Context-Free Grammar

Sipser Page 130

2.4 Give context free grammars that generate the following languages. In all parts $\sum = \{0, 1\}$

a) $L = \{w | w \text{ starts and ends with the same symbol} \}$

$$S_0 \to 0S_10|1S_11|\varepsilon$$
$$S_1 \to 0S_1|1S_1|\varepsilon$$

c) $L = \{w | |w| \text{ is odd}\}$

$$\begin{split} S_0 &\rightarrow 0 S_1 | 1 S_1 \\ S_1 &\rightarrow 0 0 S_1 | 0 1 S_1 | 1 0 S_1 | 1 1 S_1 | \varepsilon \end{split}$$

e) $L = \{w | w = w^R\}$, i.e. w is a palindrome

 $S_0 \mathop{\rightarrow} 1S_0 1|0S_0 0|0|1|\varepsilon$

Sipser Page 132

2.21 Let $\sum = \{a, b\}$. Give a CFG generating the language of strings with twice as many a's as b's. Prove that your grammar is correct.

$$\begin{split} S_0 &\to S_1 \text{aab} |\mathbf{aS}_1 \mathbf{ab} |\mathbf{aaS}_1 b |\mathbf{aabS}_1 | S_1 \mathbf{aba} |\mathbf{aS}_1 \mathbf{ba} |\mathbf{abS}_1 a |\mathbf{abaS}_1 |\\ S_1 \text{baa} |\mathbf{bS}_1 \mathbf{aa} |\mathbf{baS}_1 a |\mathbf{baaS}_1 \\\\ S_1 &\to S_0 | \varepsilon \end{split}$$

Proof by induction.

Smallest strings possible are: $x_0 \in \{aab, aba, baa\}$ all of which have $N_A(x_0) = 2N_B(x_0)$, where $N_A(x)$ gives the number of a's in string x and $N_B(x)$ gives the number of b's in string x.

Assume $N_A(x_n) = 2N_B(x_n)$ holds.

Show if n is true n+1 is also true, where x_{n+1} is string x_n with substring $s \in \{\varepsilon, aab, aba, baa\}$ inserted.

Subsequent insertions of S_1 into strings produced, either add 0 a's and 0 b's or 2 a's and 1 b.

Case when 0 a's and 0 b's are inserted.

$$N_A(x_{n+1}) = N_A(x_n) + 0$$
$$N_B(x_{n+1}) = N_B(x_n) + 0$$
$$N_A(x_{n+1}) = 2N_B(x_{n+1})$$

Case when 2 a's and 1 b are inserted.

$$N_A(x_{n+1}) = N_A(x_n) + 2$$
$$N_B(x_n + 1) = N_B(x_n) + 1$$
$$N_A(x_n) + 2 = 2(N_B(x_n) + 1)$$
$$N_A(x_n) = 2N_B(x_n)$$

Therefore all strings generated using the grammar contain twice as many a's as b's.

Study Guide 2

3. Find context free grammara for each of the following languages

-	
a) $L = a^i b^j c^k i = j + k \}$	
	$S_0 \rightarrow \mathrm{aS}_0 c S_1$
	$S_1 \rightarrow \mathrm{aS}_1 b \varepsilon$
b) $L = \{a^i b^j c^k j = i + k\}$	
	$S_0 \rightarrow aS_1bS_2 S_1bS_2c \varepsilon$
	$S_1 \to \mathrm{aS}_1 b \varepsilon$
	$S_1 \rightarrow bS_2 c \varepsilon$
c) $L = \{a^i b^j c^k i \neq j + k\}$	
$\{a^i b^j c^k i \neq j+k\} = \{a^i b^j c^k i > j+k\}$	$z\} \bigcup \{a^i b^j c^k i < j+k\}$
$\{a^ib^jc^k i>j+k\}$	~ ~
	$S_1 \rightarrow aS_2$
	$S_2 \rightarrow \mathrm{aS}_2 \mathrm{aS}_2 c S_3$
	$S_3 \rightarrow \mathrm{aS}_3 \mathrm{aS}_3 b \varepsilon$
$\{a^i b^j c^k i < j+k\}$	
	$S_4 \rightarrow S_5 c$
	$S_5 \to S_5 c \mathbf{a} \mathbf{S}_5 c S_6$
	$S_6 \rightarrow S_6 b \mathrm{aS}_6 b \varepsilon$
$\{a^ib^jc^k i\neq j+k\}$	
	$S_0 \rightarrow S_1 S_4$
e) $L = \{a^i b^j c^k j = i \text{ or } j = k\}$	
$\{a^ib^jc^k j=i\}$	
	$S_1 \rightarrow \mathrm{aS}_2\mathrm{bS}_3 arepsilon$
	$S_2 \rightarrow \mathrm{aS}_2 b \varepsilon$
	$S_3 \rightarrow \mathrm{cS}_3 \varepsilon$
$\{a^ib^jc^k j=k\}$	
	$S_4 \rightarrow S_5 \mathrm{b} \mathrm{S}_6 c \varepsilon$
	$S_5 ightarrow \mathrm{cS}_5 arepsilon$
	$S_6 \rightarrow bS_6 c \varepsilon$
$\{a^i b^j c^k i > j = i \text{ or } j + k\}$	
	$S_0 \rightarrow S_1 S_4$

Context Free Grammars - week 5/6-ish

2.8 - Show that CFLS are closed under union, concatenation, and star

1. Closure under union - show that $\forall L_1, L_2 \in \text{CFL}, L_1 \cup L_2 \in \text{CFL}$

Let the start variables for L_1 and L_2 be S_1 and S_2 respectively; then we can define a grammar for their union as follows.

$$S \rightarrow S_1 | S_2$$

By definition this will generate any string generated by S_1 or by S_2 (or both), which is the union of the two langauges.

