

THE EXECUTION KERNEL OF RC++:
RETE*, A FASTER RETE WITH TREAT AS A SPECIAL CASE

Ian Wright1
IKuni Inc.

3400 Hillview Avenue, Building 5,
Palo Alto, CA 94304, USA

wright@ikuni.com

James Marshall
Department of Earth Science and Engineering

Imperial College London
Exhibition Road

London, SW7 2AZ, UK
James.A.Marshall@imperial.ac.uk

1 This work was undertaken at Sony Computer Entertainment Europe’s Team Soho game development studio in London as part of an effort
to develop new AI technologies for game production.

KEYWORDS
Rule-based languages, RETE, pattern matching.

ABSTRACT

Some behaviour of computer game agents can be naturally
expressed as collections of rules and knowledge bases. General-
purpose rule-based languages provide high-level constructs for
expressing complex conditional behaviour. We examine the run-
time kernel of RC++, a rule-based language developed for game
AI, to explore the costs associated with adopting general-purpose,
rule-based approaches for computer game production. The kernel
of RC++ is the RETE* algorithm, an extension of the RETE
algorithm with better time characteristics, but also able to exhibit
the beneficial properties of TREAT (a low memory cost alternative
to RETE) when required. RETE* achieves this functionality and
performance by employing (i) asymmetric deletion, (ii) dual
tokens, and (iii) a dynamic beta-memory cut mechanism. The
dynamic beta cut allows the RETE/TREAT trade-off to be
exploited by users. Theoretical and empirical performance
comparisons for RETE, TREAT and RETE* are provided. The
implications for the utility of rule-based programming for the
computer games industry is discussed, and we conclude that there
is still some way to go before rule-based programming can be
employed in the game-making process.

INTRODUCTION

Rule-based programming is a natural approach to specifying agent
behaviour: rules define conditions on internal state (interpreted as
sensory information or memory stores) and associated actions that
can alter memory or produce actions in a virtual world. General-
purpose rule-based languages (in contrast to simple, relatively
stateless, scripting languages) provide powerful pattern-matching
constructs that automate some of the programming tasks associated
with rule execution. Both the SOAR architecture, which has been
used to develop ‘bots’ for Quake II (Laird and van Lent, 99), and
our own work on RC++ (Wright and Marshall, 00), a rule-based
language implemented for Sony’s PlayStation2 architecture, are
g̀eneral-purpose’ rule-based languages of this type. Our aim in this

paper is to explain what is occurring ‘under the hood’ in such
systems, using the execution kernel of RC++ as representative
example. We believe it is important to inform other game
developers of our experience working with rule-based languages,
and present some of the difficulties of the approach in a production
setting.

The organisation of the paper is as follows. First, in the major
section of this paper, we describe the advantageous properties of
RETE*, the RETE variant at the heart of RC++, and present
theoretical and empirical investigations of its performance. Second,
we discuss the implications for deploying rule-based languages in
game production.

1 RETE

The RETE algorithm is a network-based algorithm designed to
speed the matching of patterns with data. The original RETE was
developed by Forgy, and is the execution kernel of the rule-based
language, OPS5 (Forgy, 81; Forgy, 82), which is the language basis
of both the SOAR architecture and the RC++ language. In rule-
based languages, patterns constitute rule conditions. Rules are
executed, or "fired", if program data, or "working memory" (WM),
can be consistently matched with rule conditions. The RETE
algorithm decides rule firing. RETE employs a static discrimination
network, generated by the language compiler, that represents data
dependencies between rule conditions. RETE avoids unnecessary
recalculation of condition matches during addition of data to WM
by storing intermediate matches at network junctures called beta-
memories. Addition and deletion of data to and from WM is
symmetric in RETE: the sequence of operations to delete data is the
same as those to add data. RETE trades space for time: results of
matching are incrementally cached in memory for subsequent re-
use.

The RETE algorithm has compile-time and run-time parts. At
compile-time the left-hand sides (LHS) of rules are compiled to a
discrimination network represented by an op-code language. The
RETE network is a data-flow network, and represents data
dependencies between rule conditions. At run-time data items
representing changes to the contents of WM, called "change

tokens" (ctokens), enter the network at the root and are processed
through the network. Ctokens represent either additions to WM or
deletions from WM. The network contains two types of node: test
nodes and join nodes, and two types of associated run-time
memories: alpha-memories that store atomic "data tokens"
(dtokens) for input to top-level join nodes, and beta-memories that
store complex dtokens (concatenations of atomic tokens) at join
nodes. The dtokens stored in alpha-memories correspond to the
contents of WM. Test nodes test values of ctokens, whereas join
nodes compare values between an entrant ctoken and existing
dtokens.

For example, consider the RC++ rule:

RULE PickupObject
 [Goal ^Status active ^Type holds
^Object ?w]
 [Object ^Name ?w]
 NOT [Monkey ^Holds ?w]
->
 ADD [Goal ^Status active ^Type pickup
^Object ?w]
ENDRULE

The rule specifies three conditions, two that check the existence of
data in WM, and a NOT condition that checks for non-existence of
data in WM. The conditions compile to the RETE network shown
in figure 1.

A0
Test "Goal"
Test "active"
Test "holds"

Test "Object" Test "Monkey"
A1 A2

B1
Join
AND
3==1

B2
Join
NAND
3==3

Add "PickupObject"

instantiation to CS list

Figure 1: RETE network

The first layer of the network is the set of test nodes that determine
whether a ctoken partially matches one of the rule conditions

(nodes A0, A1, and A2). For example, the ctoken:

+[Goal active holds ladder]

represents the addition of a data item to WM. It enters the network
at the root and is processed in a depth-first manner through the
network. The token passes the first test corresponding to the first
rule condition at A0, but fails the other tests. Hence, the token
enters the next level of the network as the LHS of the AND join
node B1 only. Node B1 checks whether there is a shared value
between a ctoken entering from the LHS (resp. RHS) of the join
and stored dtokens in the RHS (resp. LHS) memory (in general, a
join node may check for an arbitrary number of shared values). For
example, consider that the alpha-memory associated with node A1
contains the dtokens:

[Object chair]
[Object ladder]

The join is specified as (AND 3==1) (see figure 1), which means
that the third attribute of a LHS token must match the first attribute
of a RHS token. Therefore, the ctoken

+[Goal active holds ladder]

from the LHS will join with the second item of the alpha-memory.
The join corresponds to the shared rule variable "w" that appears in
the first and second conditions of the example RC++ code. The
matching LHS and RHS tokens are joined to form a complex token;
in this case:

[[Goal active holds ladder]
[Object ladder]]

This token is stored as a dtoken in the join’ s beta-memory and a
copy passed as a positive ctoken to the next level of the network.

