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ABSTRACT conditions is usually achieved when the system mimics functions
of the human auditory system [5],[6],[7]. A good example of this
In this study we describe an auditory processing front-end for js RASTA-PLP (RelAtive SpecTrAl Perceptual Linear Predictive
missing data speech recognition, which is robust in the presenceanalysis) [5], which mimics several aspects of auditory processing
of reverberation. The model attempts to Identlfy time-frequency rather C|ose|y_ Another approach’ especia”y optimised for
regions that are not badly contaminated by reverberation and haveeverberation, is the modulation filtered spectrogram (MSG)
strong speech energy. This is achieved by applying reverberationrepresentation [7].
masking. Subsequently, reliable time-frequency regions are
passed to a ‘missing data’ speech recogniser for classification. We.
demonstrate that the model improves recognition performance inare able to perceive speech robustly even when parts of the signal
three different virtual rooms where rgverberation time T60 varies are masked by noise or deleted by band-limiting. According to
from 0.7 sec to 2.7 sec. We also discuss the advantages of OUcgoke and his co-workers [4], this implies that the auditory
approach over RASTA and modulation filtered spectrograms. system has a mechanism for dealing with ‘missing data’. They

have exploited this notion in ASR by adapting a hidden Markov
model (HMM) classifier to deal with missing or unreliable
1. INTRODUCTION features. The missing data paradigm is complementary to a
. . . . o . ‘computational auditory scene analysis’ (CASA) approach; an
Human listeners have little difficulty in recognising speech in g ,4itory model can be used to decide which acoustic components
moderately reverberant conditions, whereas reverberationyo|onq 't 4 target speech source, and only these ‘reliable’ features
substantially degrades the performance of current automatic ;. passed to the recogniser. Indeed, auditory front-ends have

speech recognition (ASR) systems. It is reasonable t0 argue,peqn compined with missing data speech recognition systems in
therefore, that ASR performance in the presence of reverberation

: . ~~"several previous studies [2],[3],[10].
could be improved by adopting an approach that models auditory In this stud thod usi dit
processing more closely. n this study we propose a new method using an auditory

) ) . ) front-end, which enhances recognition performance in the
Room reverberation introduces convolutional interference poconce of reverberation. Our model is based on a reverberation
that can be characterised as both spectral distortion and add't'vemasking algorithm which attempts to find spectro-temporal
noise. Spectral shaping of the speech signal arises from r00myqions which are not severely contaminated by reverberation and
modes that _empha5|ze some fr_equenues more thgn the _Oth_er%iscards those which are. The model is evaluated in three different
Room reflections can be divided into early reverberation, which is virtual rooms, in which the reverbation time T60 varies from 0.7
highly correlated with the speech signal, and late reverberationsec to 2.7 sec. The results obtained with the new method are
which is less correlated. Therefore the interference caused by latecompared against a baseline recogniser which uses a mean
reverberation can be characterised as additive noise. normalised mel-cepstral coefficient (MFCC) front-end.

Broadly, four strategies have been proposed to handle

reverberation (for an overview see [9]): training speech models in 2. MODEL
the presence of reverberation, dereverberation, source separation
via microphone array processing and the search for more robust2.1. Monaural pathway
feature vectors for the recogniser. The dereverberation approachl_

attempts to estimate a model of the room impulse response and 0 produce the feature vectors for the recogniser a simple
Hemp . ) P pons monaural model of the auditory pathway is used (see Fig 1).
tries to remove it by deconvolution. However, blind

deconvolution from single microphone input has remained a Cochlear frequency analysis is simulated by a bank of 32
diffic I\tl L:c;blem Prollaagbl thle szt resl Ifsuso far havel been bandpass gammatone filters with centre frequencies spaced on the

cult prof N Y >u - equivalent rectangular bandwidth (ERB) scale between 50 Hz and
achieved with microphone array processing, but the problem with

: . . ) ; (18 kHz. The output of each filter is half-wave rectified and
this technique is that at least two microphone signals are neede

when one speech signal is separated. An alternative approach istCompressed o give a representation of auditory nerve activity.
€ sp 9 P e - PP * “Fhen the instantaneous Hilbert envelope is computed at the output
seek noise robust feature vectors. An interesting feature of this

h is that bett ‘ . b i . of eachfilter. This is smoothed by a first-order low-pass filter with
approach 1s that betier periormance in reverberant or Iqo'syanSmstimeconstant, sampled at 10 ms intervals, and finally cube

However, knowledge about human auditory processing can
inform ASR beyond the feature extraction stage. Human listeners
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Figure 1: Schematic diagram of the model.

