RESPITE CASA Toolkit
CTK v1.1.1
User’s Guide

Jon Barker

March 8, 2001

Contents

1 Introduction

2 CTK Installation

21 Unixwusers.
3 The CTK Design

4 Writing CASA Toolkit Scripts
4.1 Tutorial 1 - Displaying a spectrogram of superimposed sinusoids
4.2 Tutorial 2 - Designing an intermediate level block

4.3 Tutorial 3 - Missing Data Speech Recognition
5 Using the CTK Graphical User Interface

6 Extending the CTK Inbuilt Block Library
6.1 Setting Up Your Local CTK
6.2 Writing Your Own Primitive Block

A Scripts for User Guide Tutorials
A.1 Script for Tutorial 1 oL
A.2 Script for Tutorial 2 o Lo
A3 Script for Tutorial 3o oL

12

18

22

27

28
28
29

Chapter 1

Introduction

The RESPITE project aims to extend and apply two novel technologies — miss-
ing data theory and multi-stream theory — to the problem of robust automatic
speech recognition (ASR), with particular application to cellular phones and
in-car environments. Both these approaches rely on the successful identifica-
tion of regions of the signal spectrum containing reliable information. Within
the RESPITE project several contrasting approaches to this problem will be
compared. One of these approaches is Computational Auditory Scene Analysis.

The RESPITE CASA Toolkit aims to provide a flexible, extensible and con-
sistent framework for the development and testing of CASA systems within
the project. This framework should facilitate the smooth integration of CASA
software components contributed by the various RESPITE partners. It is also
hoped that this toolkit may prove a useful resource to the CASA community as
a whole, both as a reference framework for comparing different developments,
and as a way to lower the barriers to entry into this research field.

To allow the desired flexibility and extensibility the CASA Toolkit has been
designed around a block processing paradigm. Much of this design has been
influenced by approaches taken in other signal processing systems, notably, the
Speech Training and Recognition Unified Tool (STRUT) of the TCTS lab at
Faculté Polytechnique de Mons, and the Ptolemy project, Department of EECS,
UC Berkeley.

The structure of the rest of the manual

Chapter 2 explains how to download and install the CTK package on your
system.

Chapter 3 describes the block orientated processing and online data flow model
underlying the toolkit.

Chapter 4 provides a number of walk through tutorials which illustrate how

to write CASA Toolkit scripts to run simple signal processing systems. These
tutorials have been designed to be progressive and to illustrate as many of the
principles of the CTK package as possible. Once you have worked through the
tutorials you should be in a position to start building your own CTK systems.

Chapter 5 describes the CASA Toolkit graphical user interface (GUI). This in-
terface has been built on top of the toolkit to aid the design of more complicated
systems. The GUI allows systems to be designed in an intuitive manner by ar-
ranging widgets on a canvas. The graphical representation can then be saved
as a CTK Script that can be run in the normal way. The GUI can also be used
to visualise and edit existing scripts.

The toolkit has been designed to be extendable. Users with some C/C++ ex-
perience can write their own primitive blocks and compile them into the inbuilt
library. Chapter 6 explains the necessary steps.

Chapter 2

CTK Installation

2.1 Unix users
1. Download the gzip compressed CTK tar file. This is available from:
http://www.dcs.shef.ac.uk/research/groups/spandh/projects/respite/ctk/
2. Unpack the archive if you have not done so already:

cd /usr/local
gunzip CTKvl.1l.1l.tar.gz # uncompress the archive
tar xf CTKvl.1l.1l.tar # unpack it

This creates the directory /usr/local/CTK containing the files from the
main archive.

If you have downloaded the data tar file then unpack this now aswell. First
copy it to /usr/local (or whereever you wish to place CTK) and then:

cd /usr/local
gunzip CTK.data.gz # uncompress the archive
tar xf CTK.data.tar # unpack it

The rest of these instructions assume that CTK is installed in /usr/local/CTK.

3. Set some CTK environment variables in the file .profile (or .login,
depending on your shell) in your home directory. (Create the file if it is
not there already.)

e CTKROOT - wherever you installed CTK

¢ CTKLOCAL - for user local CTK paths

e PATH - to locate the CTK binaries

¢ MANPATH - to access the CTK man pages

This is done like this:
In .profile (if your shell is bash, ksh, zsh or sh), add the following lines:

CTKROOT=/usr/local/CTK
CTKLOCAL=/usr/local/CTK/local
PATH=$CTKLOCAL/bin: $PATH
if [$MANPATH]
then
MANPATH=$CTKROOT/man : MANPATH
else
MANPATH=$CTKROOT/man
fi

export CTKROOT CTKLOCAL PATH MANPATH
In .login (in case your shell is csh or tcsh), add the following lines:

if (! $?CTKROOT) then

setenv CTKROOT /usr/local/CTK
endif
if (! $?CTKLOCAL) then

setenv CTKLOCAL $CTKROOT/local
endif
if ($7PATH) then

setenv PATH $CTKLOCAL/bin:$PATH
else

setenv PATH $CTKLOCAL/bin
endif
if ($7MANPATH) then

setenv MANPATH $CTKROOT/man:$MANPATH
else

setenv MANPATH $CTKROOT/man
endif

After you have done this, you will need to login again, or re-source the
profile before continuing, so that at least $CTKROOT and $CTKLOCAL are set.
The installation will give an error message and not proceed otherwise.
. Make sure Qt is properly installed
The Qt widget library is needed if you want to run the CTK GUI. It should
be installed on your system and the following environment variables should
be set:

e QTDIR - wherever Qt is installed on your system

e PATH - to locate the moc program

e LD _LIBRARY_PATH - for the shared Qt library

If you're using GNU g++, you may also want to set these:

e LIBRARY_PATH - contains library file path
e CPLUS_INCLUDE_PATH - contains C++ include file path