Join nodes incrementally compute matches between the memories
on their input edges and store the results as complex tokens in beta-
memories. The number of matches between a new entering token
and the existing stored state on the opposite input edge determines
the number of new complex tokens. In this example, the resulting
complex token is stored in beta-memory, β1. Here it will stay until
either of the constituent atomic tokens are deleted from the
network. If new tokens enter the RHS of node B2 the stored state
may be repeatedly reused, avoiding the need to recalculate the join.
Figure 2 shows the position of alpha and beta-memories within the
network and their contents.

The resulting ctoken copy must now be processed through the
network. It enters the LHS of join node B2 in figure 1. B2 is a
NAND node that implements a check for non-existence. If a match
is not found between an entrant LHS (resp. RHS) token and
existing RHS (resp. LHS) dtokens in the associated alpha or beta-
memory then the entrant token is allowed to pass through the
NAND join. Otherwise, token progress through the network is
halted. In this example, there is no match between the new complex
token entering on the LHS and:

[Monkey chair]

stored in alpha-memory, α1 (see figure 2). The token therefore

passes all the discrimination tests in the network, which means that
all rule conditions are satisfied by this particular combination of
items in WM. The combination is represented by the complex
token, now called a "rule instantiation", in which the rule variable
"w" is bound with the value "ladder". The instantiation is added to
the conflict set (CS) (the set of rules scheduled to fire) for
execution of the action part of the rule. Execution of rule actions
creates new tokens to be processed through the network that may
add, delete or modify WM. The RETE processing cycle repeats
until no more rules fire and the program terminates.

Deletion is cost symmetric to addition in RETE. For example, the
negative ctoken:

-[Goal active holds ladder]

alpha0 alpha1 alpha2

beta1

beta2

[Goal active holds ladder] [Object chair]
[Object ladder]

[Monkey chair]

[[Goal active holds ladder]

[[Goal active holds ladder]
[Object ladder]]

[Object ladder]]

Add "PickupObject"
instantiation to CS list

Figure 2: Alpha and beta-memories

represents a deletion of a data item from WM. Quoting Forgy
(1982): "The tag in a token indicates how the state information is to
be changed when the token is processed. The + and - tokens are
processed identically except: (i) The terminal nodes use the tags to
determine whether to add an instantiation to the conflict set or to
remove an existing instantiation. When a + token is processed,
information is added; when a - token is processed, an instantiation
is removed. (ii) The two-input nodes [join nodes] use the tags to
determine how to modify their internal memories. When a + token
is processed, it is stored in the internal memory; when a - token is
processed, a token with an identical data part is deleted. (iii) The
two-input nodes use the tags to determine the appropriate tags for
the tokens they build. When a new output is created, it is given the
tag of the token that just arrived at the two-input node." Negative
token processing removes all stored state that is dependent on the
existence of the data part of the token. A complete description of
the RETE algorithm is presented by Forgy (1982).

2 TREAT

The TREAT algorithm (Miranker, 89) also decides rule firing.
However, TREAT does not use a discrimination network and does
not cache intermediate results at network junctures; instead, pattern
matches are recalculated as required. The only stored state is WM
and the conflict set (CS). Deletion is inexpensive in TREAT,
compared to RETE, because the same sequence of operations that
occurred during an addition need not be performed during deletion.
TREAT is addition/deletion asymmetric. The extra time cost
incurred during addition, compared to RETE, due to the lack of
precalculated intermediate matches, is offset by the time saved
when data is deleted from WM. TREAT trades time for space:
matching results are not cached for subsequent re-use, and hence
the memory cost of TREAT is significantly less than RETE. The
additional claim for TREAT is that for most rule programs faster
execution can be achieved by not maintaining beta-memories and
avoiding the associated expensive deletion (i.e., it is possible that
TREAT may be superior in both time and space). A TREAT
extension, called LEAPS, is the execution kernel of VENUS
(Browne et al., 94). LEAPS has better space complexity
characteristics compared to both RETE and TREAT (Miranker et
al., 90) and is therefore suited to rule firing on very large databases.
LEAPS does not fully enumerate the whole conflict set but instead
processes a single rule instantiation per cycle.

The development of the TREAT algorithm was motivated by three
observations on RETE: (i) beta-memories redundantly store the
same state (e.g., see β1 and β2 in figure 2), (ii) the CS contains
much of the information stored in beta-memories, albeit in an
unstructured list, (iii) deletion is expensive due to the need to
remove state stored in beta-memories. TREAT maintains alpha-
memories but does not maintain beta-memories, and deletion,
wherever possible, is processed by direct examination of the CS for
removal of invalidated rule instantiations. In consequence, addition
of a token requires full computation of all joins that would
otherwise have been cached in RETE beta-memories. Deletion,
however, requires search of the CS for complex tokens representing
rule instantiations that contain the data item to be deleted. If a
match is found the instantiation is directly removed from the CS.
This is a much less costly process than deletion in RETE, under
reasonable assumptions, such as a relatively small CS size.

If rule conditions were only positive, the TREAT algorithm would
be relatively simple; however, complications arise due to the
presence of negative conditions that test for non-existence. A new
positive token may match a negative condition and potentially
result in the withdrawal of rule instantiations from the CS that
depend on the non-existence of the new token. However, in this
case, the CS cannot be directly searched to remove instantiations
because complex tokens only represent the presence of data items,
not the absence of data items. Therefore, TREAT temporarily
considers negative conditions to be positive, and uses the token to
build new instantiations, which then may be matched against
instantiations in the CS. If a match occurs the instantiation is
removed.

A new negative token may match a negative condition and
potentially result in the addition of new rule instantiations to the CS
(i.e., a non-existence condition becomes satisfied through the
removal of a data item). In this case, TREAT cannot search the CS
directly, and must also recompute intermediate beta-memories to

add new instantiations.

This summary has ignored implementation details; however, the
main characteristics of TREAT are the lack of beta-memories, and
use of the CS to directly remove instantiations. A complete
description of the TREAT algorithm is presented by Miranker
(1989).

... alpha(n)

beta1

beta2

beta(n)

alpha1 alpha2 alpha3

...

Figure 3: General and simplified RETE network

3 A Model of TREAT and RETE

Miranker (1989) provides a simple mathematical model of join
processing in order to compare RETE and TREAT processing
costs. That analysis is now extended and modified to more clearly
understand the differences between RETE and TREAT, and
prepare for the analysis of RETE*. The following simplifying
assumptions are made: (i) only positive conditions are considered,
(ii) only a single rule is considered (i.e., various optimisations due
to test and join sharing between rules are ignored), (iii) constant
matching probabilities approximate the highly variable and
dynamic result of joins, (iv) an atomic ctoken enters the network at
a single point, and hence the corresponding dtoken is stored in one
and only one alpha-memory, (v) searching a memory to delete a
token costs the same as searching a memory in order to compare
and generate a new complex token, (vi) CS search costs are
ignored, and (vii) each discrimination network is of the form shown
in figure 3. Many of these assumptions are invalidated in practice;
despite this, the resulting mathematical model remains useful for
approximate reasoning about the relative performance of the
algorithms.

