,(H-assign)

HP (v := e) (λs. ∃w ∈ D. s v = e (∆ v w s) ∧ P (∆ v w s).(H-assign-floyd)
Proof.

(1) In StaS,

HP (v := e)Q⇔ (∀s, s′ ∈ S. P s ∧ s′ ∈ {set v e s} ⇒ Qs′)

⇔ (∀s, s′ ∈ S. P s ∧ s′ = set v e s⇒ Qs′)

⇔ (∀s ∈ S. P s⇒ Q (set v e s)).

The proof in RelS is almost identical.
(2) This is a special case of (H-assign-iff) with P = Q ◦ (set v e).
(3) We calculate

P s⇔ e s = e s ∧ P s
⇔ e s = e (∆ v (s v) s) ∧ P (∆ v (s v) s)

⇒ ∃w. e s = e (∆ v w s) ∧ P (∆ v w s)

⇔ ∃w. (set v e s) v = e (∆ v w (set v e s)) ∧ P (∆ v w (set v e s))

⇔ (λs′. ∃w. s′ v = e (∆ v w s′) ∧ P (∆ v w s′))(set v e s).

The second step uses Lemma 7.2(2), the fourth one Lemma 7.2(3). The
last step uses β-reduction. The claim then follows by (1). �

Rule (H-assign) is a semantic variant of Hoare’s assignment rule, (H-assign-
floyd) a semantic variant of Floyd’s assignment rule. Hoare’s rule and (H-assign-iff)
are backward rules because assignments affect the preconditions of Hoare triples.
The typical workflow with these rules is from the postcondition towards the precon-
dition of a composite program. Floyd’s rule, by contrast, is a forward assignment
rule that affects the postcondition. It supports a workflow from preconditions to-
wards postconditions and thus the symbolic execution of programs from initial
values. In (H-assign-floyd), the variable w represents the value in D of variable v
prior to execution. The postcondition then states that the value of v in store s
after the execution of the assignment is equal to the value of e in the store prior to
execution, and that the precondition P (in the prestate) remains true.

The derivation of the assignment rules finishes the derivation of the rules of
Hoare logic, more precisely that of their semantic variants. The rules of PHL were
derived in KAT, yet hold in the relational and state transformer semantics over the
program store. The assignment rules have been derived in these concrete program
semantics. Hence the verification of programs with this approach is ultimately
performed in the concrete models of program execution.

Example 7.5. Consider the predicate PN = λs. 3N ·N s v + 9N = 42N and let s
be a store in which variable v has value 7N. Then

PN (∆ v 7N s)⇔ 3N ·N (∆ v 7N s) v) +N 9N = 42N ⇔ 3N ·N 7N +N 9N = 42N,

which reduces further to false. �

7.4. FORMALISING THE PROGRAM STORE AND HOARE LOGIC 63

7.4. Formalising the Program Store and Hoare Logic

The Isabelle formalisation of the program store and Hoare logic follows the
mathematical development closely. We only show the main definitions and facts.
We formalise ∆ and set as

definition fup :: ′a ⇒ ′b ⇒ (′a ⇒ ′b) ⇒ (′a ⇒ ′b) where
fup x a f = (λy . if x = y then a else f y)

abbreviation set :: ′a ⇒ ((′a ⇒ ′b) ⇒ ′b) ⇒ (′a ⇒ ′b) ⇒ (′a ⇒ ′b) where
set v e s ≡ fup v (e s) s

We have also verified the identities in Lemma 7.2 with Isabelle. We introduce a
type synonym as notation for the program store.

type-synonym ′a store = string ⇒ ′a

Using strings as a type for variables allows us to use Isabelle’s built-in equality
for strings (two strings are equal if they consist of the same letters). Otherwise
we would have to declare explicitly for each pair of variables denoted by different
symbols that they are different.

While this is important when verifying individual programs, we can formalise
the semantics of assignment commands and derive the rules of Hoare logic for
arbitrary variable types.

definition
rel-assign :: ′a ⇒ ((′a ⇒ ′b) ⇒ ′b) ⇒ (′a ⇒ ′b) rel (- :=r - [70 , 65] 61) where
v :=r e = {(s, set v e s) |s. True}

lemma rel-assign-iff : ((s,s ′) ∈ v :=r e) = (s ′ = set v e s)
by (simp add : rel-assign-def)

definition
sta-assign :: ′a ⇒ ((′a ⇒ ′b) ⇒ ′b) ⇒ (′a ⇒ ′b) sta (- :=s - [70 , 65] 61) where
v :=s e = η ◦ (set v e)

lemma sta-assign-iff : (s ′ ∈ (v :=s e) s) = (s ′ = set v e s)
by (simp add : eta-def sta-assign-def)

The assignment rules (H-assign-iff), (H-assign) and (H-assign-floyd) of Hoare logic
are then derivable in both semantics. The proofs are simple and uniform, only a
renaming of symbols in formulas and lemmas in proofs is required to move between
the relational and the state transformer model. We only show the variants for state
transformers, the relational variants are identical up to indices.

lemma sH-assign-iff [simp]: H s P (v :=s e) Q = (∀ s. P s −→ Q (set v e s))
by (simp add : sH-unfold sta-assign-iff)

lemma sH-assign: H s (P ◦ (set v e)) (v :=s e) P
by simp

lemma sH-assign-floyd : H s P (v :=s e) (λs. ∃w . s v = e (set v w s) ∧ P (set v w s))

64 7. HOARE LOGIC

by (simp, metis fup-simp1 fup-triv)

Finally, we supply Isabelle notation for partial correctness specifications.

abbreviation
sH-sugar :: ′a pred ⇒ ′a sta ⇒ ′a pred ⇒ bool (sPRE - - POST - [64 ,64 ,64] 63) where
sPRE P f POST Q ≡ H s P f Q

We can now start verifying programs with Isabelle. Due to our previous in-
terpretation statements with Isabelle, binary relations and state transformers form
KATs, hence the inference rules of PHL hold in these models. This is enabled by
the polymorphism of Isabelle’s type classes, where KATs have type α, so that the
two instances have type α rel and α sta. They are then instantiated further to α
store rel and α store sta, and combined with the assignment laws to full fledged
Hoare logics, or rather semantic variants thereof. Isabelle can pick up facts from
all levels and instantiate them appropriately.

Remark 7.6. The semantic approach outlined works for any data domain sup-
ported by Isabelle. Programs are thus modelled entirely using functions, relations,
predicates and data types provided by Isabelle. Such an approach is called a shal-
low embedding of Imp-style programs in Isabelle. A deep embedding, by contrast,
would start with definitions of data types for expressions, tests and program com-
mands in Isabelle. In the formalised mathematics and proof assistants communities,
shallow embeddings are advocated because of their simplicity. In particular there
is no need to specify grammars and semantic maps (evaluation or interpretation
functions), which can be tedious and rather repetitive. For more complicated ver-
ification tasks, for instance those that depend on specific properties of program
variables, deep embeddings may offer advantages, but these are beyond the scope
of these lectures.

7.5. Examples: Program Verification with Hoare Logic

We express partial correctness specifications directly in the concrete semantics
of programs. Our specifications and encodings of programs are therefore more de-
tailed than those in typical textbooks on Hoare logic and they capture the dynamics
of program stores more precisely.

Example 7.7. A typical textbook partial correctness specification for the in-
teger division algorithm in a language like Imp might look like

PRE 0 < y

q := 0;

r := x;

while y ≤ r inv x = q · y + r do

q := q + 1;

r := r − y
POST x = q · y + r ∧ r < y

We need to interpret this syntactic statement in our minds to make it meaningful,
that is, translate it into our formal semantics. We need to interpret 0 < y, for
instance, to mean that the value of y in some program store equals the number 0.

7.5. EXAMPLES: PROGRAM VERIFICATION WITH HOARE LOGIC 65

In our formal semantics, we would have to write λs. 0 < sy. Likewise, q := q + 1
means that program variable q is assigned the value of q + 1 in some program
store. Formally, therefore, q := (λs. s q+ 1). The following Isabelle code shows this
difference.

rPRE (λs::nat store. 0 < s ′′y ′′)
(′′q ′′ :=r (λs. 0));
(′′r ′′ :=r (λs. s ′′x ′′));
(rwhile (λs. s ′′y ′′ ≤ s ′′r ′′) inv (λs. s ′′x ′′ = s ′′q ′′ ∗ s ′′y ′′ + s ′′r ′′ ∧ 0 ≤ s ′′r ′′)
do
(′′q ′′ :=r (λs. s ′′q ′′ + 1));
(′′r ′′ :=r (λs. s ′′r ′′ − s ′′y ′′))

od)
POST (λs. s ′′x ′′ = s ′′q ′′ ∗ s ′′y ′′ + s ′′r ′′ ∧ 0 ≤ s ′′r ′′ ∧ s ′′r ′′ < s ′′y ′′)

With Isabelle we even need to decorate program variables with quotes because
variables are represented as strings and strings are written that way in Isabelle. �

7.5.1. First Steps. The following examples consider simple assignments and
their effects on Hoare triples in our semantic framework.

Example 7.8. In the following paper-and-pencil proofs, we omit quotes around
program variables.

(1) Suppose the assignment command q := (λs. 0) executes in any store. We
expect that the value of q will be equal to 0 after execution in the new
store. This is represented by the partial correctness specification

H (λs. True) (q := λs. 0) (λs. s q = 0).

Isabelle predicates have type α ⇒ bool , thus λs. True maps any state to
True. Further, we need to write λs. 0 instead of 0 because a function from
stores to (natural) numbers is expected.

To verify this partial correctness specification, we calculate

H (λs. True) (q := λs. 0) (λs. s q = 0)⇔ (∀s. True ⇒ (λs′. s′q = 0) (∆ q 0 s))

⇔ ∀s. (∆ q 0 s) q = 0

⇔ 0 = 0

⇔ True,

applying (H-assign-iff) in the first and Lemma 7.2(1) in the third step.
Intuitively, we have set the value of q in the store to 0 in the postcondition
in the second step of the calculation and then evaluated this predicate.
Luckily, Isabelle simplifies away the last three steps.

lemma rPRE (λs. True) (′′q ′′ :=r (λs. 0)) POST (λs. s ′′q ′′ = 0)
by simp

(2) The Hoare triple H (λs. True) (r := λs. s x) (λs. s r = s x) is valid. Now
(H-assign-iff) requires checking that (λs′. s′ r = s′ x)(∆ r (s x) s) holds for
all states s. We calculate

(λs′. s′ r = s′ x)(∆ r (s x) s)⇔ (∆ r (s x) s) r = (∆ r (s x) s)x

⇔ s x = s x,

66 7. HOARE LOGIC

using Lemma 7.2(1) and (2) to reduce the left-hand and right-hand side of
the equation in the last step, respectively. This last identity is obviously
true for all states s. The Isabelle proof is again straightforward.

lemma rPRE (λs. True) (′′r ′′ :=r (λs. s ′′x ′′)) POST (λs. s ′′r ′′ = s ′′x ′′)
by simp

(3) The Hoare triple H (λs. s q = n) (q := λs. s q+ 1) (λs.s q = n+ 1) is valid.
We need to check that

∀s. s q = n⇒ (λs′. s′ q = n+ 1) (∆ q (s q + 1) s).

