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Abstract

This paper addresses the problem of speech recognition using
distant binaural microphones in reverberant multisource noise
conditions. Our scheme employs a two stage fragment decod-
ing approach: first spectro-temporal acoustic source fragments
are identified using signal level cues, and second, a hypothesis-
driven stage simultaneously searches for the most probable
speech/background fragment labelling and the corresponding
acoustic model state sequence. The paper reports the first suc-
cessful attempt to use binaural localisation cues within this
framework. By integrating binaural cues and acoustic models
in a consistent probabilistic framework, the decoder is able to
derive significant recognition performance benefits from frag-
ment location estimates despite their inherent unreliability.

1. Introduction
Automatic speech recognition (ASR) technology is finally start-
ing to become commonplace. However, in most applications the
expectation is that the user is employing a close-talking micro-
phone. For ASR technology to become truly ubiquitous it needs
to be freed from this constraint and designed to work reliably
with distant microphones.

The scarcity of distant microphone ASR applications is not
a lack of demand, but rather because recognition in these condi-
tions is a difficult and largely unsolved problem [1]. There are
two sources of variability that make it more challenging than
close-talking ASR. First, there exists an increasedchannel vari-
ability. The speech signal arriving at the microphone is rever-
berated by a room response, which in turn is dependent on a
host of details that may be changing over time in significant and
unpredictable ways. Second, there will generally be substantial
additive noise because the microphones will unselectively cap-
ture signals from all sound sources in the environment. Further,
most ‘everyday’ environments will contain an unknown number
of sound sources whose activity level – and possibly location –
is changing over time. Fig. 1 displays a time-frequency (T-F)
representation of audio recorded in a family home that gives
some indication of the complexity of a typical acoustic scene.

Our approach to distant microphone ASR is inspired by
the human ability to attend to individual components of com-
plex acoustic mixtures, even when only presented with a single
acoustic channel [3]. We model this ability using a two-stage
approach: first, an ‘auditory’ front-end exploits the continu-
ity of signal characteristics to identify robust spectro-temporal
sourcefragments, i.e. regions in the spectro-temporal domain in
which the energy is dominated by a single acoustic source. Sec-
ond, a statistical back-end, through a process termedfragment
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Figure 1: A time-frequency representation of a 20 second sam-
ple from the binaural CHiME domestic audio corpus used as
noise background in the current study [2].

decoding, selects sound source fragments based on the extent to
which they match models of the target source [4].

This paper reports an originalbinaural extension to the
fragment decoding approach which incorporates spatially moti-
vated cues to bias the decoder towards accepting fragments that
are believed to originate from a known target source location.
Section 2 reviews the basic fragment decoding framework. Sec-
tion 3 describes the audition-inspired techniques that are used
to isolate and localise the source fragments that act as input to
the decoding process. The reverberant binaural speech-in-noise
data used for evaluation is described in Section 4. Section 5
examines the performance of the fragment processing front-end
and compares the recognition performance delivered by vari-
ous fragment localisation strategies. Section 6 discusses future
directions and concludes this paper.

2. The fragment decoding framework
The energy in a speech signal is not evenly spread across time
and frequency but instead is highly concentrated in local T-F re-
gions (e.g. formant resonances). Typically, even when the noise
background has higher energy than the speech on average, in
these local regions the speech energy will be many decibels
greater than the noise. This view of masking leads naturally
to the ‘missing data’ approach to robust ASR [5].

The difficulty with the missing data ASR approach is that
the foreground/backgroundsegmentation is obviously not pro-
videda priori. In some situations a good candidate segmenta-
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Figure 2: Overview of the proposed system. Localised spectro-temporal fragments are indicated using different colours.

tion can be estimated using a simple model of the noise, but this
is not generally possible when the noise is itself highly unpre-
dictable. The fragment decoding framework [4] acknowledges
that the segmentation is not directly observed, and instead em-
ploys a segmentation model that represents a distribution of pos-
sible segmentations estimated from the noisy data. In particular
this distribution only allows segmentations that are consistent
with a set of local spectro-temporal sound source fragments.

