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Combining Speech Fragment Decoding and
Adaptive Noise Floor Modeling

Ning Ma, Jon Barker, Heidi Christensen, and Phil Green

Abstract—This paper presents a novel noise-robust automatic
speech recognition (ASR) system that combines aspects of the noise
modeling and source separation approaches to the problem. The
combined approach has been motivated by the observation that
the noise backgrounds encountered in everyday listening situations
can be roughly characterized as a slowly varying noise floor in
which there are embedded a mixture of energetic but unpredictable
acoustic events. Our solution combines two complementary tech-
niques. First, an adaptive noise floor model estimates the degree to
which high-energy acoustic events are masked by the noise floor
(represented by a soft missing data mask). Second, a fragment de-
coding system attempts to interpret the high-energy regions that
are not accounted for by the noise floor model. This component uses
models of the target speech to decide whether fragments should be
included in the target speech stream or not. Our experiments on the
CHiME corpus task show that the combined approach performs
significantly better than systems using either the noise model or
fragment decoding approach alone, and substantially outperforms
multicondition training.

Index Terms—Adaptive noise floor modeling, fragment de-
coding, missing data decoding, noise robust speech recognition.

I. INTRODUCTION

T HIS paper considers the problem of distant microphone
speech recognition in an everyday domestic environment.

This problem is important because solutions would open the
way to a new generation of applications [1]. In particular, such
solutions would enable home-automation applications that
would be valuable in the context of an increasingly ageing
society. However, the problem is difficult because our homes
tend to be noisy and unpredictable places that lie a long way
outside the operating conditions of current speech recognition
technology [1]: the target speech will be part of a heterogeneous
mixture of competing sources; the combined noise energy may
be comparable to or even greater than that of the speech; there
will be significant room reverberation effects that will hinder
source separation techniques.

There exists an extremely diverse set of techniques for
noise-robust speech recognition but they can be loosely cate-
gorized into two broad approaches, which we will term noise
estimation and signal separation. Noise estimation approaches
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Fig. 1. Schematic time–frequency representation of speech in different back-
grounds. (a) Speech with no background noise: the lighter shade of gray rep-
resents low energy. (b) Speech in quasi-stationary noisy: low speech energy is
masked by noise. (c) Simultaneous speech: patches with the filled pattern rep-
resent another speaker. (d) Speech in more natural noise conditions.

rely on it being possible to estimate a model of the spectral char-
acteristics of the noise background. This model, which might
be as simple as an average noise spectrum, is then used to either
“subtract” the noise from the mixture (e.g., spectral subtraction
[2], [3]), estimate the noise masking pattern (missing data tech-
niques [4]–[6] and uncertainty decoding [7]–[9]), or to adapt
the speech model via a model combination technique (e.g.,
[10]–[14]). These techniques clearly depend on the quality of
the noise model and work well in situations where an accurate
model can be estimated, e.g., where the noise is known to be
quasi-stationary or to have predictable dynamics that allow it
to be tracked with some degree of certainty [Fig. 1(b)]. These
conditions are seldom met in everyday listening conditions
where the noise is itself a mixture of sources with unpredictably
changing levels of activity.

In conditions where the noise spectrum cannot be readily
estimated, a signal separation-based approach can sometimes
be applied. Such approaches exploit the continuity of primitive
signal properties (e.g., pitch or location) to allow some form of
source separation prior to recognition. For example, pitch can
remain an effective cue even in single-channel mixtures and it
was exploited by the majority of systems competing in the first
Pascal Speech Separation Challenge [15]. The non-negative ma-
trix factorisation algorithm can also be applied in single mi-
crophone speech separation systems [16], [17]. In multi-micro-
phone systems location estimates can be used [18], [19]. How-
ever, by focusing on separation of instantaneous speech mix-
tures in noise-free conditions, as depicted in Fig. 1(c), the Pascal
Speech Separation Challenge was not particularly representa-
tive of the demands of real noise-robust systems.
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Recently, a domestic noise corpus, the CHiME corpus [20],
was developed aiming to accurately replicate natural noise
contamination. The domestic noise backgrounds present chal-
lenging conditions for speech recognition because they are
highly unpredictable: they can be broadly described as having
an ambient, slowly varying noise floor that is overlaid by
potentially overlapping acoustic events from a range of sources
including speech, human movement and mechanical sounds.
Section V-A gives more details about the CHiME corpus.

