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Chapter 3.

Stream X-machines.

This chapter will investigate further stream X-machines. Firstly, we shall identify
the class of (partial) functions that this model computes. Secondly, we shall define
two simple operations (i.e. sequential and parallel composition) that can be
performed on stream X-machines. Finally, the minimality problem for stream X-
machines will be discussed. Two types of minimality will be defined and the
problem of finding the minimal machines will be addressed for some particular
cases. Also, several X-machine specifications of a digital system (viz. the
correlator) will be given.

3.1. (Generalised) stream functions.

In the previous chapter we explored the stream X-machine mainly as an acceptor,
identifying classes of languages that can be accepted by stream X-machines with a
certain type Φ. We shall now concentrate on stream X-machines with non-empty
output alphabet and we shall seek to identify general features of the (partial)
functions they compute, regardless of the type Φ used.

For the sake of simplicity, in what follows we shall modify slightly the definition
2.4.1 of a stream X-machine given in the previous chapter by considering that the
blank belongs to the input alphabet, i.e. δ ∈  Σ. Hence, Σ’ = Σ and the input code
α: Σ* → X will be defined by

α(s) = (1, mo, s), ∀  s ∈  Σ*.
Of course, this does not change the nature of the model, nor does it affect the
results in the previous chapter.

Recall that each ϕ ∈  Φ is a relation ϕ: X → X, with X = Γ* × M × Σ*, defined by
                                  (g ρ(m, head(s)), µ(m, head(s)), tail(s)),  if s ≠  1
 ϕ(g, m, s) =  
                                î  ∅ ,  otherwise
where µ: M × Σ ↔ M, ρ: M × Σ ↔ Γ are relations.
Then, it is clear that each relation ϕ is well determined by ρ and µ. For the sake of
simplicity, in what follows we shall be referring to ϕ as a relation

φ: M × Σ ↔ Γ × M,
where φ(m, σ) = (ρ(m, σ), µ(m, σ)), ∀  σ ∈  Σ, m ∈  M.
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Therefore φ(m, σ) = (γ, m’) iff ϕ(g, m, σs) = (gγ, m’, s), ∀  s ∈  Σ* , g ∈  Γ* . Then,
the type Φ will be referred to as a set

Φ = {φ| φ: M × Σ  ↔ Γ × M}.

If a stream X-machine is deterministic, then Φ is a set of (partial) functions and          
∀  φ, φ’ ∈  Φ, if ∃  q ∈  Q, m ∈  M, σ ∈  Σ such that

(q, φ) ∈  dom F, (q, φ’) ∈  dom F, (m, σ) ∈  dom φ and (m, σ) ∈  dom φ’,
then φ = φ’.
In other words, given a specific memory value and input there is at most one
possible φ that can be applied from a given state. All the stream X-machines we
shall be referring to in what follows will be deterministic. First, we introduce
some useful notation and prove some preparatory results.

Definition 3.1.1.
Given a deterministic stream X-machine , we define the partial functions 

v: Q × M × Σ → Q, w: Q × M × Σ → M, λ: Q × M × Σ → Γ,
with

dom v = dom w = dom λ,
such that :
     1. (q, m, σ) ∈  dom v iff ∃  φ ∈  Φ such that (q, φ) ∈  dom F and (m, σ) ∈  dom φ.
     2. if  F(q, φ) = q’, φ(m, σ) = (γ, m’), then

v(q, m, σ) = q’, w(q, m, σ) = m’ and λ(q, m, σ) = γ,
where φ is as defined above.
Obviously, since  is deterministic, such a φ is unique. Hence v, w and λ are well
defined. v(q, m, σ) and w(q, m, σ) indicate the next state and the next memory
value, respectively, produced by the machine when σ is received in q and m;              
λ(q, m, σ) indicates the output symbol produced by the machine.
     3. We also define

u: Q × M × Σ → Q × M,
by

u(q, m, σ) = (v(q, m, σ), w(q, m, σ)), ∀  q ∈  Q, m ∈  M, σ ∈  Σ
(i.e. u indicates both the next state and next memory).
Then u is called the transition function and λ the output function.

Definition 3.1.2.
We extend u and λ to

ue: Q × M × Σ*→ Q × M and λe: Q × M × Σ* → Γ*,
where ue, and λe are defined recursively by:

ue(q, m, 1) = (q, m), where 1 is the empty string

                                       u(ue(q, m, s), σ),  ∀  σ ∈  Σ, s ∈  Σ* such that            
ue(q, m, sσ) =                             ue(q, m, s) ≠ ∅  and u(ue(q, m, s), σ) ≠ ∅

                                     î  ∅ , otherwise



Chapter 3. Stream X-machines.

76

λe(q, m,1) = 1
                                      λe(q, m, s) λ(ue(q, m, s), σ),  ∀  σ ∈  Σ, s ∈  Σ* such that         

λe(q, m, sσ) =                            λe(q, m, s) ≠ ∅  and λ(ue(q, m, s), σ) ≠ ∅
                                    î  ∅ , otherwise

Then ue is called the extended transition function and λe the extended output
function. It is clear that dom ue = dom λe. We also define two partial functions

ve: Q × M × Σ*→ Q and we: Q × M × Σ* → M
by:

dom ve = dom we = dom ue
and

ve(q, m, s) = q’ and we(q, m, s) = m’,
where (q’, m’) = ue(q, m, s), ∀  (q, m, s) ∈  dom ue.
It is obvious that ve and we are extensions of v and w respectively.

If a machine  is in the state q with the memory value m, then an input sequence s
takes the machine to the state q’ = ve(q, m, s) and the memory value
m’ = we(q, m, s) while adding the sequence λe(q, m, s) to the output string.

Similarly, we can define v, w, u and λ for generalised stream X-machines (i.e. in
this case λ will be a partial function λ: Q × M × Σ → Γ* ) and ve, we, ue and λe,
their extensions.

Lemma 3.1.3.
Let be a stream X-machine, (q, m) ∈  Q × M and s ∈  Σ*. If λe(q, m, s) ≠ ∅  then 

|λe(q, m, s)| = |s|.
Note: |s| denotes the length of the string s.

Proof :
Follows by induction on the length of s. 

�

Lemma 3.1.4.
Let be a (generalised) stream X-machine, (q, m) ∈  Q × M and s, s’ ∈  Σ*. Then:

λe(q, m, ss’) = λe(q, m, s) λe(ue(q, m, s), s’),
ue(q, m, ss’) = ue(ue(q, m, s), s’).

Proof :
Follows by induction on the length of s’. �

Observation 3.1.5.
Let qo be the initial state of a deterministic stream X-machine and xo ∈  X,
xo = (1, mo, s), s ∈  Σ*  and let x ∈  X be the final value computed by the machine
following the (unique) path (if any) emerging from qo having xo as the initial
value. Then

x = (λe(qo, mo, s), we(qo, mo, s), 1).
Hence

Out(x) = λe(qo, mo, s).
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Note: Recall that Out: X → Γ* is defined by Out(g, m, s) = g.

Lemma 3.1.6.
Let  be a deterministic stream X-machine with T = Q (i.e. all the final states are
terminal) and let f = α| |β βε the function computed by . Then

f(s) = λe(qo, mo, s), ∀  s ∈  Σ*.

Proof:
We have α(s) = (1, mo, s). From the observation above it follows that

Out(x) = λe(qo, mo, s),
where x ∈  X is the final value computed by the machine following the (unique)
path (if any) emerging from qo having xo = (1, mo, s) as the initial value. If T = Q,
then the output function β can be applied in any state, hence

f(s) = α| |β(s) = Out(x).
Hence 

f(s) = λe(qo, mo, s).  �

We can now give a characterisation of the functions that (generalised) stream X-
machines compute. First, we need the following definitions.

Definition 3.1.7.
Let f: Σ* → Γ* be a partial function. Then f is called segment preserving if:

∀  s, t ∈  Σ*, if s, st ∈  dom f then ∃  u ∈  Γ* such that f(st) = f(s)u.

Definition 3.1.8.
Let f: Σ* → Γ* be a partial function. If

|f(s)| = |s|, ∀  s ∈  dom f
then f is called length preserving.

Definition 3.1.9.
Let f: Σ*→ Γ* be a partial function. Then f is called a partial stream function if
      i) f is both segment preserving and length preserving and
      ii) ∀  s, t ∈  Σ*, if st ∈  dom f, then s ∈  dom f.

Proposition 3.1.10.
Let  be a deterministic stream X-machine and let f: Σ* → Γ*  be the partial
function computed by it. Then
     1. f is length-preserving and segment preserving.
     2. If all the states of  are terminal (i.e. T = Q), then f is a partial stream
function.

Proof:
     1. If f(s) ≠ ∅  and f(st) ≠ ∅ , then

f(s) = λe(qo, mo, s)
and

f(st) = λe(qo,mo, st)
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and the result follows from lemmas 3.1.3 and 3.1.4.
     2. It follows from f(s) = λe(qo,mo, s), ∀  s ∈  Σ* using lemma 3.1.4. �

Similarly, we have the following results for generalised stream X-machines.

Definition 3.1.11.
Let f: Σ*→ Γ*  be a partial function. Then f is called a partial generalised stream
function if
     i) it is segment preserving and
     ii) ∀  s, t ∈  Σ*, if st ∈  dom f, then s ∈  dom f.

Proposition 3.1.12.
Let  be a deterministic generalised stream X-machine and let f: Σ* → Γ*  be the
partial function computed by it. Then
     1. f is segment-preserving.
     2. If all the states of  are terminal (i.e. T = Q), then f is a generalised stream
function.