3.1 TREAT Model

TREAT token addition requires full computation of all relevant
beta-memories (which, of course, are temporarily stored in a

scratch pad, not stored between processing cycles and not
associated with nodes in a network). The order of join
consideration in TREAT may be dynamic, as there is no compile-
time discrimination network to impose a static ordering on joins; in
consequence, the alpha-memory a token first enters is irrelevant to
the analysis. Assume a ctoken enters at α. It must be compared
against the contents of α1 (see figure 3). K1, the number of
comparisons required in a network with two alpha-memories is:

11 aK =

where a1is the size of α1. If a network has three alpha-memories,
TREAT must form β1 and compare its contents against α2. The size
of β1 depends on a0 and a1, and the probability that a token from the
LHS memory will match a token in the RHS memory, which
depends on the type of join and the contents of WM. Assume
constant matching probabilities and denote the probability that a
token from βn-1 will match a token from αn as pn (where n>0 and
β0=α0). Therefore, the size of β1 is:

111 1 apB =

The number of comparisons in a network of three alpha-memories
is:

2112 aBKK +=

that is:

21112 apaKK +=

Hence, by induction, the recurrence relation, n = 2, 3, ...

11 aK =

∏
−

=
− +=

1

1
1

n

i
iinnn paaKK

which can be rewritten as the function:

��

�
�

� =
+= � ∏

−

=

−

=
+++ otherwise

n
apaa

a
nK n

i

i

j
jjj

1
)(1

1

1

0
1111

1

where n>0 and p0=0. Deletion of a token in TREAT requires
removal of the dtoken from the correct alpha-memory. Using
assumption (iv), average cost of deletion in TREAT is:

�
=+

=
n

i
ia

n
nD

01
1

)(

The memory cost of TREAT is the total size of the alpha-
memories:

�
=

=
n

i
ianM

0

)(

However, this is an underestimate, as it ignores the CS, and other
temporary state.

3.2 RETE Model

RETE has beta-memories and therefore token entry point is
important for determining addition and deletion costs. The analysis
begins by determining the size of β1.

1101 paaB =

The size of β2 depends on the size of β1 and the probability of
matching with tokens in α2 (see figure 3).

2212 paBB =

and in general:

∏
=

=
n

j
jj paanB

1
0)(

If a ctoken enters at α0 it must be compared against the contents of
α1. Therefore, Rm,n, the number of comparisons required for a
ctoken entering the mth alpha-memory in a network with n+1
alpha-memories, is:

)(

)(

,1

,0

nKR

nKR

n

n

=
=

because RETE is identical to TREAT if a token enters the network
at the first or second alpha-memory. The number of comparisons
required when adding a token at α2 is:

∏
=

=

+

+++=
1

3
2

433232,2

)1(

)1()1()1(
n

i
iin

n

paapB

apapBapBBR �

This equation requires some explanation. First, the ctoken enters
α2. It must be compared against the contents of β1 in order to
generate new complex dtoken additions to β2: this cost accounts for
the first term. Second, new additions to β2 must each be compared
to the contents of α3. The new additions to β2 are B(1)p2 because
one new token entered α2, and the probability of a match between
the contents of β1 and α2 is p2. This explains the second term of the
equation. Similarly, any new additions to β3 must be compared
against α4, and so forth. The last term expresses the general pattern.
Substituting for B(1):

∏
−

=

+++

++=
1

3
21104332110

32110110,2

n

i
iin

n

paappaaapappaa

appaapaaR

�

By induction and rewriting as a function:

otherwise

m
pa

a
aa

nK
nmR n

mi

i

j
jj

m

i
1

)(
),(1

1

0
≤

��

�
�

�
= � ∏

=

−

=

Unlike Miranker (1989), however, the analysis prohibits a token
from entering more than one alpha-memory (this would violate
assumption (iv), also used in the TREAT model).

The function R(m,n) demonstrates that the presence of beta-
memories does not reduce processing costs when a token enters a
discrimination network at α0 or α1. In this case, cached state is
unused. However, if a token enters the network at a "later" entry
point the presence of pre-calculated matches in beta-memories
helps to avoid an exponential increase in the number of
comparisons required. However, ignoring worst-case CS size,
RETE has greater memory cost, which is the sum of the size of
alpha and beta-memories.

��
==

+=
n

i
i

n

i

aiBnN
01

)()(

where N(n) is the memory cost of a RETE network with n+1 alpha-
memories. Conditional on matching probabilities, beta-memories
may, in general, increase exponentially with network size. Note
that N(n) is an underestimate for true RETE memory costs because
it assumes that complex dtokens consume the same space as atomic
dtokens.

To compare RETE with TREAT assume that the cost of RETE
token addition is the average cost of adding the token to each
alpha-memory. In practice tokens exhibit a skewed entry point
distribution.

�
=+

=
n

i

niR
n

nR
0

),(
1

1
)(

Miranker assumes RETE deletion costs the same as RETE addition.
In fact, as implied in (Forgy, 82), RETE deletion costs more. An
entrant negative token at a join node causes: (i) matching of the
negative token against the opposite memory at the join node to
generate new, negative complex tokens (a process identical to that
during addition), and (ii) a search of the current memory to remove
dtokens that match the negative token (extra operations that do not
occur during addition). In consequence, the comparison between
TREAT and RETE can be made more advantageous to TREAT if
the additional RETE deletion costs are included. The cost of the
additional search of beta-memories is:

∏�
==

=
i

j
ji

n

mi

paanmS
1

0),(

And, again, averaging over entry points:

�
=+

=
n

i

niS
n

nS
0

),(
1

1
)(

hence, cost of RETE deletion is:

)()(nSnR +

Table 1 summarises the equations that model TREAT and RETE.

 TREAT RETE

Cost of adding a token K(n) R(n)

Cost of deleting a token D(n) R(n)+S(n)

Memory cost M(n) N(n)

Table 1: Equations that model TREAT and RETE time and space

costs in a network of n+1 alpha-memories

3.3 A Crossover Point

Miranker (1989) quotes values of a=25.6 and p=0.039 for the
average size of alpha-memories and the average matching
probability at joins respectively for typical rule programs.
Obviously, rule programs exhibit a wide range of alpha-memory
sizes and matching probabilities; therefore, the following analysis
can only be indicative.

