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Abstract

We present a new corpus designed for noise-robust speech pro-
cessing research, CHIME. Our goal was to produce material
which is both natural (derived from reverberant domestic en-
vironments with many simultaneous and unpredictable sound
sources) and controlled (providing an enumerated range of
SNRs spanning 20 dB). The corpus includes around 40 hours
of background recordings from a head and torso simulator posi-
tioned in a domestic setting, and a comprehensive set of binau-
ral impulse responses collected in the same environment. These
have been used to add target utterances from the Grid speech
recognition corpus into the CHiME domestic setting. Data has
been mixed in a manner that produces a controlled and yet nat-
ural range of SNRs over which speech separation, enhancement
and recognition algorithms can be evaluated. The paper moti-
vates the design of the corpus, and describes the collection and
post-processing of the data. We also present a set of baseline
recognition results.
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1. Introduction

Despite much research and investment, automatic speech recog-
nition (ASR) technology is still not an integral part of our every-
day lives. One of the greatest barriers to the uptake of ASR
is the lack of robustness to interfering noise sources. In most
cases this has led to a reliance on close-talking microphones
to deliver acceptable performance. However, head mounted mi-
crophones are least appropriate in precisely the situations where
speech communication could be most useful — human computer
interactions in informal, everyday environments (e.g. the home)
where keyboard-and-screen interfaces are inconvenient. The
CHiME (Computational Hearing in Multisource Environments)
project wishes to address these issues by building a general sta-
tistical framework for computational hearing that can recog-
nise speech from recordings made by distant microphones in
acoustically ‘cluttered’ environments (i.e. multiple, simultane-
ous sound sources).

Speech technology has been advanced over the last 30 years
by a series of successful evaluation exercises. These usually
take the form of tightly specified speech processing challenges
that invite open competition and allow direct comparison of al-
gorithms. Some of these tasks such as TIMIT and Aurora have
become standards with long shelf lives and are continuing to
drive research long after their originators may have foreseen.
Given the potential impact of such datasets, extreme care has to
be taken that new tasks are well aligned with the demands of
real application scenarios, so that optimising algorithms on the
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task results in real benefit for present and future systems operat-
ing in the wild. With this in mind, we have carefully considered
the CHiME challenge design in terms of several operating cri-
teria.

Noise background: A wide variety of algorithms exist for
handling ‘special case’ noise backgrounds (stationary noise or
slowly adapting noise, speech plus speech, speech babble, noise
with a predictable temporal structure [1, 2, 3, 4, 5]), however,
these algorithms can be very brittle and often fail badly in more
general conditions. We wish to record data with a complex-
ity that is representative of everyday listening conditions. We
call our data ‘acoustically cluttered’, meaning that there may
be many noise sources simultaneously active and each source
may have a very different characteristic. At the same time, we
also wish to constrain the domain: the noise sources are not
totally arbitrary but associated with the particular environment
in which they were recorded. With sufficient data it should be
possible to build a meaningful model of the noise environment.

It is noted that many recent European and American large
vocabulary ASR (LVASR) projects have published substantial
speech datasets gathered in meeting (AMI[6, 7],ICSI[8]) and
lecture (CHIL[9]) scenarios. These settings have been of inter-
est to LVASR because they provide ‘good’ conditions in which
to listen to speech. Compared to less formal settings (e.g.
homes, social gatherings etc.) the speech SNRs are typically
lower, instances of overlapping speech are rarer and the noise
backgrounds are less acoustically varied and less cluttered.

Noise level: We wish the SNRs encountered in the recog-
nition task to be natural and representative of those found in a
real application, i.e. if the SNR is low it will be because the
speech co-occurs with background noise that naturally has high
energy. This contrasts with tasks like Aurora [10] where the
same noise segment is added to speech at a range of SNRs, e.g.
speech might be added to the noise of a busy cafeteria at 20
dB to produce a mixed signal that would never be heard in any
real situation. However, while ensuring the naturalness of the
mixtures, we still wish to be able to carefully measure and con-
trol the SNR so that we can evaluate ASR algorithms over an
appropriately spaced set of difficulty settings.

