Chapter 3.

Stream X-machines.

This chapter will investigate further stream X-machines. Firstly, we shall identify
the class of (partial) functions that this model computes. Secondly, we shall define
two smple operations (i.e. sequential and paralel composition) that can be
performed on stream X-machines. Finaly, the minimality problem for stream X-
machines will be discussed. Two types of minimality will be defined and the
problem of finding the minima machines will be addressed for some particular
cases. Also, several X-machine specifications of a digital system (viz. the
correlator) will be given.

3.1. (Generalised) stream functions.

In the previous chapter we explored the stream X-machine mainly as an acceptor,
identifying classes of languages that can be accepted by stream X-machines with a
certain type ®. We shall now concentrate on stream X-machines with non-empty
output alphabet and we shall seek to identify general features of the (partial)
functions they compute, regardless of the pesed.

For the sake of simplicity, in what follows we shall modify slightly the definition
2.4.1 of a stream X-machine given in the previous chapter by considering that the
blank belongs to the input aphabet, i.e. d 0 . Hence, 2’ = Z and the input code
a: 2* - X will be defined by

a(s) = (1, my, s),0 s Z*.
Of course, this does not change the nature of the model, nor does it affect the
results in the previous chapter.

Recall that eacth [0 ® is a relationp: X — X, with X =T* x M x 3* defined by
(g p(m, head(s))u(m, head(s)), tail(s)), ifs 1
®(9, m, s) =00
00, otherwise
wherep: M x 3 o M, p: M xZ o I are relations.
Then, it is clear that each relation ¢ iswell determined by p and . For the sake of
simplicity, in what follows we shall be referringgoas a relation
eMxZ o[xM,
whereg@(m, o) = (p(m, 0), W(m,0)),Jc 0%, mO M.

74

Chapter 3. Stream X-machines.

Therefore @(m, o) = (y, m’) iff ¢(g, m, 0s) = (gy, m’, s), D s >*, g *. Then,
the type® will be referred to as a set
P={@@egMxZ o [xM}.

If astream X-machineis deterministic, then ® isaset of (partial) functions and
O @0, if Jq0Q, mOM, o 0 Z such that

(9,9) Odom F, () O dom F, (mo) O domgand (m,0) O domg),
thenp=¢.
In other words, given a specific memory value and input there is at most one
possible @ that can be applied from a given state. All the stream X-machines we
shall be referring to in what follows will be deterministic. First, we introduce
some useful notation and prove some preparatory results.

Definition 3.1.1.
Given a deterministic stream X-machingwe define the partial functions
V.OXMxZ 5 QwW.QxMxZ 5 MA:QxMxZ T,
with
dom v =dom w = dom,
such that :
1. (q, mo) O dom v iff O O @ such that (q¢p) 0 dom F and (mg) O doma.
2.if F(q,0) =q’,¢(m, o) = (y, m’), then
v(g, m,0) = ', w(q, mp) = m’ and\(q, m,0) =,
wheregis as defined above.
Obvioudly, since 7 is deterministic, such a@is unique. Hence v, w and A are well
defined. v(g, m, o) and w(g, m, o) indicate the next state and the next memory
value, respectively, produced by the machine when o isreceived in g and m;
A(g, m,0) indicates the output symbol produced by the machine.
3. We also define
uQxMxz - QxM,
by
u(q, m,0) = (v(gq, m,0), w(g, m,0)),0q0Q, mOM,c X
(i.e. u indicates both the next state and next memory).
Then u is called theansition function andA theoutput function.

Definition 3.1.2.
We extend u andl to

U QxMx3Z*, QxMandAg Qx M x 3* _, *
where g, andAg are defined recursively by:

ug(d, m, 1) = (q, m), where 1 is the empty string
Ou(ue(q, m, 9, 0), 0o 0%, s0Z* such that

ug(a, m, @) = O ug(d, m, 9 # 0 and ug(g, m, 9, 0) # 0
00, otherwise

75

Chapter 3. Stream X-machines.

Ae(g, m1)=1
OAg(g, m, s)A(ug(g, m, 9, 0), O o O Z,sUZ* such that
A, M, ®) =0 &g, m, sz U andA(ueg(g, m, 3, 0)
04, otherwise

Then ug is called the extended transition function and Ag the extended output
function. It is clear that domg~= domAg. We also define two partial functions
Ve QxMxZ* 5 Qandws QXM x3* o M
by:
dom Vg = dom ws = dom
and
ve(d, m, s) =q and ¥{q, m, s) = m’,
where (q’, m’) =&(q, m, s),.J (g, m, s)J] dom .
It is obvious that ¥ and v are extensions of v and w respectively.

If amachine 7 isin the state g with the memory value m, then an input sequence s
takes the machine to the state ' = vg(g, m, s) and the memory vaue
m’ = we(q, m, s) while adding the sequeriggg, m, s) to the output string.

Similarly, we can define v, w, u and A for generalised stream X-machines (i.e. in
this case A will be a partial function A\: Q x M x X — '*) and Vg, Wg, Ug and Ag,
their extensions.

Lemma 3.1.3.
Let” be a stream X-machine, (q, M)Q x M and s Z*. If Ag(q, m, s)z [then
Pe(d, m, s)| = [s].

Note: |s| denotes the length of the string s.

Proof :
Follows by induction on the length of®.

Lemma 3.1.4.

Let 7l be a (generalised) stream X-machine, (qi2nQ x M and s, sf1 *. Then:
Ae(d, m, ss) Aeld, m, s)h(ug(d, m,),),
ug(g, m, ss’) = gug(g, m, s), S').

Proof :
Follows by induction on the length of ©.

Observation 3.1.5.

Let qg be the initia state of a deterministic stream X-machine and xg O X,
Xo = (1, mg, s), s 2* and let x O X be the final value computed by the machine
following the (unique) path (if any) emerging from qg having X as the initial
value. Then

X = Aegldo, Mg, S), We(do, Mg, S), 1).
Hence

Out(x) =Aeldo, Mo, S)-

76

Chapter 3. Stream X-machines.

Note: Recall that Out: X~ I'* is defined by Out(g, m, s) = g.

Lemma 3.1.6.
Let 7 be a deterministic stream X-machine with T = Q (i.e. dl the final states are

terminal) and let f =||B Be the function computed By. Then
f(s) =Aeldo, Mo, S), 0 s *.

Proof:
We havea(s) = (1, n, s). From the observation above it follows that

Out(x) =Aeldo, Mo, S),
where x [0 X is the fina value computed by the machine following the (unique)
path (if any) emerging from gq having xg = (1, mq, S) astheinitial value. If T = Q,
then the output functiofd can be applied in any state, hence

f(s) =an|B(s) = Out(x).
Hence

f(s) =Aeldo, Mo, S). ©

We can now give a characterisation of the functions that (generalised) stream X-
machines compute. First, we need the following definitions.

Definition 3.1.7.
Letf: Z* — I'* be a partial function. Then f is callsggment preserving if:
Os, tO 2*, if s, st dom f thenJu O I'* such that f(st) = f(s)u.