Figure 4 shows RETE and TREAT time costs on arbitrary data set
conforming to an ‘average’ rule-based program. The data set was
randomly initialised to conform to the quoted averages. The cost of
adding and deleting is summed and shown on the y-axis. In
consequence, a further assumption is introduced: the number of
additions and deletions exactly balance during a program run. The
number of alpha-memories, shown on the x-axis, represents a
measure of rule complexity. A greater number of alpha-memories
correspond to a greater number of rule conditions. As expected,
TREAT requires less comparisons when the presence of RETE
beta-memories makes little difference during addition (i.e., rules
with very few conditions, n=1, n=2). However, RETE "catches up"
with TREAT: a crossover point is reached as network complexity
increases. After the crossover point the deletion savings avoided by
TREAT are more than offset by the additional costs of not
maintaining beta-memories. The results suggest that TREAT has
better average run-time performance than RETE when rules require
less than 6-7 alpha-memories on average. The claim and
justification for TREAT is that most rule programs conform to this
constraint. A superior analysis would investigate a large sample of
randomly generated data sets to investigate the distribution of
crossover points.

Nayak et. al. (1988) present empirical results comparing RETE and
TREAT on SOAR (Laird et. al., 87) production rules (SOAR is
based on the OPS5 production system), with an average of 9
conditions per rule. Their results show that, "while RETE seems to
be better than TREAT in most cases, there are some situations
under which TREAT is comparable to RETE and may even be
better." These empirical results conform to the derivation of a
RETE/TREAT crossover point. It is generally thought that (i) rules
with few conditions, combined with (ii) a volatile WM, are
favourable conditions for TREAT style processing. The model
explains (i) but fails to explain (ii) due to the restrictive assumption

of constant matching probabilities.

0 5 10 15 20
n+1 a memories

25

50

75

100

125

150

175

200

e
g
a
r
e

v
a

t
s

o
c

RETE vs. TREAT vs. RETE *

TREAT RETE RETE *

Figure 4: Indicative comparison of RETE (2R(n)+S(n)), TREAT

(K(n)+D(n)), and RETE* (R(n)+S(n)), and the RETE/TREAT
crossover point

4 RETE*

The RETE* algorithm is the execution kernel of RC++ (Wright and
Marshall, 00), a rule-based extension to C++. RETE* maintains
beta-memories; however, the RETE* algorithm is addition/deletion
asymmetric: deletion costs less than addition, although deletion, in
general, is more expensive than TREAT deletion. RETE* is also
slightly faster than RETE on addition due to the presence of "dual
tokens". RETE* employs a dynamic beta-memory cut that
maintains a fixed upper-bound on total run-time beta-memory size.
If the upper-bound is specified as zero, RETE* functions as a
flavour of the TREAT algorithm. Hence, TREAT is a special case
of RETE*. Users may explicitly control the time/space trade-off as
exhibited by the two extremes of RETE (maintain all beta-
memories) and TREAT (maintain no beta-memories). The '*' in
RETE* denotes that the memory allocated to beta-memories ranges
from 0 to n bytes.

RETE* aims to speedup standard RETE and allow users to exploit
the RETE/TREAT crossover point. RETE* employs three main
mechanisms to lower the time and space costs of RETE: (i)
asymmetric deletion, (ii) dual tokens, and (iii) dynamic beta cut.
Each is described in turn.

4.1 Asymmetric deletion

RETE is inefficient on deletion. Consider that a negative ctoken
enters the LHS of an AND join node Bn. RETE performs two
computations: (i) the ctoken is compared against the contents of αn,
and a complex negative ctoken is formed for each possible join;
and (ii) the beta-memory, βn, is searched for any matches between
the new complex negative ctokens and existing stored complex
dtokens; if a match is found, the stored state is deleted. Each newly
generated ctoken is passed to the next level of the network, node
Bn+1, and the deletion process continues. For example, if n new
ctokens are generated there are n depth-first traversals of the sub-
network below the join.

RETE* deletion is based on the observation that computation (i) is

almost always redundant. To understand why, consider that the
negative ctoken entering a network fragment is:

-[Goal active holds ladder]

And the dtokens in βn are:

[[Goal active holds ladder]
[Object red ladder]]

[[Goal active holds ladder]
[Object yellow ladder]]

That is, βn contains two complex dtokens, each of which contains
the atomic token to be deleted. Consider also that αn contains:

[Object red ladder]
[Object yellow ladder]

and join at node Bn is between the third attribute of the LHS input
and the second attribute of the RHS (AND 3==2). Standard RETE
deletion proceeds by computing the join and generating two
negative complex ctokens:

-[[Goal active holds ladder]
[Object red ladder]]

-[[Goal active holds ladder]
[Object yellow ladder]]

Each ctoken is then compared against the contents of βn and if a
match is found the stored state is deleted.

In contrast, RETE* does not form the complex negative tokens,
does not compute the join, and therefore avoids multiple traversals
of the subnetwork. Instead, memory βn is directly searched. If the
negative token partially matches stored state, the stored state is
deleted. For example the negative ctoken:

-[Goal active holds ladder]

partially matches both complex dtokens in βn and therefore both
dtokens are deleted. The result is identical to RETE deletion,
except the costly join computation is avoided. In consequence,
negative complex tokens are not passed to the next level of the
network; instead, the original negative ctoken is passed, and the
same method may then be used to delete state from subsequent
beta-memories. If no match is found between the negative token
and contents of a beta-memory the deletion process backtracks to
the last unprocessed edge in the network as normal.

NAND nodes introduce exceptions that slightly complicate the
RETE* deletion scheme. NAND nodes check for non-existence.
The case of a negative token entering a NAND node introduces the
complication. When a negative token enters from the LHS of a
NAND node the RETE* deletion scheme may operate as described.
However, if a negative token enters from the RHS then the removal
of a data item could satisfy a non-existence condition, generate new
complex tokens, and potentially result in new instantiations in the
CS. Hence, RETE* deletion operates as RETE deletion for this
case and the join is computed. Table 2 summarises the situation.

Negative
token entry
point

New
instantiations in
CS possible?

Deletion scheme

LHS AND No Direct deletion
(RETE*)

RHS AND No Direct deletion
(RETE*)

LHS NAND No Direct deletion
(RETE*)

RHS NAND Yes Join computed and
complex negative
tokens generated
(RETE)

Table 2: RETE* deletion cases

Therefore, in three out of the four possible deletion cases RETE*
avoids join computation during deletion. Under the assumptions of
the model, deletion in RETE* does not cost:

)()(nSnR +

but

)(nS

In consequence, RETE* has better overall time performance than
RETE and hence the crossover point between RETE* and TREAT
is reached in smaller size networks RETE* performance is always
better than RETE performance due to cheaper deletion costs.