root compressed to give a representation of auditory nerve firing contaminated by the reverberation. For this purpose we define a

rate (‘rate map’; see Figure 3 for an example). reverberation masking filter,
Because reverberation introduces level changes which n
degrade recogniser performance, a gain adjustgnesats applied H(z) = Z sin(kw) Z* 2
to the rate maps. We usg=1 for the non-reverberant case, K=0
g=0.738 for all the reverberant cases. where the filter coefficients were computed from one period of a

sinusoid. This corresponds to a band-pass filter that has lowpass
characteristics with an additional zero at DC. Two filters were
In this study an HMM speech recogniser is adapted to exploit the used, one optimised for the shortest reverberation time and
missing data technique [4]. Automatic speech recognition is a another for the two longest: their frequency responses are plotted
classification problem in which an acoustic observation vextor in Fig. 2.
must be assigned to a class of speech sdatindowever, when

noise is present some componentsxomay be unreliable or

missing. In these cases, the likelihoifgdC) cannot be computed N

in the usual manner. The ‘missing data’ technique addresses this 10 2Prea. (Ho). © %

2.2. Missing data speech recogniser
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problem by partitioning into reliable and unreliable components, T 20

X andx,. The reliable componentis are directly available to the g 10

classifier. In practice, a binary ‘maski(i,j) is used to indicate %‘_12 A

whether the acoustic evidence in each time-frequency region is ° 10 2(Iéreq. (Hz3)° 0 *

reliable. Figure 2: Frequency response of the filters used for reverberation
In the simplest approach, the components of the unreliable times T60 = 0.7 sec, centre frequency 6.7 Hz (top) and for T60 =
partx, are simply ignored so that classification is based on the 1 7 2.7 sec, centre frequency 4.8 Hz (bottom).
marginal distributionf(x;|C). However, whenx is an acoustic
vector additional constraints can be exploited, since it is known
that uncertain components will have bounded values (the
‘bounded marginalisation’ method [4]). In this study,is an
estimate of auditory nerve firing rate, so the lower boundfas

Mask values are computed by thresholding the filtered
reverberation contaminated sigiya X * h, wherehis the impulse
response corresponding to (2). Hence the mask was described by

zero and the upper bound is the observed firing rate. We also use 01 ify(i, j)>e,

first order temporal derivatives and word insertion penalties, m(i, j) = O : (3

which are known to improve the performance of the missing data 00 otherwise

approach [3]. Longer reverberation times caused the rate maps to be blurred,
and therefore a longer integration period (resulting a narrower

2.3. Mask generation heuristics pass band) was necessary. To compensate for the filter delay, the

masks were shifted backwards in time by the corresponding delay.
Firstly, we produce a mask exploitirg priori information by Thresholds were experimentally tuned to give optimal result for

measuring the differenced between the clean signaland its ~ ©2¢h reyerberauon (?ondltlons. _ _ _
reverberation contaminated counterpiart . Then the mask values  During the experiments, several different types of filter design

In this study we use two different mask estimation heuristics.

m are set as follows: were investigated and a smooth sinusoidal impulse response was
found to give the best results. The key issue in the filter design was
m(i, j) = B 1.d(i, ) <Bqp ) firstly to have a long enough integration phase followed by a
00 otherwise differentiation phase. This made it possible to detect the least

reverberated areas that usually coincided with the strongest

modulation frequencies of speech. Figure 3 shows that our model

detects these areas rather reliably. As shown in the figure, this

gives a mask estimate with wide clean areas that correspond to the
a priori values well.

wherei denotes frequency channglis the current time instant,
Bapis athreshold, 1=reliable and O=unreliable. The purpose of (1)
is to test the limits of the missing data approach by producing
‘ideal’ masks, and to test how close to this limit we can reach with
mask estimation based arposterioriinformation only.

The second heuristic attempts to detect spectro-temporal
regions that contain strong speech energy and are not badly



(D/R). In practice D/R alters when the distance between a
measurement point and the source changes, or alternatively when
the direct sound pathway becomes blocked or attenuated.

25 0 05 1 1b 325 In this study the room impulse responses were artificially
generated by producing early reflections using the image model.
The basic principle of the image model is that reflection paths
from a sound source to a listener are found by reflecting the sound
e source against all surfaces of the room [1]. Late reverberation was
Time (sec) Time (sec) taken from a real room impulse response having a high density of
reflections. This was windowed to give a realistic exponential
Figure 3: Left panel: Rate maps computed for anechoic (top) and gecay for different reverberation times used in our experiments.
reverberant (T60=1.7 D/R=-10) conditions (bottom). Right panel: The yse of the image model to generate early reflections allowed
a priori mask (top) and mask based on reverberation masking s o easily configure the room model to give different test
(bottom). Black areas in the mask (right panel) correspond to congitions. Similarly, using a real room response for the late
reliable speech regions, white areas correspond to reverberatiofeyerperation model made it possible to produce a reverberation
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contaminated regions. tail that has a high density of reflections and a realistic distribution
of energy across frequencies. Related models of room
3. EVALUATION reverberation have previously been employed in speech

recognition by other workers [7].