Definition 3.1.8.

Letf: Z* — I'* be a partial function. If
If(s)| = |s|2 sO dom f

then f is calledength preserving.

Definition 3.1.9.

Let f: * -~ I'* be a partial function. Then f is callegartial stream function if
i) f is both segment preserving and length preserving and
i) Os, tO Z*, if st 0 dom f, then $1 dom f.

Proposition 3.1.10.
Let 7 be a deterministic stream X-machine and let f: Z* - ['* be the partia

function computed by it. Then
1. fis length-preserving and segment preserving.
2. If dl the states of 7 are termina (i.e. T = Q), then f is a partial stream

function.

Proof:
1. If f(s)z O and f(st)z O, then

f(s) = Aeldo, Mo, S)
and

f(st) =Ag(0g, Mg, St)

77

Chapter 3. Stream X-machines.

and the result follows from lemmas 3.1.3 and 3.1.4.
2. It follows from f(s) Ag(dg,Mg, S),10 s =* using lemma 3.1.4®

Similarly, we have the following results for generalised stream X-machines.

Definition 3.1.11.
Let f: 2* - '™ beapartia function. Then f is caled a partial generalised stream
function if

i) it is segment preserving and

i) 0s, td 2*, if st 0 dom f, then $1 dom f.

Proposition 3.1.12.
Let 7 be a deterministic generalised stream X-machine and let f: 3* — I'* be the
partial function computed by it. Then

1. f is segment-preserving.

2. If all the states of 7] are termina (i.e. T = Q), then f is a generalised stream
function.

Proof:
Follows similarly to proposition 3.1.1®

We have now a characterisation of the partial functions computed by (generalised)
stream X-machine. Of course whether a particular function f that satisfies the
conditions from proposition 3.1.10 (or 3.1.12) can be computed by a (generalised)
stream X-machine with a certain type ® depends on the nature of @ (i.e. if f is
non-Turing computable ® has to be non-Turing computable, if f is computable ®
can be chosen to be computable, if f is fully computable, ® can be chosen to be
fully-computable). This problem was discussed in detail in the previous chapter.
The conditions from proposition 3.1.10 and proposition 3.1.12. are satisfied by al
functions computed by (generalised) stream X-machines regardless of the type ®
used.

If the stream X-machine model is to be used in testing real systems, it is natural
that we would like to have as much information about the outputs produced as
possible. For this reason we shall, from now on, be referring to stream X-machines
with al the statesterminal (i.e. T = Q). This means that the output produced by the
machine can be viewed in any of its states (i.e. 3 can be applied in any state q of
the machine), even though the machine is alowed to terminate its computation
only in atermina state. For example, if 7 is the specification of a program, the
condition T = Q is achieved if the program displays the intermediary outputs, as
well as the final ones. Of course, the intermediary outputs that need not be
displayed can be removed after the program is tested. In what follows, a stream X-
machine with all the states terminal will be referred to as a tuple
n=@ETr Q M®,F, o M)
(since T = Q the set of terminal states will be omitted).

78

Chapter 3. Stream X-machines.

3.2. Stream X-machine specifications of a correlator.

We interrupt our theoretical discussion and present some examples. In what
follows we use stream X-machines to specify a digital system, viz. a correlator.
The process of specifying adigital correlator isinvestigated by McEvoy & Tucker,
[46], and severa functiona specifications of the system have been produced. In
what follows we construct stream X-machine specifications for these models and
contrast the functional and machine specifications.

The heart of the correlator is a function that compares pairs of data-€lements from
two n-element vectors and returns the number of elements that are the same.

Let A be any non-empty set. Consider the function corr: AN xAN _, {0,...,n}
defined by

corr(a, b) = card({i| o= y}),
wherea= (ay, ..., &), b= (b1, ..., bp). That is, corr(a, b) is the number of elements
(cardinality) of the set of i's such thatadbj are equal.

3.2.1. First model.

We can now define a simple stream correlator. Let w: T— AN be a stream of
vectors of length n, where T is the set of natural numbers. The ideaisthat at every
clock cyclet O T, anew data-word w(t) is generated and delivered to the processor
corr.

The system should satisfy the following requirements:

1. The system computes the correlation of two n-elements in a constant number
of cycles (k).

2. The system reads a data vector a each tick of the clock.
3. The reference word r =(r...Ip) O ANis fixed.

4. The output period of the system is 1 clock cycle.

We are now able to produce a specification of the system as a function:
corr;: (T - AN - (T - ({0, ...,n} O {u})),

Ou, ift<k
corrf(w)(t) = O
O corrfwv(t-k), r), otherwise
where k is the computation time and r is the reference word.

Observation 3.2.1.1.
Let X and Y be sets and
f(T->X) > (T-Y)
be a (total) function. Il w, w (T - X) and tOJ T,
w(0) =w'(0), ..., w(t-1) =w'(t-1),w(t) =w'(t) O f(w)(t) = f(w)(t)

79

Chapter 3. Stream X-machines.

(.,e.Ow (T - X), f(w)(t) does not depend an(t+1), w(t+2), ...), then

XY 5 Y*
defined by

(v) = fW)(O) ... FW)(®), OV =1p...
withvj O X and w O (T - X) such that w(i) = vj, i =0, ...t, is a stream function.
It is clear that / can be uniquely determined from f and vice versa. Then we shall
call/ the stream functiodetermined by f.

Then we denote by

Corry: (AM* - ({0, ...,n} O {u}*
the stream function determined by corrq. A stream X-machine 71 which computes
Corrq is as follows.

1.Z=AN

2. ={0, 1, ..n}00 {u}

3. The set of states is Q T{d.., &}; qo is the initial state.

4. M = (A)K

5. my=(b1,0 ... bk 0), where bo O AN, i 0 {1, ...k}, are chosen at random.
6. ®={@1, ¢}, where@q, p2: M xZ - I x M are functions defined by

(b1, -, Be-1, Bio), W) = (u, (I, .., Bk, W),
@2((b, -.r k-1, b), W) = (corr(ly, 1), (b, .., Ik, W)),
Obq, ...k OAN OwOAN,
where r = (1, ...I) is the reference word.
7. F is represented in figure 3.1.

Figure3.1.

The state set replaces the clock T. The system is considered to be in the state gt ,t
0{0,1,...k-1} if t<kandin gk if t > k. The memory holds the last k elements of
the input vector stream which have been read.

3.2.2. Second modsel.
We modify the first model in the sense that, instead of reading the input vectorsin

paralel, their components are read seridly, one per clock cycle. The new
specification will be:

80

Chapter 3. Stream X-machines.

corry: (T= A) - (T = ({0, ...,n} O {u})),

Ou, ift<k+n-1
corrp(X)(t) =0
O corr((t-k-n+1), ... x(t-k)), r), otherwise

Theideais that we are correlating on a part of the stream x of length n. It takes n
steps before we have acquired enough elements from the stream x to form a word
of length n and we can begin correlating. So the delay before results emerge is
made up of the initialisation time n-1 and computation time of the function corr.
After this time, each result emerging is the result of a correlation that started k
steps earlier.

