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1 Summary

This project has concerned the development of novel techniques for exploiting visual speech information (e.g. lip and
face movements) in the design of automatic speech recognition systems. The approaches explored are motivated by
the desire for reliable speech recognition in the presence of highly non-stationary noise sources, such as background
speech. The basis of the project is a recent approach to robust automatic speech recognition that couples the problems
of source separation and speech recognition by ‘piecing together’ spectro-temporal fragments of speech recovered
from regions of a time-frequency representation in which the signal locally dominates the noise. The project has
extended this approach into the audio-visual domain. The audio-visual system exploits the correlation that exists
between audio and visual aspects of speech to resolve ambiguities in the acoustic fragment labelling that occur when
attempting to recognise speech in the presence of noises with speech-like characteristics.

As well as providing a new audio-visual speech recognition framework, this research has built on and integrated
work from earlier projects dealing with the development of Auditory Scene Analysis algorithms (EPSRC grant
GR/H53174/01), the recognition of occluded speech (EPSRC grant GR/K18962/01, ‘RESPITE’ - EC ESPRIT LTR
project) and the development of the speech fragment decoding architecture (EPSRC grant GR/R47400/01). The prin-
cipal contributions of the project have been,

• The collection of an audio-visual speech corpus suitable for both measuring speech intelligibility and for testing
robust audio-visual automatic speech recognition (AV-ASR) systems.

• An improved set of algorithms for analysing acoustic mixtures and generating spectro-temporal sound source
fragments.

• A complete software implementation of a fully functional audio-visual fragment-based recognition system.

• A demonstration of the advantages of the fragment-based AV-ASR technique in comparison with conventional
‘multistream’ approaches when applied to a simultaneous-speaker recognition task.

• The development and evaluation of versions of the AV fragment-based techniques that accommodate the asyn-
chrony that can occur between corresponding phoneme and viseme boundaries.

2 Background

Humans are incredibly adept at understanding speech in noisy conditions (e.g. Deshmukh et al., 1996). In face-
to-face conversation, the robustness of our speech processing depends partly on the fact that speech is not just an
acoustic signal, but also has an information-rich visual component. As background noise levels increase listeners
subconsciously make increasing use of visual speech information – i.e. they attend more carefully to lip, jaw and
subtle facial movements. As long ago as 1954, studies demonstrated that this visual component of the speech signal
can increase intelligibility to the same extent as increasing the SNR by as much as 15 dB (Sumby and Pollack, 1954).
Since then it has become increasingly clear that the role of vision is central to the perception of speech. For a review
see Summerfield (1992).

In recent years there has been much research activity directed towards exploiting the visual component of the speech
signal in robust ASR systems. This research has mainly focused on two question: i) How best to parameterise visual
features? ii) How best to integrate the audio and visual feature data? Many different systems have been proposed
using various combinations of visual feature and integration mechanism (for a review see Potamianos et al., 2003).
Most existing AV-ASR systems derive advantage from the visual stream by exploiting its phonetic content. However,
an additional role for the visual stream can be imagined: the visual stream may aid recognition by helping the ear to
separate the speech from the noise background. Recent audio-visual perception studies provide evidence that visual
features are employed in this manner by humans. Schwartz et al. (2004) demonstrate that visual speech can improve
intelligibility even in situations where it carries no useful phonetic information. In simultaneous speech conditions,
Helfer and Freyman (2005) and Wightman et al. (2006) have shown that visual cues can provide benefit to intelligibility
by helping the auditory system to selectively attend to one speaker.
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This project has aimed to build AV-ASR systems that model the dual role of the visual speech information that these
recent perceptual studies suggest – that of supplementing the energetically masked phonetic content of the audio
signal, and that of providing information that can aid the separation of the speech and the background. As a starting
point the work has considered the auditory scene analysis (ASA) account of auditory perception that describes how the
acoustic mixture arriving at the ear can be effectively ‘unmixed’ so that the individual sound sources may be perceived
separately (Bregman, 1990; Darwin and Carlyon, 1995). This account can be broadly characterised by two processing
stages: primitive grouping processes identify spectro-temporal fragments whose energy is dominated by an individual
sound source, then expectation-driven processes group these fragments to form the best match to models of individual
sounds sources, e.g. speech.

A robust speech recognition technique known as speech fragment decoding (SFD) has been previously proposed that
models both the fragment generation and grouping stages of ASA. Previously, this model has only been evaluated
in audio-only speech recognition tasks. The project has aimed to demonstrate that this model also presents a valid
framework for integrating audio and visual information to produce an AV-ASR system that exploits visual information
in the ways discussed above.