For testing the model, we generated an early reflection pattern
The model was evaluated on a 240 utterance subset of maleyith the image model for three different rectangular spaces
speakers from the TiDigits connected digits corpus [8]. Auditory (R1=15x13x6.5mM, R2=25x20x6mM, R3=55x35x14m) and fitted
rate maps and MFCCs were obtained for the training section of thethe exponential decay of late reverberation to these. The resulting
corpus, and were used to train 12 word-level HMMs (a silence reverberation times were T60 = 0.7, 1.7 and 2.7 sec respectively.
model, ‘oh’, ‘zero’ and ‘1’ to '9’) each consisting of 8 no-skip,  All spaces were tested with a D/R of 0 dB and -10 dB. A -10 dB
straight-through states with observations modeled by a 10 ratio was obtained with 6.5, 8 and 14 m distances between the
component diagonal Gaussian mixture. All models were trained speaker and the recogniser in the three different rooms R1, R2 and
on unreverberated signals. The test utterances were therR3a respectively. For 0 dB D/R the direct sound was scaled by 10
convolved with an artificially generated room impulse response. dB without altering the pattern of reverberation
All of the utterances were presumed to start from silence. For a
baseline result we used mean normalised mel-cepstral coefficients3.3. Results
(MFCC) W'th. 13. cepstral coefficients, and 1st and 2nd order Table 1 shows the recognition performance in three different
temporal derivatives. rooms for two D/R. The performance of the missing data speech
recogniser with different mask estimation techniques is compared
against a MFCC front-end. Different approaches as they appear in

The reverberation of an enclosure is often characterized usingthe table are (i) unity mask, i.e. all features are passed to the
a simple measure called reverberation time T60, which is defined recogniser - this corresponds to a conventional HMM recogniser
as the time required for the reverberation to drop 60 decibels without missing data processing (i) MFCC-based speech
below the original sound level. For example, the recommended recogniser (jii) missing data mask estimation using reverberation
T60 for a SpeeCh hall is 0.4 sec. A richer acoustic environment is masking (|v) using a mask based arpriori know|edge of the
required for music, and therefore the T60 should be longer - a clean regions of the signal. The clean (unreverberated) utterances
typical value for a concert hall is 2.0 sec. Another useful measure were tested only with the unity mask and MFCC recogniser, but
considered here is the ratio of direct sound to reverberated sounchot for the two missing data techniques. This is based on the

3.1. Corpus & HMM settings

3.2. Testing the model under reverberation

Recognition Clean T60=0.7s T60=0.7s T60=1.7s T60=1.7s T60=2.7s T60=2.7s
Technique D/R=0dB D/R=-10db D/R=0dB D/R=-10dB D/R=0dB D/R=-10dB
Unity mask 98.26 62.48 46.39 42.82 29.24 34.90 24.28
MFCC 99.65 60.40 47.08 47.35 34.46 40.73 28.55
Reverb. masking 90.33 85.03 82.25 71.11 66.05 45.52
a priori mask 95.82 93.73 92.42 89.12 90.60 87.99

Table 1: Speech recognition accuracy (100-WER, word error rate) in three different virtual rooms with two different D/R-ratios.
Recognition performance of missing data recognition with different mask estimation methods is compared against a baseline obtained with
a MFCC front-end.



assumption that for the missing data approach, optimal such modifications in an adaptive manner is a challenging
performance on clean speech will be obtained with a unity mask.problem that we will address in future work. In this study all

In all the different experiments, the missing data approach thresholds were experimentally tuned for each case. Adaptive
with reverberation masking substantially outperforms the MFCC Selection of these thresholds is also an issue for future research.
and unity mask approaches. Ta@riori results suggest a ceiling Kingsbury and his co-workers [6],[7] suggest that the MSG
performance that may be achieved using the current missing dataechnique enhances ASR performance because the modulation
approach. When the T60 became longer the performancefrequencies remaining after their filtering approach are those
difference betweea priori and reverberation masking techniques which are known to be most important in human speech
increased. This result is not suprising, since the increasedrecognition. A similar explanation also underlies our study.
reverberation causes more blur in the rate maps - thus it is moreEqually, though, our approach can be regarded as one whose aim
difficult to produce accurate masks based anposteriori is to identify the least reverberation contaminated regions of the
information only. signal that usually coincide with the strongest speech

All of the utterances started from silence, and hence in the modulations. It is evident from Figure 3 that the model is able to
most reverberant environments the reverberation more greatlyfind such regions rather reliably.
affected the last digits of the utterance. This was apparent from Our system showed a significant improvement compared to
detailed examination of our recognition results; approaches thatthe baseline results obtained using a MFCC-based recogniser.
didn’t use reverberation masking performed relatively poorly on Clearly, however, this baseline system does not constitute a state-

later digits compared to the first digit. of-the-art recogniser of reverberant speech. Our future intention is
to compare our system against MSG and combined MSG-PLP
4. DISCUSSION front-ends which are known to give good performance in
reverberation.
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