A stream X-machine 712 which computes Corra, the stream function determined
by corp will be the following:

1.2=A

2. ={0, 1, ..n}00 {u}

3. The set of states is Q 7{q.., k+n-1} and is the initial state.

4. M = A0+k-1

5. mg = (a1,0, - &+n-1,0), Whereg o U A, i O {1, ... k+n-1}, are chosen at
random.

6. ®= {91, P2}, where@q, ¢p: M x X - [x M are functions defined by

¢ (@ - &+n-2, X) = (U, (@, .-..&+n-1, X))
(@, .-, &+n-1). X) = (corr(@, --..&).), (&, - &+n-1. X))
Oa, ... k+n-10A OxOA,
where r = (1, ...Ip) is the reference word.
7. F is represented in figure 3.2.

Figure3.2.

3.2.3. Third model:

We will now remove the simplifying assumption of a fixed reference word. We
define a correlator that allows the reference word r to be programmed by means of
astreamy 0 (T —» A) and a control stream s 0 (T — B) (i.e. B is the set of
Booleans). The data items from stream y will be accepted or rejected according to

81

Chapter 3. Stream X-machines.

the value of the corresponding element of s. Only those elements of the y stream
which arrive at the same time as a true element on stream s will be accepted. The
elements of the y stream which are accepted will go to make up an n-element
word. This leads to a much more complicated specification because we cannot
assume that after n steps enough elements from the stream y will have been read
for correlation to start.

Letdq, .., dn: T x (T - B) - T bepartial functions defined such that y(dj(t, s)) is
the i-th element of the reference word at thetimetandlet d: (T - B) —» T bethe
time needed for the reference word to be completely loaded. The specification of
the new system in terms of functions is the following:

corrz: ((T- A)2 x(T - B)) - (T - ({0, ...,n} O {u}),

(b, if d(s) =0 ort <k + d§)
corry(x, y, 9)(t) =0
Ceorr((x(t-k-n+1),..,x(t-k)), (y(d1(t,9)), .. ¥(dn(t,9))), otherwise

where
di: Tx(T - B) - T,1<i<n,
are defined by:

00, ifs(0)=true

#0,9 =0
00, ifs(0) = false

Ot+1, i§(t+1) = true
@t+l,9 =0
O dn(t, 9), ifs(t+1) = false
forl<i<n
0,9 =0
O d+1(t, 9), ifs(t+1) = true
@t+1,9) = O
O di(t, 9), ifS(t+1) = false
d(T-B)->T
is defined by
Cmindt| dq(s, t) # O}, if Ot 0O T such that ¢(s, t) z O
dis) =0

(1], otherwise
and k is the computation time for corr.

Similarly to observation 3.2.1.1, we can define

82

Chapter 3. Stream X-machines.

Corrg: (A2 x B)* - ({0, ..., n} O {u})*,
the stream function determined by corrz. A stream X-machine that computes
Corrg is the following.

1.2 =A2xB.
2. ={0, 1, ...n}0dJ {u}.
3. The set of states is Q 7{d.., h+k-1}; Ao is the initial state.
4. M = Atk-1 x AN,
5.m9 = (21,0 - &+n-1,0» 10, 0) With 9 = (11,0 1n,0),
where [g O A, i0{1,...n}and g0 O A, jO{1, ...n+k-1}, are chosen at random.

6. P ={0@1, ¢, @3, ¢4}, Wwhere @1, ¢, @3, @4 M x X - [x M are partia
functions defined by:

dom@q = domag = (A2 x {false}) x M,
dom@p = domagy = (A2 x {true}) x M,

¢ (@ s &+n-2s (11, --h)), (X, y, false)) =
U, (@, --&+n-1. X), (1, ---)))

@@ s &+n-2s (11,), (X, Y, true)) =
U, (@ -—-&+n-1 %), (2, ..., ¥)))

e3(((@ s &+n-2s (11, --h)), (X, y, false)) =
(corr((ag, .-y &), (r1s - 1))y (@) --&+n-1, %), (M,)

M@ - &+n-2s (11,), (X, Y, true)) =
(corr((a, - &), (L, -y 1))y (@) - -&+n-1 X)s (12, .1, Y)))

7. F is represented in figure 3.3.

pl ol p1 @3
‘ ‘ ‘ ol ol
@2 @2
(o2}
Figure 3.3.
Conclusions.

Some conclusions can be drawn from this example. We have specified in terms of
functions and stream X-machines three versions of a fairly ssimple system, i.e. a

83

Chapter 3. Stream X-machines.

digital correlator. While the functional specification appeared to be sufficient for
the simpler models (the first and second), they became too complicated and
difficult to handle when they dealt with a more complex model (i.e. the third
model requires severa stream functions and their integration may be difficult to
understand). In this last case, a stream X-machine specification appears to be
much more intuitive and easy to understand.

3.3. Parallel and sequential composition of stream X-machines

We shall now introduce some basic operations that can be performed on stream X-
machines (i.e. paralel and sequential composition), describing the result of these
operations in terms of stream functions.

3.3.1. Parallel composition.

Definition 3.3.1.1.

Let=(Z,T,Q M, ® F, qgg mg)and ' =(Z, I, Q, M, @, F, qg, mg) betwo

deterministic stream X-machines. Then a deterministic stream X-machine
m=(&"r Q" MY, @', F', o', mg")

defined by:
13"=2x2
2.r" =T x[’
3.Q"=QxQ
4. M" = Mx M’
5. @" = (%o, %)
6. my" = (Mo, Mg)

7. ={q¢" =Y(o, @)| @"is not the empty function},
whereO @O ®, ¢ O P, @' = Y(@, @) isapartia function @: M" x 3" - " x M"
defined by:
(v, ¥), (M, mpY)), if @m, 0) # 0 andg(m'’,0") 00,
¢'((m, m),@",0)) = wherey, m) =@m, o) and {, m’) =¢(m’,0)
00O, otherwise

8. F" Q"< ®" 5 Q"is defined by
0 (F(9,9), F(q,9)), if e &, ¢ O @’ such that
F'((a, a)9) =0 (e @) =¢" F(g,¢ =0 and F(q'g)# U
00, otherwise

is called theparallel composition of 7 and?”’ (written?" =7 x).

Note: Since 7l and 7’ are deterministic and from the definition of 71’ it follows that
if Y1, @1) =W(@p, @) 0 ®" and

84

Chapter 3. Stream X-machines.

Fa.) #0, F(a\e1) # 0, F(a.92) # 0, F(a'.g2) # T,
then @1 = @p and @1" = @p". Hence F" is well defined. Also, since 7l and 7’ are
deterministic/l" is deterministic.
The following proposition shows the relationship between the functions computed
by two machines and the function computed by their parallel composition.

Proposition 3.3.1.2.
Letm=(Z, T, Q M,d F dg mg)and ' =(Z, I, Q, M", ®, F, qg’, mg) be two
deterministic stream X-machines that compute f: 3* - M and g: £* - ™
respectively. Then 71 x 71’ computes h, where h: (£ x X)* - (I' x ['")* is defined
by:
a(f(s), g(s)) if f(sy O and g(s'¥ O
h(s, s’) =0
00, otherwise
OsO2z, s*0OX* with |s| = |s]|.
Hence h is still a stream function.