Assuming that s q = n, we calculate

(λs′. s′ q = n+ 1) (∆ q (s q + 1) s)⇔ (∆ q (s q + 1) s) q = n+ 1

⇔ (∆ q (n+ 1) s) q = n+ 1

⇔ n+ 1 = n+ 1,

using the assumption in the second and Lemma 7.2(1) in the last step.
Once again, the last equation is obviously true. With Isabelle,

lemma
rPRE (λs. s ′′q ′′ = n)
(′′q ′′ :=r (λs. s ′′q ′′ + 1))

POST (λs. s ′′q ′′ = n + 1)
by simp

(4) It is straightforward to show with Isabelle that

lemma
rPRE (λs. s ′′r ′′ − s ′′y ′′ = n)
(′′r ′′ :=r (λs. s ′′r ′′ − s ′′y ′′))

POST (λs. s ′′r ′′ = n)
by simp

(5) Finally, verifying Hoare triples with Floyd’s assignment rule makes little
difference with Isabelle.

lemma sPRE (λs. 5 = 5) (′′x ′′ :=s (λs. 5)) POST (λs. s ′′x ′′ = 5)
by (rule sH-cons2 , rule sH-assign-floyd) simp

lemma
rPRE (λs. s ′′x ′′ = 1) (′′x ′′ :=r (λs. s ′′x ′′ + 1)) POST (λs. s ′′x ′′ = 2)
by (rule rH-cons2 , rule rH-assign-floyd) simp

In these two proofs, we have used a consequence rule to link the postcon-
dition with that generated by Floyd’s assignment rule. �

7.5.2. Simple Programs and Proof Outlines. We now discuss partial cor-
rectness of three simple algorithms that show the other rules of Hoare logic at work.
Two of them are straight-line programs without loops. The first one swaps the val-
ues of two variables, the second one computes the maximum of two numbers. The
third one performs integer division. Before verifying programs with Isabelle, it may

7.5. EXAMPLES: PROGRAM VERIFICATION WITH HOARE LOGIC 67

be helpful to prove them in a systematic way on paper first. We therefore introduce
the format of proof outlines for such proofs by example.

Example 7.9. The following program, in Imp-style notation, swaps the values
of the variables x and y in the program store.

z := x;

x := y;

y := z

Hence if x = m and y = m before its execution, then x = n and y = m should hold
afterwards. The partial correctness specification with Isabelle should therefore be

PRE (λs. s x = m ∧ s y = n)

(z := λs. s x);

(x := λs. s y);

(y := λs. s z)

POST (λs. s x = n ∧ s y = m)

Applying (H-seq) to the program generates two intermediate assertions, which we
do not know. But when we calculate the precondition of y := λs. s z using the post-
condition, we can use it as the postcondition for x := λs. s y and then use it further
to determine the precondition for z := λs x, which we can then compare with the
global precondition x = m ∧ y = n. We thus inject these intermediate assertions
between the command of the program, proceeding from bottom to top, from post-
conditions to preconditions. To simplify notation, we now put all assertions into
braces {−}, including the pre and postcondition. We also drop all references to
stores and write the semi-formal proof outline

{x = m ∧ y = n}
z := x;

x := y;

y := z

{x = n ∧ y = m}

Starting with y := z and postcondition {x = n ∧ y = m} we apply (H-assign)
and calculate the precondition for this command like in Example 7.8. Obviously, the
value of y must now be equal to the value of z in the store. Hence replacing y with z
in the postcondition (formally: s y with s z) yields the precondition {x = n∧z = m}
of y := z, which we inject into the proof outline:

{x = m ∧ y = n}
z := x;

x := y;

{x = n ∧ z = m}
y := z

{x = n ∧ y = m}
We now use this assertion as the postcondition for x := y and proceed as before.
Applying (H-assign) we replace x with y in {x = n∧z = m} and inject the resulting

68 7. HOARE LOGIC

assertion:

{x = m ∧ y = n}
z := x;

{y = n ∧ z = m}
x := y;

{x = n ∧ z = m}
y := z

{x = n ∧ y = m}

Using {y = n ∧ z = m} as the postcondition for z := x and applying (H-assign)
once again, we replace z with x and—magically— obtain the precondition. This
finishes the proof outline. A more formal version is

{λs. s x = m ∧ s y = n}
(z := (λs. s x));

{λs. s y = n ∧ s z = m}
(x := (λs. s y));

{λs. s x = n ∧ s z = m}
(y := (λs. s z))

{λs. s x = n ∧ s y = m}
In Isabelle, we cannot mimic this format. We simply use the rules of Hoare logic
to generate verification conditions in the data domain which we then discharge.

lemma svarible-swap:
sPRE (λs. s ′′x ′′ = a ∧ s ′′y ′′ = b)
(′′z ′′ :=s (λs. s ′′x ′′)) ◦K
(′′x ′′ :=s (λs. s ′′y ′′)) ◦K
(′′y ′′ :=s (λs. s ′′z ′′))

POST (λs. s ′′x ′′ = b ∧ s ′′y ′′ = a)
apply (intro sta-kat .H-seq)

apply (subst sH-assign, simp)+
by simp

Yet when we apply sH-assign step-by-step we can witness the intermediate asser-
tions in the postcondition of the next Hoare triple to be checked.

The Isabelle proof in the relational semantics is the same up to renaming func-
tions and lemmas used. �

Example 7.10. Next we consider the partial correctness specification

{True}
if x ≥ y then

z := x

else

z := y

{z = max(x, y)}

7.5. EXAMPLES: PROGRAM VERIFICATION WITH HOARE LOGIC 69

The proof outline for this simple program, which computes the maximum of two
numbers, is

{True}
if x ≥ y then

{x ≥ y}
{x = max(x, y)}

z := x

{z = max(x, y)}
else

{x < y}
{y = max(x, y)}

z := y

{z = max(x, y)}
{z = max(x, y)}

In the lines immediately after the then and the else, the test and its negation
appear as preconditions, as dictated by the conditional rule of Hoare logic. After
the then, the consequence rule is used with x ≥ y ⇒ x = max(x, y); after the else
it is used with x < y ⇒ y = max(x, y).

With Isabelle, typing apply rh-cond after the postcondition of the program
generates the two verification conditions for the branches in the jEdit proof window.
Explicit applications of the consequence rule are then unnecessary, as Isabelle can
discharge these proof obligations automatically. In fact, here is a fully automated
proof:

lemma rmaximum:
rPRE (λs::int store. True)
(rif (λs. s ′′x ′′ ≥ s ′′y ′′)
then (′′z ′′ :=r (λs. s ′′x ′′))
else (′′z ′′ :=r (λs. s ′′y ′′))
fi)

POST (λs. s ′′z ′′ = max (s ′′x ′′) (s ′′y ′′))
by simp

�

Example 7.11. Finally, we reconsider the integer division algorithm from
Chapter 1. Its partial correctness specification (in proof outline style) is

{0 < y}
q := 0;

r := x;

while y ≤ r inv x = q · y + r do

q := q + 1;

r := r − y
{x = q · y + r ∧ r < y}

70 7. HOARE LOGIC

where all variables are supposed to be natural numbers. The proof outline is

{0 < y}
{True}
{x = 0 · y + x}
q := 0;

{x = q · y + x}
r := x;

{x = q · y + r}
while y ≤ r inv x = q · y + r do

{x = q · y + r ∧ y ≤ r}
{x = (q + 1) · y + (r − y)}

q := q + 1;

{x = q · y + (r − y)}
r := r − y

{x = q · y + r}
{x = q · y + r ∧ r < y}

Interestingly, the precondition 0 < y is not used in the proof—it is only required
for termination, which is assumed and hence disregarded by partial correctness. A
Hoare logic for total program correctness would be needed to show termination of
the algorithm. With Isabelle we show once again an apply-style proof that uses the
rules of Hoare logic for verification condition generation.

lemma sinteger-division:
assumes q = ′′q ′′ and r = ′′r ′′

shows
sPRE (λs::nat store. 0 < y)
(q :=s (λs. 0)) ◦K
(r :=s (λs. x)) ◦K
(swhile (λs. y ≤ s r) inv (λs. x = s q ∗ y + s r)
do
(q :=s (λs. s q + 1)) ◦K
(r :=s (λs. s r − y))

od)
POST (λs. x = s q ∗ y + s r ∧ s r < y)
unfolding assms
apply (intro sta-kat .H-seq)

apply (subst sH-while-inv , intro sta-kat .H-seq)
apply (rule sH-assign, simp)

apply force+
apply (subst sH-assign, simp)

by (subst sH-assign-iff , simp)

The assumptions at the beginning of the lemma lead to more readable program
code. �

Remark 7.12. In verification applications, the details of verification proofs
usually do not matter—program verification is not a beauty contest. The degree of

7.5. EXAMPLES: PROGRAM VERIFICATION WITH HOARE LOGIC 71

proof automation is often more important. With Isabelle, proof automation can be
enhanced by writing tactics. These can iteratively try to apply the rules of Hoare
logic to a program. As there is one single structural rule per program construct,
tactics can usually blast away the entire program structure, including assignments,
so that only data level verification conditions remain. This is known as automated
verification condition generation. Writing such tactics is not too hard with Isabelle,
but not our concern in these lecture notes.

Remark 7.13. Most examples in this section were about numbers. Yet the
data domain D of the store is modelled polymorphically by type α in Isabelle.
Programs in which variables with different types occur can be modelled by sum
types. It is then somewhat tedious to inject to summand types in order to access
specific variables. However, our algebraic approach is modular with respect to other
kinds of store such as record types or even monads. We can simply plug such stores
into the relational or state transformer semantics. This is once again beyond the
scope of these lecture notes.

CHAPTER 8

Program Refinement

We have so far verified programs post-hoc: we have added assertions to pro-
grams and then checked whether the resulting partial correctness specifications
hold, using rules in the style of of Hoare logic for generating data-level verification
conditions. This section outlines an alternative approach by which programs are
constructed from specifications.

Imagine that a specification statement R p q allowed us to represent the most
general program that satisfies the partial correctness specification with precondition
p and postcondition q. Such a program might not be implementable in a simple
language like Imp, it could be highly nondeterministic. Nevertheless, we could use
the order relation ≤ of KAT and its instances in the relational and state transformer
semantics to “narrow it down” to an implementable deterministic program. To
achieve this, we need a systematic method supporting this construction.

Such a method should have laws for introducing the program constructs of our
while language. It should make the process of “narrowing down” compositional, so
that we can use it on parts of programs independently. It should be incremental,
using transitivity of ≤. The method outlined, the systematic incremental and
compositional construction of programs from specifications is known as step-wise
program refinement ; the laws that come with it are called refinement calculus. By
constrast to Hoare logic they are often presented in algebraic form.

At first sight, program refinement may seem like pulling rabbits out of hats. But
in reality, the program to be constructed must be known in advance like with Hoare
logic. One might therefore prefer to see refinement calculi merely as alternative ways
of presenting verification proofs, and of relating programs more explicitly with their
correctness specifications.

Refinement techniques can be very powerful and versatile. Here we focus on a
simple variant which is inspired by Carroll Morgan’s approach.

8.1. Refinement Kleene Algebras with Tests

Most of the ingredients for a refinement calculus are already present in KAT.
Its order ≤ can serve as a refinement order because x ≤ y means that x has at
most the behaviours of y, which implies that x is at most as nondeterministic as y.
This view is consistent with the concrete program semantics of relation and state
transformer KAT. We henceforth call x a refinement of y if x ≤ y.