Given the noisy observationY, the SFD framework couples
the searches for the acoustic model state sequenceQ and the
segmentation hypothesisS that together are most probable:

Q̂, Ŝ = argmax
Q,S

P (Q,S|Y) (1)

= argmax
Q,S

P (Q|S,Y)P (S|Y) (2)

P (Q|S,Y) is equivalent to missing data decoding given hy-
pothesisS, andP (S|Y) is the segmentation model. The previ-
ous studies employ a simple segmentation model which assigns
equal probability to any foreground/background segmentation
that can be constructed from a set of fragments. In this study
P (S|Y) is inferred by binaural localisation cues.

3. Binaural cues for fragment decoding
This study presents a novel extention to the fragment decoding
system by incorporating binaural information. An overview of
the system is shown in Fig. 2. In summary, spectro-temporal
fragments are first isolated from single channel mixtures based
on periodicity. They are then localised based on localisation
cues extracted from binaural recordings. This approximate lo-
cation information is used to bias the fragment decoder towards
selecting fragments that come from the same direction of the
target source while rejecting the others.

3.1. Single channel fragment generation

Periodicity is among the most robust cues for auditory group-
ing and can also provide some resistance to reverberation [6].
It has been the major cue for fragment generation in previ-
ous fragment decoding systems (e.g. [7, 8]). The strategy for
fragment generation is to exploit the distinctness and continu-
ity of signal-level properties of the individual sound sources.
Frequency channels dominated by the same periodic or quasi-
periodic source will have a common fundamental frequency
(F0), hence it can be used as evidence to label channels as be-
longing to the same fragment. Further, by tracking theF0 tra-
jectory of sound sources it is possible to extend cross-frequency
grouping through time. Ma et al. [7] discuss details of theF0-
based grouping via the use of an autocorrelogram. Energy not

accounted for by theF0-based fragments is segmented into dis-
joint ‘inharmonic fragments’ [7].

3.2. Binaural fragment localisation

Localisation estimates can be made by measuring the time and
level difference of the signal arriving at the two ears, known
as the interaural time difference (ITD) and the interaural level
difference (ILD), respectively. If thedirection of origin of the
energy dominating each T-F element could be estimated, then
this cue could be used to segment the representation. Unfortu-
nately, binaural cues cannot be measured reliably within single
frequency filter channels due to phase ambiguity and room re-
verberation [9]. Reliability can be increased, however, by inte-
grating estimates over extended spectro-temporal regions [10].

ITD is estimated by computing a cross-correlation on the
output of each auditory filter [11]. When estimating the location
of a single source, the standard approach is to sum the cross-
correlation functions across frequency – to form a so-called
summary cross-correlogram – and then to find the delay of the
largest peak. In [10] this idea is generalised so that the summary
is computed by integrating the cross-correlation functions over
a spectro-temporal fragment.

To address the problem of low frequency bands having very
broad peaks, we skeletonise the cross-correlogram by replacing
the largest peak in each channel by a Gaussian, instead of re-
placing all the local peaks as suggested in [12].

In a similar way to ITD estimation, ILD is computed using
energy integrated over a fragment, before being converted into
decibels (dB). As low frequencies tend to produce ambiguous
level differences because diffraction reduces the effect of head
shadow [13], only the frequency bands above 1600 Hz are used
for computing fragment ILD.

3.3. Integrating binaural cues

We integrate binaural cues and acoustic models in a probabilis-
tic framework via the segmentation model in (2). By assuming
independence of fragments, the segmentation model can be ap-
proximated as :

P (S|Y) =
∏

f∈FS

P (f)
∏

f /∈FS

1− P (f) (3)

whereFS is the subset of fragments labelled as the foreground
under hypothesisS, andP (f) is the probability of fragmentf
belonging to the target source. Once a fragment has been lo-
calised, its estimated location can be used to informP (f). This
probability becomes smaller for fragments that do not come
from the same direction of the target source, and larger if they
do. More details will be given in Section 5.
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Figure 3: Histogram of ITD and ILD estimates for fragments in
the foreground (top) or fragments in the background (bottom).
Fragments are weighted by their area. SNR = 0 dB.