Note: If s= 01... 0k, S = 01'... 0k, with 01, ..., ok 0 Z, 01/, ..., oK' O &', then
(s,8) =61,01) ... Ok, OK)-

Proof:
Follows by induction on t = (s, s®

Example 3.3.1.3.

Letm=(Z,T,Q M,® Fqgg mg)and'=(Z, I, Q, M, ¥, F,qy, mg), where
Z:{a, b}’ Z’:{C, d}’ r :{X1y}’ r,:{u1 V}1 Q:{q01 q]}! Q’:{q0,1 ql,}1 M
=M ={0, 1}, mg=mg =0, ®={p, ¢}, P = {1, 7} and F and F
represented in figures 3.4 and 3.5 respectively.

PLMxZ T xM, @, @: M xZ - ["x M are partial functions defined
by:

domeq = {(0, a)}; ©(0, a) = (x, 0);

domayp = {(0, b)}; @(0, b) = (x, 1);

domeq’ ={(0, ¢)}; ¢'(0, c) = (u, 0);

domeyp’ = {(0, d}; @'(0, d) = (v, 1).

(OXN
02
Figure 3.4.

85

Chapter 3. Stream X-machines.

02
OXN

Figure 3.5.

M and M’ will compute f and g respectively, where f: 3* — M'* andg: 2* - I'*
are defined by:

dom f={d n> 0} O {a"b| n= 0};

f(an) = Xn;

f(ab) = x1*+1and

dom g ={1}0 {cd"| n= 0};

9(1) =1,
g(cd") = uv.

Then 7" = (X xZ, T xT", QxQ, M xM, ®", F, (qg, dg), (Mg, Mg)) is the
parallel composition of 71 and 7', where @" = {@11", @®12", ¢21", ¢22"}, and F' is
represented in figure 3.6.
The partial functiong1 1", ©12", @21" and@p2" are defined by:
domey 1" ={((0, 0), (& c))} ®11"((0, 0), (a, €)) = ((x, u), (0, 0));
domey 2" ={((0, 0), (&, d))}; 012°((0, 0), (a, d)) = ((x, v), (0, 1));
domgpy” ={((0, 0), (b,)} ®21"((0, 0), (b,)) = ((x, u), (1, 0));
dom@p2" = {((0, 0), (b, d))}; @22"((0, 0), (b, d)) = ((x, V), (1, 1)).

86

Chapter 3. Stream X-machines.

Then" computes h:X x 2)* - (I x ')* defined by
dom h ={1}J {(a, ¢)(a, df"| n= 0} O {(b, c)}1 {(a, c)(a, di\(b, d)| n= 0};
h(1) = 1;
h((a, c)(a,) = (x, u)(x, v,
h(b, c) = (x, u);
h((a, c)(a, &b, d) = (x, u)(x, W+l

3.3.2. Sequential composition.

Definition 3.3.2.1.

Let M =(Z, Q, Q M, D F qg mg)and ' = (Q, T, Q, M, &, F, gy, mg) two

deterministic stream X-machines. Then a deterministic stream X-machine
mll : (Z’ r’ Qll, MII, ¢ll, Fll’ %II’ m()II)

defined by:
1.Q =QxQ
2. M"=Mx M’
3.@" = (do %)
4. my" = (Mo, Mg)

5. ¢ ={q¢" = (e, @)|¢"is not the empty function},
where D @O &, ¢ O @', @' = (@, @) isapartia function ¢': M" x X - T x M"
defined by

O(y, (m1, mp")), if @m, 0) # 0 and@(m’,w) # O,
@'((m, m),0) = O whered, mp) =@m, o) and ¢, ") =@(M’,w)
00, otherwise

6. F" Q"< ®" -, Q" is defined by
O(F(g,9), F(q,¢)), if OpO &, ¢ O @’ such that
F'((a, a).¢) = O W(p @) =¢", F(q,9) # U and F(q'g) # U
(11, otherwise

is called thesequential composition of 7 and?’ (written?" = M’).

Note: Similar to parallel composition, since 7l and 71’ are deterministic, F"' is well
defined and)" is deterministic.

Proposition 3.3.2.2.

Let = (Z, Q, Q M, ® F do mg) and "= (Q, ', Q, M, @, F, gg’, mg) two
deterministic stream X-machines that compute f: 3* - Q* and g Q* - I'*
respectively. Then M7’ computes h: 2* - I'*, h =fg. Hence h = fg is still a stream
function.

Proof:
Follows by induction on 2

87

Chapter 3. Stream X-machines.

Example 3.3.2.3.

Let m = (21 Q! Qa M! q)1 F1 qO! mo) and m’ = (Qa ra Q,1 M,1 CD’, F’a q0,1 mo’)1 Where
z:{a' b}! Q :{C, d}, r :{X! y}l Q:{qu ql}l Q,:{qO’l ql,}! M = M’:{O, 1}1
Mo=mMg =0, ®={@1, g2}, P’ ={@1, ¢} and F and F represented in figures 3.7
and 3.8 respectively.

PLe:MxZT - QxM, @, @:M'xQ - I xM arepartia functions defined
by:

dome1 ={(0, a)}; (0, a)=(c, 0);

dom@p ={(0, b)}; @(0, b) = (c, 1);

domer ={(0, c)}; @1'(0, c) = (x, 0);

domay ={(0,d}; @'(0,d)=(y, 1).

(OXN
02

Figure3.7.
0N
(0N
Figure 3.8.

M and 7’ compute f and g respectively, where f: 2* - Q* and g: Q* - I'* are

defined by:
dom f = {d n=> 0} O {a"b| n> 0};
f@ =d;

f(ahb) = d*+1land

dom g = {1} 0 {c"*Y n> 0} O {c"*+1d| n> 0};

g(1) = 1,
g(*th =xn+l
g(cM+1d) =x1*y.

88

Chapter 3. Stream X-machines.

Then, 71" = (Z, T, Q x Q, M x M, ", F", (qo. Go), (Mo, M) is the sequential
composition of 71 and 7', where ®" = {@11", @»1"} and F" is represented in
figure 3.9.

@1 1" and@p1" are defined by:
dom@y1"={((0, 0), @)} @11"((0, 0),

a) 0, 0));
domap1” ={((0, 0), b)}; @21"((0, 0), b)

1, 0);

—~

(x,
(x,

Note: @11" = W(e1, @1), @21" = (P2, @1); W(P1, 92) and Y(gp, @) are the
empty function.

Figure 3.9.

It is clear that!" computes hZ* . I'* defined by
dom h ={d| n= 0}0 {a"b| n= 0};
h(@) = x;
h(ab) = x1+1,

3.4. Minimal stream X-machines and minimal coverings of stream
X-machines.

In this section we shall discuss two types of stream X-machine minimality. First,
we present some state machine theory that we shall be using later on.

89

Chapter 3. Stream X-machines.