Proof:
Follows similarly to proposition 3.1.10. �

We have now a characterisation of the partial functions computed by (generalised)
stream X-machine. Of course whether a particular function f that satisfies the
conditions from proposition 3.1.10 (or 3.1.12) can be computed by a (generalised)
stream X-machine with a certain type Φ depends on the nature of Φ (i.e. if f is
non-Turing computable Φ has to be non-Turing computable, if f is computable Φ
can be chosen to be computable, if f is fully computable, Φ can be chosen to be
fully-computable). This problem was discussed in detail in the previous chapter.
The conditions from proposition 3.1.10 and proposition 3.1.12. are satisfied by all
functions computed by (generalised) stream X-machines regardless of the type Φ
used.

If the stream X-machine model is to be used in testing real systems, it is natural
that we would like to have as much information about the outputs produced as
possible. For this reason we shall, from now on, be referring to stream X-machines
with all the states terminal (i.e. T = Q). This means that the output produced by the
machine can be viewed in any of its states (i.e. β can be applied in any state q of
the machine), even though the machine is allowed to terminate its computation
only in a terminal state. For example, if is the specification of a program, the
condition T = Q is achieved if the program displays the intermediary outputs, as
well as the final ones. Of course, the intermediary outputs that need not be
displayed can be removed after the program is tested. In what follows, a stream X-
machine with all the states terminal will be referred to as a tuple

 = (Σ, Γ, Q, M, Φ, F, qo, mo)
(since T = Q the set of terminal states will be omitted).
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3.2. Stream X-machine specifications of a correlator.

We interrupt our theoretical discussion and present some examples. In what
follows we use stream X-machines to specify a digital system, viz. a correlator.
The process of specifying a digital correlator is investigated by McEvoy & Tucker,
[46], and several functional specifications of the system have been produced. In
what follows we construct stream X-machine specifications for these models and
contrast the functional and machine specifications.

The heart of the correlator is a function that compares pairs of data-elements from
two n-element vectors and returns the number of elements that are the same.

Let A be any non-empty set. Consider the function corr: An ×An → { 0,...,n}
defined by

corr(a, b) = card({i| ai = bi}),
where a = (a1, ..., an), b = (b1, ..., bn). That is, corr(a, b) is the number of elements
(cardinality) of the set of i’s such that ai and bi are equal.

3.2.1. First model.

We can now define a simple stream correlator.  Let w: T→ An be a stream of
vectors of length n, where T is the set of natural numbers. The idea is that at every
clock cycle t ∈  T, a new data-word w(t) is generated and delivered to the processor
corr.

The system should satisfy the following requirements:
     1. The system computes the correlation of two n-elements in a constant number
of cycles (k).
     2. The system reads a data vector at each tick of the clock.
3. The reference word r = (r1, ...rn) ∈  An is fixed.
     4. The output period of the system is 1 clock cycle.

We are now able to produce a specification of the system as a function:

corr1: (T → An) → (T →({0, ...,n} ∪  {u})),

                                     u,  if t < k
corr1(w)(t) =  

                                  î   corr(w(t-k), r),  otherwise
where k is the computation time and r is the reference word.

Observation 3.2.1.1.
Let X and Y be sets and

f: (T → X) → (T → Y)
be a (total) function. If ∀  w,  w’ ∈ (T →X) and t ∈  T,

w(0) = w’(0), ..., w(t-1) = w’(t-1), w(t) = w’(t) ⇒  f(w)(t) = f(w’)(t)
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(i.e. ∀  w ∈ (T →X), f(w)(t) does not depend on w(t+1), w(t+2), ...), then
: X* → Y*

defined by
(v) = f(w)(0) ... f(w)(t), ∀  v = v0 ... vt

with vi ∈  X and  w ∈  (T → X) such that w(i) = vi, i = 0, ...t, is a stream function.
It is clear that  can be uniquely determined from f and vice versa. Then we shall
call  the stream function determined by f.

Then we denote by
Corr1: (An)* → ({0, ...,n} ∪  {u})*

the stream function determined by corr1. A stream X-machine 1 which computes
Corr1 is as follows.

     1. Σ = An

     2. Γ = {0, 1, ...n} ∪  {u}
     3. The set of states is Q = {q0, ..., qk}; q0 is the initial state.
     4. M = (An)k

     5. m0 = (b1,0, ..., bk,0), where bi,0 ∈  An, i ∈  {1, ...k}, are chosen at random.
     6. Φ = {φ1, φ2}, where φ1, φ2: M × Σ → Γ × M are functions defined by

φ1((b1, ..., bk-1, bk), w) = (u, (b2, ..., bk, w)),
φ2((b1, ..., bk-1, bk), w) = (corr(b1, r), (b2, ..., bk, w)),

∀  b1, ..., bk ∈  An  ∀  w ∈  An ,
where r = (r1, ...rn) is the reference word.
     7. F is represented in figure 3.1.

q0 q1 q2 qk-1 qk
φ

φ

1 φ1 φ1 φ1 φ1

2

. . .

Figure 3.1.

The state set replaces the clock T. The system is considered to be in the state qt ,t 
∈  { 0, 1, ...,k-1}  if t < k and in qk if t ≥ k. The memory holds the last k elements of
the input vector stream which have been read.

3.2.2. Second model.

We modify the first model in the sense that, instead of reading the input vectors in
parallel, their components are read serially, one per clock cycle. The new
specification will be:
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corr2: (T→ A) → (T → ({0, ...,n} ∪  {u})),

                                   u,  if t < k + n-1
corr2(x)(t) = 

                                î   corr((x(t-k-n+1), ..., x(t-k)), r),  otherwise

The idea is that we are correlating on a part of the stream x of length n. It takes n
steps before we have acquired enough elements from the stream x to form a word
of length n and we can begin correlating. So the delay before results emerge is
made up of the initialisation time n-1 and computation time of the function corr.
After this time, each result emerging is the result of a correlation that started k
steps earlier.

A stream X-machine 2 which computes Corr2, the stream function determined
by corr2 will be the following:

     1. Σ = A
     2. Γ = {0, 1, ...n} ∪  {u}
     3. The set of states is Q = {q0, ..., qk+n-1} and q0 is the initial state.
     4. M = An+k-1

     5. m0 = (a1,0, ..., ak+n-1,0), where ai,0 ∈  A, i ∈  { 1, ... k+n-1} , are chosen at
random.
    6. Φ = {φ1, φ2}, where φ1, φ2: M × Σ → Γ × M are functions defined by

φ1((a1, ..., ak+n-1), x) = (u, (a2, ...,ak+n-1, x))
φ2((a1, ..., ak+n-1), x) = (corr((a1, ...,an), r), (a2, ...,ak+n-1, x))

∀  a1, ..., ak+n-1 ∈  A  ∀  x ∈  A ,
where r = (r1, ...rn) is the reference word.
     7. F is represented in figure 3.2.

q0 q1 q2
φ

φ

1 φ1 φ1 φ1 φ1

2

. . . qk+n-1qk+n-2

Figure 3.2.

3.2.3. Third model:

We will now remove the simplifying assumption of a fixed reference word. We
define a correlator that allows the reference word r to be programmed by means of
a stream y ∈  (T → A) and a control stream s ∈  (T → B) (i.e. B is the set of
Booleans). The data items from stream y will be accepted or rejected according to



Chapter 3. Stream X-machines.

82

the value of the corresponding element of s. Only those elements of the y stream
which arrive at the same time as a true element on stream s will be accepted. The
elements of the y stream which are accepted will go to make up an n-element
word. This leads to a much more complicated specification because we cannot
assume that after n steps enough elements from the stream y will have been read
for correlation to start.

Let d1, ..., dn: T × (T → B) → T be partial functions defined such that y(di(t, s)) is
the i-th element of the reference word at the time t and let d: (T → B) → T be the
time needed for the reference word to be completely loaded. The specification of
the new system in terms of functions is the following:

corr3: ((T→ A)2 × (T → B)) → (T → ({0, ...,n} ∪  {u}),

                             u, if d(s) = ∅  or t < k + d(s)
corr3(x, y, s)(t) = 
                            î corr((x(t-k-n+1),.., x(t-k)), (y(d1(t,s)), ..,y(dn(t,s))), otherwise

where
di: T × (T → B) → T, 1 ≤ i ≤ n,

are defined by:

                                  0,    if s(0) = true
             dn(0, s) =  
                               î   ∅ ,   if s(0) = false

                                     t + 1,                if s(t+1) = true
             dn(t+1, s) =  
                                  î   dn(t, s),            if s(t+1) = false

 for 1 ≤ i < n

             di(0, s) = ∅
                                      di+1(t, s),           if s(t+1) = true
             di(t+1, s) =   
                                  î   di(t, s),                if s(t+1) = false

             d: (T → B) → T
is defined by
                       min{t| d1(s, t) ≠ ∅ }, if ∃  t ∈  T such that d1(s, t) ≠ ∅

d(s) = 
                      î ∅ , otherwise
and k is the computation time for corr.

Similarly to observation 3.2.1.1, we can define
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Corr3: (A2 × B)*→({0, ..., n} ∪  {u})*,
the stream function determined by corr3. A stream X-machine that computes
Corr3 is the following.