Recording style: As explained earlier, we have a focus on
distant microphone speech recognition. We also acknowledge
that sound source separation is an important component of ro-
bust speech recognition in everyday listening settings. It is clear
that spatial cues are important for facilitating source separation,
and to provide these, we need to make recordings with more
than one microphone. We have chosen to use a binaural micro-
phone setup (i.e. two microphones in a configuration modelling
human ears) rather than employ a larger microphone array. This
economy 1is justified by the self-evident observation that two
channels are sufficient for robust speech processing in humans.



Speech material: Given that the SNR range is dictated
by the environment, once the environment has been chosen,
the ‘difficulty’ of the recognition task can best be controlled
through the choice of target speech material. We wished to
avoid a large vocabulary task because we believe the barriers
to noise robust ASR can be studied more efficiently using small
vocabulary tasks. However, we wish to select a small vocabu-
lary task that adequately reflects the difficulties of general small
vocabulary ASR applications (i.e. one that cannot be solved us-
ing principles that do not generalise well). For example, the
digit string recognition task that underlies the popular Aurora
2 evaluation framework [1] — still occasionally used as a test
of robust ASR systems — can be largely solved on the basis of
vowel recognition alone and is therefore too narrow to meet our
requirements.

With the above considerations in mind, Section 2 outlines
the design of the CHiME corpus. Technical details of the data
collection and subsequent post-processing are described in Sec-
tions 3 and 4 respectively. Section 5 concludes with the presen-
tation of representative recognition results using baseline ASR
systems and discusses plans for distribution of the data.

2. Design

The CHiME background noise is recorded separately from the
target speech. The target speech is subsequently artificially
added but in a manner that closely simulates the effect of the
speech being present in the room. This allows us to readily con-
trol the target speech SNR, target talker location, talker charac-
teristics etc.

For the background noise, a domestic environment has been
chosen, such as would be encountered in a home automation
application. It is a convenient setting for recording data over an
extensive period of time. It also provides a surprisingly rich mix
of sound sources, some of which may be easy to model (e.g. a
washing machine that remains in a fixed position and runs a pre-
dictable program) and some which are not (e.g. children running
around while talking, screaming and laughing). All recordings
are made in one family home. Within the house it was chosen
to collect a large number of hours from a relatively small num-
ber of environments — presently two rooms: lounge and kitchen.
This will allow the data to be useful when studying how a fixed
recognition system may learn to adapt to its environment over
time.

The target speech for the recognition task has been taken
from the Grid[11] corpus. Although small vocabulary, Grid ut-
terances have previously been demonstrated to be a good test
of the state-of-the-art for noise robust ASR. As the original
Grid recordings are high quality and have very little reverber-
ation they proved to sound very natural when added to the room
recordings using the techniques described in Section 4.

The CHIME corpus will be made freely available to the
public and when the CHiME challenge is announced (expected
to happen in the autumn of 2010) it will be available for down-
load through the challenge web page[12] — the site currently
contains some taster segments of mixed and unmixed data.

3. Collection

The data has been collected using a B&K head and torso sim-
ulator (HATS) and the corpus contains three main parts (sum-
marised in Table 1): i) around 10 hours of background record-
ings (for development and training) split approximately evenly
between the lounge and the kitchen, ii) a set of binaural room

Data type Kitchen Lounge
Background recordings (dev+train) 5:50:08 5:38:56
Background rec. mixed with Grid 16:05:41 | 14:41:29
Impulse responses (# of locations) 14 18

Table 1: The CHiME corpus; number of hours recorded and
number of binaural room impulse responses (BRIRs).

impulse responses (BRIRs) from different spatial locations rel-
ative to the HATS in the same rooms and iii) around 30 hours
of background recordings (different to the ones in part 1)) into
which sentences from the Grid corpus have been mixed after
they have been spatialised with the appropriate BRIRs.