This work studies automatic speech recognition in such an
environment. In particular, it investigates a noise estimation ap-
proach—adaptive noise floor estimation combined with a soft
missing data recognizer (ANF-MD), and a separation-based ap-
proach—speech fragment decoding (SFD). The former is able
to perform well during segments where the background is rel-
atively “uneventful” and good noise floor approximations can
be estimated. The latter approach uses cues to affect a partial
separation of sources, but may struggle to handle the ambient
noise floor which often exhibits weak pitch and localization
cues. This paper also examine ways in which the ANF-MD
and SFD techniques may be combined to take advantage of the
complementary strengths of noise modeling and signal separa-
tion approaches. The proposed approach is to apply soft missing
data decoding for time–frequency ( - ) regions with stationary
noise, identified by an adaptive noise floor tracker, and employ
fragment decoding to deal with the remaining unpredictable
acoustic events.

Section II reviews the speech fragment decoding approach
to robust ASR. The proposed adaptive noise floor modeling
algorithm is introduced in Section III. Section IV discusses
our approach for combining the fragment decoding and noise
floor modeling. Section V briefly describes the speech recog-
nition task and various ASR systems, and presents novel ASR
results. Analysis of the results drives a discussion, presented
in Section VI, which considers more sophisticated system
combination approaches. Section VII concludes this paper.

II. FRAGMENT DECODING FRAMEWORK

Speech is a highly modulated signal with energy which is
sparsely distributed in time and frequency, concentrated in
narrowband structures such as formants and harmonics, or
short duration events such as bursts [21]. These properties
are clearly evident in the compressed spectro-temporal rep-
resentations commonly used in computational models of the
auditory system [22], [23]. As the speech energy is unevenly
distributed, when a speech signal is corrupted by additive noise,
in some sparse time–frequency regions the speech energy will
be far greater than that of the noise, even if globally the noise
is more energetic than the speech. In these local regions, the
corrupted speech signal is well-modeled by the noise-free
speech signal. We refer to these regions as reliable speech evi-
dence. Furthermore, the information encoding in clean speech
is redundant such that speech still remains intelligible even
when a large spectro-temporal region of the speech is removed
[24]–[26]. This redundancy essentially allows human listeners
to recognize speech in noise based on the relatively sparse

“glimpses” of reliable evidence [27]. Note that if the noise is
itself modulated, the opportunities for glimpsing patches or
reliable speech evidence may be even greater.

The sparseness and redundancy of spectro-temporal speech
representations motivate the missing data approach to robust
ASR [4]. This approach assumes there is a process that can
identify the spectro-temporal regions that may be considered
reliable (missing data mask estimation), and it then matches
these reliable regions to models of clean speech. The unreliable
regions are treated by either imputation [28]—replacing noise
corrupted regions with estimates of the clean speech signal,
or marginalization [4]—considering all possible values that the
clean speech may have taken given the noisy observation. Im-
putation-based techniques are a form of feature compensation
and have the advantage of allowing integration with conven-
tional recognition systems. Marginalization approaches, how-
ever, have better theoretical justification and form the basis of
the systems used in this paper.

The marginalization-based missing data techniques provide
the foundation of the fragment decoding framework which in-
corporates mask estimation as part of the decoding process.
This section will review these techniques and their incorpora-
tion within the fragment decoding framework.

A. Marginalization-Based Missing Data Techniques

Let represent a sequence of noisy speech observations
where each is a feature vector representing

a spectral energy component at time . Let denote a corre-
sponding binary segmentation (or “missing data mask”) com-
posed of a sequence of frames , each frame being
a vector of binary indicator variables stating whether the cor-
responding time-frequency element is reliable (1) or unreliable
(0). The missing data ASR task is to find the best underlying
acoustic model state sequence given both
the sequence of noise-corrupted speech observations and the
segmentation

(1)

The sequence of noise-free target speech vectors is not di-
rectly observed but can be introduced by integrating over all
possibilities

(2)

(3)

Using the frame independence assumptions, the integral is fac-
torized into the product of integrals over individual frames

(4)

(5)
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For the sake of simplicity the index is sometimes omitted in
the paper and still represents a vector and is a scalar rep-
resenting the dimension of . The best state sequence
can then be computed within the standard hidden Markov model
framework using Viterbi decoding. The only alteration required
is to substitute the usual state emission probability calculations,

, with evaluations of the integrals .
The distributions are estimated in the usual way by

training hidden Markov models (HMMs) on clean speech.
They are typically represented using Gaussian mixture models
(GMMs) with components having diagonal covariance. The
term is the masking model: the speech observation

must take the value of the noisy observation when
indicates that the observation is reliable; the speech must
have a value less than if the observation is marked as unre-
liable. For values of which violate these rules the probability
is set to 0. It can then be reasonably assumed that is
otherwise proportional to .