This is done like this:
In .profile (if your shell is bash, ksh, zsh or sh), add the following lines:

QTDIR=/usr/local/qt
PATH=$QTDIR/bin:$PATH
if [$LD_LIBRARY_PATH]

then

LD_LIBRARY_PATH=$QTDIR/1ib:$LD_LIBRARY_PATH
else

LD_LIBRARY_PATH=$QTDIR/1ib
fi

LIBRARY_PATH=$LD_LIBRARY_PATH
if [$CPLUS_INCLUDE_PATH]

then

CPLUS_INCLUDE_PATH=$QTDIR/include: $CPLUS_INCLUDE_PATH
else

CPLUS_INCLUDE_PATH=$QTDIR/include
fi

export QTDIR PATH MANPATH LD_LIBRARY_PATH LIBRARY_PATH
export CPLUS_INCLUDE_PATH

In .login (in case your shell is csh or tcsh), add the following lines:

if (' $7QTDIR) then

setenv QTDIR /usr/local/qt
endif
if ($7PATH) then

setenv PATH $QTDIR/bin:$PATH
else

setenv PATH $QTDIR/bin
endif
if ($7MANPATH) then

setenv MANPATH $QTDIR/man:$MANPATH
else

setenv MANPATH $QTDIR/man
endif
if ($7LD_LIBRARY_PATH) then

setenv LD_LIBRARY_PATH $QTDIR/1ib:$LD_LIBRARY_PATH
else

setenv LD_LIBRARY_PATH $QTDIR/1lib
endif
if (! $7LIBRARY_PATH) then

setenv LIBRARY_PATH $LD_LIBRARY_PATH
endif

if ($7CPLUS_INCLUDE_PATH) then

setenv CPLUS_INCLUDE_PATH $QTDIR/include:$CPLUS_INCLUDE_PATH
else

setenv CPLUS_INCLUDE_PATH $QTDIR/include
endif

After you have done this, you will need to login again, or re-source the
profile before continuing, so that at least $QTDIR is set. The installation
will give an error message and not proceed otherwise.

. Compile the CTK binaries

You may find that pre-compiled binaries are available for download di-
rectly from the CTK web site. In this case simply copy the tar file to
$CTKROOT/. . and unpack it. If you can’t find binaries for your system,
then you will have to compile your own.

The $CTKROOT/src directory contains a makefile which compiles the CTK

binaries. The basic system - with no MATLAB or Qt support - can be
built by typing:

cd $CTKROOT/src
make

If this fails or if you want to install the MATLAB interface or the Qt-
based GUI you will have to edit $CTKROOT/src/Makefile. First read the
INSTALL file found in $CTKROOT/src.

. Setting up with MATLAB support

If you have compiled with MATLAB support you will also need to set
your LD_LIBRARY_PATH to locate the MATLAB libraries.

This is done like this:
In .profile (if your shell is bash, ksh, zsh or sh), add the following lines:

if [$LD_LIBRARY_PATH]
then

LD_LIBRARY_PATH=/usr/local/matlab/extern/1lib/sol12:$LD_LIBRARY_PATH
else

LD_LIBRARY_PATH=/usr/local/matlab/extern/lib/sol2

In login (in case your shell is csh or tcsh), add the following lines:

if ($7LD_LIBRARY_PATH) then

setenv LD_LIBRARY_PATH /usr/local/matlab/extern/lib/sol2:$LD_LIBRARY_PATH
else

setenv LD_LIBRARY_PATH /usr/local/matlab/extern/lib/sol2
endif

The exact path may vary on your system, but it should point to the
location of the files 1ibmat.so and libeng.so.

7. Preparing the CTK script files

The example CTK script files need to be editted so that the first line of
each script references the CTKScript script interpreter binary. This can
be done automatically by using the ‘fix_scripts’ script. Simply type:

fix_scripts

8. Setting up your editor (emacs only)

When viewing CTK script files emacs should be put into sh-mode. To
make this happen automatically add the following lines to your .emacs
file:

(setq auto-mode-alist
(append ’ (("\\.ctk$" . sh-mode))
auto-mode-alist))

Chapter 3

The CTK Design

Bottom-up CASA systems are typically built in a modular fashion from fairly
standard components. The CASA Toolkit aims to ease the design of CASA
systems by offering the user a library of well documented pre-defined processing
blocks and a mechanism for combining them in an arbitrary fashion.

Primitive Blocks

At the heart of the CASA toolkit is a library of ‘primitive blocks’. These blocks
are defined in terms of the foll owing:

e Input sockets
¢ Output sockets

e An algorithm — describing how data at the inputs is to be transformed
and placed on the outputs.

e Parameters - A set of parameters which may be set from outside the
block and may control the block’s operation.

Figure 3.1 illustrates several primitive blocks.

Block’s may be broadly divided into 3 distinct types: source blocks, process-
ing blocks and sink blocks.