3.4.1. Some state machine theory.

In this section we refer to (finite) state machines with all the states terminal.
Unlike section 2.1.1, we shall also consider the case when the output alphabet is
not empty.
We shall denote a deterministic state machine (or automaton) by a tuple
A=@E, T, Q,F G, g),
where 2 and I are the finite input and output alphabets respectively, Q is the state
set, @ the initial state and
FOxZ - QandG: QxZ - T
are partial functions with
dom F =dom G.
F is called thanext state function and G theoutput function of 4. We also define
Fe Qx3* - Qand G QxXx* - I'*
by:

Fe(d, 1) = q,
ORFe(g, 9,0), UoOZ,sO* such that

Fe(q, 0) = O Fe(g, 9 # 0 and RF(q, 9, 0) # 0 defined
00, otherwise

Gelg,1) =1

0Gel(d, s) G(R(d, 9,0) Do 0%, s0Z* such that
Gelg,) = U Gelg, s)z U and G(R(q, 9,0) 2

00, otherwise

Fe and Gg are called the extended next state function and extended output function.
Obviously dom g = dom G Also, by induction it follows that

Fe(a, ss’) = B(Fe(a. s), s') and &q, ss’) = @(qo,) G(Feldo: S). S7).
0gqQ,s, sl

Also, for any g1 Q, we denote by
Feq:2* - Qand Qg :2* - I'*
the (partial) function defined by
Fe.q (s) = R(q, s),0 s >* and
Geq (s) = G(q, s),0 s z*.
The (partial)function computed by 4, f: Z* - I'* is defined by
f(s) = Gl(qp, S), s &*.
It is obvious that [0 g 0 Q, Ge.q is a partia stream function. Hence any state
machine computes a partia stream function. If the output set isempty (i.e. ' = 0),
then an automaton will be denoted by a tuple
1= Q F @)
In this case L = dom f will be tHanguage accepted by the machine.

The majority of the concepts and results we shall be presenting are valid for a
(possibly infinite) state machine. When the results depend on the state set being

90

Chapter 3. Stream X-machines.

finite, then the machine will be caled a finite state machine. The concepts and
results in this section are largely from Eilenberg, [12].

3.4.1.1. Morphisms,
A morphism is a particular type of state mapping between two state machines.

Definition 3.4.1.1.1.
Letd=(T,QF G, ggand £=(%T,Q,F, G, qo,) betwo deterministic state
machines having the same input and output alphabets. Then g: 4 - { iscadled a
morphismif g is a function g: Q- Q’ such that:

9(F(q,0)) 0 F'(9(a),0), DqU Q ando U Z,

G(q,0) 0 G’ (9(q),0), 0 g0 Q ando [= and

9(%o) = %
Note: g(F(q, 0)) O F(g(g), o) means that either g(F(q, 0)) = O or g(F(q, 0)) # O
and g(F(ap)) = F'(9(0).0).

Definition 3.4.1.1.2.

A morphism g« — 4’ is calledproper if:
9(F(9,0)) = F'(9(a)0), Dgl Qando U Z,
G(q,0) = G'(g(9).0), D g0 Q ando O %.

Observation 3.4.1.1.3.
If the output set is empty (i.e. ' = [0) then a morphism will be a function
g: Q » Q' that satisfies
9(F(q 0)) U F(9(a),0) and
9(%) = G-
A proper morphism satisfies
9(F(q,0)) = F'(9(a).0).

Definition 3.4.1.1.4.
A morphism g is called aisomorphismiif it is proper and bijective.

In what follows some properties of morphisms will be stated. First, we give the
following definition.

Definition 3.4.1.1.5.
Let f, g be two partial functionsf, g: 2* — I'*. Then we say that f isincluded in g
(written fO g) if:

dom fO dom g and

f(s) = g(s),00 s dom f.

Lemma3.4.1.1.6.
If g: 4 — A isamorphism then 00 g O Q, Geq U Gg.g(q). If g is proper, then
Geq = G.9(0).

91

Chapter 3. Stream X-machines.

Proof:
Follows by induction on 8l 2*. ®

Proposition 3.4.1.1.7.
Let 4, 4’ be two deterministic state machines, f and f’ the functions computed by

them and g7l — 7’ a morphism. Thent f'. If g is proper, then f = .

Proof:
Gelo U Ge.0p, f= Gaqg, ' = G.qg'. If g is proper, then £0q = Gg'.0p'. ®

3.4.1.2. State machine minimality.

In this section, the concept of minimal state machine will be defined. It will be
shown that a minima machine can be uniquely derived from the function that it
computes. Obvioudly, if Q is afinite set, then a minima machine is the machine
with the minimum number of states that computes a certain function. However,
the concept of minimal machine and its uniqueness (up to isomorphism) does not
rely on the finiteness of the state set. The concepts and results in what follows are
largely from Eilenberg, [12].

Definition 3.4.1.2.1.

Let4 = (%, T, Q, F, G, qp) be adeterministic state machine. Then astateq U Q is
called accessible if Os U 2* such that g = Fg(dg, S). Also 4 is called accessible if
all the states are accessible.

Definition 3.4.1.2.2.
Letdi=E, T, Q, F, G, @) be a deterministic state machine. Then
=T, Q,F,G,g)defined by:

1. Q' ={qU Q|Os[¥* such that q = Kdq, S)},

2. F(go) = F(q,0), g0 Q ando O Z,

3.G'(qo) = G(q,0), 0qUQ ando O Z,

4. =
is called the accessible part of 4, denoted 4’ = Acc(d). Also, Q will be denoted by
Acc(Q). It is clear that' is accessible.

Definition 3.4.1.2.3.
Let 4 be adeterministic state machine and S [0 Z*. Then we define an equivaence

relation ~gon Q by g ~gq'iff Gg(q, S) = Ge(d, S), UsU S. If q~g0, we say that
gand q are Sequivalent. If S=3* we say that g and ' are equivalent (written g
~q).

Observation 3.4.1.2.4.

If the output alphabet is empty (ilfe=) then
qg~sqiff (HsOS,(q,s)Xddom Riff (q’, s)J dom Ry).

92

Chapter 3. Stream X-machines.

In other words, [s S, there exists a path labelled s from q iff there exists a path
labelled s from q'.

Definition 3.4.1.2.5.
A deterministic state machinds calledreducedif 0 g, g0 Q,q~qll q=0.

Definition 3.4.1.2.6.
Let 4 = (&, T, Q F, G, gp) be a deterministic state machine. Then we define
L=dl~4"=C,T,Q,F,G,g)by:

1.Q'= Q/0={[q]| g O Q}, where [q] is the equivalence class of g,

2. F([9],0) = [F(q,0)], g Qando L Z,

3. G'([a].0) = G(q,0), g0 Q ando [Z,

4. @ = [dol
Then ' is called the reduced part of 4, denoted 4’ = Red(4). It is clear that 4 is
reduced.

Note: F' and G’ are well defined since
q~q'0 G(q,0) =G(g’,0) andF(q,0) ~ F'(9,0).