     1. Σ = A2 × B.
     2. Γ = {0, 1, ...n} ∪  {u}.
     3. The set of states is Q = {q0, ..., qn+k-1}; q0 is the initial state.
     4. M = An+k-1  × An.
     5. m0 = ((a1,0, ..., ak+n-1,0), r0, 0) with r0 = (r1,0, ...rn,0),
where ri,0 ∈  A, i ∈  {1, ...n} and aj,0 ∈  A, j ∈  {1, ...n+k-1}, are chosen at random.
     6. Φ = { φ1, φ2, φ3, φ4} , where φ1, φ2, φ3, φ4: M × Σ → Γ × M are partial
functions defined by:

dom φ1 = dom φ3 = (A2 × {false}) × M,
dom φ2 = dom φ4 = (A2 × {true}) × M,

φ1(((a1, ..., ak+n-1), (r1, ...rn)), (x, y, false)) =
(u, ((a2, ...ak+n-1, x), (r1, ...rn)))

φ2(((a1, ..., ak+n-1), (r1, ...rn)), (x, y, true)) =
(u, ((a2, ...ak+n-1, x), (r2, ...rn, y)))

φ3(((a1, ..., ak+n-1), (r1, ...rn)), (x, y, false)) =
(corr((a1, ..., an), (r1, ..., rn )), ((a2, ...ak+n-1, x), (r1, ...rn)))

φ4(((a1, ..., ak+n-1), (r1, ...rn)), (x, y, true)) =
 (corr((a1, ..., an), (r1, ..., rn )), ((a2, ...ak+n-1, x), (r2, ...rn, y)))

     7. F is represented in figure 3.3.

φ1

. . .φ2

φ

φ

3

4

φ1 φ1

φ1 φ1φ2 φ2 φ2

φ2 φ2
q0 q1 qk+n-1qnqn-1 . . .

Figure 3.3.

Conclusions.

Some conclusions can be drawn from this example. We have specified in terms of
functions and stream X-machines three versions of a fairly simple system, i.e. a
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digital correlator. While the functional specification appeared to be sufficient for
the simpler models (the first and second), they became too complicated and
difficult to handle when they dealt with a more complex model (i.e. the third
model requires several stream functions and their integration may be difficult to
understand). In this last case, a stream X-machine specification appears to be
much more intuitive and easy to understand.

3.3. Parallel and sequential composition of stream X-machines

We shall now introduce some basic operations that can be performed on stream X-
machines (i.e. parallel and sequential composition), describing the result of these
operations in terms of stream functions.

3.3.1. Parallel composition.

Definition 3.3.1.1.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) and ’ = (Σ’, Γ’, Q’, M’, Φ’, F’, qo’, mo’) be two
deterministic stream X-machines. Then a deterministic stream X-machine

" = (Σ", Γ", Q", M", Φ", F", qo", mo")
defined by:
     1. Σ" = Σ × Σ’
     2. Γ" = Γ × Γ’
     3. Q" = Q × Q’
     4. M" = M × M’
     5. qo" = (qo, qo’)
     6. mo" = (mo, mo’)
     7. Φ" = {φ" = ψ(φ, φ’)|  φ" is not the empty function},
where ∀  φ ∈  Φ, φ’ ∈  Φ’, φ" = ψ(φ, φ’) is a partial function φ": M" × Σ" → Γ" × M"
defined by:
                                             ((γ, γ’), (m1, m1’)), if φ(m, σ) ≠ ∅  and φ’(m’, σ’) ≠∅ ,
           φ"((m, m’),(σ’, σ)) =       where (γ, m1) = φ(m, σ) and (γ’, m1’) = φ’(m’, σ’)
                                            î  ∅ , otherwise

      8. F": Q" × Φ" → Q" is defined by

                                        (F(q, φ), F’(q’, φ’)), if ∃  φ ∈  Φ, φ’ ∈  Φ’ such that
           F"((q, q’), φ") =            ψ(φ, φ’) = φ", F(q, φ) ≠ ∅  and F(q’, φ’) ≠ ∅
                                     î  ∅ , otherwise

is called the parallel composition of  and ’ (written " = × ’).

Note: Since  and ’ are deterministic and from the definition of ’ it follows that
if ψ(φ1, φ1’) = ψ(φ2, φ2’) ∈  Φ" and
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F(q, φ1) ≠ ∅ , F(q’, φ1’) ≠ ∅ , F(q, φ2) ≠ ∅ , F(q’, φ2’) ≠ ∅ ,
then φ1 = φ2 and φ1’ = φ2’. Hence F" is well defined. Also, since  and ’ are
deterministic, " is deterministic.
The following proposition shows the relationship between the functions computed
by two machines and the function computed by their parallel composition.

Proposition 3.3.1.2.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) and ’ = (Σ’, Γ’, Q’, M’, Φ’, F’, qo’, mo’) be two
deterministic stream X-machines that compute f: Σ*  → Γ*  and g: Σ’*  → Γ’*
respectively. Then × ’ computes h, where h: (Σ × Σ’)*→ (Γ × Γ’)*  is defined
by:
                               (f(s), g(s’)) if f(s) ≠ ∅  and g(s’) ≠ ∅

h(s, s’) =   
                             î  ∅ , otherwise
∀  s ∈  Σ,  s’* ∈  Σ’* with |s| = |s’|.
Hence h is still a stream function.

Note: If s = σ1... σk, s’ =  σ1’... σk’, with σ1, ..., σk ∈  Σ, σ1’,  ..., σk’ ∈  Σ’, then
(s, s’) = (σ1, σ1’) ... (σk, σk’).

Proof:
Follows by induction on t = (s, s’). �

Example 3.3.1.3.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) and ’ = (Σ’, Γ’, Q’, M’, Φ’, F’, qo’, mo’), where 
Σ = { a, b} , Σ’ = { c, d} , Γ = { x, y} , Γ’ = { u, v} , Q = { qo, q1} , Q’ = { qo’, q1’} ,       M
= M’ = { 0, 1} , mo = mo’ = 0, Φ = { φ1, φ2} , Φ’ = { φ1’, φ2’}  and F and F’
represented in figures 3.4 and 3.5 respectively.

φ1, φ2: M × Σ  → Γ × M, φ1’, φ2’: M’ × Σ’ → Γ’ × M’ are partial functions defined
by:

dom φ1 = {(0, a)};      φ1(0, a) = (x, 0);
dom φ2 = {(0, b)};          φ2(0, b) = (x, 1);
dom φ1’ = {(0, c)};          φ1’(0, c) = (u, 0);
dom φ2’ = {(0, d};           φ2’(0, d) = (v, 1).

φ1

φ2
q1qo

Figure 3.4.
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φ1’

φ2’

q0’ q1’

Figure 3.5.

 and ’ will compute f and g respectively, where f: Σ*  → Γ*  and g: Σ’*  → Γ’*
are defined by:

dom f = {an| n ≥ 0} ∪  {anb| n ≥ 0};
f(an) = xn;
f(anb) = xn+1 and

dom g = {1} ∪  {cdn| n ≥ 0};
g(1) = 1; 
g(cdn) = uvn.

Then " = (Σ × Σ’, Γ × Γ’, Q × Q’, M × M’, Φ", F", (qo, qo’), (mo, mo’)) is the
parallel composition of  and ’, where Φ" = { φ11",  φ12", φ21", φ22"} , and F" is
represented in figure 3.6.
The partial functions φ11", φ12", φ21" and φ22" are defined by:

dom φ11" = {((0, 0), (a, c))}; φ11"((0, 0), (a, c)) = ((x, u), (0, 0));
dom φ12" = {((0, 0), (a, d))}; φ12"((0, 0), (a, d)) = ((x, v), (0, 1));
dom φ21" = {((0, 0), (b, c))}; φ21"((0, 0), (b, c)) = ((x, u), (1, 0));
dom φ22" = {((0, 0), (b, d))}; φ22"((0, 0), (b, d)) = ((x, v), (1, 1)).

φ

φ

(q0, q0’)

(q1, q0’)

(q0, q1’)

(q1, q1’)

21"

11"

12"

22"

φ

φ

Figure 3.6.
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Then " computes h: (Σ × Σ’)*→ (Γ × Γ’)* defined by
          dom h = {1} ∪  {(a, c)(a, d)n| n ≥ 0} ∪  {(b, c)} ∪  {(a, c)(a, d)n(b, d)| n ≥ 0};
          h(1) = 1;
          h((a, c)(a, d)n) = (x, u)(x, v)n;
          h(b, c) = (x, u);
          h((a, c)(a, d)n(b, d) = (x, u)(x, v)n+1.

3.3.2. Sequential composition.

Definition 3.3.2.1.
Let  = (Σ, Ω, Q, M, Φ, F, qo, mo) and ’ = (Ω, Γ, Q’, M’, Φ’, F’, qo’, mo’) two
deterministic stream X-machines. Then a deterministic stream X-machine

" = (Σ, Γ, Q", M", Φ", F", qo", mo")
defined by:
     1. Q" = Q × Q’
     2. M" = M × M’
     3. qo" = (qo, qo’)
     4. mo" = (mo, mo’)
     5. Φ" = {φ" = ψ(φ, φ’)| φ" is not the empty function},
where ∀  φ ∈  Φ, φ’ ∈  Φ’, φ" = ψ(φ, φ’) is a partial function φ": M" × Σ → Γ × M"
defined by

                                         (γ, (m1, m1’)), if φ(m, σ) ≠ ∅  and φ’(m’, ω) ≠ ∅ ,
φ"((m, m’), σ) =             where (ω, m1) = φ(m, σ) and (γ, m1’) = φ’(m’, ω)

                                       î  ∅ , otherwise

     6. F": Q" × Φ" → Q" is defined by
                                         (F(q, φ), F’(q’, φ’)), if ∃  φ ∈  Φ, φ’ ∈  Φ’ such that

F"((q, q’), φ") =               ψ(φ, φ’) = φ", F(q, φ) ≠ ∅  and F(q’, φ’) ≠ ∅
                                       î ∅ , otherwise

is called the sequential composition of  and ’ (written " = ’).