2. Closure under concatenation - show that $\forall L_1, L_2 \in CFL, \{w_1w_2 : w_1 \in L_1 \land w_2 \in L_2\} \in CFL$

Using a similar argument we can define a grammar for the concatenation thus:

$$S \rightarrow S_1 S_2$$

By definition this will generate any string consisting of a string from L_1 followed by a string from L_2 , which is the concatenation of the two languages.

3. Closure under star - show that $\forall L_1 \in CFL, L_1^* \in CFL$

Once again we have to implement star using the primitives of a CFG; let the start symbol for L_1 be S_1 . Then we can define the following grammar:

$$S \rightarrow S_1 S | \epsilon$$

This will generate zero or more strings from L_1 , which is the definition of star.

2.10 - Give a CFG for $A = \{a^i b^j c^k | (i = j \lor j = k) \land i, j, k \ge 0\}$ etc

It's easiest to divide the grammar into two parts, one for when i = j and another for when j = k

$$\begin{array}{rcccc} A_{i=j} & \rightarrow & E_{ab}X_1 \\ E_{ab} & \rightarrow & a \, E_{ab} \, b | \varepsilon \\ X_1 & \rightarrow & c \, X_1 | \varepsilon \\ & & \text{and} \end{array} \\ A_{j=k} & \rightarrow & X_2 \, E_{bc} \\ E_{bc} & \rightarrow & b \, E_{bc} \, c | \varepsilon \\ X_2 & \rightarrow & a \, X_2 | \varepsilon \end{array}$$

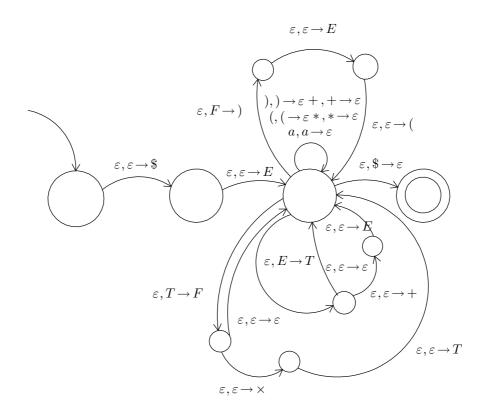
Then any string which is from one of these two languages is generated by $A \to A_{i=j}|A_{j=k}$, which covers everything in the intended set and nothing outside it. This grammar is ambiguous because any string in which i = j = k is generated by both $A_{j=k}$ and $A_{i=j}$. An interesting question is whether it could be disambiguated... (exercise for the reader there)

2.12 - Convert the CFG given in Ex 2.1 to a PDA

$$E \rightarrow E + T | T$$

$$T \rightarrow T \times F | F$$

$$F \rightarrow (E) | a$$



2.5.b. For the following grammar G find an equivalent CFG in Chomsky normal form that generates the language $L(G) \setminus \{\epsilon\}$.

 $\langle S \rightarrow S(S) | \epsilon \rangle$

1. Add new start variable

 $\begin{array}{l} S_0\text{->}S\\ S \to S(S) \mid \epsilon \end{array}$

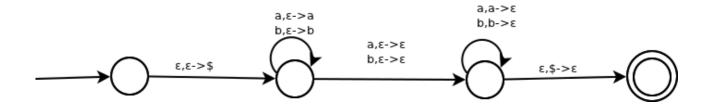
2. Remove A->ε rules.

S₀->S S->S(S)|(S)|S()|()

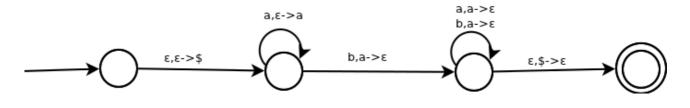
3. Change all rules to the form A->BC

 $\begin{array}{l} S_0 -> S \\ S_-> SS_1 \\ S_1 -> S_4 S_2 \\ S_2 -> SS_5 \\ S_-> S_1 \\ S_-> SS_3 \\ S_3 -> S_4 S_5 \\ S_4 -> (\\ S_5 ->) \end{array}$

3.2.a. The language of all odd-length palindromes over the alphabet {a, b}. Recall that $w \in \{a, b\}$ * is a palindrome if it reads the same backwards, that is $w = w^{R}$.



3.2.c. The language $\{a^N x \mid N \ge 0, and x \in \{a, b\} *, and \mid x \mid \le N \}$.



3.a. Deterministic push-down automata for the language (over $\{a, b\}$) $\{x \mid Na (x) = Nb (x)\}$ (recall that Na (x) means the number of occurences of a in x).