Program refinement with refinement order ≤ in KAT is automatically incre-
mental by transitivity of this order. It is also compositional with respect to the

73

74 8. PROGRAM REFINEMENT

program constructs of our simple while language in the sense that

x ≤ y ⇒ zx ≤ zy ,
x ≤ y ⇒ xz ≤ yz ,

x ≤ x′ ∧ y ≤ y′ ⇒ if p then x else y ≤ if p then x′ else y′ ,

x ≤ y ⇒ while p dox ≤ while p do y .

However, we cannot expect to express Morgan’s specification statement, which
represents the largest programs satisfying a given pre/postcondition pair, in KAT.
This would require taking suprema over all programs that satisfy the Hoare triples
for such pairs, but only finite suprema are guaranteed to exist in KAT. We thus
extend KAT by a function and suitable axioms.

Definition 8.1. A refinement Kleene algebra with tests (rKAT) is a Kleene
algebra with tests (K,B) equipped with a map R : B → B → K that satisfies, for
all p, q ∈ B,

x ≤ R p q ⇔ H p x q .

For each p, q ∈ B, we call R p q the refinement statement for precondition p and
postcondition q.

It is easy to check that R satisfies the following characteristic formulas.

Lemma 8.2. Let K be a rKAT. Then, for all x ∈ K and p, q ∈ B,

H p (R p q) q ,(R1)

H p x q ⇒ x ≤ R p q .(R2)

Proof. Exercise. �

Formula (R1) states that R p q satisfies the partial correctness specification
with precondition p and postcondition q, while (R2) states that R p q is indeed the
greatest element of K that does so. It also follows directly from the definition of
Hoare triples that, for all x ∈ K and p, q ∈ B,

x ≤ R p q ⇔ px ≤ xq .

In the relational and state transformer semantics, the suprema needed for defin-
ing the specification statement explicitly exist:

RP Q =
⋃
{R | HP RQ} and RP Q =

∨
{f | HP f Q} ,

where, for any F ⊆ StaX, we define (
∨
F)x =

⋃
{f x | f ∈ F}.

Proposition 8.3. The structures RelX and StaX, with R defined as above,
form refinement Kleene algebras.

Proof. Exercise. �

The formalisation of rKAT and its relational and state transformer model with
Isabelle is straightforward. rKAT is formalised as a type class extending that for
KAT, the models are obtained via interpretation proofs extending those for KAT.
Details can be found in the Isabelle theories.

8.2. A SIMPLE REFINEMENT CALCULUS 75

8.2. A Simple Refinement Calculus

8.2.1. Propositional Refinement Calculus. It is straightforward to derive
variants of Morgan’s refinement laws in rKAT—ignoring assignment laws, as usual
with algebra.

Theorem 8.4. Let K be a rKAT. Then, for all p, p′, q, q′, r ∈ B and x, y ∈ K,
the laws of the propositional refinement calculus PRC are derivable.

1 ≤ R p p ,(R-skip)

p ≤ p′ ∧ q′ ≤ q ⇒ R p′ q′ ≤ R p q ,(R-cons)

R p r · R r q ≤ R p q,(R-seq)

if t then R (tp) q else R (tp) q ≤ R p q ,(R-cond)

while t do R (tp) p ≤ R p (tp) ,(R-while)

x ≤ R 0 1 ,(R-01)

R 1 0 ≤ x .(R-10)

Proof. For each program construct, the corresponding PHL rule allows deriv-
ing the refinement law in PRC.

For (R-skip), H p 1 p⇒ 1 ≤ R p p follows from (H-skip) and (R2).
For (R-cons), suppose p ≤ p′ and q′ ≤ q. Then

H p′ (R p′ x q′) q′ ⇒ H p (R p′ x q′) q ⇒ R p′ q′ ≤ R p q .

The initial Hoare triple holds by (R1); the steps follow from (H-cons) and (R2).
For (R-seq),

H p (R p r) r ∧ H r(R r q) q ⇒ H p (R p r · R r q) q ⇒ R p r · R r q ≤ R p q .

The initial conjunction holds by (R1); the steps follow from (H-seq) and (R2).
For (R-cond),

H (tp) (R (tp) q) q ∧ H (tp) (R (tp) q) q ⇒ H p (if t then R (tp) q else R (tp) q) q

⇒ if t then R (tp) q else R (tp) q ≤ R p q .

The initial conjunction holds by (R1); the steps follow from (H-cond) and (R2).
For (R-while),

H (tp) (R (tp) p) p⇒ H p (while t do R (tp) p) (tp)

⇒ while t do R (tp) p ≤ R p (tp) .

The initial conjunction holds by (R1); the steps follow from (H-while) and (R2).
The refinement laws (R-01) and (R-10) are left as exercises. They are not

needed in refinement proofs. �

The refinement laws (R-seq)-(R-while)—the sequential composition law, con-
ditional law and while law—introduce control structure to specification statements
from right to left. By contrast to Hoare logic, (R-skip) is quite useful in the refine-
ment calculus. It allows the refinement of residual specification statements to 1,
which makes them vanish in the algebra. Rule (R-cons) is important for adapting
pre- and postconditions in proofs, like its counterpart (H-cons) in Hoare logic. Rule
(R-seq) introduces once again an intermediate assertion r; rule (R-while) is more
specific than the other laws in that the loop invariant p occurs in pre- and postcon-
ditions. Introducing a while loop thus requires using (R-cons). Alternatively, one

76 8. PROGRAM REFINEMENT

can derive a macro law with a loop invariant from (H-while-inv) as in the proofs
above.

Lemma 8.5. Let (K,B) be a rKAT. For all x ∈ K and p, q, i, t ∈ B,

(R-while-inv) p ≤ i ∧ ti ≤ q ⇒ while t do R (ti) i ≤ R p q .

Annotating this invariant in the while loop is not necessary for refinement.

8.2.2. Specialised Refinement Laws. For refinement proofs with Isabelle it
is once again helpful to derive specific structural refinement laws for RelX and StaX
that expand directly to predicates and use the isomorphisms between subidentity
relations and state transformers as well as predicates. We show only (part of) the
relational development. Additional details can be found in our Isabelle theories.

abbreviation rR :: ′a pred ⇒ ′a pred ⇒ ′a rel (Rr) where
Rr P Q ≡ rel-Re dPer dQer

lemma rR-unfold : Rr P Q =
⋃
{R. ∀ x y . P x −→ (x ,y) ∈ R −→ Q y}

〈Proof 〉

lemma rR-cons:
assumes ∀ s. P s −→ P ′ s
and ∀ s. Q ′ s −→ Q s
shows Rr P ′ Q ′ ⊆ Rr P Q
〈Proof 〉

lemma rR-skip [simp]: (Id ⊆ Rr P Q) = (∀ s. P s −→ Q s)
〈Proof 〉

lemma rR-while: rwhile Q do Rr (λs. P s ∧ Q s) P od ⊆ Rr P (λs. P s ∧ ¬ Q s)
〈Proof 〉

lemma rR-while-var :
assumes R ⊆ Rr (λs. P s ∧ Q s) P
shows rwhile Q do R od ⊆ Rr P (λs. P s ∧ ¬ Q s)
〈Proof 〉

8.2.3. Refinement Laws for Assignments. We can reuse our simple store
model and the relational and state transformer semantics of variable assignments
from Chapter 7 to derive refinement laws for assignment in the relational and state
transformer semantics of rKAT. First we present a statement with generic notation
that abstracts from the particular semantics.

Lemma 8.6. In RelS or StaS, writing ≤ for the refinement order, the following
assignment law of Morgan’s refinement calculus is derivable.

(R-assign) (v := e) ≤ RP Q⇔ (∀s. P s⇒ Q (set v e s)) .

Proof. Exercise. �

With Isabelle, in the relational semantics, its derivation is straightforward.

lemma rR-assign [simp]: ((v :=r e) ⊆ Rr P Q) = (∀ s. P s −→ Q (set v e s))

8.3. EXAMPLES: PROGRAM REFINEMENT 77

by (simp add : rel-rkat .spec-def)

Refinement proofs often require the introduction of an assignment command before
or after a specification statement, separated by a sequential composition. The two
following laws support this.

Lemma 8.7. In RelS or StaS, writing ≤ for the refinement order,

(∀s. P s⇒ P ′ (set v e s))⇒ (v := e) · RP ′Q ≤ RP Q ,(R-assignl)

(∀s. Q′ s⇒ Q (set v e s))⇒ RP Q′ · (v := e) ≤ RP Q .(R-assignr)

Proof. Exercise. �

With Isabelle, in the relational model,

lemma rR-assignl :
assumes ∀ s. P s −→ P ′ (set v e s)
shows (v :=r e) ; (Rr P ′ Q) ⊆ Rr P Q

proof −
have v :=r e ⊆ Rr P P ′

using assms by simp
then show ?thesis

by (meson order .trans rel-d .mult-isor rel-rkat .R-seq)
qed

The first step of the proof uses law rR-assign, the second one law rel-rkat .R-seq,
the instance of the sequential composition law of rKAT in RelS. The derivation
of (R-assignr is similar. Morgan calls (R-assignl) the leading and (R-assignr) the
following law for assignments.

We can now start constructing programs by refinement.

8.3. Examples: Program Refinement

We construct the programs for variable swap, maximum and integer division
from their specification statements as examples. We only show the Isabelle proofs.
The structure of mathematical proofs is the same. Only the syntax in textbook
style proofs can be simplified, as usual.

Example 8.8. Starting from specification statement

R (x = a ∧ y = b) (x = b ∧ y = a),

we first introduce the assigment z := x using (R-assignl).

lemma var-swap-ref1 :
Rr (λs. s ′′x ′′ = a ∧ s ′′y ′′ = b) (λs. s ′′x ′′ = b ∧ s ′′y ′′ = a)
⊇ (′′z ′′ :=r (λs. s ′′x ′′));

Rr (λs. s ′′z ′′ = a ∧ s ′′y ′′ = b) (λs. s ′′x ′′ = b ∧ s ′′y ′′ = a)
by (rule rR-assignl) simp

The new specification statement R (z = a ∧ y = b) (x = b ∧ y = a) is generated by
this refinement law. We use it to introduce x := y by a second left assignment.

lemma var-swap-ref2 :
Rr (λs. s ′′z ′′ = a ∧ s ′′y ′′ = b) (λs. s ′′x ′′ = b ∧ s ′′y ′′ = a)

78 8. PROGRAM REFINEMENT

⊇ (′′x ′′ :=r (λs. s ′′y ′′));
Rr (λs. s ′′z ′′ = a ∧ s ′′x ′′ = b) (λs. s ′′x ′′ = b ∧ s ′′y ′′ = a)

by (rule rR-assignl) simp

Using the resulting specification statement R (z = a ∧ x = b) (x = b ∧ y = a), we
introduce y := z in the third refinement step.

lemma var-swap-ref3 :
Rr (λs. s ′′z ′′ = a ∧ s ′′x ′′ = b) (λs. s ′′x ′′ = b ∧ s ′′y ′′ = a)
⊇ (′′y ′′ :=r (λs. s ′′z ′′));

Rr (λs. s ′′x ′′ = b ∧ s ′′y ′′ = a) (λs. s ′′x ′′ = b ∧ s ′′y ′′ = a)
by (rule rR-assignl) simp

The pre- and postcondition in the resulting specification statement are the same.
We could now use (R-skip) to refine it to skip. Instead we call Isabelle to tie
individual refinements together and perform this task under the hood.

lemma var-swap-ref :
Rr (λs. s ′′x ′′ = a ∧ s ′′y ′′ = b) (λs. s ′′x ′′ = b ∧ s ′′y ′′ = a)
⊇ (′′z ′′ :=r (λs. s ′′x ′′)) ; (′′x ′′ :=r (λs. s ′′y ′′)) ; (′′y ′′ :=r (λs. s ′′z ′′))

by (simp add : rel-rkat .R2 rvarible-swap)

This final step shows the specification statement in the first line and the program
constructed by step-wise refinement in the second one. The variable swap program
is now correct by construction. �

Remark 8.9. In the proofs above, the refined programs have not been found
by Isabelle. The refinement steps need to be typed into Isabelle; Isabelle can only
check their correctness. One might be able to get Isabelle to infer at least the new
specification statement in a left or right assignment step, but we do not consider
this any further.