Note: Similar to parallel composition, since  and ’ are deterministic, F" is well
defined and " is deterministic.

Proposition 3.3.2.2.
Let  = (Σ, Ω, Q, M, Φ, F, qo, mo) and ’ = (Ω, Γ, Q’, M’, Φ’, F’, qo’, mo’) two
deterministic stream X-machines that compute f: Σ*  → Ω*  and g: Ω*  → Γ*
respectively. Then ’ computes h: Σ*→ Γ* , h = fg. Hence h = fg is still a stream
function.

Proof:
Follows by induction on s. �
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Example 3.3.2.3.
Let  = (Σ, Ω, Q, M, Φ, F, qo, mo) and ’ = (Ω, Γ, Q’, M’, Φ’, F’, qo’, mo’), where 
Σ = { a, b} , Ω = { c, d} , Γ = { x, y} , Q = { qo, q1} , Q’ = { qo’, q1’} , M = M’ = { 0, 1} ,
mo = mo’ = 0, Φ = { φ1, φ2} , Φ’ = { φ1’, φ2’}  and F and F’ represented in figures 3.7
and 3.8 respectively.

φ1, φ2: M × Σ  → Ω × M, φ1’, φ2’: M’ × Ω  → Γ × M’ are partial functions defined
by:

dom φ1 = {(0, a)}; φ1(0, a) = (c, 0);
dom φ2 = {(0, b)}; φ2(0, b) = (c, 1);
dom φ1’ = {(0, c)}; φ1’(0, c) = (x, 0);
dom φ2’ = {(0, d}; φ2’(0, d) = (y, 1).

φ1

φ2
q1qo

Figure 3.7.

φ1
φ2

’

’q0’ q1’

φ1’

Figure 3.8.

 and ’ compute f and g respectively, where f: Σ*  → Ω*  and g: Ω*  → Γ*  are
defined by:

dom f = {an| n ≥ 0} ∪  {anb| n ≥ 0};
f(an) = cn ;
f(anb) = cn+1 and

dom g = {1} ∪  {cn+1| n ≥ 0} ∪  {cn+1d| n ≥ 0};
g(1) = 1;
g(cn+1) = xn+1;
g(cn+1d) = xn+1y.
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Then, " = (Σ, Γ, Q × Q’, M × M’, Φ", F", (qo, qo’), (mo, mo’)) is the sequential
composition of   and ’, where Φ" = { φ11",  φ21"}  and F" is represented in
figure 3.9.

φ11" and φ21" are defined by:
dom φ11" = {((0, 0), a)}; φ11"((0, 0), a) = (x, (0, 0));
dom φ21" = {((0, 0), b)}; φ21"((0, 0), b) = (x, (1, 0);

Note: φ11" = ψ(φ1, φ1’), φ21" = ψ(φ2, φ1’); ψ(φ1, φ2’) and ψ(φ2, φ2’) are the
empty function.

φ

φ

(q0, q0’)

(q1, q0’)

(q0, q1’)

(q1, q1’)

21"

11"

φ11"

φ21"

Figure 3.9.

It is clear that " computes h: Σ*→ Γ* defined by
dom h = {an| n ≥ 0}∪  {anb| n ≥ 0};
h(an) = xn;
h(anb) = xn+1.

3.4. Minimal stream X-machines and minimal coverings of stream
X-machines.

In this section we shall discuss two types of stream X-machine minimality. First,
we present some state machine theory that we shall be using later on.
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3.4.1. Some state machine theory.

In this section we refer to (finite) state machines with all the states terminal.
Unlike section 2.1.1, we shall also consider the case when the output alphabet is
not empty.
We shall denote a deterministic state machine (or automaton) by a tuple

 = (Σ, Γ, Q, F, G, qo),
where Σ and Γ are the finite input and output alphabets respectively, Q is the state
set, qo the initial state and

F: Q × Σ → Q and G: Q × Σ → Γ
are partial functions with

dom F = dom G.
F is called the next state function and G the output function of . We also define 

Fe: Q × Σ* → Q and Ge: Q × Σ* → Γ*
by:

Fe(q, 1) = q,
                                  F(Fe(q, s), σ),   ∀  σ ∈  Σ, s ∈  Σ* such that            

Fe(q, sσ) =                Fe(q, s) ≠ ∅  and F(Fe(q, s), σ) ≠ ∅  defined
                                î  ∅ , otherwise

Ge(q,1) = 1
                                  Ge(q, s) G(Fe(q, s), σ)  ∀  σ ∈  Σ, s ∈  Σ* such that

Ge(q, sσ) =                 Ge(q, s) ≠ ∅  and G(Fe(q, s), σ) ≠ ∅
                                î  ∅ , otherwise

Fe and Ge are called the extended next state function and extended output function.
Obviously dom Fe = dom Ge. Also, by induction it follows that

Fe(q, ss’) = Fe(Fe(q, s), s’) and Ge(q, ss’) = Ge(qo, s) Ge(Fe(qo, s), s’),
∀  q ∈  Q, s, s’ ∈  Σ*.

Also, for any q ∈  Q, we denote by
Fe.q: Σ* → Q and Ge.q : Σ* → Γ*

the (partial) function defined by
Fe.q (s) = Fe(q, s), ∀  s ∈  Σ* and
Ge.q (s) = Ge(q, s), ∀  s ∈  Σ*.

The (partial) function computed by , f: Σ* → Γ* is defined by
f(s) = Ge(qo, s), ∀  s ∈  Σ*.

It is obvious that ∀  q ∈  Q, Ge.q is a partial stream function. Hence any state
machine computes a partial stream function. If the output set is empty (i.e. Γ = ∅ ),
then an automaton will be denoted by a tuple

 = (Σ, Q, F, qo).
In this case L = dom f will be the language accepted by the machine.

The majority of the concepts and results we shall be presenting are valid for a
(possibly infinite) state machine. When the results depend on the state set being
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finite, then the machine will be called a finite state machine. The concepts and
results in this section are largely from Eilenberg, [12].

3.4.1.1. Morphisms.

A morphism is a particular type of state mapping between two state machines.

Definition 3.4.1.1.1.
Let  = (Σ, Γ, Q, F, G, qo) and  ’ = (Σ, Γ, Q’, F’, G’, qo,) be two deterministic state
machines having the same input and output alphabets. Then g: → ’ is called a
morphism if g is a function g: Q → Q’ such that:

g(F(q, σ)) ⊆  F’(g(q), σ), ∀  q ∈  Q and σ ∈  Σ,
G(q, σ) ⊆  G’ (g(q), σ), ∀  q ∈  Q and σ ∈  Σ and
g(qo) = qo’.

Note: g(F(q, σ)) ⊆  F’(g(q), σ) means that either g(F(q, σ)) = ∅  or g(F(q, σ)) ≠ ∅
and g(F(q, σ)) = F’(g(q), σ).

Definition 3.4.1.1.2.
A morphism g: → ’ is called proper if:

g(F(q, σ)) = F’(g(q), σ), ∀  q ∈  Q and σ ∈  Σ,
G(q, σ) = G’(g(q), σ), ∀  q ∈  Q and σ ∈  Σ.

Observation 3.4.1.1.3.
If the output set is empty (i.e. Γ = ∅ ) then a morphism will be a function
g: Q → Q’ that satisfies

g(F(q, σ)) ⊆  F’(g(q), σ) and
g(qo) = qo’.

A proper morphism satisfies
g(F(q, σ)) = F’(g(q), σ).

Definition 3.4.1.1.4.
A morphism g is called an isomorphism if it is proper and bijective.

In what follows some properties of morphisms will be stated. First, we give the
following definition.

Definition 3.4.1.1.5.
Let f, g be two partial functions f, g: Σ* → Γ* . Then we say that f is included in g
(written f ⊆  g) if:

dom f ⊆  dom g and
f(s) = g(s), ∀  s ∈  dom f.

Lemma 3.4.1.1.6.
If g: → ’ is a morphism then ∀  q ∈  Q, Ge.q ⊆  Ge’.g(q). If g is proper, then
Ge.q = Ge’.g(q).
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Proof:
Follows by induction on s ∈  Σ*. �

Proposition 3.4.1.1.7.
Let , ’ be two deterministic state machines, f and f’ the functions computed by
them and g: → ’ a morphism. Then f ⊆  f’. If g is proper, then f = f’.

Proof:
Ge.qo ⊆  Ge’.qo’, f = Ge.qo, f’ = Ge’.qo’. If g is proper, then Ge.qo = Ge’.qo’. �

3.4.1.2. State machine minimality.

In this section, the concept of minimal state machine will be defined. It will be
shown that a minimal machine can be uniquely derived from the function that it
computes. Obviously, if Q is a finite set, then a minimal machine is the machine
with the minimum number of states that computes a certain function. However,
the concept of minimal machine and its uniqueness (up to isomorphism) does not
rely on the finiteness of the state set. The concepts and results in what follows are
largely from Eilenberg, [12].

Definition 3.4.1.2.1.
Let  = (Σ, Γ, Q, F, G, qo) be a deterministic state machine. Then a state q ∈  Q is
called accessible if ∃  s ∈  Σ*  such that q = Fe(qo, s). Also  is called accessible if
all the states are accessible.

