
Context-Free Grammar

Sipser Page 130

2.4 Give context free grammars that generate the following languages. In all
parts

∑
= {0, 1}

a) L = {w|w starts and endswith the same symbol}

S0→ 0S10|1S11|ε

S1→ 0S1|1S1|ε

c) L = {w| |w| is odd}

S0→ 0S1|1S1

S1→ 00S1|01S1|10S1|11S1|ε

e) L = {w |w = wR}, i.e. w is a palindrome

S0→ 1S01|0S00|0|1|ε

Sipser Page 132

2.21 Let
∑

= {a, b}. Give a CFG generating the language of strings with
twice as many a’s as b’s. Prove that your grammar is correct.

S0→S1aab|aS1ab|aaS1b|aabS1|S1aba|aS1ba|abS1a|abaS1|

S1baa|bS1aa|baS1a|baaS1

S1→S0|ε

Proof by induction.

Smallest strings possible are: x0 ∈ {aab, aba, baa} all of which have NA(x0) = 2NB(x0), where NA(x) gives

the number of a’s in string x and NB(x) gives the number of b’s in string x.

Assume NA(xn) =2NB(xn) holds.

Show if n is true n+1 is also true, where xn+1 is string xn with substring s∈ {ε, aab, aba, baa} inserted.

Subsequent insertions of S1 into strings produced, either add 0 a’s and 0 b’s or 2 a’s and 1 b.

Case when 0 a’s and 0 b’s are inserted.

NA(xn+1)= NA(xn)+ 0

NB(xn+1)= NB(xn)+ 0

NA(xn+1) =2NB(xn+1)

Case when 2 a’s and 1 b are inserted.

1

NA(xn+1)= NA(xn)+ 2

NB(xn + 1)= NB(xn)+ 1

NA(xn)+ 2= 2(NB(xn) +1)

NA(xn) =2NB(xn)

Therefore all strings generated using the grammar contain twice as many a’s as b’s.

Study Guide 2

3. Find context free grammara for each of the following languages

a) L = aibjck|i = j + k}

S0→ aS0c|S1

S1→ aS1b|ε

b) L = {aibjck|j = i + k

S0→ aS1bS2|S1bS2c|ε

S1→ aS1b|ε

S2→ bS2c|ε

c) L = {aibjck|i� j + k}

{aibjck|i� j + k}= {aibjck|i > j + k}
⋃

{aibjck|i < j + k}

{aibjck|i > j + k}

S1→ aS2

S2→ aS2|aS2c|S3

S3→ aS3|aS3b|ε

{aibjck|i < j + k}

S4→S5c

S5→S5c|aS5c|S6

S6→S6b|aS6b|ε

{aibjck|i� j + k}

S0→S1|S4

e) L = {aibjck|j = i or j = k}

{aibjck|j = i}

S1→ aS2bS3|ε

S2→ aS2b|ε

S3→ cS3|ε

{aibjck|j = k}

S4→S5bS6c|ε

S5→ cS5|ε

S6→ bS6c|ε

{aibjck|i > j = i or j + k}

S0→S1|S4

2

Context Free Grammars - week 5/6-ish

2.8 - Show that CFLS are closed under union, concatenation, and star

1. Closure under union - show that ∀L1, L2∈CFL , L1∪L2∈CFL

Let the start variables for L1 and L2 be S1 and S2 respectively; then we can define a
grammar for their union as follows.

S→S1|S2

By definition this will generate any string generated by S1 or by S2 (or both), which is
the union of the two langauges.

2. Closure under concatenation - show that ∀L1, L2∈CFL, {w1w2 : w1∈L1∧w2∈L2}∈CFL

Using a similar argument we can define a grammar for the concatenation thus:

S→S1S2

By definition this will generate any string consisting of a string from L1 followed by a
string from L2, which is the concatenation of the two languages.

3. Closure under star - show that ∀L1∈CFL, L1
∗∈CFL

Once again we have to implement star using the primitives of a CFG; let the start symbol
for L1 be S1. Then we can define the following grammar:

S→S1S |ǫ

This will generate zero or more strings from L1, which is the definition of star.

2.10 - Give a CFG for A = {aibjck|(i = j ∨ j = k) ∧ i, j , k > 0} etc

It’s easiest to divide the grammar into two parts, one for when i = j and another for when j = k

Ai=j → EabX1

Eab → a Eab b|ε

X1 → c X1|ε

and

Aj=k → X2 Ebc

Ebc → b Ebc c|ε

X2 → a X2|ε

Then any string which is from one of these two languages is generated by A→Ai=j |Aj=k, which
covers everything in the intended set and nothing outside it. This grammar is ambiguous
because any string in which i = j = k is generated by both Aj=k and Ai=j. An interesting ques-

tion is whether it could be disambiguated... (exercise for the reader there)

2.12 - Convert the CFG given in Ex 2.1 to a PDA

E → E + T |T

T → T ×F |F

F → (E)|a

1

ε, T →F

ε, ε→×

ε, ε→T

a, a→ ε

ε, ε→E

ε, ε→ (
(, (→ ε

),)→ ε

ε, ε→E
ε, $→ εε, ε→ $

ε, F →)

ε, ε→ ε

ε, E→ T

ε, ε→+

ε, ε→E

ε, ε→ ε

∗ , ∗→ ε
+ , +→ ε

2

2.5.b. For the following grammar G find an equivalent CFG in Chomsky
 normal form that
generates the language L(G) \ {ε}
.

<S → S(S) |
 ε>

1. Add new start variable

S0->S
S → S(S) |
 ε

2. Remove A->ε rules.

S0->S
S->S(S)|
(S)|
S()|
()

3. Change all rules to the form A->BC

S0->S
S->SS1

S1->S4S2

S2->SS5

S->S1

S->SS3

S3->S4S5

S4->(
S5->)

3.2.a. The language of all odd-length palindromes over the alphabet {a, b}
. Recall that w ∈
{a, b}
 is a palindrome if it reads the same backwards, that is w = w∗ R.

3.2.c. The language {aN x |
 N ≥ 0, andx {a, b}
 , and |
 x |
≤ N }
.∈ ∗

3.a. Deterministic push-down automata for the language (over {a, b}
) {x |
 Na (x) = Nb (x)}

(recall that Na (x) means the number of occurences of a in x).