A source block has output sockets but no input sockets. A source block will
generate its own data (e.g. a pink noise generator block) or will represent a file
of stored data (a WAV file reading block). The data that is read or generated
is passed to the source block’s output socket.

A processing block has both input sockets and output sockets. A processing
block will take data from its inputs, perform some operation on the data and
pass the result to its output sockets. For example an FFT block takes a frame

START INC DURATION

T T T
Type: Ramp Type: Output
KEY Reset() Compute()
Compute()
T Parameter
Input Socket
SCALE
Output Socket Type: Tee Type: Multiplier
Compute() Compute()

Figure 3.1: A collection of primitive blocks. Each primitive block embodies
an algorithm. Block’s may also have input sockets, output sockets, and user
parameters

of data from its input, performs an FFT and passes the transformed frame to
its output.

A sink block is a block that has inputs but no output sockets. Sink blocks
generally represent output files or data displays.

System Sub-components

At the lowest level of description a CASA sytem is described by a set of primitive
blocks, their parameters, and the connections that exist between them. How-
ever, when designing systems it may be more convenient to describe the system
at a higher level as a set of sub-components which are themselves composed
of primitive blocks. This may be convenient if identical sub-components are
used more than once in the same system, or if the user wishes to reuse identical
sub-components in other systems.

The toolkit allows the user to define a sub-component, or intermediate block
in terms of the primitive blocks it is composed of. Once defined this sub-
component may be used as though it were itself a primitive block.

This heirarchical sub-component design may be extended so that higher level
intermediate blocks may themselves be composed of mixtures of primitive blocks
and lower level intermediate blocks.

Describing a system

CASA systems and system sub-components (i.e. intermediate blocks) may be
described using a simple script like language and stored in files with the exten-
sion ‘.ctk’.

A _.ctk file may contain the description of one or more sub-components, or a

10

DELAY SCALE
) T .
DELAY X
KEY -,
T Parameter
,‘ Input Socket Type: Delay Type: Scale Type: Tee
F Output Socket
Type: tap
\ y,

Figure 3.2: An intermediate level block defined in terms of primitive blocks.

complete system. In either case the description includes a list of all the blocks
contained in the system or sub-component together with their parameter values
and a description of the connections between their inputs and outputs.

Chapter 4 provides a tutorial describing in detail how to write CTK scripts.

Type: Main
KEY START INC DURATION SCALE
T T T T
Parameter : Type: Output

Input Socket Reset() i Compute()

Compute()

v W s

Output Socket

Figure 3.3: A complete system

The CTK Graphical User Interface (GUI)

Although writing scripts for small simple systems is straighforward, more com-
plicated system can be hard to visualise from the linear script description. A
graphical interface has been provided that allows the user to design systems
and examine and edit existing scripts in an intuitive manner. The interface can
also be used as a platform from which to interactively experiment with CTK
systems.

Use of the CTK GUI is cover in Chapter 5.

11

Extending the toolkit

The toolkit is distributed with a library of existing primitive blocks. These
primitive blocks are written in C++ and compiled into the toolkit. However,
the toolkit is designed to be easily extendible. It is hoped that with the help of
developer’s documentation and the example of the source code for the existing
inbuilt blocks, users with a little knowledge of C++ will be able to write their
own inbuilt blocks for incorporation into the toolkit library.

Chapter 6 describes the necessary steps for adding a new primitive block to the
system.

Chapter 4

Writing CASA Toolkit
Scripts

This chapter is composed of a number of walk through tutorials which illustrate
how to build simple systems using the CASA Definition Language.

4.1 Tutorial 1 - Displaying a spectrogram of su-
perimposed sinusoids

In the first example a system will be built which superimposes three sinusoidal
signals and displays the spectrogram of the resulting signal.

In any text editor open a new file and call it ‘examplel.ctk’.

At the top of the file type:
#!/usr/local/bin/CTKScript

This line tells the shell that the file is a script and should be interpreted by the
CTKScript command in /usr/local/bin/ . (If your CTK binaries are installed
somewhere other than /usr/local/bin then make sure you use the appropriate
path.)

Next start the description of a new processing block. On a new line type:
BLOCK main

This creates a new block and assigns it the name ‘main’. A script file can define
any number of blocks. The CTKScript command takes as an optional argument
the name of the block to execute. By default it will search for a block called,

12

13

‘main’. If the script contains only one top-level block then it makes sense to
call this block ‘main’ so that CTKScript will work using the default block name
argument.

The top-level block main describes the entire system and is composed of a
number of interconnected lower-level blocks. These lower-level blocks can be
either intermediate-level blocks (themselves composed of a network of lower
level blocks) or one of the fixed library of lowest level inbuilt blocks.

For this example we must start out by adding three inbuilt sine-wave generator
blocks. To do this we use the CTK script ADD command. Type:

ADD il=SineWave (DURATION=1, SAMPLE_RATE=1000, FREQ=2)
ADD i2=SineWave(DURATION=1, SAMPLE_RATE=1000, FREQ=3)
ADD i3=SineWave(DURATION=1, SAMPLE_RATE=1000, FREQ=4)

These SineWave blocks are generators as they have signal outputs (1 each) but
no signal inputs. They have tunable parameters and in this case the parameters
are set to produce sinusoids of 1 second duration at a sample rate of 1000
samples/second and with frequencies of 2, 3 and 4 Hz respectively.