Definition 3.4.1.2.2.
Let  = (Σ, Γ, Q, F, G, qo) be a deterministic state machine. Then

’ = (Σ, Γ, Q’, F’, G’, qo’) defined by:
     1. Q’ = {q ∈  Q| ∃  s ∈  Σ* such that q = Fe(qo, s)},
     2. F’(q, σ) =  F(q, σ),  ∀  q ∈  Q’ and σ ∈  Σ,
     3. G’(q, σ) =  G(q, σ),  ∀  q ∈  Q’ and σ ∈  Σ,
     4. qo’ = qo
is called the accessible part of , denoted ’ = Acc( ). Also, Q’ will be denoted by
Acc(Q). It is clear that ’ is accessible.

Definition 3.4.1.2.3.
Let be a deterministic state machine and S ⊆  Σ* . Then we define an equivalence
relation ~S on Q by q ~S q’ iff Ge(q, s) = Ge(q’, s), ∀  s ∈  S. If  q ~S q’, we say that
q and q’ are S-equivalent. If S = Σ*  we say that q and q’ are equivalent (written     q
~ q’).

Observation 3.4.1.2.4.
If the output alphabet is empty (i.e. Γ = ∅ ) then

q ~S q’ iff  (∀  s ∈  S, (q, s) ∈  dom Fe iff (q’, s) ∈  dom Fe).
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In other words, ∀  s ∈  S, there exists a path labelled s from q iff there exists a path
labelled s from q’.

Definition 3.4.1.2.5.
A deterministic state machine is called reduced if ∀  q, q’ ∈  Q, q ~ q’ ⇒  q = q’.

Definition 3.4.1.2.6.
Let  = (Σ, Γ, Q, F, G, qo) be a deterministic state machine. Then we define
’ = /~,  ’ = (Σ, Γ, Q’, F’, G’, qo’) by:

     1.Q’  =  Q / ∼  = {[q]| q ∈  Q}, where [q] is the equivalence class of q,
     2. F’([q], σ) = [F(q, σ)], ∀  q ∈  Q and σ ∈  Σ,
     3. G’([q], σ) = G(q, σ), ∀  q ∈  Q’ and σ ∈  Σ,
     4. qo’ = [qo]
Then ’ is called the reduced part of , denoted ’ = Red( ). It is clear that ’ is
reduced.

Note: F’ and G’ are well defined since
q ~ q’ ⇒  G(q, σ) = G(q’, σ) and F(q, σ) ~ F’(q, σ).

Definition 3.4.1.2.7.
A deterministic state machine is called minimal if it is accessible and reduced.

It will be proven that the minimal state machine that computes a certain function is
unique up to an isomorphism and it can be derived uniquely from the function it
computes. First we need the following definition.

Definition 3.4.1.2.8.
Let f: Σ* → Γ*  be a partial stream function. Then ∀  s ∈  dom f  we define a new
partial function f.s: Σ* → Γ* by

f.s(x) = f(s)-1f(sx)
Note: ∀  s, t ∈  Σ* if ∃  u ∈  Σ* such that t = su, then s-1t = u.
It is clear that f.s is also a partial stream function.

Then we have the following result.

Proposition 3.4.1.2.9.
Let f: Σ* → Γ*  be a partial stream function and let  = (Σ, Γ, Q, F, G, qo) be a
deterministic state machine defined as follows:
     1. Q = {f.s| s ∈  dom f },
     2. F is defined by:
                                f.sσ,   if sσ ∈  dom f
 F(f.s, σ) = 
                             î   ∅ ,     otherwise
     3. G is defined by:

G(f.s, σ) = f.s(σ),
     4. qo = f
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Then  is a minimal deterministic state machine. Furthermore, if ’ is a minimal
deterministic state machine that computes f, then  and ’ are isomorphic.

Proof:
The fact that  is accessible and reduced follows from the construction of . If
’ = (Σ, Γ, Q’, F’, G’, qo’) is a minimal state machine that computes f, then we

define a function g: Q’ → Q by g(q) = Ge.q. Since ’ is accessible, it follows that g
is surjective. Since ’ is reduced, it follows that g is injective. It can be verified
easily that g is a proper morphism. 	

Therefore, any two minimal state machines that compute the same function are
isomorphic and the following diagram commutes.

Red( )

Acc( )

Min( )

Acc

Acc

Red Red

Furthermore, the minimal machine can be determined uniquely from the function
it computes.

If the state set is finite Acc( ) and Red( ) can be determined by some finite
algorithm (see Eilenberg [12]). Hence, the minimal machine that computes the
same function as a certain automaton  can be determined algorithmically. Also, if
f is a partial function computed by a finite state machine , then

card({f.s| s ∈  dom f }) ≤ card(Q),
where Q is the state set of . Then, we can give the following characterisation of
the functions computed by finite state machines.

Corollary 3.4.1.2.10.
Let f: Σ* → Γ*  a partial function. Then there exists a finite state machine  that
computes f if and only if f is a partial stream function and the set { f.s| s ∈  dom f }
is finite.

3.4.2. Stream X-machine minimality

Let us return to stream X-machines. In this section we shall be discussing the
minimisation problem for stream X-machines. First, we make the following
remark.

It is clear that a computation that a stream X-machine performs is completely
determined by: the state set Q, the memory set M, the transition function u, the
output function λ, the initial state qo, the initial memory value mo and the set of
terminal states T (T will be ignored in what follows since will consider that all the
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states are terminal, i.e. T = Q). Of course these will not determine uniquely the
type Φ and the transition diagram F (there might be machines with different Φ’s
and F’s that have the same Q, M, u, λ, qo, mo), but they determine uniquely the
function computed. Therefore, if we are interested only in the functionality of the
machine and we do not restrict the type Φ used to a particular set of functions,
then we can treat a stream X-machine as an (infinite) state machine

 = (Σ, Γ, P, u, λ, po),
in which an actual state p is a pair (q, m), where q is the current state and m is the
current memory value (i.e. the state set is P = Q × M with the initial state
po = (qo, mo)). Therefore, the minimisation techniques presented in section
3.4.1.2 can be applied and the resulting machine will be minimal w.r.t. Q × M (i.e.
the new state set Q’ and memory M’ are chosen such that Q’ × M’ is the set P’ of the
minimal (infinite) state machine with the same functionality as  = (Σ, Γ, P, u, λ,
po)). However, this type of minimisation is usually of little interest for the
following reasons:
     M is usually infinite (in practice very large), hence the minimal state machine
cannot be determined algorithmically.
     The basic functions Φ’ obtained using this type of minimisation can be much
more complicated then the initial ones. Additionally, in many cases the X-machine
model is used to build more complex models from simpler components (the φ’s)
and hence the memory and the set Φ of the minimal machine should be the same
as the initial one.

However, this type of state machine minimisation could be used in special cases
(i.e. when M is finite and not too large or when the construction of the minimal
state machine is obvious), the purpose being to minimise the resources (i.e. Q ×
M) with which a certain functionality can be achieved.

Having said that, we shall now discuss a more useful type of stream X-machine
minimality, i.e. given  a certain stream X-machine  with the type Φ that
computes the function f what is the ’smallest’ (i.e. in terms of states) stream X-
machine with the same type Φ that computes f ? Obviously, we can convert an X-
machine into a finite state machine by treating the elements of Φ as abstract
symbols. But the minimisation of an X-machine is more complicated then that of a
finite state machine since each element in Φ has a well defined semantics (it is a
partial function) rather than being merely an input symbol. However, we shall
show that, if Φ satisfies certain conditions, then the minimisation of a stream X-
machine can be reduced to that of a finite state machine. First we need the
following definitions and preparatory results.

As we have mentioned, given an X-machine , we can convert it into a finite state
machine  by treating the elements of Φ as abstract input symbols. We are, in
effect, "forgetting" the memory structure and the semantics of the elements of Φ.
We call this the associated automaton of .
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Definition 3.4.2.1.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic X-machine. Then the
automaton  = (Φ, Q, F, qo) over the alphabet Φ is called the associated
automaton of  .

Recall that Φ denotes the (possibly infinite) set of basic functions that could be
used by the machine. However, only a finite subset Φ’ ⊆  Φ is actually used, hence
 will be an automaton over the input alphabet Φ’. For the sake of simplicity, Φ’

will be not mentioned explicitly (of course, it can be derived from the definition of
F).

Obviously  is an automaton with empty output alphabet. We shall extend F to Fe
and define Fe.q as in section 3.4.1. It is clear that dom Fe.qo is the language
accepted by  and ∀  q ∈  Q, dom Fe.q is the language accepted by

q = (Φ, Q, F, q), where q is the automaton obtained from  by considering q as
initial state. Then, we have the following result.

Lemma 3.4.2.2.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) and ’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) be two
deterministic stream X-machines with the same type Φ and initial memory mo, 
and ’ their associated automata and let q ∈  Q, q’ ∈  Q’. If dom Fe.q = dom Fe.q’,
then λe(q, m, s) = λe’(q’, m, s), ∀  m ∈  M, s ∈  Σ* . In particular, if and accept
the same language, then f = f’, where f and f’ are the partial functions computed by

 and ’ respectively.

Proof:
By induction on k = |s| it follows easily that:
∀  q ∈  Q, q’ ∈  Q’ such that dom Fe.q = dom Fe.q’, then ∀  m ∈  M, s ∈  Σ* either
     i). λe(q, m, s) = λe’(q’, m, s) = ∅  or
     ii). λe(q, m, s) = λe’(q’, m, s) ≠ ∅ , we(q, m, s) = we’(q’, m, s) and
         dom Fe.q1 = dom Fe.q1’, where q1 = ve(q, m, s) and q1’ = ve(q’, m, s). 