Example 8.10. Next we construct the algorithm that computes the maximum
of two numbers by step-wise refinement. This time we use the right assignment law
in a first step and the skip law in a second step to construct the assignments in the
branches of the conditional.

lemma max1 :
Rr (λs::int store. s ′′x ′′ ≥ s ′′y ′′) (λs. s ′′z ′′ = max (s ′′x ′′) (s ′′y ′′))
⊇ Rr (λs. s ′′x ′′ ≥ s ′′y ′′) (λs. s ′′y ′′ ≤ s ′′x ′′) ; (′′z ′′ :=r (λs. s ′′x ′′))

by (smt fun-update-simp1 fun-update-simp2 rR-assignr)

lemma max11 :
Rr (λs. s ′′x ′′ ≥ s ′′y ′′) (λs. s ′′y ′′ ≤ s ′′x ′′) ; (′′z ′′ :=r (λs. s ′′x ′′))
⊇ ′′z ′′ :=r (λs. s ′′x ′′)

using rel-rkat .R-skip by fastforce

lemma max2 :
Rr (λs::int store. s ′′x ′′ < s ′′y ′′) (λs. s ′′z ′′ = max (s ′′x ′′) (s ′′y ′′))
⊇ Rr (λs. s ′′x ′′ < s ′′y ′′) (λs. s ′′x ′′ < s ′′y ′′) ; (′′z ′′ :=r (λs. s ′′y ′′))

by (smt fup-simp1 fup-simp2 rR-assignr)

8.3. EXAMPLES: PROGRAM REFINEMENT 79

lemma max21 :
Rr (λs. s ′′x ′′ < s ′′y ′′) (λs. s ′′x ′′ < s ′′y ′′) ; (′′z ′′ :=r (λs. s ′′y ′′))
⊇ ′′z ′′ :=r (λs. s ′′y ′′)
using rel-rkat .R-skip by fastforce

The conditional law can now be used to integrate the assignments of the two
branches. Yet first we simply generate the refinement statements for these. An
application of (R-cons) is used under the hood to adapt the pre- and postcondi-
tions in the specification statements.

lemma max-cond :
Rr (λs::int store. True) (λs. s ′′z ′′ = max (s ′′x ′′) (s ′′y ′′))
⊇ rif (λs. s ′′x ′′ ≥ s ′′y ′′)

then (Rr (λs. s ′′x ′′ ≥ s ′′y ′′) (λs. s ′′z ′′ = max (s ′′x ′′) (s ′′y ′′)))
else (Rr (λs. s ′′x ′′ < s ′′y ′′) (λs. s ′′z ′′ = max (s ′′x ′′) (s ′′y ′′)))

fi
by (simp add : rR-cond-var rR-cons)

We can now pull the results together. Yet when we simply invoke Sledgehammer, it
prefers to use our previous verification proof for the maximum algorithm in Hoare
logic together with rule (R2).

lemma maximum:
Rr (λs::int store. True) (λs. s ′′z ′′ = max (s ′′x ′′) (s ′′y ′′))
⊇ (rif (λs. s ′′x ′′ ≥ s ′′y ′′)

then (′′z ′′ :=r (λs. s ′′x ′′))
else (′′z ′′ :=r (λs. s ′′y ′′))

fi)
using rel-rkat .R2 rmaximum by blast

We have not tried to force Isabelle to find another proof, as this one illustrates the
tight relationship between post-hoc verification and refinement. �

Example 8.11. Our final example is integer division. A problem with refine-
ment proofs is that specification statements can become quite long and hard to
read. Hence we introduce abbreviations for the loop invariant x = q · y+ r and the
test of the loop y ≤ r before we start.

abbreviation Idiv s ≡ s ′′x ′′ = s ′′q ′′ ∗ s ′′y ′′ + s ′′r ′′

abbreviation Tdiv s ≡ s ′′y ′′ ≤ s ′′r ′′

First, proceeding like for the variable swap program, we introduce the two variable
assignments that initialise q and r, starting from the intial specification statement

R (0 < y) (x = q · y + r ∧ r < y)

and using (R-assignl).

lemma div-init1 : Rr (λs::nat store. 0 < s ′′y ′′) (λs. Idiv s ∧ ¬Tdiv s) ⊇
(′′r ′′ :=r (λs. s ′′x ′′));
Rr (λs. s ′′r ′′ = s ′′x ′′ ∧ s ′′x ′′ ≥ 0) (λs. Idiv s ∧ ¬Tdiv s)
by (rule rR-assignl) simp

80 8. PROGRAM REFINEMENT

lemma div-init2 : Rr (λs::nat store. s ′′r ′′ = s ′′x ′′) (λs. Idiv s ∧ ¬ Tdiv s) ⊇
(′′q ′′ :=r (λs. 0));
Rr (λs. s ′′r ′′ = s ′′x ′′ ∧ s ′′q ′′ = 0) (λs. Idiv s ∧ ¬ Tdiv s)
by (rule rR-assignl) simp

We then use (R-cons) to obtain a specification statement that allows introducing a
while loop. Its precondition must be the loop invariant and its postcondition the
conjunction of the invariant with the negation of the test of the loop.

lemma div-init3 :
Rr (λs::nat store. s ′′r ′′ = s ′′x ′′ ∧ s ′′q ′′ = 0) (λs. Idiv s ∧ ¬ Tdiv s) ⊇
Rr Idiv (λs. Idiv s ∧ ¬ Tdiv s)
by (simp-all add : rR-cons)

We can now introduce the while loop, as intended.

lemma div-loop: Rr Idiv (λs. Idiv s ∧ ¬ Tdiv s) ⊇
rwhile Tdiv do (Rr (λs. Idiv s ∧ Tdiv s) Idiv) od
by (simp add : rR-while)

The specification statement in the body of the loop can now be used to introduce
the assignments in the body. We work backwards using (R-assignr).

lemma div-body1 : Rr (λs. Idiv s ∧ Tdiv s) Idiv ⊇
Rr (λs. Idiv s ∧ Tdiv s) (λs::nat store. s ′′x ′′ = s ′′q ′′ ∗ s ′′y ′′ + (s ′′r ′′ − s ′′y ′′)) ;
(′′r ′′ :=r (λs. s ′′r ′′ − s ′′y ′′))
by (simp add : rR-assignr)

lemma div-body2 :
Rr (λs. Idiv s ∧ Tdiv s) (λs::nat store. s ′′x ′′ = s ′′q ′′ ∗ s ′′y ′′ + (s ′′r ′′ − s ′′y ′′)) ⊇
Rr (λs. Idiv s ∧ Tdiv s) (λs. Idiv s ∧ Tdiv s) ; (′′q ′′ :=r (λs. s ′′q ′′ + 1))
by (simp add : rR-assignr)

Next we compose the assignments in the body of the loop and integrate them into
the loop, using the order-preservation laws for while-loops derived at the beginning
of Section 8.1.

lemma div-while: rwhile Tdiv do Rr (λs. Idiv s ∧ Tdiv s) Idiv od ⊇
rwhile Tdiv do
(′′q ′′ :=r (λf . f ′′q ′′ + (1 ::nat)));
(′′r ′′ :=r (λf . f ′′r ′′ − f ′′y ′′))

od
apply (rule rel-kat .while-iso)
using div-body1 div-body2 rel-rkat .R-skip by blast

Finally, we integrate the loop and initialisation into the full program.

lemma integer-division: Rr (λs::nat store. 0 < s ′′y ′′) (λs. Idiv s ∧ ¬ Tdiv s) ⊇
(′′r ′′ :=r (λs. s ′′x ′′));
(′′q ′′ :=r (λs. 0));
(rwhile Tdiv do

8.3. EXAMPLES: PROGRAM REFINEMENT 81

(′′q ′′ :=r (λs::nat store. s ′′q ′′ + 1));
(′′r ′′ :=r (λs. s ′′r ′′ − s ′′y ′′))

od)
using div-init1 div-init2 div-init3 div-loop div-while by force

Once again, this program is correct by construction. �

In these simple examples, there is almost a one-to-one correspondence between
refinement proofs and proof outlines. We can see refinement proofs as a slightly
more systematic and more verbose way of writing such outlines, as already men-
tioned.

Full fledged refinement calculi are more complex than the one presented. They
can express program equivalences and transformations similar to those of KAT and
even beyond in total correcteness settings. Nevertheless, refinement calculi are
rarely used in real world applications, except perhaps for data refinement, which
deals with refinement relations between data types. Automation is of course an
important feature, and pure refinement approaches seem too fine-grained in this
regard. It seems more realistic to combine refinement and post hoc verification
into hybrid approaches for the compositional verification of larger systems, where
components can be post-hoc verified and integrated into the global system by re-
finement. rKAT provides a simple framework for this.

CHAPTER 9

Another Algebra of Programs

While Hoare logic investigates correctness specifications of programs, it does
not does not explicitly compute the effect of assignments on preconditions, when
using Hoare’s assignment law, or that on postconditions, when using Floyd’s. In
the relational and state transformer model, such computations are nevertheless
straightforward: for instance, (s, s′) ∈ (v :=r e) ;Q if and only if s′ = set v e s
and Qs′. The precondition that characterises the input states from which v :=r e
executes into states satisfying the postcondition Q can therefore be calculated as
the domain of the relation (v :=r e) ;Q,

dom ((v :=r e) ;Q) = Q (set v e s).

We have freely identified relations, predicates and sets in this explanation, as usual.
More generally,

dom (R ;Q) = {s | ∃s′. (s, s′) ∈ R ∧Qs′}
models the set of all those states from which the relational program R may termi-
nate in states satisfying Q. For nondeterministic choices, however,

dom ((R ∪ S) ;Q) = dom (R ;Q) ∪ dom (S ;Q).

Executing R from states in dom ((R ∪ S) ;Q) therefore does not guarantee that it
terminates in a state where Q holds (same for S, by symmetry).

Example 9.1. Consider the relations R and S defined by

s1

s0

s2

R

S

and suppose that predicate Q holds in s2, but not in s1. Then

dom ((R ∪ S) ;Q) = {s0} = dom (S ;Q), and dom (R ;Q) = ∅,

because R terminates in s1 when executed from s0, but does not execute into s2. �

With partial program correctness in mind, we should, in fact, rather model
the set of those states from which program R must terminate in states satisfying
postcondition Q. It is given by

−dom (R ;Q) = {s | ∀s′. (s, s′) ∈ R⇒ Qs′},

where Q = IdX − Q defines an appropriate complement of Q in Id↓X , as in Sec-
tion 4.1.2, whereas − is the complement on sets.