The research has been organised into five work packages: (i) speech data collection and preparation – collection and
annotation of an audio-visual speech corpus plus generation of simultaneous speech data for evaluation; (2) primitive
auditory grouping – further development of techniques for sound source fragment generation and application of these
techniques to the simultaneous speech task; (3) synchronous AV speech fragment decoding – extension of the speech
fragment decoding technique to handle audio-visual data; (4) asynchronous AV speech fragment decoding – extension
of (3) to allow the modelling of AV asynchrony; (5) evaluation – development of baseline results using conventional
AV-ASR techniques, and comparison with the performance of AV-SFD. Progress in each of these areas is summarised
in the section to follow.

The project has had the involvement of two personnel (one academic - Barker; one full-time RA, Shao).

3 Key Advances and Supporting Methodology

3.1 WP1: Speech data collection and preparation

Due to the lack of an existing audio-visual speech corpus suitable for the planned research, the project has been
committed to the collection of new data. The proposal described the collection of a total of 10 hours of digit utterances
involving 20 speakers. It was planned to use reflective markers to capture lip dynamics. In response to reviewers’
comments the scope of the planned corpus has been increased. With the additional support of a University of Sheffield
Research Facilitation grant, a larger corpus totalling 34 speakers and 20 hours of speech has been collected. The
digit task has been replaced by a more phonetically diverse alpha-digit recognition task, in which alpha-digit ‘grid
references’ are embedded in simple command sentences. Also in response to reviewers’ comments the plan to use
reflective markers was replaced. Instead, semi-automatic lip-tracking techniques have been employed to ensure that
uniformly reliable and high-quality lip features can be extracted (Shao and Barker, 2007).

The corpus of AV data, know as the ‘Grid corpus’, has been documented in a letter to the Journal of the Acoustical
Society of America (Cooke et al., 2006). It is designed, not just for audio-visual speech recognition experiments, but
also for the study of human speech intelligibility. It is therefore ideal for direct human speech recognition (HSR)
versus ASR comparisons. It has already lead to two significant publications in this area (Barker and Cooke, 2007;
Cooke et al., conditionally accepted). It has also been employed for a recent audio-only simultaneous speech recog-
nition competition known as the Pascal Speech Separation Challenge (PSSC) 1 in which nearly a dozen international
competitors have participated. A special issue of the journal Speech Communication is presently in preparation as a
result of this challenge. The PSSC has meant that although the Grid corpus is new, many state-of-the-art audio-only
ASR external baselines are already available. The audio-visual research in this project, has been evaluated using an
audio-visual simultaneous speech recognition task that employs the same set of speech utterance mixtures as the PSSC
so that our (audio-only) results can be viewed in the context of these baselines.

The audio and visual data from the Grid corpus has been made freely available for download from the web.2 High
quality versions of the video data are being made available on request. The data will also be distributed on DVD to
interested participants at this years Audio-Visual Speech Processing workshop, where the results of the current project
are due to be presented. Currently only the audio and visual signal are available, however, a future release is planned
which will also include the extracted visual features, hence lowering the overhead for institutes that wish to participate
in AV-ASR research.

1see http://www.dcs.shef.ac.uk/∼martin/SpeechSeparationChallenge.htm
2http://www.dcs.shef.ac.uk/spandh/gridcorpus/
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3.2 WP2: Primitive auditory grouping (sound source fragment generation)

The fragment decoding technique is dependent on the quality of the spectro-temporal fragments that are generated
by the front-end signal processing. It is important that the fragments should each be dominated by the energy of a
single source. Also, in order for the grouping process to constrain the search space of possible foreground/background
segmentations considered by the second stage of the system, it is desirable that the fragments have a large area. WP2
has concentrated on improving the fragment generation algorithms to meet these goals, and on applying the algorithms
to the simultaneous speaker data generated in WP1.

Multi-pitch detection and tracking techniques can be used as the basis for generating reliable spectro-temporal frag-
ments: filterbank channels can be grouped across frequency if they are excited by a common fundamental frequency;
grouped channels can be integrated through time if their corresponding pitches form valid pitch trajectories. The
project has made important contributions to both these stages.

Ma et al. (in press) have developed new robust algorithms for estimating the pitches of simultaneous sources exploiting
an autocorrelogram representation of the mixed signal. In this technique the signal is passed through a gammatone
filterbank with filters spaced to mimic the non-linear frequency resolution of the ear. At a given time instant, an
autocorrelation is performed on the signals in each channel. The resulting two-dimensional representation (with axes
of frequency and autocorrelation delay) contains competing tree-like structures whose stems are located on the delays
corresponding to the pitches of the sources present. Ma et al. (in press) show how the stem positions can be robustly
estimated by using a template that matches the local details of the tree-like structure.

Coy and Barker (2007) have developed a novel multi-pitch tracking algorithm that uses an HMM to model the change
of voicing-state of a speech source, and a simple model of pitch dynamics in voiced segments. Independent HMMs
are used to model each speech source, and a separate noise-process is used to model the spurious pitch estimates
generated by the pitch detection algorithm. A Viterbi decoding is then able to form the most likely description of the
data in terms of a number of potentially overlapping pitch track segments.