Substituting these distributions into (5) it is seen that the eval-
uation of follows the computation of the GMM likeli-
hood, , except that the contribution of each mixture com-
ponent, , now involves an (one-dimensional) integration over
the possible values of the masked speech features

(6)

where represents the set of reliable feature dimensions of
according to segmentation , i.e., ,

represents the set of unreliable dimensions, i.e.,
, and and are defined, respectively, as

(7)

(8)

where is the univariate Gaussian distribution trained
on clean speech, and is a normalization constant to keep the
integral a probability density function

(9)

In practice, neither the denominators nor the normalizing
constants need to be computed because their effect is constant
across all state sequence hypotheses.

In the unreliable part of , for static features the noisy ob-
servation serves as an effective upper bound for the range over
which the unreliable features are integrated, as the energy that
speech is contributing must be less than the observed energy.
Unreliable delta features are ignored because it is not possible
to compute an effective bound.

B. Soft Missing Data Decoding

In (6), the missing data mask is assumed to be binary. Perfor-
mance loss caused by irreversible time–frequency labeling er-
rors can be limited by introducing a soft mask [29]—a spectro-
temporal map in which each element is associated with a real
value in the range of , expressing a degree of confidence

in the reliability of the data. With a soft mask, can
also be evaluated using (7) and (8)

(10)

where is feature dimensionality.

C. Speech Fragment Decoding

Missing data decoding only considers a single segregation
hypothesis, i.e., that represented by the missing data mask, .
If the noise cannot be tracked reliably then the mask is hard to
estimate correctly. A better solution is to consider various seg-
regation hypotheses and let the top-down models decide which
one best explains the acoustic scene. To couple the segmentation
problem with recognition, the speech fragment decoding (SFD)
framework [6] searches for the acoustic model state sequence

and segmentation hypothesis ( ) that jointly maximize the
probability

(11)

(12)

(13)

Note that the SFD framework uses exactly the same acoustic
model as the marginalization-based missing data approach, i.e.,
(2) –(6). There is, however, an additional complexity arising
from the fact that the decoder is now searching across competing
segmentations: different segmentation hypotheses will have dif-
ferent normalization terms (i.e., and ), these terms there-
fore can no longer be ignored.

is the segmentation model and the segmentation
search is equivalent to selecting the best missing data mask.
An exhaustive search is clearly not practical. Fortunately, most
of the segmentation hypotheses do not need to be evaluated.
Primitive grouping principles can be employed to group -
elements according to local correlations of their characteristics.
This process results in the acoustic mixture being divided into
multiple fragments in the spectro-temporal plane—each frag-
ment consists of a group of - elements that are considered
to have originated from a single source. The fragments are
imposing a form for in (13)—it assigns equal proba-
bility to any foreground/background segmentation that can be
constructed from the set of fragments, i.e., the region covered
by each fragment must be either allocated exclusively to the
foreground or to the background. All other segmentations are
assigned a probability of 0. Barker et al. [6] have shown that the
maximization over state sequence and segmentation can
be achieved via a Viterbi search over a lattice of segmentation
and state sequence hypotheses [6].

SFD, like missing data decoding, can be generalized by the
use of soft masks to express uncertainty about whether a -
element is reliable according to a segmentation hypothesis

(14)
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where is the probability of being reliable according to .
Soft missing data decoding (10) can be seen as a special case of
(14) when the segmentation hypothesis is fixed.

III. ADAPTIVE NOISE FLOOR MODELING

In many natural listening conditions such as domestic set-
tings, the auditory scene can be approximately described as a
slowly varying noise floor plus highly unpredictable acoustic
“events.” The idea of combining SFD and noise floor modeling
is to build a “universal” noise model to account for slowly
varying noise, and employ SFD to deal with unpredictable
acoustic events. In this section we first investigate adaptive
noise floor modeling.

The output of noise floor tracking can be expressed as a
spectro-temporal map holding local signal-to-noise ratio (SNR)
estimates. Such SNR maps have formed the basis of missing
data mask estimation in many previous missing data ASR
systems [29]–[31]. Typically, the noise power spectrum is
estimated from regions where speech is assumed absent. For
example, in [29] speech was assumed to be absent at the begin-
ning of each utterance on the Aurora 2 task, and the noise power
spectrum was estimated by averaging the first ten frames. This
technique works well if the noise is sufficiently stationary—at
least within the duration of an utterance. However, this is a poor
assumption in many situations.

In the field of speech enhancement, several algorithms have
been proposed for estimating spectra of nonstationary noise [3],
[32], [33]. Many of these methods are based on tracking the min-
imum of a smoothed noisy spectrum over a finite window. The
noise estimate for each frequency bin is obtained by scaling the
minimum with a biasing factor based on the minimum statistics.
These adaptive methods may be robust to nonstationary noise,
as the noise estimate is updated continuously by averaging the
noisy speech power spectrum with time–frequency dependent
smoothing factors.