Scales (1986) first introduced the idea of asymmetric deletion to
optimise RETE (normally called ‘deletion optimisation‘). However,
there are two differences between Scales ̀deletion scheme and the
RETE* deletion scheme. First, Scales’ scheme does not extend to
NAND nodes (i.e., the LHS NAND case is processed as a normal
RETE deletion). Second, although join computation is avoided,
copies of deleted complex dtokens are passed as ctokens to the next
level of the network. Therefore, if a negative ctoken causes direct
deletion of n dtokens then n new ctokens are generated requiring n
traversals of the sub-network. But the generation of multiple
complex ctokens is redundant. In contrast, RETE* deletion passes
only the original ctoken to the sub-network and thereby avoids
multiple traversals. The original ctoken contains sufficient
information to match against parts of invalidated dtokens in later
beta-memories.

Scales reports a run-time speedup of RETE processing of 28% on
the SOAR ‘eight puzzle’ program using the inefficient version of
asymmetric deletion. Asymmetric deletion represents a significant
time saving over the original RETE algorithm.

4.2 Dual Tokens to Avoid Join Computation
During Addition

A negative token entering a NAND node from the RHS is a special
case for deletion. A further observation is that a positive token
entering a NAND node from the RHS is also a special case for
addition. In this case the only possible effect is to remove dtokens
from beta-memories and potentially withdraw instantiations from
the CS; in all other cases of positive token processing the result is

to add new state to the network. Consider that the RHS input to a
NAND node is the positive token:

+[Object yellow ladder]

The LHS input memory of the NAND node is:

[Monkey chair]
[Monkey ladder]

and the NAND tests whether the first attribute of LHS token is the
same as the second attribute of a RHS token (NAND 1==2). If a
token entering from the LHS matches with RHS state then the
token will not drop through to the next level of the network.

If a token enters from the RHS and matches with LHS state then
RETE forms the complex negative ctoken:

-[[Object yellow ladder]
[Monkey ladder]]

(More precisely RETE generates a negative complex token if the
‘match count’ of the matching LHS token increases from 0 to 1.
Otherwise, the state in subsequent beta-memories has already been
deleted by a previous token that matched the same LHS token. For
more details see (Forgy, 82).) The current beta-memory is searched
and matching dtokens removed. The ctoken drops through to the
next level of the network and deletes any subsequent stored state.
In other words, a positive token entering the RHS of a NAND node
can act like a deletion.

Positive token
 entry point

New
instantiations in
CS possible?

Addition scheme

LHS AND Yes Join computed and
complex positive
tokens generated

(RETE)

RHS AND Yes (as above)

LHS NAND Yes (as above)

RHS NAND No Direct deletion via
dual tokens
(RETE*)

Table 3: RETE* addition cases

RETE* deletion is faster than RETE deletion because, in most
cases, join computation can be avoided. Similarly, it is possible to
avoid join computation for the special case when addition acts like
deletion. To do so requires the generation of dual tokens. Dual
tokens are now described followed by an explanation of how they
are used to avoid join computation during token addition.

Dual tokens represent the non-existence of data items in WM,
unlike normal tokens that represent existence. NAND joins
generate dual tokens when a LHS token drops through to the next
level of the network. For example, consider that the LHS input to a
NAND is:

+[Monkey ladder]

and the NAND join is as before (NAND 1==2). Assume also that
the RHS memory is empty; therefore, no matches can occur, the
non-existence condition is satisfied, and the token may pass.
RETE* appends a dual token to the positive token, creating a
complex token with a dual part. The dual token represents the fact
that there was not a data item in the RHS that had the value
"ladder" for its second attribute:

+[[Monkey ladder]
-[Object 2 ladder]]

The dual part of the complex token is highlighted in bold. Note that
dual tokens are partially specified: they do not completely specify
attribute values (i.e., the only values specified are those that did not
exist in order for the non-dual part of the token to pass the NAND
test). As a further example, consider that the LHS input to a NAND
is:

+[Monkey ladder red heavy]

and the NAND join is:

NAND
1,1==1,2
1,2==1,1
1,3==2,3

Where "(a,b) == (c,d)" is a join between the bth attribute of the ath
atomic token of a LHS complex token with the dth attribute of the
cth atomic token of a RHS complex token. Generated dual tokens
always contain the same number of atomic tokens as those in the
RHS input memory. In this example, the resulting ctoken with dual
part is:

+[[Monkey ladder red heavy]
-[[Object 2 ladder 1 red]
[Object 3 heavy]]]

Hence, rules with NOT conditions will generate instantiations in
the CS that have trailing dual tokens that represent the non-
existence of data items in WM.

The class name of dual tokens cannot be obtained from dtokens in
the RHS input memory because there are circumstances when that
memory will be empty. Therefore, the RC++ compiler assigns node
indices to each node, unique for every NAND join, zero otherwise,
and constructs a class name table, indexed by the node index,
which contains a list of the class names that may reside in the RHS
input memory of the particular NAND node. Dual tokens may
therefore be constructed even when a RHS input memory is empty.

Dual tokens are used to implement direct deletion in the case that a
positive ctoken enters the RHS of a NAND node. In this case,
instead of computing the NAND join the beta-memory is directly
searched for any matches between the positive ctoken and dual
tokens within dtokens; if a match is found the dtoken is deleted.
The positive ctoken is then passed to the sub-network and
processing continues. Any subsequent dtokens with matching duals
are also deleted. Table 3 summarises the RETE* addition cases. In
only one out of the four possible addition cases can RETE* avoid
join computation during addition (the mirror image of RETE*
deletion). In consequence, RETE* addition will always be slightly

faster than RETE addition, assuming that the cost of dual token
creation is offset by the avoidance of some join computations.
However, the speedup is achieved at the expense of extra storage of
dual tokens. The theoretical model of RETE processing does not
model NAND nodes; however, it is reasonable to assume that
RETE* addition savings will be significant in networks with a high
number of NAND joins with frequent RHS positive token entry.
Section 5.1 presents empirical results for a program called
"manners" that confirms this conjecture.