Additionally, the speech fragment decoding architecture has been generalised to accept a ‘confidence mask’ input
which encodes the degree of certainty with which each spectral-temporal point has been allocated to a fragment
(Coy and Barker, 2007). This mask effectively lends a probabilistic interpretation to the otherwise categorical fore-
ground/background segmentations that the decoder generates (the categorical nature of the fragment labelling was a
weakness noted by the project proposal reviewers). Softening the fragment interpretation is similar to the use of ‘soft
masks’ in missing data systems (Barker et al., 2000; Coy and Barker, 2005b). Our evaluations have shown that it
increases recognition performance to a similar degree (Ma et al., in press).

3.3 WP3+WP4: Synchronous and asynchronous audio-visual speech fragment decoding

WP3 and WP4 have concerned the development of the synchronous and asynchronous implementations of the AV
speech fragment decoder respectively. These systems can be built without need for extension of the underlying speech
fragment decoder machinery. For the synchronous version it is only required that the HMM’s acoustic model is
replaced with an AV model trained on AV features vectors that are formed from simple concatenation of the A and
V feature vector components. Each HMM state is represented using a GMM with a number of diagonal-covariance
components. These can be constructed by treating A and V as independent given the state – the implementation first
trains a multistream AV HMM on clean speech and then converts this into a standard HMM by ‘squaring out’ the
GMMs contained in the A and V streams. Alternatively, the AV HMM can be trained directly on the concatenated AV
data. In either case, during recognition, the AV-SFD treats the visual features like one large fragment that is known to
belong to the target speech source, and the decoder runs exactly the same algorithm and probability calculations that
are employed for the audio-only case.

The asynchronous AV-SFD is based on the product-HMM implementation introduced by Neti et al. (2000). The goal
here has been to validate that the performance advantage afforded by asynchrony in multistream approaches carries
through to the SFD system. A state-synchronous multistream AV HMM is first trained. Then it is assumed that
within each word-model the A and V streams can be desynchronised by a maximum of N states (usually 1 or 2).
Composite AV states are constructed by squaring out the A and V GMM components of states that can correspond
when allowing for the possibility of N states worth of asynchrony. An HMM is constructed by adding the transitions
between composite states obtained by combining the transitions that would occur in independent A and V HMMs (e.g.
for non-skip HMMs it is possible to either stay in the same state for both A and V, advance only in A, advance only in
V, or advance in both A and V). The reconstructed AV HMM is then compatible with the standard fragment decoding
software.

Barker and Shao (2007) presents implementation details and evaluation of the synchronous decoder; the asynchronous
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Figure 1: Comparison of AV-SFD and the optimal multistream system when evaluated on the simultaneous speaker
recognition task (see text).

version can provide a small additional relative performance improvement (∼ 5% at most SNRs). A paper providing full
details of both the synchronous and asychronous decoders is currently in preparation (Barker and Shao, in preparation).

3.4 WP5: Evaluation

Much of the work in WP5 has consisted of developing credible baseline results against which to compare the results
of the systems developed in WP3 and WP4. State-of-the-art AV-ASR systems are typically constructed around a
multistream architecture in which audio and visual stream weights are optimised to minimise the effects of acoustic
noise. In order for these systems to work effectively in non-stationary noise conditions, the stream weights need
to adapt over time in accordance with a measure of the local SNR. The project has developed multistream baseline
systems using both fixed stream weights and adaptive stream weights. It has also compared systems that have set the
stream weight using either a measure of the true SNR (obtained using knowledge of the clean speech prior to mixing
with noise) or an estimated SNR derived from the noisy AV data. Novel techniques have been developed to estimate
SNR using audio and visual HMM state-likelihood data. It has been demonstrated that visual information aids SNR
estimation in situations where the noise background is confusable with the speech signal (e.g. simultaneous speech).
The development of these baseline systems is reported in Shao and Barker (2006) and Shao and Barker (2007).

Figure 1 shows a comparison of the performance of the synchronous AV-SFD technique and the optimal multisource
AV-ASR baseline system (time varying stream weight optimised by assuming knowledge of local SNR). The evalua-
tion employs the AV version of the Pascal Speech Separation Challenge in which a target and masker talker are mixed
at a variety of SNRs. Note how the fragment decoder is able to exploit the acoustic signal at very low SNRs. Details
of these experiments, which also compare audio-only and audio-visual fragment decoding systems, appear in (Barker
and Shao, 2007). An extended version of this paper, including results of both the synchronous and asynchronous
systems is in preparation for submission to the journal Speech Communication (Barker and Shao, in preparation).