In general, the converse implication is not true, a counter-example will be given
later on (see example 3.4.2.7).

Similar to the definition of an accessible state for state machines, we shall say that
a state q of a stream X-machine is reachable if there exists an input sequence
which takes the machine from initial state qo and initial memory mo to q. We shall
also say that a memory value m is attainable in q if there exists an input sequence
which takes the machine from qo and mo to q and m.

Definition 3.4.2.3.
A state q is called reachable if ∃  s ∈  Σ*  such that ue(qo, mo, s) = (q, m) for some
m ∈  M.
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Definition 3.4.2.4.
Given a stream X-machine , q ∈  Q and m ∈  M, m is attainable in q if there is an
input sequence s ∈  Σ* such that ue(qo, mo, s) = (q, m).

Definition 3.4.2.5.
Given a stream X-machine  and q ∈  Q,

Att(q) = {m ∈  M| m is attainable in q}

We can now formalise the concept of a minimal stream X-machine. In what
follows we shall be referring to deterministic stream X-machines with the same
memory  (M = M’), type (Φ = Φ’), initial memory value (mo= mo’), input (Σ = Σ’)
and output (Γ = Γ’) alphabets. Then we have the following definition.

Definition 3.4.2.6.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine which
computes a partial function f. Then  is called Q-minimal w.r.t. Φ if it satisfies the
following:
     1. If ’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) is a deterministic stream X-machine with
the same type Φ and initial memory value mo which computes the same partial
function f, then ’ has at least the same number of states as  (i.e.
card(Q’) ≥ card(Q)).
     2. By removing any arc or number of arcs from , the function computed will
change.
Note: An equivalent form of condition 2 is the following:
     2’. If ’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) is a deterministic stream X-machine with
the same type Φ and initial memory value mo which computes the same partial
function f and there exists a bijective morphism g: ’ → , where  and ’ are the
associated automata of  and ’ respectively, then g is an isomorphism.

The Q-minimality as presented above has some obvious properties:
     1. If   is Q-minimal w.r.t. Φ, then each state is reachable.
     2. If  and  ’ are two stream X-machine such that  is Q-minimal w.r.t. Φ and
their associated automata  and  ’ are isomorphic, then ’ is Q-minimal w.r.t. Φ.
     3. If   is Q-minimal w.r.t. Φ, then the associated automaton  is minimal.
However, the converse implication (i.e. if  is minimal, then  is Q-minimal w.r.t. 
Φ) is not always true. For example, let  be the stream X-machine from example
3.4.2.7.

Example 3.4.2.7.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo), with Σ = { a, b} , Γ = { x, y} , Q = { qo, q1} ,
M = { 0, 1} , mo = 0, Φ = { φ1, φ2}  and the next state function F as represented in
figure 3.10.
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φ1, φ2: M × Σ  → Γ × M are partial functions defined by:
dom φ1 = {(0, a)},  φ1(0, a) = (x, 0);
dom φ2 = {(1, b)},  φ2(1, b) = (y, 1)

φ1

φ2
q1qo

Figure 3.10.

It is clear that the associated automaton of  is minimal but q1 is not reachable.
Even if each state of the machine is reachable, the minimality of the associated
automaton does not guarantee that the machine is Q-minimal. For example, let 
be the stream X-machine from example 3.4.2.8.

Example 3.4.2.8.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo), where Σ = { a, b} , Γ = { x, y} , Q = { qo, q1} ,
M = { 0, 1} , mo = 0, Φ = { φ1, φ2} , with φ1, φ2: M × Σ  → Γ × M being the partial
functions defined in example 3.4.2.7, and the next state function F represented in
figure 3.11.

φ1

φ2

q1qo

Figure 3.11.

It is clear that the associated automaton of  is minimal and both qo and q1 are
reachable. However, since

Att(q1) = {0} and
¬∃  σ ∈  Σ such that (0, σ) ∈  dom φ2,

φ2 can be removed from figure 3.11, without changing the functionality of the
machine.

However, if Φ satisfies some additional conditions, the Q-minimality can be
reduced to the minimality of the associated automaton.
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Definition 3.4.2.9.
Let φ1, φ2 ∈  Φ. Then φ1, φ2 are said to be output-distinguishable if:

∀  m ∈  M, σ ∈  Σ, if φ1(m, σ) = (γ1, m1’) and φ2(m, σ) = (γ2, m2’), with
m1’, m2’ ∈  M, γ1, γ2 ∈  Γ, then γ1 ≠ γ2.

Definition 3.4.2.10.
A type Φ is called output-distinguishable if:

∀  φ1, φ2 ∈  Φ, then either φ1 = φ2 or φ1 and φ2 are output-distinguishable.

What this is saying is that we must be able to distinguish between any two
different processing functions (the φ’s) by examining outputs. If we cannot then we
will not be able to tell them apart.

Definition 3.4.2.11.
Let φ ∈  Φ. Then φ is said to be complete if:

∀  m ∈  M, ∃  σ ∈  Σ such that (m, σ) ∈  dom φ.

Definition 3.4.2.12.
A type Φ is called complete if:

∀  φ ∈  Φ, φ is complete.

This condition will ensure that all the accessible states in are reachable in .
Also, it will prevent the situation in which there exist q ∈  Q and φ ∈  Φ, such that

(Att(q) × Σ) ∩ dom φ = ∅ .

For example, all three X-machine models of the correlator have the type complete
and output-distinguishable.

We can prove now that if the associated automaton is minimal and the type Φ is
complete and output-distinguishable, then  is Q-minimal w.r.t. Φ. This will be
proved by showing that if two machines with Φ complete and output-
distinguishable compute the same function, then their associated automata accept
the same language.

Lemma 3.4.2.13.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) and  ’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) be two
deterministic stream X-machines with Φ complete and output-distinguishable and
let q ∈  Q and q’ ∈  Q’ and m ∈  M. If λ(q, m, s) = λ’(q’, m, s), ∀  s ∈  Σ*  then q and
q’ are Φ* -equivalent as states in  and ’ respectively. In particular, if  and ’
compute the same function, then  and ’ accept the same language.

Proof:
We prove by induction that
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∀  k > 0, λe(q, m, s) = λe’(q’, m, s), ∀  s ∈  Σ*  with |s| ≤ k, ⇒  q and q’ are    
Φk-equivalent.

Let us prove that this is true for k = 1. Let q ∈  Q, q’ ∈  Q’ and m ∈  M such that
λe(q, m, σ) = λe’(q’, m, σ), ∀  σ ∈  Σ.

Let φ ∈  Φ be such that F(q, φ) ≠ ∅  (i.e. there exists an arc labelled φ from q).
Since Φ is complete, ∃  σ ∈  Σ such that (m, σ) ∈  dom φ. Then let

φ(m, σ) = (γ, m1), with γ ∈  Γ, m1 ∈  M.
Then λ(q, m, σ) = γ, hence λ’(q’, m, σ) = γ. Then ∃  φ’ ∈  Φ such that F’(q’, φ’) ≠ ∅
and

φ’(m, σ) = (γ, m1’) with m1’ ∈  M.
Since Φ is output-distinguishable, we have φ’ = φ.
Then

∀  φ ∈  Φ, if F(q, φ) ≠ ∅  then F’(q’, φ) ≠ ∅ .
Similarly we can prove that

∀  φ ∈  Φ, if F’(q’, φ) ≠ ∅  then F(q, φ) ≠ ∅ .
Hence q and q’ are Φ-equivalent.

Let us assume that the statement above is true for k ≥ 1. Let q ∈  Q, q’ ∈  Q’ and
m ∈  M such that

λe(q, m, s) = λe’(q’, m, s) ∀  s ∈  Σ* with |s| ≤ k+1.
It is clear that q and q’ are Φk+1-equivalent iff:
     i) q and q’ are Φ-equivalent and
     ii) ∀  φ ∈  Φ such that F(q, φ) ≠ ∅ , q1 and q1’ are Φk-equivalent, where          q1
= F(q, φ) and q1’ = F(q, φ).
Since q and q’ are Φk-equivalent, they are Φ-equivalent. Let φ ∈  Φ such that
F(q, φ) ≠ ∅  and let q1 = F(q, φ) and q1’ = F’(q’, φ). Since Φ is complete, ∃  σ ∈  Σ
such that (m, σ) ∈  dom φ. Then let

φ(m, σ) = (γ, m1), with γ ∈  Γ, m1 ∈  M.
Then u(q, m, σ) = (q1, m1) and u’(q’, m, σ) = (q1’, m1). Since

λe(q, m, σs) = λ(q, m, σ) λe(q1, m1, s),
λe’(q, m, σs) = λ’(q, m, σ) λe’(q1’, m1, s) ∀  s ∈  Σ* and
λe(q, m, σs) = λe’(q’, m, σs) ∀  s ∈  Σ* with |s| ≤ k,

we have
λe(q1, m1, s) = λe’(q1’, m1, s) ∀  s ∈  Σ* with |s| ≤ k.

Hence q1 and q1’ are Φk-equivalent. �

Theorem 3.4.2.14.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) and  ’ = (Σ, Γ, Q’, M, Φ, F’, qo, mo) be two
deterministic stream X-machines which compute the same partial function (f = f’)
and let  and ’ their associated automata. If Φ is output-distinguishable and
complete and  and ’ are minimal, then  and ’  are isomorphic.
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Proof:
From lemma 3.4.2.13. it follows that  and ’ accept the same language. Since 
and ’ are minimal, it follows that  and ’ are isomorphic. �
Corollary 3.4.2.15.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine with Φ
output-distinguishable and complete. If the associated automaton is minimal
then  is Q-minimal w.r.t. Φ.