The house is a typical English Victorian semi-detached
house with a relatively high ceiling height - around 365 cm. The
lounge (385 cm x 385 cm) has carpeted floors and plastered
ceiling and walls; one wall is dominated by a large, bay win-
dow. The kitchen is smaller at approximately 365 cm x 300 cm
with linoleum floors, plastered walls and ceiling and fitted units
along most walls. The major noise sources in the environment
are those of a typical family home: two adults and two children,
TV, kitchen and laundry appliance sounds, foot steps, electronic
gadget sounds (laptops, games console), toys, gerbils and noise
from the outside such as traffic, voices and birds. Both rooms
have a number of fixed noise sources such as washing machine,
TV, and kettle which, depending on whether they are on or off,
will contribute to the overall noise background. Figure 1 shows
the locations of the main, stationary noise sources.
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Figure 1: Location of the HATS in relation to the main noise
sources in the lounge (a) and the kitchen ((b).

3.1. Background recordings

A total of 57 background sessions were recorded with the bin-
aural B&K HATS placed in either of two locations in the house:
the lounge (a total of 15 hours collected from 22 individual ses-
sions) and the kitchen (a total of 21 hours from 21 individual
sessions). The recording times range from around 7:30 in the
morning to 20:00 in the evening, and the data are recorded at the
maximum available sampling frequency of 96 kHz and with a
precision of 32 bit. The reverberation time was measured using
the method of Schroeder integration [13] and both the lounge
and kitchen have a Tgo time of 300 ms.

The equipment was set up permanently so it was easy to
turn on when in the house. This also served to minimise any



recording level differences between sessions. Calibration mea-
surements were carried out with a B&K 4231 calibrator after
each ‘run’ of recording days. The calibrator fits snugly around
each microphone (after the pinna has been removed) and plays a
constant tone; the background sessions have subsequently been
normalised according to these measurements.

Figure 2 illustrates the recording set up. The microphones
in the B&K HATS are connected to the B&K 4128E ampli-
fier. The amplifier has internal filters that were set up to re-
move frequency components below 20 Hz and above 20 kHz.
The amplifier is connected to a MOTU 8pre box which digi-
tises the signals. The MOTU 8pre box communicates with the
MacBook Pro via a firewire cable. The background sessions
were recorded directly onto the MacBook harddrive using the
‘Audacity’ multitrack recording and editing software.

B&K 2669 MOTU 8pre
Swesoutputpath . .
HiFi amplifier H Firenire

Type 4128E
MacBook Pro

Figure 2: Diagram of HATS based recording equipment. When
estimating the BRIRs, the sweep signal is played through the
artificial mouth as indicated.

A couple of pilot recordings were carried out to estimate the
best recording level for capturing the very wide dynamic range
of audio experienced in the two rooms. Gain was adjusted to
be as high as possible while avoiding substantial clipping. With
the home automation application in mind it was considered rea-
sonable to expect our target system to experience occasional
clipping (e.g. during impulsive sound events occurring close to
the microphones). As the acoustics of the kitchen was ‘louder’
than the lounge, the amplification on the MOTU box was turned
down slightly for those sessions. The calibration recordings
have been used to normalise all recordings to the same relative
level in the data that will be distributed.

Figure 3 shows the ratemap of two background recording
snippets. They are very representative in that there is speech un-
der which can be heard the slowly varying and stationary sounds
of the washing machine with an occasional unpredictable noise
such as foot steps or a child hitting sticks together.

3.2. Impulse responses

In each room a number of binaural room impulse responses
(BRIRs) have been estimated for various source locations rel-
ative to the HATS. The BRIRs are positioned on polar grid, i.e.
either moving the sound source on an arc at equi-distance from
the HATS (e.g. at 100 cm and with 10° azimuth intervals) or at
an equi-angle (at 0° azimuths and with 50 ¢cm distances). All
positions are measured from the center point of the HATS head
(halfway between the ears).

The IRs are determined using the sine sweep method[14,
15] as implemented in Farina’s AURORA v.4.3 plugin for
ADOBE AUDITION[16]. The process is as follows: i) generate
a sine sweep with a frequency progressing from 20 Hz to 20 kHz
on a log scale, ii) simultaneously play the sweep signal while
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Figure 3: Ratemap snippets of a background noise recordings
containing speech, slowly and fast varying noise sources.

recording the response, iii) convolve the recorded response with
the inverse of the sweep signal to determine the IR. The sweep
response recordings were made using the setup shown in Fig-
ure 2. As the BRIRs will be used to add speech to the corpus,
we have played the sweep through a B&K 4227 artificial mouth
which simulates speech’s directionality. For each IR location 3-
4 responses were recorded and the least noisy was subsequently
determined by visually inspecting the sonogram of the IR. The
sweep responses are recorded at 96 kHz and saved as 32 bit
floats.