Definition 3.4.1.2.7.
A deterministic state machirds calledminimal if it is accessible and reduced.

It will be proven that the minimal state machine that computes a certain function is
unique up to an isomorphism and it can be derived uniquely from the function it
computes. First we need the following definition.

Definition 3.4.1.2.8.
Let f: 2* - I'* beapartia stream function. Then [0 s 0 dom f we define a new
partial function f.s2* - '* by
f.s(x) = f(sy1f(sx)
Note: O's, tO =* if Ou O Z* such that t = su, thenk = u.
It is clear that f.s is also a partial stream function.

Then we have the following result.

Proposition 3.4.1.2.9.
Let f: 3* - I'* be apartia stream functionand let { = (£, T, Q, F, G, qp) bea
deterministic state machine defined as follows:
1.Q={f.s|dldomf},
2. F is defined by:
O f.so, if so 0 dom f
F(f.s,0) =0
00, otherwise
3. G is defined by:
G(f.s,0) = f.s(0),
4.¢=f1

93

Chapter 3. Stream X-machines.

Then 4 is a minimal deterministic state machine. Furthermore, if 4’ is a minimal
deterministic state machine that computes f, themd{’ are isomorphic.

Proof:

The fact that 4 is accessible and reduced follows from the construction of . If
£ =(E T, Q,F, G, qg) isaminima state machine that computes f, then we
defineafunction g: Q' - Q by g(q) = Ge.g. Since 4’ is accessible, it follows that g
is surjective. Since 4’ is reduced, it follows that g is injective. It can be verified
easily that g is a proper morphis@.

Therefore, any two minimal state machines that compute the same function are

isomorphic and the following diagram commutes.
Acc

A > Acc(d)

Red Red

Acc

Red()™ Min({)

Furthermore, the minimal machine can be determined uniquely from the function
it computes.

If the state set is finite Acc(d) and Red(4) can be determined by some finite
algorithm (see Eilenberg [12]). Hence, the minimal machine that computes the
same function as a certain automaton 4 can be determined agorithmically. Also, if
fis a partial function computed by a finite state machjnieen

card({f.s| S0 dom f }) < card(Q),
where Q is the state set of 4. Then, we can give the following characterisation of
the functions computed by finite state machines.

Corollary 3.4.1.2.10.

Let f: 2* - I'* apartia function. Then there exists a finite state machine 4 that
computes f if and only if f isapartial stream function and the set {f.5] s[J domf }
is finite.

3.4.2. Stream X-machine minimality

Let us return to stream X-machines. In this section we shall be discussing the
minimisation problem for stream X-machines. First, we make the following
remark.

It is clear that a computation that a stream X-machine performs is completely
determined by: the state set Q, the memory set M, the transition function u, the
output function A, the initia state g, the initial memory value mg and the set of
terminal states T (T will be ignored in what follows since will consider that all the

94

Chapter 3. Stream X-machines.

states are terminal, i.e. T = Q). Of course these will not determine uniquely the
type ® and the transition diagram F (there might be machines with different ®’s
and F's that have the same Q, M, u, A, gg, Mg), but they determine uniquely the
function computed. Therefore, if we are interested only in the functionality of the
machine and we do not restrict the type ® used to a particular set of functions,
then we can treat a stream X-machine as an (infinite) state machine
m=E, T, P, uA, po),

in which an actual state pisapair (q, m), where g is the current state and m is the
current memory value (i.e. the state set is P = Q x M with the initial state
Po = (do, M@)). Therefore, the minimisation techniques presented in section
3.4.1.2 can be applied and the resulting machine will be minimal w.r.t. Q x M (i.e.
the new state set Q' and memory M’ are chosen such that Q' x M’ isthe set P’ of the
minimal (infinite) state machine with the same functionality as = (Z, I, P, u, A,
Po)). However, this type of minimisation is usualy of little interest for the
following reasons:

M is usualy infinite (in practice very large), hence the minimal state machine
cannot be determined algorithmically.

The basic functions @’ obtained using this type of minimisation can be much
more complicated then the initial ones. Additionally, in many cases the X-machine
model is used to build more complex models from simpler components (the @'s)
and hence the memory and the set ® of the minimal machine should be the same
as the initial one.

However, this type of state machine minimisation could be used in special cases
(i.e. when M is finite and not too large or when the construction of the minimal
state machine is obvious), the purpose being to minimise the resources (i.e. Q x
M) with which a certain functionality can be achieved.

Having said that, we shall now discuss a more useful type of stream X-machine
minimality, i.e. given a certain stream X-machine 7 with the type ® that
computes the function f what is the 'smallest’ (i.e. in terms of states) stream X-
machine with the same type ® that computes f ? Obviously, we can convert an X-
machine into a finite state machine by treating the elements of ® as abstract
symbols. But the minimisation of an X-machine is more complicated then that of a
finite state machine since each element in ® has a well defined semantics (it is a
partial function) rather than being merely an input symbol. However, we shall
show that, if ® satisfies certain conditions, then the minimisation of a stream X-
machine can be reduced to that of a finite state machine. First we need the
following definitions and preparatory results.

As we have mentioned, given an X-machine 71, we can convert it into afinite state
machine 4 by treating the elements of @ as abstract input symbols. We are, in

effect, "forgetting" the memory structure and the semantics of the elements of ®.
We call this theassociated automaton of 7.

95

Chapter 3. Stream X-machines.

Definition 3.4.2.1.

Lete M = (%, T, Q M, & F gqg mp) be a deterministic X-machine. Then the
automaton 4 = (P, Q, F, qp) over the alphabet ® is called the associated
automaton of ..

Recall that @ denotes the (possibly infinite) set of basic functions that could be
used by the machine. However, only afinite subset @’ [@ is actually used, hence
4 will be an automaton over the input alphabet ®'. For the sake of simplicity, ®’
will be not mentioned explicitly (of course, it can be derived from the definition of
F).

Obviously 4 is an automaton with empty output alphabet. We shall extend F to Fg
and define Fe.q as in section 3.4.1. It is clear that dom Fe.qq is the language
accepted by 4 and 0 g O Q, dom Feq is the language accepted by
g = (P, Q, F, g), where Aq is the automaton obtained from 4 by considering g as
initial state. Then, we have the following result.

Lemma 3.4.2.2.

Leem =T, QM, P Fgg mg)and =(Z, T, Q, M, d, F, qg, mp) be two
deterministic stream X-machines with the same type ® and initial memory mg, 4
and {’ their associated automata and let q U Q, g’ U Q. If dom Fe.q = dom Fe.q,
then Ag(g, m, S) = Ag(q, m, s), I m O M, s Z*. In particular, if 4 and " accept
the same language, then f = f’, where f and f’ are the partial functions computed by
M and?’ respectively.

Pr oof:
By induction on k = |s| it follows easily that:
OqlQ, g Q such that domdq = dom k.q’, theld m O M, s ¥* either
). Ae(d, m, s) =Ag(g, m, s) =1 or
ii). Ag(d, m, s) 2Ag(@’, m, sk 0, we(g, m, s) =ws'(q’, m, s) and
dom k.0 = dom Fa.qp’, where q = vg(g, m, s) and ¢ = vg(Q’, m,) ®

In general, the converse implication is not true, a counter-example will be given
later on (see example 3.4.2.7).