In this work, we employ an adaptive noise floor tracking al-
gorithm similar to the minimum tracking-based methods. How-
ever, instead of tracking the minimum by averaging the previous
noisy spectra over a finite window, the tracker models the noisy
spectra as a mixture of Gaussians and the distribution that has
the minimum mean value is used to obtain the noise estimate.
This kind of adaptive tracking mixture models is often used in
image processing for segmenting moving regions from back-
ground in image sequences [34].

A. Method

Let represent a sequence of noisy
speech vectors in a window of frames. In this work the
model operates directly at the feature level, i.e., represents
a compressed spectral feature vector obtained from an
auditory filterbank. Delta features are not used. A GMM with
diagonal covariance was fitted to the rolling window of noisy
speech, using the expectation maximization (EM) algorithm.
Since adjacent spectral dimensions are correlated, a well-sepa-
rated subset of frequency channels, , was
chosen from the full frequency band, so that features are nearly

Fig. 2. Output of the adaptive noise floor tracker based on a mixture model.
The white regions in the lower panel have SNR estimates less than 0 dB.

independent. The maximum-likelihood estimate (MLE) of the
parameters for is

(15)

Let be the posterior probability of mixture component
for a sub-band feature vector . The full-band mean of mix-

ture component for the noisy observation in window
can be approximated as

(16)

The noise floor estimate of is assumed to be the full-band
mixture component mean that has the lowest energy

(17)

(18)

In the current work, the noise floor tracking model employed
two mixture components. The length of the rolling window
was set to five seconds. The GMM was continuously updated
with a half-second increment, producing a fresh noise floor es-
timate for every half second. The subset of frequency channels
were equally spaced on the equivalent rectangular bandwidth
(ERB) scale [35] between 50 and 8000 Hz, with center frequen-
cies located at: 118, 439, 1057, 2247, and 4538 Hz, respectively.
These parameters were chosen after optimization on a develop-
ment set.

B. Local SNR Estimation

The local SNR estimate is computed in decibels (dB) as

(19)

where is the compressed noisy feature for each frame,
and is the compressed noise floor estimate using (18).

A typical output of this adaptive noise floor tracking tech-
nique is shown in Fig. 2. The upper panel is the cochleagram of
a speech/noise mixture in the CHiME corpus. The middle panel
shows the estimated noise floor, updated every half second. The
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regions where local SNR estimates are less than 0 dB are dis-
played in white in the lower panel.

IV. COMBINING SFD AND NOISE FLOOR MODELING

In order to handle both the quasi-stationary and unpredictable
event components of the noise background we wish to com-
bine the adaptive noise modeling and fragment decoding tech-
niques. The combined technique will be termed adaptive noise
floor speech fragment decoding (ANF-SFD). We use the adap-
tive noise floor model to estimate the degree to which high-en-
ergy acoustic events are masked by the noise floor. This is rep-
resented by a soft missing data mask. A fragment decoding
system then attempts to interpret the high-energy regions that
are not accounted for by the noise floor model. The first step
is to separately generate soft missing data masks (using the
adaptive noise tracker) and fragments (using harmonicity-based
techniques [36]) from the noisy signals.

A. Soft Mask Generation

The soft missing data mask is produced by applying a sigmoid
function to the local SNR estimates. This simple technique has
been shown to produce effective soft masks in previous work
[37]. For each - element, in (10) is computed as

(20)

where determines the slope of the sigmoid function and the
center serves as the SNR threshold when computing soft MD
masks. A higher SNR threshold will cause more - regions
to be biased towards being interpreted as the noise background
during decoding. The effect of different SNR thresholds will be
discussed in more detail in Section VI-A.

B. Fragment Generation

This work employs techniques for tracking multiple pitches
of simultaneous sounds in the autocorrelogram domain and use
this information to identify fragments [36]. In brief, a running
short-time autocorrelation is computed on the output of each
gammatone filter using a 30-ms Hann window. For periodic
sounds, the autocorrelogram [38], [39] exhibits symmetric tree-
like structures whose stems are located on the delays that corre-
spond to multiple pitch periods. These pitch-related structures
are exploited to group spectral components at each time frame,
from which local pitch estimates are computed. Simultaneous
pitch tracks are formed by linking through local pitch estimates
across time using the rule-based multi-pitch tracker developed
in [36]. Each pitch track is then used to recruit a spectro-tem-
poral fragment.

