Context-Free Grammar

Sipser Page 130

2.4 Give context free grammars that generate the following languages. In all
parts > ={0,1}

a) L = {w|w starts and ends with the same symbol}

S()—>OS10|1S11|8
Sl — 051|1Sl|€

¢) L={w||w]| is odd}
S()—>OS1|181
Sl —>0051|0151|1051|1151|8

e) L ={w|w=w?}, i.e. wis a palindrome

SO — 1801|0S00|0|1|E

Sipser Page 132

2.21 Let > = {a, b}. Give a CFG generating the language of strings with
twice as many a’s as b’s. Prove that your grammar is correct.

So— SpaablaS;ablaaS;b|aabS;|SiabalaS;balabSia|abaS,|
Sibaa|bSjaalbaSia|baaS;
Sl — So|6

Proof by induction.

Smallest strings possible are: zo € {aab, aba, baa} all of which have Na(xo) = 2Np(zo), where N4(z) gives
the number of a’s in string x and Np(x) gives the number of b’s in string x.

Assume Na(x,) =2Npg(x,) holds.
Show if n is true n+1 is also true, where x,, 1 is string x,, with substring s € {¢, aab, aba, baa} inserted.
Subsequent insertions of S; into strings produced, either add 0 a’s and 0 b’s or 2 a’s and 1 b.

Case when 0 a’s and 0 b’s are inserted.

NA(anrl) = NA(In) +0
Np(wn+1) = Np(w,) +0
Na(tnt+1) =2Np(2n41)

Case when 2 a’s and 1 b are inserted.

Na(#ps1) = Na(xn)+2
Np(zn,+1)=Np(z,)+1
Na(zp)+2=2(Np(z,)+1)
Na(zy,)=2Npg(z,)

Therefore all strings generated using the grammar contain twice as many a’s as b’s.

Study Guide 2

3. Find context free grammara for each of the following languages
a) L=a'bic*|li=j+k}
So— aSpc|S1
S1—aSible
b) L = {abick|j =i+ k
So— aS1bSs|S1bSac|e
S1—aSible
Sa— bSacle
c) L={a'c*|i+ j+k}
{a'vic*|is j+k}={abckli>j+k} U {abic*|i<j+k}
{a’bick|i>j+k}
S1— aSs
So— aSs|aSac|S3
S3— aSg|aSsb|e
{a’bickli<j+k}
Sy — Ssc
S5 — Ssc|aSsc|Se
Se— SgblaSgb|e
{aibickli j + k)
So— 5154

e) L={a'bick|j=iorj=k}
{a'bick|j =1}
S — aSsbSse
Sy — aSaoble
S3— cSsle
{albick|j =k}
S4— SsbSgcle
S5 — ¢Ssle
Se— bSgcle
{a'bick|i>j=iorj+k}
So— 51/

Context Free Grammars - week 5/6-ish

2.8 - Show that CFLS are closed under union, concatenation, and star

1. Closure under union - show that VL, Lo, € CFL, LU Ls € CFL

Let the start variables for L; and Lo be S; and So respectively; then we can define a
grammar for their union as follows.

S—>51|SQ

By definition this will generate any string generated by S7 or by Sy (or both), which is
the union of the two langauges.

2. Closure under concatenation - show that VLi, Ly € CFL, {wjws:w; € Ly Aws € Lo} € CFL

Using a similar argument we can define a grammar for the concatenation thus:
S — 5152

By definition this will generate any string consisting of a string from L, followed by a
string from Lo, which is the concatenation of the two languages.

3. Closure under star - show that VL; € CFL, L} € CFL

Once again we have to implement star using the primitives of a CFG; let the start symbol
for Ly be S7. Then we can define the following grammar:

S— 5,5

This will generate zero or more strings from L, which is the definition of star.

2.10 - Give a CFG for A={ab’c*|(i=jVj=k)Ai,j,k>0} etc
It’s easiest to divide the grammar into two parts, one for when ¢ =j and another for when j =k

Ai—; — EuXy
E.n — aFEuble
X1 — c¢Xile

and

Aj—r — XoE
Eve — bEpcle
Xy — aXyle

Then any string which is from one of these two languages is generated by A— A,—;|A;—, which
covers everything in the intended set and nothing outside it. This grammar is ambiguous
because any string in which ¢ = j =k is generated by both A;_; and A;—;. An interesting ques-
tion is whether it could be disambiguated... (exercise for the reader there)

2.12 - Convert the CFG given in Ex 2.1 to a PDA

E — E+T|T
T — TxF|F
F — (E)la

g,e—F

2.5.b. For the following grammar G find an equivalent CFG in Chomsky normal form that

generates the language L(G) \ {&}.

<S — S(S) | &>

1. Add new start variable

Se->S
S —S@S)| e

2. Remove A->¢ rules.

Se->S
S->8(S)I(S)ISOI0

3. Change all rules to the form A->BC

Si->S
S->SS;
S1->S,S,
$2->SS;
S->S,
S->SS;
S3->8,Ss
S4->(
Ss->)

3.2.a. The language of all odd-length palindromes over the alphabet {a, b}. Recall that w €
{a, b} * is a palindrome if it reads the same backwards, that is w = w~,

a,e-=a
b,e-=b

(} E,E-=5

a,a->g
b, b-=¢

a,E->¢
b,g-=>¢

— ©

3.2.c. The language {a~ x | N >0, andx € {a,b}*,and | x <N }.

3,a->¢
b,a-=¢

£,E-25 b,a-=¢ £.5-=¢
>

a,E->a

3.a. Deterministic push-down automata for the language (over {a, b}) {x | Na (x) = Nb (x)}
(recall that Na (x) means the number of occurences of a in x).

4,E->a
b.b->g e b.e->b

b,e->¢ , b.a-=>¢