4. Speech recognition task
The recognition system has been evaluated using the CHiME
Challenge data set [2], sampled at 48 kHz. The task entails the
recognition of Grid command utterances that have been mixed
into binaural recordings made in a noisy domestic environment
after convolution with carefully measured room impulse re-
sponses. The target speech is positioned directly in front of the
manikin. The SNRs have been controlled by selecting temporal
positions within the CHiME recordings that would result in the
required SNR when the sources are mixed at their naturally oc-
curring levels. Note, this means thatthe noise backgrounds are
necessarily different in each SNR condition.

Our recognition systems are trained on the noise-free Grid
corpus training set. We have assumed a matched-reverberation
condition, i.e. the training data is convolved with a BRIR
recorded at the same position as that used in the construction of
the test set. The binaural training and test data is then reduced
to a single channel by averaging the left and right ear signals.
Feature extraction is then applied to the single channel signals.

5. Analysis and experiments
5.1. Fragment localisation

A fragment analysis was applied to the 0 dB test set. An ‘oracle’
foreground/background labelling for each fragment was deter-
mined with access to the premixed target speech and noise back-
grounds. Fragments are labelled foreground if more than half of
their elements have a local SNR above 0 dB1. Having labelled
fragments as either ‘more foreground’ or ‘more background’ we
can then look at the distribution of location estimates for each
class and see whether it is discriminative.

ITD: Fig. 3 (left) shows the distribution of fragment azimuth
estimates for the foreground and background fragment classes.
For the target speech fragments there is a very large peak at 0
degrees and the vast majority of fragments are localised as be-
ing between -10 and +10 degrees. For the background there is
still a peak at 0 degrees but now a significant number of frag-
ments are estimated to originate from angles away from the cen-
tre. Clearly, originating from 0 degrees does not imply that the
source is the target speaker but, logically, originating from a di-
rection other than 0 degrees should be taken as evidence that the

1Ideally fragments would be ‘pure’ and hence all their points would
carry the same label, but of course, the fragment analysis is imperfect
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Figure 4: True rejection ratevs. false rejection rate of fragments
using the absolute azimuth as a threshold.

fragment is not part of the speech source.
Fig. 4 illustrates the potential for using azimuth estimates

as a filter that rejects fragments from wide angles by assigning
them to the background. The dashed curve shows the increasing
proportion of noise fragments that would be correctly rejected
as the threshold is decreased, while the solid curve shows the
proportion of speech fragments that would be falsely rejected.
With a 20 degree threshold around 40% of noise fragments can
be rejected at a cost losing only 10% of speech fragments.

ILD: The ILD estimates, however, exhibit a very similar dis-
tribution for the foreground and background classes (Fig. 3
right). A possible explanation is that the noise fragments may
not be ‘pure’, i.e. a fragment may contain energy from multi-
ple sources. Further, even if fragments are pure, each T-F el-
ement will contain energy contributions from multiple sources
so theaverage energy across a fragment may be similar for the
left/right channels. This is less a problem for ITD estimation
since only the largest peak is taken into account for each T-F el-
ement, i.e. ITD computation can accommodate the incoherence
of the fragment, whereas the ILD computation does not.

ITD + ILD: Fig. 5 shows the 2D distribution of ITD/ILD pairs.
It is clear that the foreground class shows a dense centre while
the background class is more spread out. It is also noticeable
that the background distribution is slightly tilted to the bottom-
left, demonstrating the correlation between ITD and ILD.