As discussed in Section II-C, fragment decoding can also
make use of soft masks. In practice, the soft decoder takes a
spectro-temporal confidence map as an additional input,
which encodes the degree of belief that each - element is a
true member of the fragment . Confidence map values range
from 0.5 (no confidence) to 1 (high confidence), and they are
combined with the fragment labels to make a soft mask: in
regions covered by foreground fragments, the soft missing data
mask takes values directly from the confidence map ; in

Fig. 3. a) Cochleagram of a speech/noise mixture. (b) Missing data mask de-
rived from local SNR estimates. (c) Fragments identified by harmonicity anal-
ysis, represented as regions with different shades of gray. (d) Fragments ex-
cluding low SNR regions (white).

regions covered by background fragments, the mask takes the
values . Thus, the soft mask value in (14) is

if
otherwise

(21)

where represents the set of fragments being considered as
foreground according to segmentation hypothesis . The con-
fidence map values were obtained from harmonicity analysis
using the same algorithm and parameterization as in [36].

C. Combination Method

The - elements with values less than 0.5 in the SNR-based
soft mask are first identified. These low SNR regions have low
SNR estimates and are most likely to have originated from noise
sources. They are interpreted as part of the background during
fragment decoding, regardless of any segregation hypothesis.
The fragments excluding these low SNR elements are treated
by SFD in the usual manner following Section II-C.

Soft decisions are also employed in the combined SFD
system using (14). The low SNR regions directly take the
SNR-based soft mask values from (20). For the remaining

- elements that are included in a fragment , the confidence
values is used as in (21)

if
if
otherwise

(22)

Fig. 3 illustrates this process. Fig. 3(a) is the cochleagram of
a speech/noise mixture. The missing data mask derived from
local SNR estimates is shown in Fig. 3(b), where regions with
soft mask value less than 0.5 are displayed in white. Fragments
identified by harmonicity analysis are shown in Fig. 3(c) using
different shades of gray. Fig. 3(d) shows the fragments used by
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the combined system, where regions in white have low SNR
estimates and are forced into the background. The process is
akin to using the missing data mask in Fig. 3(b) to filter the
fragments in Fig. 3(c).

The combined ANF-SFD approach improves upon the
ANF-MD system in that the regions assigned high SNR esti-
mates by the adaptive noise floor model are no longer always
considered to be part of the foreground. Instead, they are
divided into fragments, each of which may belong to either the
speech foreground or the noise background. The foreground
versus background identities of these fragments are decided
with top-down knowledge from speech HMMs. So, fragments
which are due to some unexpected noise source (e.g., a child
shouting) will generally be rejected during fragment decoding
because they are unlikely to match the speech HMMs.

The ANF-SFD system also differs from standard SFD be-
cause fragment decoding is only applied to regions that are not
accounted for by the adaptive noise floor model, i.e., the noise
floor is marked as being part of the background in all fragment
labeling hypotheses. Standard SFD would, by contrast, segment
the regions dominated by the noise floor into fragments (often
poorly because the noise floor tends to exhibit weak grouping
cues) and may be prone to errors if any of these fragments hap-
pens to match the speech models.

V. EXPERIMENTS AND RESULTS

A. Speech Recognition Task

All ASR experiments have been conducted using noise back-
ground taken from the CHiME corpus [20]. In brief, the corpus
provides binaural audio recorded from a real domestic living
room. The background has been recorded in multiple sessions
over a period of several weeks using a binaural manikin that has
remained in a fixed position within the room.

The experiments employ a 600 utterance test set that has been
taken from the Grid corpus [40]. The Grid utterances obey a
strict grammar constructed using a 51-word vocabulary. The
ASR task is to identify two keywords—a letter-digit grid refer-
ence—that occurs in every utterance. The average recognition
accuracy for the two keywords is used to report the keyword
accuracy.

The Grid utterances are processed in such a way as to simulate
the effect of them having been recorded in the CHiME living
room. Reverberation is added by convolving them with a bin-
aural room impulse response (BRIR) measured in the CHiME
living room at a position 2 m directly in front of the manikin
[20]. The reverberated Grid utterances are then added to seg-
ments of the CHiME background audio. The SNRs are con-
trolled so as to produce versions of the test set that range from

6 dB to 9 dB at intervals of 3 dB. Note, since CHiME record-
ings are binaural, the definition of the SNR is

(23)

where is root mean square amplitude, and represent
speech and noise, and and represent the left and right
channels, respectively.1

1Note in [20] the SNR calculation (1) contains a typographical error.

Fig. 4. Histogram contours of utterances in different noise variance bands for
each SNR condition.

The SNR is controlled by selecting segments of the domestic
audio recording that happen to be at the correct energy level with
respect to the reverberated test utterance level, i.e., the 6 dB
mixtures are using segments of the background recording that
are naturally at a higher energy level than the segments used in
the 9-dB mixtures. Controlling SNR in this manner rather than
artificially amplifying or attenuating the background noise level
results in mixtures that are more representative of situations that
might occur in a real domestic ASR scenario, however, note it
also means that different SNR conditions will typically contain
different types of noise: in low SNR conditions it is common to
find loud but often short-duration noises (e.g., a child shouting),
while in quieter conditions noises tend to be more stationary.