We now need a way of superimposing these signals. This is done using the
inbuilt block called Adder This takes an arbitrary number of inputs and sums
them to produce one output. Type:

ADD a=Adder (NINPUTS=3)

By default Adder expects two inputs. In this case we have 3 sinusoids to add,
so the NINPUTS (number of inputs) parameter has been set to 3.

We can now request a graphical display of the superimposed waveform. The
basic mechanism for graphical output is to use the inbuilt block Display which
generates a Qt-based output window. An alternative for users with MATLAB
is to use the MDisplay block which uses the CTK/MATLAB interface to create
a graphic in a MATLAB window. So next type either:

ADD d1=Display (Qt-based output)
or
ADD d1=MDisplay (MATLAB-based output)

As well as specifying the system’s subblocks we must also describe how they are
connected. By default the toolkit will try to connect the blocks in series in the
same order as they occur in the script. If - as in this case - this is not what is
wanted, then connections must be specified explicitly. In this example each of
the sine wave generators must connect to one of the three inputs on the adder
block, and the output of the added block must connect to the display block. To
make these connections add the lines:

CONNECT il:outl a:ini

14

CONNECT i2:outl a:in2
CONNECT i3:outl a:in3

The first line connects the output socket named out1 of the block called i1 to
the input socket named in1 of the Adder block called a. The second and third
lines likewise connect inputs i2 and i3 to the 2nd and 3rd inputs of the Adder
block a. Note, for all blocks the input sockets will be named in1, in2, etc and
the output sockets named out1, out2, etc. ' If a block has only 1 input socket,
or one output socket then the socket name can be omitted from the CONNECT
statement without any ambiguity. So in this case we could more simply write:

CONNECT il a:ini
CONNECT i2 a:in2
CONNECT i3 a:in3

To connect the adder block to the display block we could add the line:
CONNECT a d1

But in this case there is no need to make this connection explicitly as it follows
the default behaviour of connecting blocks in series in the order in which they
are defined in the script. So this line can be omitted.

Finally add the line:
ENDBLOCK

This marks the end of a block definition.

We have now defined a simple system that will add three sinusoids and display
the resulting waveform. This system is illustrated in Figure 4.1. We can now
‘execute’ the script and see the result. From the editor first save the script, and
then in the Unix shell window make the script executable by using the Unix
chmod command:

chmod u+x examplel.ctk
Now simply execute it by typing:

examplel.ctk

LAt present in the case of multiple input/output sockets it may be necessary to refer to
the block’s documentation to see how to correctly connect up the block. In future versions
nicknames may be associated with these raw input and output names to make their meaning
more transparent.

15

Name: main

Type: SineWave

Name: il

Type: SineWave Type: Adder Type: Display

Name: i2 Name: a Name: d1

Type: SineWave

Name: i3

Figure 4.1:

A window should appear displaying a periodic waveform. If the MATLAB
interface display is used (i.e. MDisplay) there will be a short pause while the
MATLAB engine starts up.

The waveform is the addition of sinusoids with frequencies of 2, 3 and 4 Hz. By
changing the FREQ parameters of the SineWave blocks and rerunning the script
you can see the effect of adding sinusoids with different frequencies. Alterna-
tively you can set the sinusoid frequencies from the command line. To do this
you must first edit the script so the SineWave blocks are defined as:

ADD iil=SineWave (DURATION=1, SAMPLE_RATE=1000, FREQ=$1)
ADD i2=SineWave (DURATION=1, SAMPLE_RATE=1000, FREQ=$2)
ADD i3=SineWave (DURATION=1, SAMPLE_RATE=1000, FREQ=$3)

The $1, $2 and $3 are command-line variables. You can now execute the com-
mand by proceeding it with three argument values. For example, try typing:

examplel.ctk 2 3 4

or

examplel.ctk 100 200 300

or with any other three frequency values after the command name.

We now wish to make a spectrogram of the signal. To do this we need to break
the signal into a series of windowed frames and calculate the magnitude of the
complex FFT of each frame. This is done using the two more inbuilt blocks,

16

named Frame and FFT, connected together in series. However, a spectrogram
is a commonly used representation and it is rather obscure and cumbersome to
have to keep writing out its inbuilt block definition in full every time we wish
to use it. e.g. to construct a spectrogram we need to add something like the
following to the script:

ADD frame=Frame
ADD fft=FFT

and it would be better is we could simply type:
ADD s=Spectrogram

We can in fact use this neater alternative if we first define an intermediate level
block called Spectrogram in terms of the the inbuilt blocks Frame and FFT. A
number of useful intermediate level block definitions (including the spectrogram
block) come supplied with the toolkit and are stored in the toolkit scripts di-
rectory. So rather than defining our own Spectrogram intermediate-level block
we can simply use the INCLUDE command to add this prewritten block to our
script. So directly before the line ‘BLOCK main,” type:

INCLUDE $CTKROOT/scripts/spectrogram.ctk

Now add the Spectrogram block at the end of the main block definition (i.e. im-
mediately before the ENDBLOCK)

ADD s=Spectrogram

We do not need a CONNECT command as by default the Spectrogram block will
take input from the proceeding Display block (Display blocks are designed
to both display their input and pass it on to their output). Finally we want
to display the output of the Spectrogram. So we need to add another display
block. For Qt-based output type:

ADD d2=Display (Qt-based output)

and for MATLAB output, first add:
ADD d2=MDisplay(BEFORE_PLOT="subplot(2,1,2)")
and then edit the definition of block d1 to be

ADD d1=MDisplay(BEFORE_PLOT="subplot(2,1,1)")

17

The BEFORE_PLOT parameter of the MDisplay allows the MATLAB plot to be
customised by issuing MATLAB commands that are executed immediately be-
fore the plot is generated.? In this case it is used to make the waveform and the
spectrogram appear as subplots in a single window.