5.2. Recognition experiments

Table 1 shows the keyword recognition accuracies for each ASR
system tested. ‘MFCC’ represents a conventional baseline sys-
tem trained using the ‘standard’ 13 cepstral coefficients plus
deltas and accelerations, with cepstral mean normalisation ap-
plied. As might be expected, since little account is taken of the
noise, performance degrades rapidly as SNR is reduced.

The SFD in the baseline single-channel configuration pro-
duces more robust performance. At -6 dB, 72 % of the tokens
are recognised correctly compared to only 31 % for the MFCC
system. To measure the ceiling performance we used the ‘or-
acle’ foreground/background labelling (Section 5.1) for each
fragment. A decoding was then performed using the one seg-
mentation formed by this explicit labelling. The result is shown
in the row ‘Oracle Lab’. As can be seen, the SFD baseline is
2-6% below this ‘oracle’ decoding across all SNRs.

The ‘SFD+ITD’ system employs the azimuth estimates to
inform the probabilityP (f) in the segmentation model (Sec-
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Figure 5: 2D histogram of ITD and ILD estimate pairs for frag-
ments in the foreground (top) or fragments in the background
(bottom). The histogram is smoothed with a 2D Gaussian ker-
nel and converted into log probability distributions.

Table 1: Keyword recognition accuracy rates (%)
-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB

MFCC 31.08 36.75 49.08 64.00 73.83 83.08

SFD 72.33 72.25 78.83 82.00 87.17 87.92

Oracle Lab 76.00 78.00 83.42 87.25 89.17 90.67

SFD + ITD 72.67 73.58 80.25 84.00 88.08 89.67

tion 3.3). We setP (f) to 0.55 for fragments inside an azimuth
threshold, andP (f) = 0.4 for others, i.e. fragments coming
from the front are slightly biased towards foreground whereas
fragment from lateral angles are biased towards being labelled
as background. These values were optimised in the 0 dB SNR
condition and then fixed across all SNRs. The azimuth thresh-
old was selected to be 20 degrees, which according to Fig. 4
rejects a high proportion of background for little loss of speech
data. Since smaller fragments tend to have less reliable location
estimates, for fragments with less than8 T-F elements we set the
P (f) to 0.5, i.e. they are not biased towards either foreground
or background.

The ‘SFD+ITD’ system produces improvement over the
SFD baseline across all SNRs (the difference is significant at the
0.01 level for SNRs above 0 dB). By penalising fragments that
do not come from the direction of the target source while favour-
ing those that do, the fragment decoder is able to make use of
a better segmentation model than the simple one which assigns
equal probability to any foreground/background segmentation
constructed from the fragments.

As suggested in Section 5.1, ILD does not provide much
discrimination power, and our experiments show that it does
not improve the recognition accuracy.

6. Discussion and conclusions
We have demonstrated a fragment-based approach for incorpo-
rating binaural localisation cues in a probabilistic framework
for distant speech recognition. One important factor for the suc-
cess of this approach is that the binaural cues are integrated over

the spectro-temporal region defined by a source fragment. As
demonstrated in the past, in reverberant and multisource envi-
ronments binaural cues for individual time-frequency element
can be too ambiguous to be useful [9, 10].

Our experiments show that the ITD cue is a more power-
ful cue than ILD for the particular task used in this study. Even
so, there is still some scope for improving localisation estimates
and employing a more sophisticated segmentation model. Fu-
ture work is needed to fully exploit localisation cues within this
framework.

If the quality of the fragments is the system’s bottleneck
then it may be possible to achieve more significant gains by us-
ing localisation cueswithin the fragment generation stage itself.
Models which group T-F elements through time and frequency
using the joint statistics of both pitch and location estimates
need to be explored.

To conclude, this paper has presented a fragment based
recognition system that addresses the problem of distant micro-
phone speech recognition in reverberant multisource conditions.
The system combines binaural localisation cues with periodicity
cues and acoustic models in a probabilistic framework to simul-
taneously separate and recognise speech. The simple masking
model on which it is based allows it to operate in a wide range of
noise background by exploiting cues for separation rather than
relying on details of the noise itself.
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