Fig. 4 shows histogram contours of utterances in different
noise variance bands. The noise variance was estimated from
noise energy (using pre-mixed signals) of frames over each test
utterance. It is clear that each SNR condition has a substantially
different noise profile. The noise is mostly stationary at the high
SNR end and becomes more variable at lower SNRs.

The CHiME corpus provides binaural signals, but the ASR
evaluation reported here employs a single channel signal, which
has been formed by averaging the pair of binaural signals in
the time domain. No binaural cues are employed in this work.
The same binaural room impulse response is used for both the
training and the test condition. Therefore the training data set
and test data set contain matching reverberation.

B. Recogniser Setup

Speaker-dependent word-level HMMs were used in all the
ASR systems, following the “standard” model setup of the First
Speech Separation Challenge [15]. The models were produced
by performing four more iterations of EM training over a
set of well-trained speaker-independent HMMs, using the 500
training utterances for each speaker. Each HMM state employed
seven-component Gaussian mixtures with diagonal-covariance.
All the ASR systems decoded each test utterance using the
set of models corresponding to the speaker who spoke the
utterance, with prior knowledge of speaker identities.

Two MFCC-based baseline systems have been considered.
The first baseline employs the typical 39-dimensional MFCC
features (with deltas and delta-deltas) and cepstral mean nor-
malization (CMN). The second baseline employs “multicon-
dition training” with the same MFCC+CMN features, but the
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models used in the MFCC+CMN baseline have been retrained
using noisy training data, constructed by mixing reverberated
training speech with CHiME noise at SNR levels ranging from

6 dB to 9 dB, i.e., following the same procedures used in the
construction of the test set. The noise signals used in multicon-
dition training were taken from the same noise recordings used
to mix the test data but not exactly the same noise samples were
used.

All three missing-data-based recognizers employ models
trained in noise-free conditions and there was no retraining
on noisy data. ANF-MD is a soft missing data system, which
employs soft SNR-based masks produced using the adaptive
noise floor tracker as discussed in Section IV-A. The soft mask
values were computed using (20): was fixed as 0.1 and
was fixed to 12 dB for all test conditions after optimisation
on the development set. SFD represents a standard soft frag-
ment decoding system which employed fragments identified
from multi-pitch analysis, as discussed in Section IV-B. The
final system, ANF-SFD, is a soft fragment decoding system
combined with adaptive noise floor modeling, as discussed in
Section IV. Note the SNR threshold for computing the soft
mask values in this system was optimized separately, and the
best results on the development set were obtained with the SNR
threshold of 3 dB.

Marginalization-based techniques require spectral fea-
tures—missing features are localized in the spectral do-
main but not in the cepstral domain [4]. In this work the
missing-data-based systems employed spectral features that
are the auditory equivalent to a spectrogram, the cochleagram.
They were produced with a 32-channel Gammatone filterbank
distributed in frequency between 50 Hz and 8 kHz on the ERB
scale [35], log-compressed and supplemented with deltas to
form 64-dimensional feature vectors.

C. Results and Analysis

Table I shows the keyword accuracies of various ASR sys-
tems. They are also plotted in Fig. 5. First, the performance of
the standard MFCC+CMN system decreases rapidly towards
the low SNR end. Multicondition training exhibits consider-
ably greater resistance to noise corruption, with a more mod-
erate rate of decrease in recognition accuracy. The ANF-MD
system has a performance that is better than that of the multi-
condition training system across all SNR conditions, despite the
MD system not having access to noisy speech during training.

Second, both the combined ANF-SFD system and the stan-
dard SFD system substantially outperform the multicondition
training system and the ANF-MD system at SNRs below 9 dB
(p value according to the McNemar test [41] on key-
word-pair errors). This is not surprising given the nonstationary
nature of the noise. In these conditions the noise is not just
louder but also less stationary (see Fig. 4). For the ANF-MD
system the noise can become highly unpredictable and difficult
to track reliably. Therefore, many - regions may be incor-
rectly given high SNR estimates. It was observed that for the
ANF-MD system, in order to compensate the SNR estimation
errors, it was necessary to use an SNR threshold substantially
higher than 0 dB when computing the soft mask (12 dB was
used). Reasons for needing this high threshold are discussed in
Section VI-A.

Fig. 5. Keyword recognition accuracies of typical MFCC-based recognizers
and various missing-data-based systems across various SNRs.