Proof:
Let f the function computed by and let ’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) be a
Q-minimal stream X-machine w.r.t. Φ which computes f and ’ its associated
automaton. Then ’ is minimal. From theorem 3.4.2.14 it follows that  and ’ are
isomorphic. Hence  is Q-minimal w.r.t. Φ. 


Therefore, if Φ is output-distinguishable and complete the Q-minimality can be
reduced to the minimality of the associated automaton and the Q-minimal machine
which computes a certain function is unique up to an isomorphism of the
associated automata. This could be very significant for a stream X-machine testing
theory. Indeed, if the specification and the implementation of a system can be
described as two stream X-machines  and ’ with the type Φ complete and
output-distinguishable, then testing that the implementation satisfies the
specification will be reduced to showing that the minimal automata of  and ’
respectively are isomorphic. On the other hand, it is fairly clear that any type Φ
can be transformed into a complete and output-distinguishable type by augmenting
the input and output alphabets. These ideas will be discussed in more detail in the
next chapter.

Obviously, if Φ is output-distinguishable and complete the Q-minimal machine
that computes the same function as a certain stream X-machine can be determined
algorithmically (i.e. we apply an algorithm which minimises the associated
automaton).

3.4.3. Minimal coverings.

Let  be a stream X-machine specification of a system and f be the partial
function it computes. In some situations it might be acceptable to add extra
functionality to the system, as long as the ’minimal’ functionality required
determined by f remains unchanged. Therefore, any machine ’ which computes f’
such that f ⊆  f’ will be an acceptable specification of the same system. In this
context, a natural question that arises is how we can determine such as ’ with the
minimal number of states. In what follows we shall address this problem for
stream X-machines with Φ complete and output-distinguishable. First, let us
formalise this problem.
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Definition 3.4.3.1.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine which
computes a partial function f. Then a deterministic stream X-machine

’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) with the same type Φ and initial memory value
mo is called a covering of  w.r.t. Φ if f ⊆  f’, where f’ is the partial function
computed by ’.

Definition 3.4.3.2.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine which
computes a partial function f. Then a deterministic stream X-machine

’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo), is called a minimal covering of w.r.t. Φ if:
     1. ’ is a covering of w.r.t. Φ.
     2. If " is a covering of w.r.t. Φ, then " has at least the same number of
states as ’ (i.e. card(Q") ≥ card(Q’)).
     3. If  ’" is a deterministic stream X-machine obtained from ’ by removing
any arc or number of arcs, then ’" is no longer a covering of w.r.t. Φ.
Note: Similar to the definition of Q-minimality, condition 3 can be formalised in
terms of morphisms.

Since the state set of is finite, it is clear that there exists at least one minimal
covering of . We will now show how all the minimal coverings of a stream X-
machine with Φ output-distinguishable and complete can be constructed.
Obviously, it is sufficient to solve this problem for machines whose associated
automata are minimal (otherwise, the associated automaton of the machine is
minimised first). First, we introduce some new concepts and prove some
preparatory results.

Definition 3.4.3.3.
Let  = (Φ, Q, F, qo) and ’ = (Φ, Q’, F’, qo’) be two deterministic state machines
with empty output alphabet. Then we say that ’ ≥  if there exists a function
g: Q → Q’ such that

g(qo) = qo’ and
dom Fe.q ⊆  dom Fe’.g(q), ∀  q ∈  Q.

In other words, g: Q → Q’ will satisfy g(qo) = qo’ and ∀  q ∈  Q, if ∃  a path in 
labelled φ1... φk emerging from q then ∃  a path in ’ labelled φ1 ... φk emerging
from q’ = g(q).

Obviously, if ’ ≥ then L ⊆  L’, where L and L’ are the languages accepted by 
and ’ respectively. If  is accessible, then the converse implication is also true.

Lemma 3.4.3.4.
Let  = (Φ, Q, F, qo) and ’ = (Φ, Q’, F’, qo’) be two deterministic state machines, 
accessible and L and L’ respectively the languages accepted by them. If L ⊆  L’,
then ’ ≥ .
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Proof:
We define g as follows. Obviously, we take g(qo) = qo’. Let q ∈  Q - { qo} . If  is
accessible, then  ∃  ν ∈  Φ+ such that  Fe(qo, ν) = q.  Then, we take

g(q) = Fe’(qo’, ν).
It is easy to verify that dom Fe.q ⊆  dom Fe’.g(q). �
Note: Clearly, g might not be unique.

Let  and ’ be two deterministic stream X-machines with the same memory, type
and initial memory value and let  and ’, respectively, be their associated
automata. If ’ ≥  then it can be proven easily that the partial function computed
by  will be included in the one computed by ’ (i.e. it follows by induction
similarly to lemma 3.4.2.2). If Φ is complete and output-distinguishable and  is
accessible, then the converse implication is also true.

Lemma 3.4.3.5.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) and  ’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) be two
deterministic stream X-machines with Φ complete and output-distinguishable, f
and f’, respectively, be the partial functions computed by them and  and ’,
respectively, be their associated automata. If  is accessible and f ⊆  f’, then ’ ≥ .

Proof:
By induction (similar to the proof of lemma 3.4.2.13), it follows that L ⊆  L’, where
L and L’ are the languages accepted by  and ’ respectively. Hence, using lemma
3.4.3.4, we have ’ ≥ . �

Therefore, if  is a deterministic stream X-machine with Φ complete and output-
distinguishable and its associated automaton  is minimal, the problem of finding
the minimal coverings of  can be reduced to finding all the machines ’ such
that:
     1. ’ ≥ , where ’ is the associated automaton of ’.
     2. If " is a deterministic stream X-machine with the associated automaton "
such that " ≥ , then " has at least as many states as ’.
     3. If "’ is an automaton obtained by removing an arc or a number of arcs from
’, then "’ ≥  is not satisfied.

We shall show that the set of minimal coverings can be effectively constructed
using special kinds of decompositions of the state set of .

Definition 3.4.3.6.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine. Then a
set H = {Hi} i∈ I , Hi ≠ ∅ , ∀  i ∈  I, is called an admissible decomposition of Q if:

i) 
i I∈

�
Hi = Q and
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ii) ∀  i ∈  I  and ∀  φ ∈  Φ, ∃  j ∈  I such that if F(q, φ) ≠ ∅ , then F(q, φ) ∈  Hj, 
∀  q ∈  Hi.

Definition 3.4.3.7.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine. Then two
states q, q’ ∈  Q are called domain-compatible if:

∀  φ, φ’ ∈  Φ such that F(q, φ) ≠ ∅  and F(q’, φ’) ≠ ∅ , then either φ = φ’ or
dom φ ∩ dom φ’ = ∅ .

Definition 3.4.3.8.
A set H = { Hi} i∈ I, Hi ≠ ∅ , ∀  i ∈  I, is called a domain-consistent decomposition
of Q if:

i) 
i I∈

�
Hi = Q and

ii) ∀  i ∈  I, q, q’ ∈  Hi, q and q’ are domain-compatible.

If  is a stream X-machine with associated automaton , then any stream X-
machine ’ whose associated automaton ’ satisfies ’ ≥  determines an admissible
and domain-consistent decomposition of the state set of .

Lemma 3.4.3.9.
Let  and ’ be two deterministic stream X-machines and  and ’ be their
associated automata such that ’ ≥ . Let h: Q’ → Q be defined by

h(q’) = {q ∈  Q| dom Fe.q ⊆  dom Fe’.q’}.
Then the set

H = {h(q’)| q’ ∈  Q’ and h(q’) ≠ ∅ }
is an admissible and domain-consistent decomposition of Q.

Proof:
Let q’ ∈  Q’ such that h(q’) ≠ ∅  and q1, q2 ∈  h(q’). Hence dom Fe.q1 ⊆  dom Fe’.q’
and dom Fe.q2 ⊆  dom Fe’.q’. Then let φ, φ’ ∈  Φ φ ≠ φ’ such that F(q1, φ) ≠ ∅  and
F(q2, φ’) ≠ ∅ . Thus F’(q’, φ) ≠ ∅  and F’(q’, φ’) ≠ ∅ . Since ’ is deterministic, it
follows that dom φ ∩ dom φ’ = ∅ . Hence H is domain-compatible.
Since ∀  q’  ∈  Q’, φ ∈  Φ, if q ∈  h(q’) and F(q, φ) ≠ ∅  then F(q, φ) ∈  h(F’(q’, φ))    ∀
q ∈  Q, H is also admissible. �

Conversely, an admissible and domain-consistent decomposition of the state set of
 determines at least one machine ’ whose associated automaton ’ satisfies ’ ≥

Definition 3.4.3.10.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine and
H = { Hi} i∈ I be an admissible and domain-consistent decomposition of Q. Then,
we can define at least one deterministic stream X-machine

’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo)
 as follows:
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     1. Q’ = {Hi} i∈ I
     2. F’ is defined by:

                                 Hj, if ∃  q ∈  Hi such that F(q, φ) ≠ ∅ ,
F’(Hi, φ) =            where j is chosen such that F(q, φ) ∈  Hj ∀  q ∈  Hi

                               î  ∅ , if F(q, φ) = ∅  ∀  q ∈  Hi
     3. qo’ = Hj, where Hj is chosen such that qo ∈  Hj.

The set of all the machines ’ defined as above will be denoted by /H.