For nondeterministic choice, in particular,

−dom ((R ∪ S) ;Q) = −dom (R ;Q) ∩ −dom (S ;Q) .

83

84 9. ANOTHER ALGEBRA OF PROGRAMS

This models the set of all states from which both R and S must terminate in states
satisfying Q.

Example 9.2. For the particular relations in Example 9.1, one might perhaps
expect −dom ((R ∪ S) ;Q) to be empty. Nevertheless, −dom (R ;Q) = {s1, s2}
and −dom (S ;Q) = {s0, s1, s2}, so that −dom ((R ∪ S) ;Q) = {s1, s2}. Obviously,
neither R nor S can be executed from s1 or s2 and we can rewrite −dom(R ;Q) =
{s | ∀s′. (s, s′) /∈ R ∨Qs′}, which explains this outcome. �

Note that −dom (R ;Q) = dom (R ;Q) holds whenever the relation R ⊆ X×X
is deterministic, that is, dom R = X and (x, y) ∈ R, (x, y′) ∈ R imply y = y′. For
our program semantics however, in particular that of while-loops, nondeterminism
is essential.

In sum, we need the antidomain operation adom = −dom of a relation or state
transformer, as we used antitests instead of tests to formalise KAT with Isabelle in
Chapter 3. We would like to extend Kleene algebras with such an operation. With
this alternative to KAT we could then develop a similar approach for verifying
programs, but with more computational verification conditions.

9.1. Modal Kleene Algebras

We now extend a Kleene algebra K with an antidomain operation ad : K → K
so that its axioms generate a boolean subalgebra of assertions. This operation
should be similar to the antitest operation in Chapter 3, whose axioms generated a
boolean subalgebra of tests. In addition, the domain operation d = ad ◦ ad should
model the properties of the domain of a relation or state transformer we care about.

Intuitively, the antidomain of a program should model all those states from
which the program cannot execute; the domain of a program should model all those
all those states from which it can execute. By opposition we can add an antirange
operation ar : K → K and define a range or codomain operation r = ar ◦ ar. The
antirange of a program should model all those states into which a program cannot
execute; the range of a program should model all those states in which it can. As
with tests, we view these sets as programs that can be executed from some states
to themselves, or not at all.

9.1.1. Definitions and Basic Properties. We capture these requirements
by the following data.

Definition 9.3. An antidomain Kleene algebra (AKA) is a Kleene algebra K
equipped with an antidomain operation ad : K → K that satisfies

adx · x = 0, adx+ ad (adx) = 1, ad (x · y) ≤ ad (x · ad (ad y)).

A domain operation d : K → K is then defined as d = ad ◦ ad as expected.
We explain the antidomain axioms first in our intuitive program semantics.

By the first axiom, programs cannot be executed from their antidomains. By the
second one, the domain and antidomain elements of a program are complements.
By the third one, the set of states from which a sequential composition of two
programs cannot be executed contains that from which the first program cannot
execute into the domain of the second one.

Antirange Kleene algebras are defined by opposition.

9.1. MODAL KLEENE ALGEBRAS 85

Definition 9.4. An antirange Kleene algebra is a Kleene algebra K equipped
with an antirange operation ar : K → K that satisfies

x · ar x = 0, ar x+ ar (ar x) = 1, ar (ar (ar x) · y) ≤ ar(x · y).

A range operation r : K → K can then be defined as r = ar ◦ ar. An antirange
Kleene algebra is therefore nothing but a domain Kleene algebra in the opposite
Kleene algebra.

Definition 9.5. A modal Kleene algebra (MKA) is an antidomain Kleene al-
gebra that is also an antirange Kleene algebra.

Here are some useful properties of the domain and antidomain operation.

Lemma 9.6. In every AKA,

(1) dxx = x,
(2) ad (xy) = ad (xd y) and d (xy) = d (xd y),
(3) adx ≤ 1 and dx ≤ 1,
(4) ad 0 = 1, ad 1 = 0, d 0 = 0 and d 1 = 1,
(5) ad (x+ y) = adx · ad y and d (x+ y) = dx+ d y,
(6) d (dx) = dx, d (adx) = adx and ad (dx) = adx,
(7) x ≤ y ⇒ ad y ≤ adx and x ≤ y ⇒ dx ≤ d y,
(8) ad (adx · y) = dx+ ad y and d (dx · y) = dx · d y,
(9) adx · adx = adx and dx · dx = dx,

(10) adx · ad y = ad y · adx and dx · d y = d y · dx,
(11) ad y · x = 0⇔ ad y ≤ ad x and d y · x = x⇔ dx ≤ d y,
(12) xy = 0⇔ xd y = 0,
(13) adx · dx = 0.

Proofs and additional properties can be found in our Isabelle theories. Proper-
ties of domain are usually immediate from those of antidomain. Properties of range
and antirange follow by opposition in MKA. We therefore do not list them.

Let us consider these properties in more detail. According to (1), restricting
program x in its input to those states from which it can be executed is no restriction
at all. By (2), the states from which a sequential composition of two programs can
be executed equals that from which the first program can be executed into states
allowing the execution of the second program, and likewise for antidomain. By
(3), domain and antidomains are subidentities. By (4), the domain of abort is the
empty set of states and its antidomain therefore the set of all states. Likewise, the
domain of skip is the set of all states, and its antidomain therefore empty. By (5),
the set from which the nondeterministic choice of two programs can be executed
equals the union of those from which the individual programs can be executed.
Accordingly, the set from which this nondeterministic choice cannot be executed
is the intersection, represented by ·, of those from which the individual programs
cannot be executed. The first two properties in (6) say that domain and antidomain
elements, as programs, are their own domain elements. The third one states that
the antidomain acts as complementation on domain elements. By (7), if x refines
y, the set of states from which it can be executed is contained into the set of
those states from which y can be executed. By (8), the set of states from which
the input-restriction of program y to those states from which x can be executed
equals the intersection of the set of states from which x and y can be executed. As
before, the statement for antidomain is obtained by throwing in some negations.

86 9. ANOTHER ALGEBRA OF PROGRAMS

The properties in (9) and (10) are standard properties of sets with · as intersection.
By (11), the domain of x is the least domain element for which the left-absorption
property in the left-hand side of the equivalence holds. Likewise, the antidomain
of x is the greatest (anti)domain element for which the left-annihilation in the
left-hand side of the equivalence holds. By (12), one cannot sequentially compose
two programs if the first doesn’t execute into states from which the second can be
executed. Finally, (13) adds the missing second complementation property to the
second AKA axiom.

9.1.2. Boolean Subalgebra of Domain and Range Elements. The fact
that d2 = d holds in AKA has important consequences. Let d(K) denote the image
of K under d, as in Chapter 3. We call this set the set of domain elements of K.

Lemma 9.7. Let K be an AKA. Then, for all x ∈ K,

dx = x⇔ x ∈ d(K).

Proof. Suppose dx = x. Then there is trivially some y ∈ K such that x = d y
(namely x) and therefore x ∈ d(K). Suppose x ∈ d[K]. Then x = d y for some
y ∈ K and therefore dx = d2 y = d y = x by Lemma 9.6(6). �

We can thus define

Kd = {x ∈ K | dx = x},
the set of all fixpoints of d in K, and know that Kd = d(K). The domain elements
are precisely the fixpoints of d.

Remark 9.8. Interestingly, Kd = ad(K) holds as well: ad(K) ⊆ d(K) because
adx = d (adx) ∈ d(K) for every x ∈ K by Lemma 9.6(6), and d(K) ⊆ ad(K)
because dx = ad (adx) ∈ ad(K) for every x ∈ K, by definition of d.

We can therefore write dx = x to express that x is a domain element in d(K)
as we could write τ x = x to express than an element in a test in a KAT.

With these preparations we can show that the domain algebra Kd has the
desired structure.

Proposition 9.9. Let K be an AKA. Then (Kd, ·,+, ad, 0, 1) forms a boolean
subalgebra of K.

Proof. We need to prove two properties. First, domain elements in Kd must
be closed under the operations ·, + and ad; and 0 and 1 must be domain elements.
Second, elements in Kd must satisfy the axioms of boolean algebra.

Closure under the operations is immediate from the properties in Lemma 9.6.
Closure with respect to · follows from

dx · d y = d (dx · y) = d (dx · d y),

that of + from

dx+ d y = d (dx) + d (d y) = d (dx+ d y),

that of complementation from

ad (dx) = d (ad x).

Finally, d 0 = 0 and d 1 = 1 show that 0 and 1 are in Kd. Thus Kd forms a subdioid
of K; even a sub-Kleene algebra: (dx)∗ = 1 because dx ≤ 1 by Lemma 9.6(3) and
y∗ = 1 for all y ≤ 1 by Lemma 2.16(11).

9.1. MODAL KLEENE ALGEBRAS 87

Some of the boolean algebra axioms (see Definition 2.22) are simply dioid ax-
ioms; others are again consequences of properties from Lemma 9.6. Addition is
associative, commutative and idempotent in every dioid; multiplication is associa-
tive in every dioid, and commutative and idempotent on Kd by Lemma 9.6. The
identity laws x+ 0 = 0 and x · 0 = 0 for joins and meets are dioid axioms as well.
This gives us two semilattices.

Next we check the absorption laws dx+dx ·d y = dx and dx · (dx+d y) = dx.
For the first one,

dx+ dx · d y = dx · 1 + dx · d y = dx · (1 + d y) = dx · 1 = dx.

For the second one, using the first absorption law,

dx · (dx+ d y) = dx · dx+ dx · d y = dx+ dx · d y = dx.

This gives us a lattice.
Next we check the distributivity laws dx · (d y + d z) = dx · d y + dx · d z and

dx + d y · d z = (dx + d y) · (dx + d z). The first holds in every semiring. We can
use it to derive the second one:

(dx+ d y) · (dx+ d z) = (dx+ d y) · dx+ (dx+ d y) · d z
= dx+ (dx+ d y) · d z
= dx+ dx · d z + d y · d z
= dx+ d y · d z,

using notably absorption. (This proof can be generalised to showing that any lattice
satisfying one of the two distributivity laws satisfies the other, too.)

The complementation axiom ad x+ dx = 1 is an axiom of AKA; ad x · dx = 0
is part of Lemma 9.6. �

The boolean algebra is not an arbitrary subalgebra of the algebra of subiden-
tities in K, as it is for KAT. Proving this requires a definition and a technical
lemma.

By analogy to the definition of complemented lattices in Section 2.4.1, call
an element of x ∈ K complemented if x + y = 1, xy = 0 and yx = 0 holds for
some y ∈ K, which accordingly is a complement of x in K. By definition, all
complemented elements are subidentities.

Lemma 9.10. The set BK of complemented elements of an AKA K is a boolean
subalgebra of K.

Proof. The elements of BK satisfy the dioid axioms, so it remains to check
commutativity and idempotency of · and the absorption laws. As domain and
antidomain elements are complemented, the proofs are very similar to those in
Proposition 9.9.

For idempotency xx = x if x has complement x′,

x = x(x+ x′) = xx+ xx′ = xx+ 0 = xx.

The proof of dx · dx = dx in Lemma 9.6 proceeds along the same lines.
For the absorption laws for complemented elements, we can replay the proofs

in Proposition 9.9. I show the first one as an example:

x+ xy = x1 + xy = x(1 + y) = x1 = x.

88 9. ANOTHER ALGEBRA OF PROGRAMS

For commutativity xy = yx of complemented elements,

xy = (x+ yx)(y + yx)

= xy + xyx+ yxy + yxyx

= yx+ yxy + xyx+ xyxy

= (y + xy)(x+ xy)

= yx.