TABLE I
KEYWORD RECOGNITION ACCURACIES (%) OF VARIOUS ASR SYSTEMS ON

THE CHIME CORPUS TASK. THE RESULTS FOR EACH SNR ARE PRESENTED

AS WELL AS THE AVERAGE (AVG.) ACROSS ALL SNRS

Fig. 6. Histograms of utterance-level keyword recognition errors in different
noise variance bands, showing different effects of noise stationarity to the
ANF-MD system, the standard SFD system, and the combined ANF-SFD
system. The SNR is 3 dB.

The performance of the ANF-MD system was very similar to
that of the SFD and ANF-SFD systems at the SNR of 9 dB where
the noise is more stationary. This is expected since the ANF-MD
system makes narrow assumptions about the noise, and assump-
tions which allow good performance when they happen to be
correct.

Third, the combined ANF-SFD system also exhibits im-
proved performance significantly over the SFD system
(p value according to the McNemar test). A de-
tailed analysis shows the error patterns of the ANF-MD system
and the standard SFD system are different and complementary.
Fig. 6 shows histograms of keyword recognition errors at
the 3-dB SNR for the ANF-MD system, the standard SFD
system, and the combined ANF-SFD system, respectively.
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The histograms were computed against noise energy variances
across each utterance in the test set. It is clear that ANF-MD
produced fewer ASR errors in more stationary noise (variance
less than 0.12), while the SFD system performed better when
noise becomes more variable.

The complementary error pattern suggests that it may be pos-
sible to combine the two systems to produce better results, and
this is clearly demonstrated by the ASR error histogram of the
ANF-SFD system in Fig. 6. The combined ANF-SFD technique
improves over standard SFD by reducing keyword errors mostly
for utterances in more stationary noise, and the improvement
over the ANF-MD system mainly comes from the cases in more
variable noise.

Finally, results of a missing data system using “oracle” masks
[4] are also presented (Oracle-MD). The oracle masks were de-
rived from the true local SNR for each - element with access
to the premixed speech and noise. Those elements with a local
SNR dB were labeled as “reliable.” Although the oracle
mask results do not represent the performance of genuine recog-
nition systems, they have been include as they give some indi-
cation of the potential performance of missing-data-based ASR
systems. The Oracle-MD results remain almost flat across the
SNR range. On previous tasks, such as Aurora 2, we observed
a slight decrease at low SNRs. The difference can be explained
by the observation that in CHiME the SNR-dependent datasets
are not artificially produced but relate to operating conditions in
a real environment. The degree of speech masking no longer in-
creases linearly as the SNR decreases. In fact, at 0-dB SNR the
area being labeled as reliable in the oracle mask on this task is
67% of that at 15 dB SNR, compared to only 39% on the Aurora
2 task.

VI. DISCUSSION

A. Use of Noise Floor Modeling in ANF-SFD Versus ANF-MD

In both ANF-MD and ANF-SFD systems, SNR-based soft
masks were produced by applying a sigmoid function to local
SNR estimates produced by the noise floor tracking component.
The sigmoid function center serves as a soft SNR threshold.
A higher SNR threshold will cause more - mask elements
to be assigned values of less than 0.5 and hence more weight
is given to the ’masked by background’ interpretation of the
corresponding - features. However, the differing manner in
which the noise floor model is used in the two systems has con-
sequences for the tuning of the threshold.

As discussed in Section V-A, in the CHiME corpus, within
each SNR condition the background has a different degree of
stationarity. In low SNR conditions the noise is less stationary:
the trackable noise floor is mixed with high energy noise events.
For the ANF-MD system the local SNR estimation is based
purely on the degree to which the observed energy exceeds the
noise floor: any unpredicted high energy noise events will be
erroneously considered to be - regions of high local SNR.
This in turn means they will be assigned mask values that in-
correctly bias their interpretation to be part of the speech fore-
ground. This problem can be somewhat ameliorated by using an
SNR threshold greater than 0 dB when computing soft masks.
The higher threshold will remove some of the noise events from
the foreground, but at the expense of also placing some speech
dominated regions into the background.

TABLE II
KEYWORD RECOGNITION ACCURACIES (%) OF ANF-MD AND ANF-SFD

SYSTEMS USING MASKS COMPUTED WITH VARIOUS SNR THRESHOLDS. THE

RESULTS ARE LISTED FOR EACH SNR CONDITION WITH THE OPTIMIZED

PARAMETERS HIGHLIGHTED IN BOLD

The benefit to the ANF-MD system of an increased threshold
for the low-SNR conditions is illustrated by Table II. However,
in the high-SNR conditions where the noise is more stationary,
the noise floor estimate is generally a good model of the noise, so
the local SNR estimation is reliable and a sigmoid threshold of
0 dB will correctly discriminate between foreground and back-
ground dominated regions. In this case, increasing the threshold
will incorrectly label speech regions as part of the background
without the benefit of removing noise from the foreground, and
the net result may be a reduction in recognition performance.