The script is now complete. If you now go back to the Unix command shell and
type:

examplel.ctk 10 100 200

a window showing both the waveform and the spectrogram something like that
shown in Figure 4.2 should appear. If the script fails to run examine the error
message and check your script against the script listed in Appendix A.1.

di
3 T

o
——

I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

d2

IN
o
S

w
o
o

200

FREQUENCY

=
o
o

o

0 1 2 3 4 5 6
time

Figure 4.2:

CTK Data Flow

This example also serves to illustrate an important feature of the data flow
underlying the CASA toolkit. Whereas the data entering the Spectrogramblock
is a simple signal with time as the only dimension (i.e. it is 1-dimensional) the
data leaving the Spectrogram block has two dimensions, time and frequency.
All data must have time as a dimension but on top of that it may have any
number of other dimensions. Each inbuilt block is designed to examine the

2There is a corresponding AFTER_PLOT command that allows MATLAB commands to be
executed immediately after the plot has been generated.

18

dimensionality of the data entering it and to act appropriately. So, in this
example the output of the first Display block is a simple graph with time along
the x-axis, while the output of the second Display block is a colour image map
with time and frequency along the x and y axes. There is only one type of
Display block but it behaviour alters according to the nature of its inputs.

4.2 Tutorial 2 - Designing an intermediate level
block

In the previous tutorial we saw how we can use an intermediate level block
to perform the function of several connected inbuilt blocks. We saw how an
intermediate block called Spectrogram was used which was composed of the
series combination of a Frame block and an FFT block.

Why go to the trouble of defining an intermediate blocks when we could just
write it out longhand in terms of inbuilt blocks? The obvious advantage is that
it simplifies scripts making them both shorter and easier to read and write.
However, a far more important advantage of intermediate blocks is that they
allow a degree of ‘design reuse’. Intermediate blocks definitions can be written
and stored in a library. These intermediate blocks can then be used as parts
of a more complex system through use of the INCLUDE mechanism. So a
simpler unit, such as a spectrogram, can be designed once and then reused in
any number of more complex systems. It should be noted that an intermediate
level block may itself be designed in terms of other intermediate level blocks
and there is no limit to the level of such nesting that may be used.

In the previous tutorial we used the pre-defined Spectrogramintermediate block
that is provided as part of th CTK intermediate block library. All we had to
do was add the appropriate INCLUDE line at the top of our script file then we
could use Spectrogram exactly as if it was one of the toolkit inbuilt blocks. In
this tutorial we will see how to define our own intermediate level blocks so that
they can be used like inbuilt blocks in this way.

In this tutorial we will construct a lossy delay line like that shown in Figure 4.3.
Each block in the delay line performs a delay operation, a scaling operation,
and a teeing operation to split the data flow into two outputs. There is no
one inbuilt block that can perform all these operations in one go, instead we
must build an intermediate block from the inbuilt blocks Delay, Scale and Tee.
Figure 4.4 shows the architecture of this intermediate block.

So first we will construct the intermediate block shown in Figure 4.4 and give it
a typename ‘tap’ and then we will construct the delay line by arranging these
tap blocks in series as in Figure 4.3.

In any text editor open a new file and call it ‘example2.ctk’.

At the top of the file type:

#!/usr/local/bin/CTKScript

19

Multiply and Delay Multiply and Delay Multiply and Delay

Figure 4.3:
DELAY SCALE
’ T \
DELAY X

KEY X
T Parameter ’-.
Input Socket Type: Delay Type: Scdle Type: Tee
P Output Socket

Type: tap

A J

Figure 4.4:

20

Next we need to start the description of a new block to which we will give the
typename ‘tap’. To do this we just type:

BLOCK tap

Now we add the subblocks Delay, Scale, and Tee which go together to make
up the tap block. To do this we just add the lines:

ADD d1=Delay(DELAY=20)
ADD s1=Scale(X=0.5)
ADD t1=Tee

These blocks need to be connected in series. We do not need any explicit
CONNECT statements because the default series connections will give the right
result. However, once these three are connected there will still be a few loose
connections, namely, the input of the Delay block and the two outputs of the
Tee block. These connections are intended to be inputs and outputs of the
intermediate block itself. This must be made explicit and is done so by use of
the INPUT and OUTPUT commands. To handle the input add the line:

INPUT ini=d1

This declares that the intermediate has an input socket and this socket feeds into
the input of the subblock called d1 i.e. it feeds into the Delay block. Likewise
for the outputs we need to add the lines:

OUTPUT outl=tl:outl
OUTPUT out2=tl:out2

This declares that the intermediate block has two output sockets and they are
respectively output socket 1 and output socket 2 of the block called t1 (i.e. the
Tee block).