Once again, commutativity of domain and antidomain elements in Lemma 9.6 can
be proved along the same lines. The distributive lattice axioms therefore hold, and
hence the boolean algebra axioms, because elements are complemented.

Finally we consider closure properties. Here we need to take an approach that
differs from that in Proposition 9.9. First we show that sums of complemented ele-
ments are complemented. So suppose x and y be complemented with complements
x′ and y′. Then

x+ y + x′y′ = (x+ y + x′)(x+ y + y′) = (1 + y)(1 + x) = 11 = 1

and

(x+ y)x′y′ = xx′y′ + yx′y′ = 0 + 0 = 0.

Next we show that products of complemented elements are complemented.
Suppose again x and y are complemented with complements x′ and y′. Then

xy + (x′ + y′) = (x+ x′ + y′)(y + x′ + y′) = (1 + y′)(1 + x′) = 11 = 1

and

xy(x′ + y′) = xyx′ + yx′y′ = 0 + 0 = 0.

Moreover, by symmetry of the definition, all complements of complemented
elements are complemented, and of course 0 and 1 are mutual complements.

This shows that BK is indeed a complemented distributive lattice and hence a
boolean subalgebra of K, according to Section 2.4.1. �

Proposition 9.11. Let K be an AKA. Then Kd forms the largest boolean
subalgebra of K bounded by 0 and 1.

Proof. By Lemma 9.10, the complemented elements form a boolean subalge-
bra of K bounded by 0 and 1. It is the largest boolean algebra between 0 and 1 by
definition. Suppose x ∈ BK has complement y. Then

x = xx = x · dx · x ≤ xdx ≤ x,

that is x = xdx, and

ydx = d (y · dx) · y · dx = d (y · x) · y · dx = d 0 · y · dx = 0 · y · dx = 0.

Then dx = (x + y)dx = x and therefore x ∈ d(K). This shows that BK ⊆ d(K)
and BK = d(K) follows. �

Note that Proposition 9.11 subsumes Proposition 9.9, because Lemma 9.10
performs the proof steps for Proposition 9.9 in a more general setting. Nevertheless
the proof of Proposition 9.9 is more direct.

A dual property holds for antirange Kleene algebras and the set

Kr = {x | r x = x}

9.1. MODAL KLEENE ALGEBRAS 89

by opposition. Consequently, Kd and Kr coincide in any MKA by maximality, but
we prove this result directly.

Lemma 9.12. In every MKA,

(1) d ◦ r = r,
(2) r ◦ d = d.

Proof. We only show (1). Property (2) then follows by opposition.

d (r x) = (ar x+ r x) · d (r x)

= ar x · d (r x) + r x · d (r x) · (ar x+ r x)

= 0 + r x · d (r x) · ar x+ r x · d (r x) · r x
= 0 + r x · r x
= r x.

In the third step, ar x · d (r x) = 0 because ar x · r x = 0 by Lemma 9.6(12) and
(13). In the fourth step, r x · d (r x) · ar x = 0 because d (r x) ≤ 1 and again by
Lemma 9.6(13). �

Proposition 9.13. Let K be a MKA. Then Kd = Kr.

Proof. If dx = x, then r x = r (dx) = dx = x. Dually, dx = d (r x) = r x = x
follows from r x = x. Hence dx = x⇔ r x = x and therefore x ∈ Kd ⇔ x ∈ Kr. �

As for KAT we write p, q, r, . . . for elements of Kd and p instead of ad p. The
development for MKA so far seems much more complicated than for KAT. Yet
defining an antitest operation of type K → K to obtain tests, like in the Isabelle
theories, makes the effort comparable.

9.1.3. Relational and State Transformer Model. Next we link MKAs
with the relational and state transformer semantics of programs.

Proposition 9.14. The structures

(RelX, ;,∪, ∅X , IdX ,
∗ , ad, ar) and (StaX, ◦K ,+, 0X , ηX ,∗K , ad, ar)

form MKAs with

adR = {(a, a) | ¬∃b. (a, b) ∈ R}, arR = {(b, b) | ¬∃a. (a, b) ∈ R},

ad f a =

{
{a} if f a = ∅,
∅ otherwise,

ar f b =

{
∅ if ∃a. b ∈ f a,
{b} otherwise.

Proof. Relative to Proposition 4.6 and 4.18 we must check the antidomain
and antirange axioms of MKA. This can be done with Isabelle. Soundness of the
antirange axioms follows from opposition. �

Explicit formulas for domain and range operations are immediate consequences
of the definitions for antidomain and antirange.

dR = {(a, a) | ∃b. (a, b) ∈ R}, rR = {(b, b) | ∃a (a, b) ∈ R},

d f a =

{
∅ if f a = ∅,
{a} otherwise,

r f b =

{
{b} if ∃a. b ∈ f a,
∅ otherwise.

90 9. ANOTHER ALGEBRA OF PROGRAMS

9.1.4. Modal Operators. Terms such as −dom (R ;P) and −ran(P ;R), as
discussed at the beginning of this Chapter, can now be expressed algebraically as
ad (x · ad y) and ar (ar y · x). We introduce, in any MKA, and for all x ∈ K and
p ∈ Kd, the following notation:

|x〉p = d (x · p), 〈x|p = r (p · x), |x]p = ad (x · ad p), [x|p = ar (ar p · x).

The functions |−〉, 〈−|, |−] and [−| of type K → K → K, or strictly speaking
K → Kd → Kd, are modal operators: |−〉 is a forward diamond, 〈−| a backward dia-
mond, |−] a forward box and [−| a backward box operator. In program verification,
|−] is also known as weakest liberal precondition (wlp) operator. More generally,
the functions |x〉, 〈x|, |x] and [x| of type Kd → Kd are examples of predicate trans-
formers; they are endofunctions on the boolean algebra Kd which, in the relational
and state transformer models, transform predicates to predicates.

In the relational model,

|R〉Q = {(s, s) | ∃s′. (s, s′) ∈ R ∧ (s′, s′) ∈ Q},
|R]Q = {(s, s) | ∀s′. (s, s′) ∈ R⇒ (s′, s′) ∈ Q}

and, by opposition,

〈RP = {(s, s) | ∃s′. (s′, s) ∈ R ∧ (s′, s′) ∈ P},
[R|P = {(s, s) | ∀s′. (s′, s) ∈ R⇒ (s′, s′) ∈ P}.

This shows that |R〉Q is the relational preimage of Q under R, and 〈R|P the rela-
tional image of P under R. This is consistent with the standard Kripke semantics of
modal logics, where propositions can have different truth values in different states
of a system or possible worlds and R models accessibility between worlds. Ex-
plaining further details of modal logics is beyond the scope of these lectures. The
modal logic most closely related to MKA is propositional dynamic logic, which has
been designed specifically as a logic for reasoning about while programs such as
Imp. MKA can be seen as a semantic analogue. State transformer semantics are
less common in traditional modal logics, and we leave the derivation of expressions
similar to those above as an exercise.

9.1.5. Symmetries and Dualities. The modal operators satisfy interesting
symmetries and dualities in MKA, which we examine next.

By definition, the forward and backward operators are related by opposition.
In the relational model, this can be expressed explicitly by relational converse:

|R〉P = {a | ∃b. (a, b) ∈ R ∧ P b}
= {a | ∃b. (b, a) ∈ R` ∧ P b}
= 〈R`|P,

|R]P = {a | ∀b. (a, b) ∈ R⇒ P b}
= {a | ∀b. (b, a) ∈ R` ⇒ P b}
= [R`|P,

from which 〈R|P = |R`〉P and [R|P = |R`]P follow by opposition.
Boxes and diamonds are related by De Morgan duality.

Lemma 9.15. Let K be a MKA. For all x ∈ K and p ∈ Kd,

9.1. MODAL KLEENE ALGEBRAS 91

|x〉p |x]p

〈x|p [x|p

De Morgan

opposition

Galois

opposition

De Morgan

Galois

Figure 1. Symmetries between Modal Operators

(1) |x]p = |x〉p and |x〉p = |x]p,

(2) [x|p = 〈x|p and 〈x|p = [x|p.

Proof. Exercise. �

Proving additional symmetries of modal operators requires two lemmas. The
first one is similar to Lemma 2.31.

Lemma 9.16. In every MKA K, for all x ∈ K and p, q ∈ Kd, the following
identities are equivalent.

(1) px ≤ xq,
(2) pxq = 0.
(3) xq ≤ px.

Proof. Let px ≤ xq. Then pxq ≤ xqq = 0.
Let pq = 0. Then xq = (p+ p)xq = pxq ≤ px.
Let xq ≤ px. Then pxq ≤ ppx = 0. �

Lemma 9.17. In every MKA K, for all x ∈ K and p, q ∈ Kd,

(1) |x〉p ≤ q ⇔ xp ≤ qx and 〈x|p ≤ q ⇔ px ≤ xq,
(2) p ≤ |x]q ⇔ px ≤ xq and p ≤ [x|q ⇔ xp ≤ qx.

Proof.

(1) Suppose |x〉p ≤ q. Then d (xp) ≤ q and xp = d (xp) · (xp) ≤ qxp ≤ qx.
Suppose xp ≤ qx. Then |x〉p = d (xp) ≤ d (qx) = qdx ≤ q. The second
equivalence follows by opposition.

(2) We calculate

p ≤ |x]q ⇔ p ≤ |x〉q ⇔ |x〉q ≤ p⇔ xq ≤ px⇔ px ≤ xq.

The second equivalence follows by opposition. �

Using these properties we can show that box and diamond operators are ad-
joints in a Galois connection.

Lemma 9.18. Let K be a MKA. For all x ∈ K and p, q ∈ Kd,

(1) |x〉p ≤ q ⇔ p ≤ [x|q,
(2) 〈x|p ≤ q ⇔ p ≤ |x]q.

Proof. Immediate from Lemma 9.17. �

92 9. ANOTHER ALGEBRA OF PROGRAMS

Remark 9.19. Let (P1,≤1) and (P2,≤2) be posets. The functions f : P1 → P2

and g : P2 → P1 are adjoints in a Galois connection if

f x ≤2 y ⇔ x ≤1 g y

holds for each x ∈ P2 and y ∈ P1. More specifically, f is called the left adjoint
and g the right adjoint of the Galois connection. They satisfy a number of alge-
braic properties, which may depend on additional structure present in P1 and P2.
Explaining them is beyond the scope of these lecture notes.

Finally, the following conjugation properties hold.

Lemma 9.20. Let K be a MKA. For all x ∈ K and p, q ∈ Kd,

(1) 〈x|p · q = 0⇔ p · |x〉q = 0,
(2) [x|p+ q = 1⇔ p+ |x]q = 1.
Proof.

(1) 〈x|p · q = 0⇔ 〈x|p ≤ q ⇔ q ≤ 〈x|p⇔ q ≤ [x|p⇔ |x〉q ≤ p⇔ p · |x〉q = 0.
(2) [x|p+ q = 1⇔ 〈x|p · q = 0⇔ p · |x〉q = 0⇔ p+ |x]q = 1.

�

Conjugation properties express opposition in the absence of converse.