Similar to the definition of an accessible state for state machines, we shall say that
a state g of a stream X-machine is reachable if there exists an input sequence
which takes the machine from initial state gg and initial memory mg to . We shall
also say that amemory value mis attainable in q if there exists an input sequence
which takes the machine frong @nd ng to g and m.

Definition 3.4.2.3.
A state g is called reachable if Os 0 =* such that ug(dg, Mg, S) = (g, M) for some
m [M.

96

Chapter 3. Stream X-machines.

Definition 3.4.2.4.
Given astream X-machine 7, g 0 Q and m O M, misattainablein q if thereis an

input sequence(s Z* such that ¥(gg, Mg, S) = (q, M).

Definition 3.4.2.5.
Given a stream X-machirieand g Q,

Att(q) = {m O M| m is attainable in q}

We can now formalise the concept of a minimal stream X-machine. In what
follows we shall be referring to deterministic stream X-machines with the same
memory (M = M), type (P = @), initial memory value (mg= mg), input (£ = %)
and outpu(l' = ') alphabets. Then we have the following definition.

Definition 3.4.2.6.

Let = (%, T, Q M, ®, F, g, Mg) be a deterministic stream X-machine which
computes apartial function f. Then 7 is called Q-minimal w.r.t. ® if it satisfies the
following:

LiEm=E T, Q,M,®, F,dy, mg) isadeterministic stream X-machine with
the same type ® and initial memory value mg which computes the same partial
function f, then 7’ has a least the same number of states as 7 (i.e
card(Q)= card(Q)).

2. By removing any arc or number of arcs from 7, the function computed will
change.

Note: An equivalent form of condition 2 is the following:

2.01tm=E, I, Q,M, d,F,qg, mp) isadeterministic stream X-machine with
the same type @ and initial memory value mg which computes the same partial
function f and there exists a bijective morphism g: £ - 4, where 4 and 4" are the
associated automataofand?”’ respectively, then g is an isomorphism.

The Q-minimality as presented above has some obvious properties:

1. If M is Q-minimal w.r.t®, then each state is reachable.

2. 1f M and 7’ are two stream X-machine such that 7 is Q-minimal w.r.t. ® and
their associated automatand 4’ are isomorphic, thei’ is Q-minimal w.r.t®.

3. If M is Q-minimal w.r.t.®, then the associated automataa minimal.
However, the converse implication (i.e. if 4 isminimal, then 7 is Q-minimal w.r.t.
®) is not always true. For example, let 7 be the stream X-machine from example
3.4.2.7.

Example 3.4.2.7.

Letem=(Z,T,Q, M, ® F qgg Mg), withZ ={a b}, I ={x,y}, Q={do, a1},
M ={0, 1}, mg=0, ® ={@q, g2} and the next state function F as represented in
figure 3.10.

97

Chapter 3. Stream X-machines.

¢L - MxZ - T xM are partial functions defined by:
domep ={(0,a)}, ¢(0, &) =(x, 0);
dom@z ={(1,b)}, @1, b)=(y, 1)

(OXN
Q2
Figure 3.10.

It is clear that the associated automaton 4 of 7 is minimal but g1 is not reachable.

Even if each state of the machine is reachable, the minimality of the associated
automaton does not guarantee that the machine is Q-minimal. For example, let 7]
be the stream X-machine from example 3.4.2.8.

Example 3.4.2.8.

Letem=(ZT,Q M, ®d F qo Mmg), whereZ ={a b}, I ={x, y}, Q={qo, a1},
M ={0,1}, mg=0, ® ={q@q, @2}, with@q, @p: M xZ - [x M being the partia
functions defined in example 3.4.2.7, and the next state function F represented in
figure 3.11.

02

(OXN

Figure 3.11.

It is clear that the associated automaton 4 of 71 is minimal and both qq and g7 are
reachable. However, since

Att(qq) = {0} and

-~0o O X such that (Og) O domay,
@ can be removed from figure 3.11, without changing the functionality of the
machine.

However, if @ satisfies some additional conditions, the Q-minimality can be
reduced to the minimality of the associated automaton.

98

Chapter 3. Stream X-machines.

Definition 3.4.2.9.
Let@q, ¢ O ®. Thengq, ¢ are said to beutput-distinguishable if:

OmOM, oOZ%, if (m, 0) = (y1, m1) and gp(m, 0) = (y2, mp’), with
m1’, mp' O M, y1, y2 O T, thenyp # yo.

Definition 3.4.2.10.
A type @ is calledoutput-distinguishable if:
O @1, @2 O @, then eitherpy = @p or @1 and@y are output-distinguishable.

What this is saying is that we must be able to distinguish between any two
different processing functions (the ¢'s) by examining outputs. If we cannot then we
will not be able to tell them apart.

Definition 3.4.2.11.
Let@ [®. Thengis said to beomplete if:
OmOM, Do O Z such that (mg) O dom@.

Definition 3.4.2.12.
A type @ is calledcomplete if:
O@Od, @is complete.

This condition will ensure that al the accessible states in 4 are reachable in .
Also, it will prevent the situation in which there existiqQ andg [0 ®, such that
(Att(g) x Z) n dome=1.

For example, al three X-machine models of the correlator have the type complete
and output-distinguishable.

We can prove now that if the associated automaton 4 is minimal and the type @ is
complete and output-distinguishable, then 7 is Q-minimal w.r.t. ®. This will be
proved by showing that if two machines with ® complete and output-
distinguishable compute the same function, then their associated automata accept
the same language.

Lemma 3.4.2.13.

Letm=(T,Q M, P F gg mg)and M =(Z,T,Q,M, ®F, gy, mg) betwo
deterministic stream X-machines with ® complete and output-distinguishable and
letqgdQandq O Q and m O M. If A(g, m, s) =A(q, m, s), 0 s0Z* then g and
g are ®*-equivalent as states in { and ' respectively. In particular, if 7 and M’
compute the same function, theand{’ accept the same language.

Proof:
We prove by induction that

99

Chapter 3. Stream X-machines.

Ok>0,Aglg, m, s) =Ag(@, m,s), IsU>* with|s| <k, 0 gandq are
oK-equivalent.

Let us prove that this is true for k = 1. Lefldq, q'C] Q' and nil M such that
Ae(d, m,0) =Ag(g, mo), Do 0.

Let @ O ® be such that F(qg, ¢) # O (i.e. there exists an arc labelled ¢ from q).
Since® is complete[Jo [= such that (mg) [0 dom@. Then let
@®m, o) =, m), withyd T, m OM.
Then A(g, m, 0) =y, hence A'(q’, m, 0) =y. Then Og@ [& such that F(q, @) # U
and
@(m,o) = (y, m’) with my’ O M.
Since® is output-distinguishable, we hage=@.
Then
OeOd, if F(q,) # 0 then F(q'gp) # .
Similarly we can prove that
OeOd,if F(q,9) # 0 then F(q) # .
Hence g and q’ ak-equivalent.