We can now complete the block definition with the line:
ENDBLOCK

With this definition the Tap block has no parameters. The delay and scale
factor will be fixed at 20 and 0.5 as stated in the definition of its Delay and
Scale subblocks. If we want tap blocks with adjustable delays and scale factors
we must make the parameters of its subblocks visible as parameters of the tap
block itself (see on Figure 4.4 how tap has a parameter DELAY that is linked to
the parameter DELAY of its subblock Delay). To do this we use the PARAMETER
command. So just before the ENDBLOCK insert the lines:

PARAMETER DELAY=d1:DELAY
PARAMETER SCALE=s1:X

21

This gives the tap block parameters DELAY and SCALE, and attaches these to the
DELAY parameter of the Delay block and the X parameter of the Scale block
respectively.

Now that the tap block has been defined it is ready to be used in the construction
of the main block. The main block will have a SineWave source block, then a
series of tap blocks. Add to following lines:

BLOCK main
ADD il=SineWave(DURATION=0.5, FREQ=5, SAMPLE_RATE=1000)
ADD tapl=tap
ADD tap2=tap
ADD tap3=tap
ADD tap4=tap
ADD tapb=tap

The default connections will string these blocks together in series. Now lets
display the signal at a couple of different points along the delay line. To do
this we simply add a couple of display blocks and connect them to the delay
line using the spare outputs of the tap blocks. For example if you are using the
MATLAB interface add the following:

ADD first_output=MDisplay(BEFORE_PLOT="subplot(2,1,1)")
ADD second_output=MDisplay (BEFORE_PLOT="subplot(2,1,2)")

or if you are using the Qt-based graphical output add:

ADD first_output=Display
ADD second_output=Display

If you have no graphical output you can monitor the output on the terminal
using;:

ADD first_output=0utput
ADD second_output=0utput

Then to connect the outputs to the delay line add the following:

CONNECT tapl:out2 first_output
CONNECT tap4:out2 second_output

Here we have connected the display to tapl and tap4, but they could equally
well be connected at any two other positions.

And finally finish the main block definition by adding:

ENDBLOCK

22

The example is now ready to be run. To do this you first need to make sure the
script file is executable. In the Unix command shell type:

chmod u+x example2.ctk
Then to run the script, simply type:
example2.ctk

If all goes well two sinewaves should appear with one reduced in magnitude and
delayed with respect to the other. Using the MATLAB interface this should look
something like Figure 4.5. If the script fails to run then you have probably made
a typing mistake. Examine the error message and check your script against the
script listed in Appendix A.2.

first_output
0.5 T
0 i
-0.5 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
second_output

0.1 T T T

0.05

-0.05

01 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Figure 4.5:

4.3 Tutorial 3 - Missing Data Speech Recogni-
tion

In this final tutorial we will look at how the CASA toolkit can be used to run

speech recognition experiments.

Figure 4.6 shows the block diagram for a system that performs ‘missing data’
speech recognition. At the bottom of the diagram is the block which performs

23

the ‘missing data’ Viterbi decoding. This is similar to a standard speech decoder
but as well as taking a representation of the speech signal, it also has an input
called a ‘mask’ which tells the decoder which elements of the representation
may be considered to be reliable. Typically some form of spectro-temporal
representation is used, and the mask should indicate which spectro-temporal
elements have a favourable local SNR (i.e. which elements are ‘clean’).

Following Figure 4.6 we see that the first operation is to read the noisy speech
from an AU sound file. In this example recognition will be based on a ‘ratemap’
representation. The ratemap is a kind of auditory-inspired spectrogram and is
formed by passing the signal through a gammatone filterbank, and then perform-
ing some leaky integration and downsampling. The ratemap is then duplicated
using a tee block and one copy passed directly to the decoder and the other copy
is passed down the right hand side of the figure through the blocks that generate
the mask. The mask is generated by performing a simple noise estimation and
then using a comparator to set the mask to true at the spectro-temporal points
where the estimated clean signal (i.e. the noisy signal after subtraction of the
estimated noise) makes up over half the energy of the noisy signal. The mask
is then passed into the second input of the decoder.

The CTK script to describe this process is listed in Appendix A.2. The script
shown differs slightly from the diagram in that it omits the initial ratemap
generation stage and instead reads in precomputed ratemaps. Note, that the
default series block connection means that very few of the block connections
need to be specified explicitly.

We will now see how this script can be used both for recognising a single ut-
terance, or recognising a small corpus of test utterances. First make a new
directory called example3 and copy the example3 CTK script supplied with the
distribution into this directory

mkdir example3
cd example3
cp $CTKROOT/tutorial/example3.ctk .

The script takes two arguments: first, the name of the ratemap file to be recog-
nised and second a string representing the correct transcription against which
the result will be compared. A set of ratemaps for TIDigits mixed with factory
noise at various SNRs is distributed with the toolkit under the $CTKROOT/data
directory. So, to test the script on the utterance 1159 at 10dB SNR type:

example3.ctk $CTKROOT/data/factory/1159a.10 1159 ""

After typing this there will be a short pause while the HMM files are read in.
Once the HMMs have been read a few lines appear summarising the HMM data.
After this, recognition will commence and digits should appear on the screen as
they are recognised. When recognition is complete a line of statistics will appear
summarising the systems performance. The final output should look something
like this:

24

(yelp)85Y example3.ctk $CTKROOT/data/factory/1159a.10 1159

num_HMMs = 12

num_states = 8

num_mixes = 10

vec_size = 64

num_dist = 960

1157 1159 Nin: 4 Nout: 4 (H=3 I=0 D=0 S=1) Cor: 75 Acc: 75 —- Ni 4 Nout: 4 (H=3 I=0 D=0 S=1) Cor: 75 Acc: 75 -

This shows that the utterance ‘1159’ was recognised as ‘1157’. The statistics on
the left show that 4 digits were ‘read in’ and 4 digits were output; there were
3 hits, no insertions, no deletions and 1 substitution. Word correctness is 75%
and word accuracy is 75%.