4.3 Dynamic Beta Cut

Ignoring CS storage RETE has worst-case space complexity of
O(Wn-1), where W is the number of data items in working memory,
and n is the number of rule conditions, whereas TREAT has space
complexity of O(W). RETE has exponential space complexity,
whereas TREAT has linear space complexity. The space
requirements of RETE are a hindrance to its use in large databases
(Miranker et al., 90) and embedded systems with low memory
availability, such as home entertainment systems. To alleviate this
problem, RETE* allows an upper bound on beta-memory
consumption to be specified by language users. Beta-memories are
discarded and retained at run-time depending on the current
memory consumption. If a beta-memory is absent during token
processing but is required to compute a join, RETE* recalculates
the beta-memory. If the recalculation itself depends on prior joins
with absent beta-memories, RETE* also recalculates, popping back
up the network until either a stored beta-memory is found, or the
alpha-memory layer is reached. Hence, users have control over the
trade-off between speed of execution and memory consumption.
Further, if the upper bound is set to zero, no beta-memories are
stored, and RETE* functions as a flavour of the TREAT algorithm:
every new token entering the network results in full join
computation (with static join ordering). In addition, when tokens
are deleted from the network RETE* need not search absent beta-
memories, or compute joins; instead, the negative token is matched
against the contents of the CS and instantiations directly removed.
Therefore, in some cases, RETE*, with a low upper bound on beta-
memory size, will benefit from the inexpensive deletion associated
with TREAT. However, a guaranteed upper memory limit cannot
be specified for total run-time memory consumption because alpha-
memories are necessary to represent the contents of WM. Therefore
as more tokens are added to a network, the size of RETE* alpha-
memories continues to increase. In addition, pathological scenarios
may occur when the CS becomes very large, which itself has worst-
case space complexity O(Wn-1). Therefore, in order to fully tackle
the combinatorial space problems associated with rule languages it
will be necessary to investigate further space saving techniques,
such as avoidance of full enumeration of the CS (Miranker et al.,
90).

Pseudo-code for the beta-memory deletion algorithm is as follows:

1. while memory consumption exceeds memory upper limit and
undeleted beta-memories exist
 1.1 find beta-memory with lowest 'order’
 1.2 delete contents of beta-memory
 1.3 set beta-memory valid flag to false
2. end while

The algorithm requires an ordering function that assigns a
numerical value to each beta-memory. The memory with the lowest

order is deleted first. The abstract order may be implemented in
different ways to support different deletion schemes. For example,
our first trial implementation of the beta cut uses a "most recently
modified" heuristic that orders according to how recently memories
have contributed to rule instantiation computation. This ordering
requires a timestamp mechanism to be implemented in the RETE
network, such that modifying a beta-memory (adding or removing
a token) or performing a read on a beta-memory updates its ‘last
modified’ timestamp.
Deleted beta-memories are recalculated on demand. That is, when
RETE* requires the contents of an absent beta-memory, the join
between the two associated input nodes is computed and the
required beta-memory formed. If one or more of the input
memories are also absent, the current recalculation task is pushed,
and further recalculations are performed higher in the network. The
pseudo-code below describes the process:

1. if beta-memory for comparison is not valid
 1.1 push beta-memory onto recalculation stack
 1.2 while more beta-memories on recalculation stack
 1.2.1 pop beta-memory from recalculation stack
 1.2.2 determine preceding network node through beta-
memory’ s backpointer
 1.2.3 perform full join on left and right input memories and put
results in beta-memory
 1.3 end while
2. end if

Entry point,
 join type,
ctoken type

Recalculate
absent LHS
beta-memory?

Recalculate
absent RHS
beta-memory?

LHS, AND, + N Y

LHS, NAND, + N Y

LHS, AND, - N
(token drops
through)

N

LHS, NAND,- N
(token drops
through)

N

RHS, AND, + Y N

RHS, NAND, + N N
(token drops
through)

RHS, AND, - N N
(token drops
through)

RHS, NAND, - Y Y

Table 4: Recalculation cases for beta-memories

The stack-based approach allows backward chaining through
invalidated beta-memories to the original alpha-memories.
Recovered beta-memories are only deleted if the upper memory
limit has been exceeded and once the originally absent beta-

memory is no longer required. Therefore, temporary "scratch pad"
memory requirements may exceed the specified upper bound. If
temporary memory requirements are still too high for the
application the upper bound may be further decreased. Demand-
driven recalculation of beta-memories requires the introduction to
the RETE network of "validity" flags for beta-memories and
backpointers from join nodes to input nodes.

Table 4 describes all cases for ctoken processing when an absent
beta-memory is encountered. Special action must be taken in some
cases. Cases where the ctoken can immediately drop through are
indicated (inexpensive TREAT style deletion). Entry of a negative
ctoken at the RHS of a NAND node requires recalculation of both
the right beta-memory and the left beta-memory (if both absent), in
order to calculate match counts (see footnote 1).

Implementation of the beta cut with a recency heuristic requires
very little run-time overhead (validity flag checking, and timestamp
updates), and some extra information from the compiler (node
depths and node backpointer offsets). The result is a rule-based
execution kernel that allows users to trade time for space according
to the application constraints. However, like any memory paging
mechanism (the beta-memories are "paged" in and out of memory)
there is the possibility of pathological scenarios where the same
sets of beta-memories are repeatedly re-deleted and re-stored over
the run of a program.

5 EMPIRICAL RESULTS

The preceding analysis predicted that the performance of RETE
and TREAT is problem dependent: some rule programs will run
faster under RETE than TREAT and vice-versa. In addition, we
expect that RETE* should perform better than RETE under all
circumstances, and that RETE*(0) (RETE* with 0 bytes allocated
to beta-memories), which is a flavour of TREAT, will perform
better than RETE and RETE* on some rule programs. The results
presented below confirm these expectations.

5.1 Time Results

 RETE RETE* RETE*(0)
Manners16 0.4072 0.1008 0.1028
Manners32 7.1504 1.7148 1.6808
Manners64 480.38 68.77 65.03
SimMatches16 0.0776 0.07 0.2556
SimMatches32 4.7084 3.058 10.5228
DCGS 0.1049 0.0699 0.1202

Table 5. Time results in seconds averaged over 25 runs

The ‘Manners’ rule program is a standard benchmark program that
plans acceptable seating arrangements at a dinner party. This is a
combinatorial problem: the more guests the more expensive the
computation. RETE* is fastest on Manners16 (average 0.1008
seconds), followed closely by RETE*(0) (average 0.1028 seconds).
RETE is much slower (average 0.4072 seconds). For Manners32
and Manners64, however, RETE*(0) is slightly faster than RETE*.
‘Manners’ contains 8 rules with a high proportion of RHS deletion
commands. Therefore, RETE* with asymmetric deletion performs

considerably better than standard RETE (on average about 4 times
faster). In addition, RETE*(0) performs slightly better than RETE*,
suggesting that ‘Manners’ is best suited to TREAT-style execution.

The ‘SimulateMatches’ rule program simulates soccer teams
playing against each other in competitive leagues. Again, this is a
combinatorial problem: the more teams in a league, the more
matches to play. RETE* is fastest on SimulateMatches32 (average
3.058 seconds), followed by RETE (average 4.7084 seconds).
RETE*(0) is the slowest at 10.5228 seconds (about 3.5 times
slower than RETE*). Similar results hold for SimulateMatches16.
‘SimulateMatches’ contains a number of ‘setup’ rules that create
records to store the results of games, and then ‘processing’ rules
that perform the actual match result simulation. RETE* and RETE
benefit from the priming of beta-memories with partial joins.
RETE*(0) must recompute such partial joins, which explains the
poor performance. The different results for ‘Manners’ and
‘SimulateMatches’ highlight the problem-dependent performance
of rule-based execution kernels.