References

J. Barker, L. Josifovski, M. P. Cooke, and P. D. Green. Soft decisions in missing data techniques for robust automatic
speech recognition. In Proceedings of the International Conference on Spoken Language Processing, Beijing,
China, 2000.

*J. P. Barker. Tracking facial markers with an adaptive marker collocation model. In Proceedings of the International
Conference on Acoustics Speech and Signal Processing (ICASSP-2005), pages 665–669, Philadelphia, PA, 2005.

*J. P. Barker and M. Cooke. Modelling speaker intelligibility in noise. Speech Communication, 49(5):402–417, 2007.

4



J. P. Barker, M. P. Cooke, and D. P. W. Ellis. Decoding speech in the presence of other sources. Speech Communication,
45:5–25, 2005.

* J. P. Barker, A. Coy, N. Ma, and M. Cooke. Recent advances in speech fragment decoding techniques. In Proceedings
of Interspeech 2006, pages 85–88, Pittsburgh, PA, 2006.

* J. P. Barker and X. Shao. Audio-visual speech fragment decoding. In Proceedings of AVSP 2007, Hilvarenbeek, The
Netherlands, 2007.

* J. P. Barker and X. Shao. Audio visual speech fragment decoding: synchronous versus asynchronous models.
Journal of the Acoustical Society of America, in preparation.

A. S. Bregman. Auditory scene analysis. MIT Press, Cambridge, MA, 1990.
* M. Cooke, J. P. Barker, S. Cunningham, and X. Shao. An audio-visual corpus for speech perception and automatic

speech recognition. Journal of the Acoustical Society of America, 120(5):2421–2424, 2006.
* M. Cooke, M. L. Garcia Lecumberri, and J. P. Barker. The foreign language cocktail party problem: energetic

and informational masking effects in non-native speech perception. Journal of the Acoustical Society of America,
conditionally accepted.

A. Coy and J. P. Barker. Soft harmonic masks for recognising speech in the presence of a competing speaker. In
Proceedings of Interspeech 2005, pages 2641–2644, Lisbon, Portugal, 2005b.

* A. Coy and J. P. Barker. A multipitch tracker for monaural speech segmentation. In Proceedings of Interspeech
2006, pages 1678–1681, Pittsburgh, PA, 2006.

* A. Coy and J. P. Barker. An automatic speech recognition system based on the scene analysis account of auditory
perception. Speech Communication, 49(7):384–401, 2007.

C. J. Darwin and R. P. Carlyon. Auditory grouping. In B. C. J. Moore, editor, The handbook of perception and
cognition, Volume 6, Hearing, pages 387–424. Academic Press, Inc., 1995.

N. Deshmukh, R. J. Duncan, A. Ganapathiraju, and J. Picone. Benchmarking human performance for continuous
speech recognition. In Proceedings of the International Conference on Spoken Language Processing, Philadelphia,
PA, 1996.

K. S. Helfer and R. L. Freyman. The role of visual speech cues in reducing energetic and informational masking.
Journal of the Acoustical Society of America, 117(2):842–849, 2005.

* N. Ma, P. Green, J. P. Barker, and A. Coy. Exploiting correlogram structure for robust speech recognition with
multiple speech sources. Speech Communication, in press.

C. Neti, G. Potamianos, J. Luettin, I. Matthews, H. Glotin, and D. Vergyri. Large-vocabulary audio-visual speech
recognition: A summary of the johns hopkins summer 2000 workshop. In In Proceedings of the Workshop on
Multimedia Signal Processing, pages 619–624, Cannes, France, 2000.

G. Potamianos, C. Neti, G. Gravier, A. Garg, and A.W. Senior. Recent advances in the automatic recognition of
audiovisual speech. Proc. IEEE, 91(9):1306–1326, 2003.

J. L. Schwartz, F. Berthommier, and C. Savariaux. Seeing to hear better: evidence for early audio-visual interactions
in speech identification. Cognition, 93:B69–B78, 2004.

* X. Shao and J. P. Barker. Audio-visual speech recognition in the presence of a competing speaker. In Proceedings
of Interspeech 2006, pages 1292–1295, Pittsburgh, PA, 2006.

* X. Shao and J. P. Barker. Stream weight estimation for multistream audio-visual speech recognition in a multispeaker
environment. Speech Communication, 2007. submitted.

W. H. Sumby and I. Pollack. Visual contribution to speech intelligibility in n oise. Journal of the Acoustical Society
of America, 26:212–215, 1954.

Q. Summerfield. Lipreading and audio-visual speech perception. Philosophical transactions of the Royal Society of
London. Series B, Biological sciences, 1273(335):71–78, 1992.

F. Wightman, D. Kistler, and D Brungart. Informational masking of speech in children: Auditory-visual integration.
Journal of the Acoustical Society of America, 119(6):3940–3949, 2006.

(Publications marked with an asterisk have involved the support of the project.)

5