The system seems to work well with this single utterance, but to really test it we
need to run it over a large test set of several hundred utterances. One approach
would be to write a shell script to repeatedly execute the example3.ctk com-
mand each time with a different ratemap file and a different transcription string.
However, there are two problems with this. First, reading in the HMMs repre-
sents a sizeable computational overhead. We do not want to have to reread the
HMMs for every utterance to be recognised. Second, there is no convenient way
of calculating the overall performance if we have invoked example3.ctk sepa-
rately for each utterance to be recognised. In order to overcome these problems
we can use the CTK script argument list mechanism.

Script argument lists

A script argument list is a text file where each line supplies the arguments for a
separate invokation of the block process described by the script. These argument
lists are introduced to the script on the command line using CTKScript’s -S
option. If a script requires more than one argument these arguments can all be
specified in a single argument list containing several columns, or they can be
split across multiple argument lists with fewer columns. When more than one
argument list is used each list is introduced on the command line with a separate
-S. An example makes this clear. Make your window as wide as possible and
then try the following command:

example3.ctk -S $CTKROOT/data/flists/test240.10.flist —-S $CTKROOT/data/
transcripts/transcripts_240 ""

The first -S parameter introduces the argument list containing the paths of the
complete test set of 240 files to be recognised. The second argument list is a
list of the correct transcriptions of these 240 utterances. Note, all the argument
lists should have the same length, if they do not then an error will be reported.

This command should produce output that starts like that below:

(yelp)333% example3.ctk -S $CTKROOT/data/flists/test240.10.flist -S $CTKROOT/data/transcripts/transcripts_240
num_HMMs = 12
num_states = 8
num_mixes = 10
vec_size = 64
num_dist = 960

1157 1159 Nin: 4 Nout: 4 (H=3 I=0 D=0 S=1) Cor: 75 Acc: 75 —- Nin: 4 Nout: 4 (H=3 I=0 D=0 S=1) Cor: 75 Acc: 75 ——

12773073 1273073 Nin: 7 Nout: 8 (H=7 I=1 D=0 S=0) Cor: 100 Acc: 85.7143 -- Nin: 11 Nout: 12 (H=10 I=1 D=0 S=1) Cor: 90.9091 Acc: 81.8182 —-
1627 127 Nin: 3 Nout: 4 (H=3 I=1 D=0 S=0) Cor: 100 Acc: 66.6667 -— Nin: 14 Nout: 16 (H=13 I=2 D=0 S=1) Cor: 92.8571 Acc: 78.5714 ——
61280 1280 Nin: 4 Nout: 5 (H=4 I=1 D=0 S=0) Cor: 100 Acc: 75 -- Nin: 18 Nout: 21 (H=17 I=3 D=0 S=1) Cor: 94.4444 Acc: 77.7778 —-
12 12 Nin: 2 Nout: 2 (H=2 I=0 D=0 S=0) Cor: 100 Acc: 100 -- Nin: 20 Nout: 23 (H=19 I=3 D=0 S=1) Cor: 95 Acc: 80 ——

25

To recognise the full set of 240 utterances may take some time. The recognition
can be halted at any time by using the Ct1-C key. The statistics on the left of
the screen apply to the current utterance, and those on the right are a running
total showing the performance so far. The final recognition accuracy after all
240 utterances have been processed should be about 84%.

AUlInputFile

]

Ratemap

]

Tee

DBToAmp

H

Tee

StationaryNoise
Estimation

NoiseY, '—' Signal
Floor(X=0.0)

; ’ [Power(X=2.0)]
] v

Power(X=2.0)

v

Scale(X=2.0)

Comparator

<¢—— HMMs

-¢—— Transcriptions
HMMDecoderMD P

— Recognition Statistics

Figure 4.6:

26

Chapter 5

Using the CTK Graphical
User Interface

IMORE STUFF HERE]

27

Chapter 6

Extending the CTK Inbuilt
Block Library

This chapter provides some brief notes to help user’s who wish to add their own
primitive blocks to the toolkit.

6.1 Setting Up Your Local CTK

Before you add your own blocks to CTK you have to make your own local
version of the CTK binaries. This is done by following the steps:

1. First you have to make your own local CTK directory. For example:
mkdir /home/jon/CTK

2. Then if your shell is csh or tcsh edit your .login and change the definition
of CTKLOCAL to point to this directory:

setenv CTKLOCAL /home/jon/CTK

If your shell is bash, ksh, zsh or sh then edit your .profile to include the
line:

CTKLOCAL=/usr/local/CTK/local
3. Now copy the files under $CTKRO0T/1local to $CTKLOCAL:
cp -r $CTKROOT/local/* $CTKLOCAL

4. Now test that it is working by trying to rebuild the binaries locally:

28

29

cd $CTKROOT/src
make

5. Finally edit your $PATH to add the $CTKLOCAL/bin to your path making
sure it precedes $CTKROOT/bin.

6.2 Writing Your Own Primitive Block

The within $CTKLOCAL/src there are files named ctk_NEW_BLOCK_TEMPLATE. cpp
and ctk NEW_BLOCK_TEMPLATE.hh. These files provide an annotated template
for the code you need to implement when writing your own inbuilt blocks. The
files my blocks.cpp and my blocks.hh contain code for a few simple example
blocks. Further examples are in the $CTKROOT/src directory.