9.2. Formalising Modal Kleene Algebras

Declaring the type classes for antidomain, antirange and modal Kleene algebras
presents no surprises.

class antidomain-kleene-algebra = kleene-algebra +
fixes ad :: ′a ⇒ ′a
assumes ad-annil [simp]: ad x · x = 0
and ad-local-sub [simp]: ad (x · y) ≤ ad (x · ad (ad y))
and ad-compl1 [simp]: ad (ad x) + ad x = 1

begin

definition dom-op :: ′a ⇒ ′a (do) where
do x = ad (ad x)

definition fdia :: ′a ⇒ ′a ⇒ ′a where
fdia x y = do (x · y)

definition fbox :: ′a ⇒ ′a ⇒ ′a where
fbox x y = ad (x · ad y)

end

class antirange-kleene-algebra = kleene-algebra +
fixes ar :: ′a ⇒ ′a
assumes ar-annil [simp]: x · ar x = 0
and ar-local-sub [simp]: ar (x · y) ≤ ar (ar (ar x) · y)
and ar-compl1 [simp]: ar (ar x) + ar x = 1

begin

9.2. FORMALISING MODAL KLEENE ALGEBRAS 93

definition range-op :: ′a ⇒ ′a (ra) where
ra x = ar (ar x)

definition bdia :: ′a ⇒ ′a ⇒ ′a where
bdia x y = ra (y · x)

definition bbox :: ′a ⇒ ′a ⇒ ′a where
bbox x y = ar (ar y · x)

end

class modal-kleene-algebra = antidomain-kleene-algebra + antirange-kleene-algebra

More interestingly, we can formalise opposition duality as sublocale statements.

sublocale antirange-kleene-algebra ⊆ op-arka:
antidomain-kleene-algebra (+) 0 1 λx y . y · x (≤) (<) star ar
rewrites op-arka.dom-op x = ra x
and op-arka.fdia x y = bdia x y
and op-arka.fbox x y = bbox x y

proof −
show class.antidomain-kleene-algebra (+) 0 1 (λx y . y · x) (≤) (<) star ar

by unfold-locales (simp-all add : mult-assoc distr distl star-inductl star-inductr)
then interpret op-arka:

antidomain-kleene-algebra (+) 0 1 (λx y . y · x) (≤) (<) star ar .
show op-arka.dom-op x = ra x

by (simp add : range-op-def op-arka.dom-op-def)
show op-arka.fdia x y = bdia x y

by (simp add : bdia-def range-op-def op-arka.dom-op-def op-arka.fdia-def)
show op-arka.fbox x y = bbox x y

by (simp add : bbox-def op-arka.fbox-def)
qed

sublocale antidomain-kleene-algebra ⊆ arka-op:
antirange-kleene-algebra (+) 0 1 (λx y . y · x) (≤) (<) star ad
rewrites arka-op.range-op x = do x
and arka-op.bdia x y = fdia x y
and arka-op.bbox x y = fbox x y

proof −
show class.antirange-kleene-algebra (+) 0 1 (λx y . y · x) (≤) (<) star ad

by unfold-locales (simp-all add : mult-assoc distl distr star-inductl star-inductr)
then interpret arka-op:

antirange-kleene-algebra (+) 0 1 (λx y . y · x) (≤) (<) star ad .
show arka-op.range-op x = do x

by (simp add : arka-op.range-op-def dom-op-def)
show arka-op.bdia x y = fdia x y

by (simp add : arka-op.bdia-def arka-op.range-op-def dom-op-def fdia-def)
show arka-op.bbox x y = fbox x y

by (simp add : arka-op.bbox-def fbox-def)
qed

94 9. ANOTHER ALGEBRA OF PROGRAMS

The opposites of all facts proved for domain and antidomain or forward boxes
and diamonds in antidomain Kleene algebras become automatically available in
antirange Kleene algebras through proving this theorem. This simplifies theory
engineering considerably.

9.3. Predicate Transformers and Structural Verification Conditions

For verification purposes, we need in particular the forward box or wlp operator
|−]−. In the relational and state transformer semantics,

|R]Q = {a | ∀b. (a, b) ∈ R⇒ Qa} and |f]Q = {a | f a ⊆ Q},

where we identify sets, predicates and subidentity relations, as usual. We have
already mentioned that this models the set of all states from which one must end
up in states satisfying Q when executing R or f , respectively. This explains why
|−]− is called weakest liberal precondition operator.

We can now express partial correctness specifications more generally in AKA as

p ≤ |x]q.

Such specifications can now be verified in two steps:

(1) compute the wlp of program x and postcondition q,
(2) show that precondition p lies below this wlp.

The following facts are useful for calculating wlps in the first step.

Proposition 9.21. Let K be an AKA. For all x, y ∈ K and p, q ∈ Kd,

|xy]q = |x]|y]q,(fbox-seq)

|if p then x else y]q = (p+ |x]q)(p+ |y]q),(fbox-cond)

|if p then x else y]q = p|x]q + p|y]q,(fbox-cond-var)

p ≤ i ∧ it ≤ |x]i ∧ it ≤ q ⇒ p ≤ |while t inv i do x]q.(fbox-while-inv)

Proof. Exercise. �

For straight-line programs, verification conditions for the control structure of
programs can thus be computed by equational reasoning and ultimately simplifica-
tion with Isabelle.

The following laws are used in Section 9.6 below.

Lemma 9.22. Let K be an AKA. For all x, y ∈ K and p, q ∈ Kd,

(1) p · |if p then x else y]q = p|x]q,
(2) p · |if p then x else y]q = p · |y]q,
(3) p · |while p do x]q = p|x](|while p do x]q),
(4) p · |while p do x]q = p · q.

Proof. For (3) and (4) we use the identity

while p do x = if p then (x ·while p do x)else 1,

which we have proved in Lemma 2.34 for KAT. We have verified it in AKA with
Isabelle and do not repeat its proof.

9.3. PREDICATE TRANSFORMERS AND STRUCTURAL VERIFICATION CONDITIONS 95

(1) We calculate

p · |if p then x else y]q = p(p+ |x]q)(p+ |y]q)

= p|x]q(p+ |y]q)

= p|x]q.

The first step uses (fbox-cond), the second one simple boolean algebra,
and the third one in particular commutativity of meet and the absorption
law of boolean algebra (the second equation in Definition 2.22).

(2) The proof is similar to (1) and left as an exercise.
(3) We calculate

p · |while p do x]q = p · |if p then (x ·while p do x)else 1]q = p · |x]q,

using (1) and idempotency of meet in boolean algebra.
(4) We calculate, along similar lines,

p · |while p do x]q = p · |if p then (x ·while p do x)else 1]q

= p · |1]q

= pq.

�

Once again it is helpful to derive specific structural wlp-laws for RelX and
StaX that make predicates available for Isabelle. This time we only show the state
transformer semantics and refer to our Isabelle theories for further details.

abbreviation
scond :: ′a pred ⇒ ′a sta ⇒ ′a sta ⇒ ′a sta (sif - then - else - fi [64 ,64 ,64] 63) where
sif P then f else g fi ≡ sta-aka.cond dPes f g

abbreviation swhile :: ′a pred ⇒ ′a sta ⇒ ′a sta (swhile - do - od [64 ,64] 63) where
swhile P do f od ≡ sta-aka.while dPes f

abbreviation
swhile-inv :: ′a pred ⇒ ′a pred ⇒ ′a sta ⇒ ′a sta
(swhile - inv - do - od [64 ,64 ,64] 63) where
swhile P inv I do f od ≡ sta-aka.while-inv dPes dI es f

abbreviation sfbox R Q ≡ bsta-aka.fbox R dQescs

The coercion function b−cs maps state transformers to predicates, and we have
defined an analogous function b−cr for relations.

We can now derive the wlp laws for state transformers mentioned.

lemma sfbox-unfold : sfbox f P s = (∀ s ′. s ′ ∈ f s −→ P s ′)
〈Proof 〉

lemma sfbox-seq [simp]: sfbox (f ◦K g) P s = sfbox f (sfbox g P) s
〈Proof 〉

lemma sfbox-seq-var :
assumes ∀ s. w s −→ sfbox y z s
and ∀ s. v s −→ sfbox x w s

96 9. ANOTHER ALGEBRA OF PROGRAMS

shows ∀ s. v s −→ sfbox (x ◦K y) z s
〈Proof 〉

lemma sfbox-cond [simp] :
sfbox (sif P then f else g fi) Q s = ((P s −→ sfbox f Q s) ∧ (¬ P s −→ sfbox g Q s))
〈Proof 〉

lemma sfbox-cond-var :
sfbox (sif P then f else g fi) Q s = ((P s ∧ sfbox f Q s) ∨ (¬ P s ∧ sfbox g Q s))
〈Proof 〉

lemma sfbox-while-inv :
assumes ∀ s. P s −→ I s
and ∀ s. I s −→ ¬ T s −→ Q s
and ∀ s. I s −→ T s −→ sfbox f I s
shows ∀ s. P s −→ sfbox (swhile T inv I do f od) Q s
〈Proof 〉

lemma sfbox-while-inv-break :
assumes ∀ s. P s −→ sfbox g I s
and ∀ s. I s −→ ¬ T s −→ Q s
and ∀ s. I s −→ T s −→ sfbox f I s
shows ∀ s. P s −→ sfbox (g ◦K (swhile T inv I do f od)) Q s
〈Proof 〉

The laws sfbox-seq-var and sfbox-while-inv-break are needed because we have no
equational laws for while-loops and must therefore break the chain of equational
reasoning. In MKA, invariants satisfy i ≤ |x]i—if they hold before the execution of
a program, then they must hold afterwards. Alternatively one can use sfbox-while-
inv in combination with sfbox-seq-var or else the macro law sfbox-while-inv-break,
which has been derived from sfbox-while-inv using sfbox-seq-var.

9.4. Integrating the Program Store

Integrating the simple program store from Chapter 7 and computing the wlps
for assignments is now straightforward and completely compositional with respect
to the algebra and the relational and state transformer semantics.

Proposition 9.23. In RelS or StaS, where S = DV ,

(fbox-assign) |v := e]Q = Q ◦ (set v e).

This is precisely the precondition calculated by (H-assign). With Isabelle we
have proved the following equations in the relational and state transformer seman-
tics.

lemma mka-rel-assign [simp]: rel-aka.fbox (v :=r e) dQer = dQ ◦ (set v e)er
〈Proof 〉

lemma mka-sta-assign [simp]: sta-aka.fbox (v :=s e) dQes = dQ ◦ (set v e)es
〈Proof 〉

lemma rfbox-assign [simp]: rfbox (v :=r e) Q = Q ◦ (set v e)
〈Proof 〉

9.5. EXAMPLES: PROGRAM VERIFICATION WITH PREDICATE TRANSFORMERS 97

lemma sfbox-assign [simp]: sfbox (v :=s e) Q = Q ◦ (set v e)
〈Proof 〉

We can now verify simple while programs. Overall, the set up for relations
and state transformers is identical and should therefore lead to the same data level
verification conditions. This must of course be tested in practice by example.

9.5. Examples: Program Verification with Predicate Transformers

We present the usual verification examples: variable swap, maximum of two
numbers and integer division. This time we have not programmed syntactic sugar
for partial correctness specifications like for Hoare logic. We simply show that
preconditions imply the wlps of programs and their postconditions.