Since H is admissible F’ is well defined. Also since H is domain-consistent, ’ is
deterministic. Indeed, let i ∈  I and φ, φ’ ∈  Φ such that φ ≠ φ’. Then, if F’(Hi, φ) ≠ ∅
and F’(Hi, φ’) ≠ ∅  then ∃  q, q’ ∈  Hi such that F(q, φ) ≠ ∅  and F(q’, φ’) ≠ ∅ . Since q
and q’ are compatible, dom φ ∩ dom φ’ = ∅ .

Obviously, the definition of F’ leads to more than one machine if ∃  i, j, k ∈  I, j ≠ k,
and φ ∈  Φ such that F(Hi,φ) ⊆  Hj and F(Hi, φ) ⊆  Hk. Also, if ∃  i, j ∈  I such that
qo ∈  Hi and qo ∈  Hj, then the definition above leads to more than one machine.
Obviously, if H is a partition (i.e.  Hi ∩ Hj = ∅ , ∀  i, j ∈  I, i ≠ j), then /H contains
only one element.

Lemma 3.4.3.11.
Let  and ’ ∈  /H as above and  and ’ the associated automata of   and ’
respectively. Then ’ ≥ .

Proof:
We define g: Q → Q’ by g(q) = Hi, where i is chosen such that q ∈  Hi. By
induction it follows that dom Fe.q ⊆  dom Fe’.g(q) ∀  q ∈  Q. �

We can now prove the result we want.

Theorem 3.4.3.12.
Let  = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine with Φ
complete and output-distinguishable such that its associated automaton is
minimal. Also, let ’ = (Σ, Γ, Q’, M, Φ, F’, qo’, mo) be a minimal covering of 
w.r.t. Φ and ’ the associated automaton of ’. Then there exists H = { Hi} i∈ I an
admissible and domain-consistent decomposition of Q and " ∈  /H such that ’
and " are isomorphic, where " is the associated automaton of ".

Proof:
Since is minimal, is accessible. From lemma 3.4.3.5 it follows that ’ ≥ . Let
h: Q’ → Q defined by h(q’) = { q ∈  Q| dom Fe.q ⊆  dom Fe’.q’} . Then the set

H = {h(q’)| q’ ∈  Q’ and h(q’) ≠ ∅ }
is an admissible and domain-consistent decomposition of Q (see lemma 3.4.3.9).
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From lemma 3.4.3.11 it follows that any element of /H is a covering of . Since
’ is a minimal covering, it follows that card(Q’) ≤ card(H). Now, from the

construction of the set H, we have card(H) ≤ card(Q’). Hence card(H) = card(Q’)
and the function h will have the following properties:

h(q’) ≠ ∅  ∀  q’ ∈  Q’
h(q1’) ≠ h(q2’) ∀  q1’, q2’ ∈  Q’ with q1’ ≠ q2’.

Hence hr: Q’ → H defined by hr(q’) = h(q’) is a bijective function.
Let k: H → Q’, k = hr-1. Obviously, k is also bijective.

Then we construct " = (Σ, Γ, Q", M, Φ, F", qo", mo) as follows:
     1. Q" = H
     2. F" is defined by:

                                  h(F’(k(Hi), φ)), if ∃  q ∈  Hi such that F(q, φ) ≠ ∅
F"(Hi, φ) =  

                               î   ∅ , if F(q, φ) = ∅  ∀  q ∈  Hi
     3. qo" = h(qo’)

It follows easily that " ∈  /H. Also,
F"(Hi, φ) ⊆  h(F’(k(Hi), φ)).

Since h k = 1Q’, it follows that
k(F"(Hi, φ)) ⊆  F’(k(Hi), φ).

Hence k: " → ’ is a bijective morphism. Since ’ is a minimal covering of 
w.r.t. Φ, k is an isomorphism. �

Therefore, if  = (Σ, Γ, Q, M, Φ, F, qo, mo) is a deterministic stream X-machine
with Φ complete and output-distinguishable and its associated automaton  is
minimal, then the set of all minimal coverings of  w.r.t. Φ will be a subset of
{ ’ ∈  /H | H is any admissible and output-consistent decomposition of Q with
minimum possible number of elements}  (i.e. ∀  H’ another admissible and domain-
consistent decomposition of Q, card(H) ≤ card(H’)). Thus, if we can determine
algorithmically whether dom φ ∩ dom φ’ is empty or not ∀  φ, φ’ ∈  Φ, then the set
of all minimal coverings can also be determined algorithmically. The algorithm we
shall be giving in what follows involves a great deal of trial and error. It consists
of the following steps:
     1. Construct all the admissible and domain-consistent decompositions H of Q
with minimum number of elements (let this number be no). Since no ≤ n, it is
clear that there exist only a finite number of such decompositions.
     2. For each such H, construct all ’ ∈  /H. The set of all such ’ will be
denoted by Ξ.
     3. Eliminate all the machines ’ ∈   Ξ such that:
∃  " ∈   Ξ such that the associated automaton of ", ", can be obtained by
removing one or more arcs from ’, the associated automaton of ’. The remaining
elements of  Ξ are all minimal coverings of .



Chapter 3. Stream X-machines.

107

The algorithm is illustrated by the following example.

Example 3.4.3.13.
Consider the stream X-machine  = (Σ, Γ, Q, M, Φ, F, qo, mo), where Σ = { a, b} , 
Γ = { x, y} , Q = { qo, q1, q2} , M = { 0, 1} , mo = 0, Φ = { φ1, φ2}  and the next state
function F represented in figure 3.12.
φ1, φ2: M × Σ  → Γ × M partial functions defined by:

dom φ1 = {(0, a), (1, b)}; φ1(0, a) = (x, 1), φ1(1, b) = (x, 0);
dom φ2 = {(0, b), (1, a)}; φ2(0, b) = (y, 1), φ2(1, a) = (x, 0);
dom φ3 = {(0, a), (1, b)}; φ3(0, a) = (y, 1), φ3(1, b) = (y, 0);

φ1
q1qo

q2

φφ 23

Figure 3.12.

 computes the partial function f: Σ* → Γ* defined by
dom f = {1, a, aa, aaa};
f(1) = 1;
f(a) = x;
f(aa) = xx;
f(aaa) = xxy.

It is clear that Φ is complete and output-distinguishable. Also, qo is compatible
with q1 and q1 is compatible with q2 but qo and q2 are not compatible. Then, the
admissible and domain-consistent decompositions of Q with the lowest cardinality
are H1, H2 and H3, where:

H1 =  {{qo}, {q 1, q2}},
H2 =  {{qo, q1}, {q 2}} and
H3 = {{q o, q1}, {q 1, q2}}.

Then /H1 = { 1}, /H2 = { 2}, /H3 = { 3, 4}, where:

1 = (Σ, Γ, H1, M, Φ, F1, {qo}, mo) with F1 represented in figure 3.13;

2 = (Σ, Γ, H2, M, Φ, F2, {qo, q1}, mo) with F2 represented in figure 3.14;

3 = (Σ, Γ, H3, M, Φ, F3, {qo, q1}, mo) with F3 represented in figure 3.15;

4 = (Σ, Γ, H3, M, Φ, F4, {qo, q1}, mo) with F4 represented in figure 3.16.



Chapter 3. Stream X-machines.

108

φ1

φ

φ

2

3

{q1,q2}{q0}

Figure 3.13.

φ1

φ

φ

2

3

{q0,q1} {q2}

Figure 3.14.

φ1

φ

φ
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3

{q1,q2}{q0,q1}

φ2

Figure 3.1.5.

φ1

φ

φ

2

3

{q1,q2}{q0,q1}

φ2

Figure 3.16.

It is clear that 1 and 2 can be obtained by removing a single arc from 3 and

4 respectively. Therefore, the set of all minimum coverings of  is { 1, 2} . 1
and 2 compute f1: Σ*→Γ*  and f2: Σ* →Γ* respectively defined by:
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dom f1 = { 1}  ∪  { a(ab)n| n ≥ 0}  ∪   { a(ab)na| n ≥ 0}  ∪  { a(ab)nb| n ≥ 0}  ∪
{a(ab)naa| n ≥ 0},

f1(1) = 1,
f1(a(ab)n) = x(xy)n,
f1(a(ab)na) = x(xy)nx,
f1(a(ab)nb) = x(xy)ny,
f1(a(ab)naa) = x(xy)nxy;

dom f2 = { (ab)n| n ≥ 0}  ∪  { (ab)na| n ≥ 0}  ∪  { (ab)nb| n ≥ 0}  ∪  { (ab)naa| n 
≥ 0} ∪  {(ab)nbb| n ≥ 0} ∪  {(ab)naaa| n ≥ 0},

f2((ab)n) = (xx)n,
f2((ab)na) = (xx)nx,
f2((ab)nb) = (xx)ny,
f2((ab)naa) = (xx)nxx,
f2((ab)nbb) = (xx)nyy,
f2((ab)naaa) = (xx)nxxy.

Clearly, f ⊆  f1 and f ⊆  f2.

If the type Φ is not complete and output-distinguishable, then the algorithm above
can still be used to find coverings of a certain machine with the number of states
less or equal to the number of states of , but in this case the machines obtained
are not guaranteed to be minimal coverings.

Also, it is useful to notice that, if Φ is complete and output-distinguishable, then
the two concepts presented above (i.e. Q-minimality and minimal covering) do not
depend on the initial memory of the machine. Indeed, if a machine is Q-minimal
w.r.t. Φ, then by changing the initial memory, it still remains Q-minimal. Also, if

’ is a minimal covering of w.r.t. Φ, then by changing the initial memory of
both machines, ’ will still be a minimal covering of .