More detailed CTK developers documentation should eventually be available.

Once you have written the .cpp and .hh files for the block you wish to add you
need to perform the following three steps:

1. Add your new .hh file to the list of includes in the file my_block headers.hh.

2. Add aline to the file my_translation table according to the instructions
it contains.

3. Edit the file Makefile.local in $CTKLOCAL/src and change the definition
of OBJS to include the file you have added.

Once these steps have been completed move to the directory $CTKROO0T/src and
type ‘make’ and the local CTK binaries should now be rebuilt to include your
new block in the CTK library. To check that the rebuild has been successful you
can type ‘ctk’ to start up the GUI and check that your block appears correctly
in the pull-down block menu.

Appendix

30

Appendix A

Scripts for User (Guide
Tutorials

A.1 Script for Tutorial 1
A.2 Script for Tutorial 2

A.3 Script for Tutorial 3

31

32

#!/usr/local/bin/CTKScript

ok ok ok ok ok ok k ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok %k

Tutorial 1 - A spectrogram of the addition of 3 sinusoids

INCLUDE $CTKROOT/scripts/spectrogram.ctk

BLOCK main
ADD il=SineWave (DURATION=1, SAMPLE_RATE=1000, FREQ=$1)
ADD i2=SineWave (DURATION=1, SAMPLE_RATE=1000, FREQ=$2)
ADD i3=SineWave (DURATION=1, SAMPLE_RATE=1000, FREQ=$3)
ADD a=Adder (NINPUTS=3)
ADD d1=MDisplay(BEFORE_PLOT="subplot(2,1,1)");
ADD s=Spectrogram

ADD

d2=MDisplay (BEFORE_PLOT="subplot(2,1,2)");

CONNECT il a:inil
CONNECT i2 a:in2
CONNECT i3 a:in3

ENDBLOCK

ok ok ok ok ok ok ok ke ok ok ok ok ok ok ke s ke ok ok ok ok ok ok ok ok k ok ok ke sk ke ok ok ok ok ok ok ok ok ok ok ok ok sk o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Figure A.1: Tutorial 1

#!/usr/local/bin/CTKScript

ok k ok ok o ok o ok

Tutorial 2 - The Delay Line

BLOCK tap

ADD
ADD
ADD

d1=Delay (DELAY=20)
ml=Scale(X=0.5)
t1=Tee

INPUT inil=di1
OUTPUT outl=t1l:outl
OUTPUT out2=t1:out2

PARAMETER SCALE=m1:X
PARAMETER DELAY=d1:DELAY

ENDBLOCK

BLOCK main

ADD
ADD
ADD
ADD
ADD
ADD

ADD
ADD

i1=SineWave (DURATION=0.5, FREQ=5, SAMPLE_RATE=1000)
tapl=tap
tap2=tap
tap3=tap
tap4=tap
tapb=tap

first_output=MDisplay(BEFORE_PLOT="subplot(2,1,1)")
second_output=MDisplay (BEFORE_PLOT="subplot(2,1,2)")

CONNECT tapl:out2 first_output
CONNECT tap4:out2 second_output

ENDBLOCK

ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ok ok ok sk ok ok ke ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok o e ok ok ok ok ok ok ok ok ok ok ok ok ok

Figure A.2: Tutorial 2

33

34

#!/usr/local/bin/CTKScript

ok ok ok ok ok ok ok ke ok ok ok ok ok ok ke ke ke ok ok ok ok ok ok ok ok k ok ok ke sk ke ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Tutorial 3 - Missing Data Speech Recognition

BLOCK

ADD

main

i = BinaryInputFile(FILE_NAME=$1, HEADER_SIZE=256, BYTES_PER_SAMPLE=4,

SWAP_BYTES=Yes, SAMPLE_RATE=100, SAMPLES_PER_FRAME=64, FLOATING_POINT=Yes)

ADD

ADD
ADD

ADD
ADD
ADD
ADD
ADD

ADD

teel = Tee

dbtoamp = DBToAmp
tee2 = Tee

nest=StationaryNoiseEstimation(NFRAMES=10);
floor = Floor(X=0.0)
pow2 = Power(X=2.0)
scale = Scale(X=2.0)

comp = Comparitor(X=0.0)

decoder = HMMDecoderMD (HMM_FILE="mlist", LABELS="1234567890zs",

SILENCE="s", USE_ERF_TABLE=T, USE_BOUNDS=T, WORD_PENALTY=0, TRANSCRIPTION=$2)

ADD

powl = Power(X=2.0)

CONNECT nest:out2 floor
CONNECT tee2:out2 powl
CONNECT powl comp:in2

CONNECT teel:outl decoder:inl

ENDBLOCK

ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ok ok ok sk ok ok ok ok ok sk o e ok ok ok ok ok ok ok ok ok ok ok ok ok

Figure A.3: Tutorial 3