Example 9.24. First we verify variable swap. We only show the state trans-
former partial correctness specification and proof. Those for relations are identical
up to minor changes of syntax and can be found in our Isabelle theories.

lemma svar-swap:
s ′′x ′′ = m ∧ s ′′y ′′ = n =⇒

sfbox ((′′z ′′ :=s (λs. s ′′x ′′))◦K
(′′x ′′ :=s (λs. s ′′y ′′))◦K
(′′y ′′ :=s (λs. s ′′z ′′)))
(λs. s ′′x ′′ = n ∧ s ′′y ′′ = m) s

by simp

For straight-line programs, simp suffices for automated data-level verification con-
dition generation. For such a simple program it can also discharge the resulting
proof obligations. The proof in the relational semantics is also by simp. �

Example 9.25. Next we verify the maximum-of-two-numbers program in the
relational semantics. That for state transformers is identical up-to notation.

lemma rmaximum:
∀ s::int store.
rfbox (rif (λs. s ′′x ′′ ≥ s ′′y ′′)
then (′′z ′′ :=r (λs. s ′′x ′′))
else (′′z ′′ :=r (λs. s ′′y ′′))
fi)
(λs. s ′′z ′′ = max (s ′′x ′′) (s ′′y ′′)) s

by force

This time, simp is too weak to discharge the data-level verification conditions, but
force can still handle it. �

Example 9.26. Our final examples verifies integer division in both semantics.
In the first proof we use rfbox-seq-var to split the initialisation from the while loop
and then rfbox-while-inv do deal with the loop. In the second one we use the derived
rule sfbox-while-inv-break instead.

lemma rinteger-division:
∀ s::nat store. 0 < y −→

98 9. ANOTHER ALGEBRA OF PROGRAMS

rfbox ((′′q ′′ :=r (λs. 0));
(′′r ′′ :=r (λs. x));
(rwhile (λs. y ≤ s ′′r ′′) inv (λs. x = s ′′q ′′ ∗ y + s ′′r ′′)
do
(′′q ′′ :=r (λs. s ′′q ′′ + 1)) ;
(′′r ′′ :=r (λs. s ′′r ′′ − y))

od))
(λs. x = s ′′q ′′ ∗ y + s ′′r ′′ ∧ s ′′r ′′ < y) s
by (intro rfbox-seq-var rfbox-while-inv , auto simp: imp-refl)

lemma sinteger-division:
∀ s::nat store. 0 < y −→

sfbox ((′′q ′′ :=s (λs. 0)) ◦K
(′′r ′′ :=s (λs. x)) ◦K
(swhile (λs. y ≤ s ′′r ′′) inv (λs. x = s ′′q ′′ ∗ y + s ′′r ′′)
do
(′′q ′′ :=s (λs. s ′′q ′′ + 1)) ◦K
(′′r ′′ :=s (λs. s ′′r ′′ − y))

od))
(λs. x = s ′′q ′′ ∗ y + s ′′r ′′ ∧ s ′′r ′′ < y) s
by (rule sfbox-while-inv-break) simp-all

�

Overall the proofs with MKA and predicate transformers are noticeably simpler
than those with KAT and Hoare logic. Yet tactics for Hoare logic would probably
yield comparable proof automation.

9.6. Relative Completeness of Hoare Logic

We have so far separated KAT and MKA, in particular because that helps
avoiding name clashes with Isabelle. But the following fact is easy to show.

Proposition 9.27. Every AKA K is a KAT with B = Kd and − = ad.

In particular, it is easy to check that ad satisfies the axioms for the antitest
operation α in class kat. It also follows that every antirange Kleene algebra and
therefore every MKA is a KAT. Validity of Hoare triples can therefore be expressed,

H p x q ⇔ px ≤ xq ⇔ p ≤ |x]q,

and the rules of PHL be derived in AKA. Those of Hoare logic are then derivable
in the relational and state transformer semantics of the program store.

We have already seen in Chapter 6 and 7 that the rules of Hoare logic are sound
with respect to the relational and state transformer semantics of the program store.
This simply means that they hold in concrete relational and predicate transformer
semantics of the program store.

The additional expressivity of AKA and its models allow us to prove complete-
ness of Hoare logic as well—yet only in a relative sense, which is typical for Hoare
logic. Relative completeness arises because, in program verification, one often works
with data domains such as numbers for which, by Gödel’s incompleteness theorem,
no deductive system is powerful enough to derive all statements that hold in the
semantics. Completeness can therefore only be proved relative to implications p ≤ q
between assertions that arise in the consequence rules. In computational parlance

9.6. RELATIVE COMPLETENESS OF HOARE LOGIC 99

one assumes that some oracle supplies all consequences needed. Whether this is
practically relevant is of course another question.

Relative to this data level incompleteness, completeness of Hoare logic means
that the inference rules of Hoare logic suffice for deriving all valid partial correctness
specifications H p x q for any pre- and postcondition p and q and any program x.
The traditional approach aims to show that the rules allow deriving any Hoare
triple of the form

H (|x]q)x q,

while assuming that the oracle proves p ≤ |x]q and any data-level inequalities p ≤ p′
and q′ ≤ q in antecedents of (H-cons). We give a “semantic completeness proof”

Proposition 9.28. Let K be an AKA in which all elements are generated by
0, 1 and a set G ⊆ K of basic commands, by sequential compositions, conditionals
and while loops. Let K be expressive, that is, H (|g]q) g q holds for all g ∈ G and
q ∈ Kd. Then, for all x ∈ K and q ∈ Kd,

H (|x]q)x q

is derivable using PHL, while restricting any other use of AKA to the antecedents
p ≤ p′ and q′ ≤ q of (H-cons).

Proof. We proceed by induction on the structure of x. There are three base
cases.

First, x ∈ G is covered by expressivity. Second, if x = 0, then |0]q = 1 and we
could add an axiom H 1 0 q to PHL for this case. Third, if x = 1, then |1]q = q and
therefore H (|1]q) 1 q = H q 1 q, which is (H-skip).

For x = yz, we have

H(|y]|z]q) y (|z]q) ∧ H (|z]q) z q ⇒ H (|y]|z]q)x q ⇒ H (|x]q)x q.

The initial conjunction consists of induction hypotheses. The first step uses (H-seq);
the second one (H-cons) with |y]|z]q = |yz]q, which is (fbox-seq), as a hypothesis.

For x = if p then y else z, we have

H (|y]p)x q ∧ H (|z]p) y q ⇒ H (p|x]q) y q ∧ H (p|x]q) z q ⇒ H (|x]q)x q.

The initial conjunction consists of induction hypotheses. The first step uses (H-
cons) with hypotheses p|x]q = p|y]q ≤ |y]q and p|x]q = p|z]q ≤ |z]q, which hold by
Lemma 9.22(1), and (2). The second step uses (H-cond).

Finally, for x = while p do y, we have

H (|y]|x]q) y (|x]q)⇒ H (p · |x]q) y (|x]q)

⇒ H (p · |x]q)x (p|x]q)

⇒ H (p · |x]q)x q.

The initial Hoare triple is the induction hypothesis. The first and third step use
(H-cond); the second one (H-while). The hypothesis of the first use of (H-cond) is
p · |y]|x]q ≤ p · |x]q, which holds by Lemma 9.22(3); the hypothesis of its second use
is p · |x]q = p · q ≤ q, which holds by Lemma 9.22(4). �

Lemma 9.29. In the AKA RelS or StaS, the Hoare triple

H (|v := e)]Q) (v := e)Q

is derivable from (H-assign) for all subidentities Q, v ∈ V and e : S → D.

100 9. ANOTHER ALGEBRA OF PROGRAMS

Proof.

H (λs. Q (set v e s)) (v := e)Q⇒ H (|v := e)]Q) (v := e)Q,

where the initial Hoare triple is (H-assign) and (H-cons) is used in the step with
hypothesis (fbox-assign). �

Theorem 9.30. Hoare logic is relatively complete.

Proof. By Proposition 9.28 and Lemma 9.29, H (|X]P)X P is derivable from
instances of the rules of Hoare logic in the relational or state transformer semantics.
An oracle allows deriving P → |X]Q and all implications P ′ → Q′ arising from
applications of (H-cons). If we had a syntax for programs and Hoare logic, our
semantic proofs would correspond directly to the syntactic ones in Hoare logic,
using substitutions in the latter instead of store updates in the former, as discussed
in Chapter 7. �

9.7. KAT vs MKA

We have already argued that MKA is more expressive than KAT. Here is an
example. In MKA we can show the reverse of (H-seq):

∀x, y. ∈ K, p, q ∈ Kd. {p}x {q} ⇒ ∃r ∈ Kd. {p}x {r} ∧ {r} y {q},
using the encoding of Hoare triples from the previous section. Suppose p ·x · q = 0.
We need an expression r ∈ Kd such that p · x · r = 0 and r · y · q = 0. Let
r = ad (y ·q). Then p ·x ·r = p ·x ·d(y ·q), which equals 0 because of the assumption
and Lemma 9.6(12), and r · y · q = a (y · q) · y · q = 0 by the first antidomain axiom.

However the same implication, with Kd replaced by B, does not hold in KAT.
Consider the KAT ({0, α, 1}, {0, 1},+, ·, (−), 0, 1,∗) with 0 < α < 1, α2 = 0 and
α∗ = 1. Then {1}α2{0} holds because 1 ·0 ·1 = 0, but one of {1}α{r} and {r}α{0}
is false for r ∈ {0, 1} (for r = 0, the first triple is false, for r = 1, the second one).

Note that ad (y · q) = |y]q, which means nothing but that KAT cannot express
the wlp operator.

Expressivity, however comes at a price. The equational theory of MKA is still
decidable, but EXPTIME complete. Recall, by contrast, that the equational theory
of KAT is PSPACE complete.

	Preface
	Chapter 1. Introduction
	1.1. What is program correctness?
	1.2. Overview of content
	1.3. Background on interactive theorem proving

	Chapter 2. An Algebra of Programs
	2.1. Intuitive semantics for a simple while-language
	2.2. Algebraic laws for structural commands
	2.3. From monoids to Kleene algebras
	2.4. Kleene algebra with tests
	2.5. Programming examples

	Chapter 3. Formalising the Algebra of Programs
	3.1. Engineering algebraic hierarchies with Isabelle
	3.2. Examples: Program transformations with Isabelle
	3.3. Integrating Models

	Chapter 4. Two Semantics of Program Execution
	4.1. Relational Semantics
	4.2. State Transformer Semantics
	4.3. Path Semantics

	Chapter 5. Formalising the Two Semantics
	5.1. Relational Semantics
	5.2. State Transformer Semantics
	5.3. Isomorphism Between the Semantics

	Chapter 6. Propositional Hoare Logic
	6.1. Partial Correctness Specifications
	6.2. Rules of Propositional Hoare Logic
	6.3. Formalising Propositional Hoare Logic

	Chapter 7. Hoare Logic
	7.1. Semantics of the Program Store
	7.2. Semantics of Assignment Commands
	7.3. Assignment Rules of Hoare Logic
	7.4. Formalising the Program Store and Hoare Logic
	7.5. Examples: Program Verification with Hoare Logic

	Chapter 8. Program Refinement
	8.1. Refinement Kleene Algebras with Tests
	8.2. A Simple Refinement Calculus
	8.3. Examples: Program Refinement

	Chapter 9. Another Algebra of Programs
	9.1. Modal Kleene Algebras
	9.2. Formalising Modal Kleene Algebras
	9.3. Predicate Transformers and Structural Verification Conditions
	9.4. Integrating the Program Store
	9.5. Examples: Program Verification with Predicate Transformers
	9.6. Relative Completeness of Hoare Logic
	9.7. KAT vs MKA