The DCGS program (Directed Cyclic Graph Search) consists of
three rules that perform a depth-first search of a directed cyclic
graph in order to find a route from a start location to a goal
location. Again, RETE* is the fastest execution method (average
0.0699 seconds), followed by RETE (average 0.1049 seconds).
RETE*(0) is again slowest at 0.1202 seconds (1.72 times slower
than RETE*). The presence of RETE* and RETE beta-memories
outweighs the associated deletion costs for the DCGS program. The
results are summarised in table 6.

 Manners
(16,32,64)

SimMatches
(16,32)

DCGS

RETE 4.03 to 7.38
times slower

1.11 to 1.54 times
slower

1.50 times
slower

RETE* 0.98 to 1.05
times slower

Fastest Fastest

RETE*(0) Fastest 3.44 to 3.65 times
slower

1.72 times
slower

Table 6: Summary of time results

The empirical results suggest that RETE* is generally faster than
standard RETE and RETE*(0). The empirical results demonstrate
speed-ups of approximately 9.8% (SimMatches16), 35.0%
(SimMatches32), and 33.4% (DCGS), values within the range of
theoretical prediction. However, RETE* is between 75.2% and
76.0% faster than RETE on ‘Manners‘, a significant performance
improvement not explicable in terms of asymmetric deletion alone.
In this case, the presence of RETE* dual tokens speed up the
processing of positive tokens that invalidate instantiations, which
explains the large performance improvement over RETE
processing. However, RETE*(0) is the faster execution method on
‘Manners‘, confirming that TREAT style processing can be faster
than RETE on certain rule programs. However, RETE* remains
competitive with RETE*(0) on ‘Manners’ due to the presence of
dual tokens. RETE* is the faster execution method overall,
particularly when it is considered that it may be instantiated as

RETE*(0) when required.

5.2 Space Results

 RETE RETE* RETE*(0)

Manners16 114 227 122
Manners32 334 671 254
Manners64 1443 3041 1051
SimMatches16 63 92 55
SimMatches32 133 212 175
DCGS 64 84 51

Table 7: Maximum memory consumption in kilobytes

The space results of running RETE, RETE* and RETE*(0) on the
test programs are presented in table 7. The maximum allocated
memory space during the run is measured, including temporary
‘scratch pad’ memory allocated during a RETE*(0) recalculation
process. As expected, on ‘Manners’ RETE*(0) generally has the
lower memory costs, whereas RETE* has significantly worse
memory costs compared to RETE and RETE*(0). This is due to the
extra storage required for dual tokens (which also accounts for the
good time performance of RETE*, compared to RETE, on
‘Manners‘). RETE*(0) is much the better method for ‘Manners‘, as
it is the fastest, and also has the lowest memory costs. If unbounded
RETE* is too memory expensive for a particular application it is
possible to try RETE*(n) or RETE*(0) by simply altering the value
of the memory bound parameter.

On DCGS RETE* again has the worse space characteristics
compared to RETE. RETE*(0) has the lowest memory costs. The
pattern is repeated for ‘SimulateMatches‘, except in one case
RETE*(0) has worse memory costs than RETE. How can this be?
The reason is that during program execution tokens entered the
RHS of the last join node before a TERM node (rule is satisfied)
resulting in the full recomputation of all prior missing beta-
memories. The implementation of dynamic beta-cut only
deallocates beta-memory after the final join is calculated. Hence,
for a time, all beta-memories are resident in memory (including
dual tokens). Obviously this is a major drawback to the current
implementation and needs to be altered. A better implementation of
dynamic beta-cut would deallocate during the recalculation process
such that the maximum memory cost would equal to the largest
beta-memory in the recalculation chain, rather than the size of the
all the recalculated beta-memories. In addition, dual tokens would
not be generated for RETE*(0), as they play no useful role in this
extreme case. An improved implementation of RETE*(0) would
substantially change the memory costs of RETE*(0) on all test
programs, resulting in RETE*(0) having the lower memory costs
overall.

5.3 Summary of Results

Experimental results have confirmed theoretical expectations:
TREAT style processing is sometimes superior to RETE style
processing and vice versa. RETE* is always faster than RETE. As
RETE* can be instantiated as RETE*(0), the RETE* algorithm is a
better and more flexible method than either RETE or TREAT
alone. Dual tokens have associated memory costs but appear to

significantly speedup processing in certain cases. Asymmetric
deletion results in about a quarter speedup over standard RETE.
The current implementation of beta-cut is limited because
deallocation of temporary beta-memories does not occur during a
recalculation chain. For rule programs that favour TREAT style
processing it is possible to use RETE*(0) in order to gain better
time and space characteristics.

6 UTILITY-BASED DYNAMIC BETA CUT

Nayak et. al. (1988) discuss the desirability of a RETE/TREAT
hybrid that decides whether to use RETE or TREAT style
processing according to the nature of the rule program. Fabret at.
al. (1993) present an algorithm that decides what beta-memory
state is profitable to maintain in a RETE network based on a static,
compile-time analysis of the rule program. The Gator
discrimination network (Hanson, 93; Hanson et al., 95; Hanson et
al., 97) is a generalised network that includes RETE and TREAT-
style processing as a special case. A Gator network contains only
those beta-memories that contribute to a reduction in processing
time. The decision to maintain a beta-memory is based on compile-
time, heuristic cost predictions parameterised by statistics collected
from run-time database queries. Hanson et al. (1995) report
significant speedups over RETE and TREAT with this method,
although inaccuracies in cost formulae can result in Gator networks
that perform worse than TREAT. Hybrid approaches are the way
forward for improving the performance of rule-based languages,
but compile-time prediction of run-time beta-memory utility is
necessarily approximate and limited because the same rule program
can exhibit very different run-time behaviour depending upon the
contents of working memory. There simply isn’ t sufficient
information at compile-time to fully determine the best
discrimination network.

An alternative is to perform beta-memory maintenance at run-time.
The RETE* dynamic cut mechanism can be extended to implement
a RETE/TREAT hybrid by ordering beta-memories according to a
utility measure that represents their contribution to reducing
computation costs. This would allow the RETE/TREAT crossover
point to be exploited dynamically at run-time. This more
sophisticated RETE* cut mechanism is not required for our current
applications but it would be of interest to pursue such an
implementation; therefore a possible sketch mechanism is
presented.