Although the same estimated SNR maps were used in both
the ANF-MD and ANF-SFD systems, they use the information
in the maps somewhat differently. Specifically, whereas the
ANF-MD system uses the map to attempt to distinguish speech
and background in a single thresholding stage, ANF-SFD
applies a fragment-based segmentation step to regions that
are have higher energy than the noise floor, and the fore-
ground/background nature of these fragments is considered
during decoding. In contrast to the ANF-MD system, it is
therefore unnecessary to use a high threshold to exclude
noise-dominated fragments because these fragments can be
assigned the background interpretation during the decoding
stage when they poorly match the statistical speech models.
Using a lower threshold avoids the adverse consequence that,
on average, unnecessary amounts of reliable speech are treated
as missing data. For the ANF-SFD system 3 dB was found
to be an optimum SNR threshold, but the system was not very
sensitive to different thresholds around 0 dB as suggested in
Table II.

B. Fragment Decoding Versus Model Combination

It is instructive to contrast the fragment decoding approach
with model combination (MC) approaches [10]–[12]. The
success of the fragment decoding technique requires that
the spectro-temporal fragments can be robustly classified as
speech or non-speech using knowledge embodied in the speech
models. Importantly, it functions without the need for explicit
noise event models. This makes the approach highly attractive
in situations where it is not possible to construct good predictive
models of the competing noise sources. However, in situations
where data exists to train noise events models, then alternative
model combination techniques can be applied.
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Fig. 7. Keyword recognition accuracies of fragment decoding and model com-
bination (MC) systems. For model combination separate GMMs were trained
for each utterance in the test set using a window of audio immediately preceding
each utterance.

Given the variability of the CHiME noise it appears unlikely
that a noise model constructed from a background training ses-
sion would generalize usefully to an independent test session.
However, the noise background, although highly varies, is per-
haps locally predictable. For example, although the noise event
“vocabulary” changes in response to transitions in acoustic
scene context (e.g., people may leave or enter the room), signif-
icant state changes accrue only over long time scales, and the
acoustic context can stay fixed for significant periods of time.
It may therefore be possible to train utterance-specific noise
models using short segments of audio immediately preceding
any particular noisy speech utterance.

To test this idea, separate GMMs were trained for each utter-
ance in the test set using a window of audio immediately pre-
ceding each utterance. Window sizes varying from 5 seconds
up to 120 seconds were tested. The optimal number of mixture
components for each window size was determined empirically
from 5 Gaussians up to 256 Gaussians. The GMMs were trained
on the same spectral-temporal representations used in earlier
experiments. The noise GMMs were then combined with the
clean speech HMMs as separate Markov chains in a factorial
HMM [42].

Fig. 7 shows performance of the model combination systems
with various window sizes. It is clear that the results improve
as window size gets large with performance plateauing around
120 seconds. With 30 seconds or more of pre-speech audio, per-
formance of model combination systems is significantly better
than fragment decoding systems at most SNRs, with larger im-
provement at high SNRs where the noise is more stationary (thus
better modeled by the noise GMMs).

It is surprising that the technique performs so well given the
nonstationary nature of the background noise especially at low
SNRs. It seems two minutes of audio is sufficient to represent
the acoustic context. The combination approach we have applied
is crude and better results would be expected with more sophis-
ticated approaches, e.g., [12]–[14].

Although MC and SFD performance is similar, the ap-
proaches are using very different sorts of information (one

uses pitch grouping, another uses noise model). There is a
potential opportunity to form a combined approach—the ex-
isting fragment decoding framework can be generalized in the
manner of a factorial HMM, but with a constraint offered by
the segmentation hypothesis. The fragment-constrained model
combination approach will be investigated in the future.

VII. CONCLUSION

This paper has presented a noise robust ASR system that com-
bines aspects of previously separate noise modeling and source
separation approaches to the problem. The combined approach
has been motivated by the observation that everyday listening
noise backgrounds can be roughly characterized in terms of a
slowly varying noise floor in which there are embedded a mix-
ture of energetic but unpredictable acoustic events. Our solu-
tion proceeds in two steps. First, an adaptive noise floor model
estimates the degree to which high-energy acoustic events are
masked by the noise floor (represented by a soft missing data
mask). Second, a fragment decoding system attempts to inter-
pret the high-energy regions that are not accounted for by the
noise floor model. This component uses models of the target
speech to decide whether fragments should be included in the
target speech stream or not. The combined approach is able to
outperform comparable systems using either the noise model
or fragment decoding approach alone. The results have shown
that model combination techniques also perform well on the
CHiME task. Future work will explore the potential combina-
tion of model combination techniques with fragment decoding
to exploit detailed knowledge of the background sound sources
where available.
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