When recording the sweep response using the setup shown
in Figure 2, the response will be coloured according to the trans-
fer function of the amplifier and artificial mouth. The amplifier
is a standard mid-range hifi amplifier which should only have
a small colouration in the typical speech domain. However,
because the artificial mouth is designed to mimic the charac-
teristics of a real mouth, the frequency response of that loud-
speaker has been designed with a ‘speech shaped’ response in
mind. When estimating the IR from a sweep played by this
loudspeaker, and subsequently using the BRIRS to spatialise the
Grid utterances, these utterances will therefore be affected twice
by a mouth shaped filtering. Further, as the Grid utterances were
recorded in an acoustic booth, the effect of the booth will also
have an effect on the recordings.

To compensate for these two effects (room and ampli-
fier+artificial mouth audio path) a compensation filter was de-
signed. For this, the setup of Figure 2 was placed in the acous-
tic booth and the sweep response was measured using the same
microphone used for the original Grid recordings. The artifi-
cial mouth and microphone were arranged to match the typical
microphone/talker geometry in the Grid recordings. The associ-
ated IR was found using the sine-sweep method described ear-
lier and from this response a linear phase compensation filter
was estimated.

4. Post-processing

All utterances from the training and test sets of the Grid cor-
pus were filtered with the acoustic booth compensation filter
(see Section 3.2) and then convolved with a BRIR pair selected
from the CHiME corpus. The 2 meter at 0° azimuth response
has been chosen for the initial experiments. A gain factor was



then experimentally determined to approximately match the
level of the reverberated Grid utterances to the level recorded
by the HATS of a talker producing the same Grid utterances in
the CHiME room at the position from which the impulse was
recorded. The live talker had been instructed to read the utter-
ances as if speaking across the room to the HATS.

After scaling, the reverberated Grid utterances (left and
right channels) were then artificially added to the binaural
CHiME recordings, i.e. by summing the signal amplitudes. The
lounge dataset has been used for the experiments reported here.
The utterances were mixed at a range of SNRs. Rather than ar-
tificially scaling either the Grid or CHiME data, we select an
utterance-length segment of CHiME test data that produces the
desired SNR when added at its natural level, i.e. the mixtures
reflect the range of SNRs that would be encountered in the real
environment. We were able to generate SNRs in the range of -
6 dB to 18 dB in this manner. The selection algorithm employed
ensures that each Grid utterance is mixed into a different and
non-overlapping segment of the CHiME test data.

Note, both the signal and the noise have two channels, so
definition of SNR needs some generalisation. Here, we have
defined it to be,

()]

SNRdB:201og10( s )

En,l + En,r

where [ and r refer to the left and right channels and s and n to
the signal and noise. The energy, E, is computed as the sum of
the squared sample amplitudes.

The mixing technique produces natural-sounding mixtures
in which it is not obvious that the Grid talker was not present in
the room'. Note, a shortcoming is that the technique does not
model the effect of the noise background on speech production
[17]. For example, during noisy background periods, talkers
may raise their voices, or may even delay speaking until the
background noise is lower.

5. Baseline results and conclusions

Baseline recognition results are included here to give readers
a feel for the difficulty of the task (Figure 4). All systems
employ the reverberated Grid training data and use word-level
HMMs with the standard Grid corpus model topology [18]. The
MFCC-based system using 13 cepstral coefficients plus deltas
and accelerations is identical to the baseline system used in the
recent Speech Separation Challenge [18]. The MFCC-CMN
system further applies cepstral mean normalisation during train-
ing and testing. Also shown is the performance of a system em-
ploying multi-condition training, i.e. the Grid training set was
mixed with CHiME using the same techniques as employed for
the test set and the same range of SNRs. Models were then
trained using this noisy training data. Following [18], the re-
sults represent the percentage of Grid keywords (i.e. the letter
and digit) that have been recognised correctly.

The CHIiME challenge (expected to be announced in au-
tumn 2010 and run through spring 2011) will be a binaural,
speech separation recognition task based on the CHiME corpus.
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