An individual beta-memory is subject to three events: (i) a positive
ctoken is added, (ii) a negative ctoken is added, resulting in a
search of the memory to delete matching dtokens, and (iii) the
memory is searched to compute a join. The time cost of event (i) is
negligible, whereas events (ii) and (iii) cost search time. However,
if the beta-memory is absent, the time cost of event (ii) is negligible
(there is no state to be removed from the beta-memory), but event
(iii) will cost more due to the need to recalculate the state that
would have been stored. There are both advantages and
disadvantages to storing state in a beta-memory, as the preceding
analysis has shown. The utility of retaining a beta-memory depends
on the distribution and frequency of these events during the
program run. A utility measure dynamically computed based on
past events can be heuristically used as a predictor of future utility.
The RETE* beta cut mechanism can be modified to cut based not
only memory requirements but also on a watershed utility value:
beta-memories with sufficient utility are maintained, others are

deleted. Utility can be measured by approximating true costs via a
model of beta-memory computation time, or measuring
computation time directly by counting clock cycles expended
during the different beta-memory events. RETE* with utility-based
beta cut would automatically approximate the optimal balance
between RETE and TREAT style processing by deleting and
undeleting beta-memories during the program run. However, this
has yet to be tested and verified. It may be the case that
implementation details offset any speedup. In addition, any
heuristic predicting future utility on past utility will be incomplete;
hence, some rule programs will represent pathological cases that
will defeat the speedup mechanism.

The RETE* dynamic beta-cut provides a mechanism for a new
exploration of hybrid approaches, in particular flushing and
maintaining beta-memories at run-time based on the dynamic
properties of the rule program, a process analogous to page caching
in virtual memory systems. However, the memory allocation
schemes used in RETE* need further refinement before such an
investigation can proceed.

7 GENERAL-PURPOSE RULE-BASED
LANGUAGES INSUFFICIENT FOR GAME
AI

High-level pattern matching helps the AI programmer by removing
the need to write code to execute rules. Instead, the programmer
only specifies the rules, allowing full concentration on the AI
problem. However, the cost of this level of abstraction is that all
rule programs are executed by the same kernel, which is general-
purpose. Hence, the ability to exploit unique properties of an AI
problem for efficiency gains is lost, which is a significant drawback
for applications such as real-time computer games that need to
maintain frame rates. Further, the semantics of general-purpose
pattern-matching easily leads to combinatorial explosions of time
and space requirements, even with the use of complex RETE-style
speedup algorithms such as RETE*. In essence, rule-based
languages give a little with one hand -- the increased level of
abstraction -- but take a lot with the other -- the increased
computational cost. The trade-off is further biased against rule-
based languages because current requirements for game agents
usually translate into relatively stateless, reactive programs. In
these cases, simpler, dedicated approaches will result in faster code.
In the short to medium-term the power of general-purpose pattern-
matching is not required and cannot be afforded. If console
processing power increases and there is greater need for more
sophisticated AI characters then general-purpose rule-based
languages may become a more attractive proposition for studio
level production.

A further difficulty, however, which is more fundamental, is that of
rule construction: the rule-based kernels discussed here enforce an
explicit, ‘symbolic’ representation of knowledge. This is
appropriate when the AI programmer has a good understanding of
the problem domain and is able to explicate the relationship
between sensory input and action output. Then the rules will flow.
But the rule-based programming approach is of no help when the
major difficulty is discovering the very rules themselves. The major
problem facing the game AI programmer is not the programming
language employed, but the task of constructing control programs
that behave appropriately in virtual worlds. Rule-based languages

allow models of behaviour to be conveniently expressed as rules,
but the problem of rule construction remains. From this
perspective, general-purpose rule-based languages are of uncertain
help to a minor problem.

REFERENCES

Fabret, F.; M.Regnier; and E.Simon. 1993. "An adaptive algorithm
for incremental evaluation of production rules in databases." In
Proceedings of the 19th VLDB Conference, Dublin, Ireland, 1993.

Forgy, C.L. 1981. "OPS5 user manual." Technical Report,
Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA.

Forgy, C.L. 1982. "Rete: a fast algorithm for the many
pattern/many object pattern match problem." Artificial Intelligence,
vol. 19(1): 17-37.

Hanson, E.N. 1993. "Gator: a discrimination network structure for
active database rule condition matching." Technical Report UF-
CIS-TR-93-009, CIS Department, University of Florida.

Hanson, E.N.; S.Bodagala; M.Hasan; G.Kulkarni; and
J.Rangarajan. 1995. "Optimized rule condition testing in Ariel
using Gator networks." Technical Report TR-95-027, CISE
Department, University of Florida.

Hanson, E.N.; S.Bodagala; U.Chadaga; M.Hasan; G.Kulkarni; and
J.Rangarajan. 1997. "Optimized trigger condition testing in Ariel
using Gator networks." Technical Report TR 97-002, CISE
Department, University of Florida.

Laird, J.E. and M. van Lent. 1999. "Developing an Artificial
Intelligence Engine." In Proceedings of the Game Developers
Conference, March 16-18, San Jose, CA, 577-588.

Laird, J. E.; N.Allen; and P.S.Rosenbloom. 1987. "SOAR: an
architecture for general intelligence." Artificial Intelligence, vol.
33(1): 1-64.

Miranker, D. 1989. TREAT: A new and efficient match algorithm
for AI production systems. Pittman/Morgan Kaufman, 1989.

Miranker, D.P.; D.A.Brant; B.Lofaso; and D.Gadbois. 1990. "On
the performance of lazy matching in production systems." In
Proceedings of the Eigth National Conference on Artificial
Intelligence, 685-692.

Nayak, P.; A.Gupta; and P.Rosenbloom. 1988. "Comparison of the
Rete and Treat production matches for Soar (a summary)." In
Proceedings of the Seventh National Conference on Artificial
Intelligence, 693-698.

Scales, D.J. 1986. "Efficient matching algorithms for the
SOAR/OPS5 production system." Technical report STAN-CS-86-
1124, also numbered KSL-86-47, Department of Computer
Science, Stanford University, CA 94305.

Browne, J.C.; A.Emerson; G.G.Mohamed; D.P.Miranker; A.Mok;
L.Obermeyer; F.Haddix; R.Wang; and S.Chodrow. 1995
"Modularity and rule based programming." International Journal
on Artificial Intelligence Tools, vol. 4, no. 1&2 (June). A prior
version was published in Proceedings of the Sixth International
Conference on Tools with Artificial Intelligence, November 1994

Wright, I. P. and J.Marshall. 2000. "RC++: a rule-based language
for game AI." In Proceedings of the First International Conference
on Intelligent Games and Simulation (GAME-ON 2000), Nov. 11-
12, Imperial College, London.