Let us assume that the statement above istruefork > 1. Let q 0 Q, g O Q and
m [0 M such that
Ae(d, m, s) AA(Q’, m, sYI sl Z* with |s|< k+1.
It is clear that q and g’ ag&ktL-equivalent iff:
I) g and q’ aré-equivalent and
i) 0 @O ® such that F(q, @) # [, qq and qq’ are dK-equivalent, where a1
= F(a,9) and q’ = F(q,9).
Since q and g are d)k-equivalent, they are ®-equivalent. Let @ [0 @ such that
F(g, ¢ # U0 and let g1 = F(g,) and g1’ = F(’, ¢). Since @ is complete, o [X
such that (mg) O dom@. Then let
@®m, o) =y, m), withyd T, m O M.
Then u(gq, mp) = (q1, m) and u’(q’, mg) = (o',). Since
Ae(a, m,as) =\(q, m,0) Ag(d1, My, S),
Ae'(g, m,os) =A'(q, m,0) Ag(’, My, s)U s Z* and
Ae(d, m,0s) =Ag(q, m,os) 0 s 3* with |s|< K,
we have
Ae(01, M1, S) =Ag (a1, M,)0 s Z* with |s|< k.
Hence q and q’ aredK-equivalent®

Theorem 3.4.2.14.

Let=(2,T,Q M, ® F go mg)and 7' = (X, T, Q, M, @, F, go, mg) be two
deterministic stream X-machines which compute the same partial function (f = ")
and let 4 and {' their associated automata. If @ is output-distinguishable and
complete and and{’ are minimal, then and{’ are isomorphic.

100

Chapter 3. Stream X-machines.

Proof:

From lemma 3.4.2.13. it follows that 4 and 4’ accept the same language. Since 4
and{’ are minimal, it follows that and{’ are isomorphic®

Corollary 3.4.2.15.

Letm=(Z, T, Q, M, &, F, qg, mg) be adeterministic stream X-machine with ®
output-distinguishable and complete. If the associated automaton 4 is minimal
then? is Q-minimal w.r.t.®.

Proof:

Let f the function computed by 7 and let ' = (£, ', Q', M, @, F, qg’, mg) be a
Q-minimal stream X-machine w.r.t. ® which computes f and 4 its associated
automaton. Then ' is minimal. From theorem 3.4.2.14 it follows that 4 and 4’ are
isomorphic. Hencél is Q-minimal w.r.t®. ®

Therefore, if @ is output-distinguishable and complete the Q-minimality can be
reduced to the minimality of the associated automaton and the Q-minimal machine
which computes a certain function is unique up to an isomorphism of the
associated automata. This could be very significant for a stream X-machine testing
theory. Indeed, if the specification and the implementation of a system can be
described as two stream X-machines 7, and 7’ with the type ® complete and
output-distinguishable, then testing that the implementation satisfies the
specification will be reduced to showing that the minimal automata of 7 and M’
respectively are isomorphic. On the other hand, it is fairly clear that any type @
can be transformed into a complete and output-di stinguishable type by augmenting
the input and output alphabets. These ideas will be discussed in more detail in the
next chapter.

Obvioudly, if @ is output-distinguishable and complete the Q-minimal machine
that computes the same function as a certain stream X-machine can be determined
algorithmicaly (i.e. we apply an algorithm which minimises the associated
automaton).

3.4.3. Minimal coverings.

Let 7 be a stream X-machine specification of a system and f be the partia
function it computes. In some situations it might be acceptable to add extra
functionality to the system, as long as the 'minimal’ functionality required
determined by f remains unchanged. Therefore, any machine 7’ which computes f’
such that f O " will be an acceptable specification of the same system. In this
context, a natural question that arises is how we can determine such as 1’ with the
minimal number of states. In what follows we shall address this problem for
stream X-machines with @ complete and output-distinguishable. First, let us
formalise this problem.

101

Chapter 3. Stream X-machines.

Definition 3.4.3.1.

Let = (%, T, Q M, &, F, g, mg) be a deterministic stream X-machine which
computes a partial function f. Then a deterministic stream X-machine
m=(E,r,Q, M, &, F, gy, mg) with the same type ® and initial memory value
Mg is called a covering of 7 w.r.t. @ if f O f', where f' is the partial function
computed by’

Definition 3.4.3.2.
Letm =(%, T, Q, M, ®, F, qg mg) be a deterministic stream X-machine which
computes a partial function f. Then a deterministic stream X-machine
m=rQ,M®,F, g, M), is called aninimal covering of 7 w.r.t. ® if:

1.7 is a covering ofl w.r.t. ®.

2. 1f m" is a covering of 7 w.r.t. ®, then M" has at least the same number of
states agl’ (i.e. card(Q"e card(Q’)).

3. If M™ is a deterministic stream X-machine obtained from 71’ by removing
any arc or number of arcs, theéi1 is no longer a covering of w.r.t. ®.

Note: Similar to the definition of Q-minimality, condition 3 can be formalised in
terms of morphisms.

Since the state set of 7 is finite, it is clear that there exists at least one minimal
covering of 7. We will now show how all the minimal coverings of a stream X-

machine with @ output-distinguishable and complete can be constructed.
Obvioudly, it is sufficient to solve this problem for machines whose associated
automata are minimal (otherwise, the associated automaton of the machine is
minimised first). First, we introduce some new concepts and prove some
preparatory results.

Definition 3.4.3.3.
Let { = (P, Q, F, o) and ' = (P, Q, F, qg) be two deterministic state machines
with empty output alphabet. Then we say that {' > 4 if there exists a function
g: Q » Q’ such that

9(%) = o' and

dom Req U dom Ry.9(0),0 q 0 Q.

In other words, g: Q - Q will satisfy g(qg) = o' and U q O Q, if Dapath in 4
labelled @1... @ emerging from g then U a path in 4 labelled @1 ... g emerging
from g’ = g(q).

Obvioudly, if £ =4 then L O L', where L and L’ are the languages accepted by
andd{’ respectively. If is accessible, then the converse implication is also true.

Lemma 3.4.3.4.

Letd = (P, Q,F, qg) and A’ = (P, Q, F, gg) be two deterministic state machines, 4
accessible and L and L’ respectively the languages accepted by them. If L O L,
thend’ = 4.

102

Chapter 3. Stream X-machines.

Proof:
We define g as follows. Obviously, we take g(dp) = gg- Let g U Q - {qg}- If £ is
accessible, theflv O @* such that Fdg, V) = g. Then, we take
9(a) = R (Ao’ v)-
It is easy to verify that domgf [dom Ry'.g(q).®
Note: Clearly, g might not be unique.

Let 71 and 7" be two deterministic stream X-machines with the same memory, type
and initial memory value and let 4 and 4, respectively, be their associated
automata. If 4’ = 4 then it can be proven easily that the partial function computed
by 7 will be included in the one computed by 7’ (i.e. it follows by induction
similarly to lemma 3.4.2.2). If ® is complete and output-distinguishable and 4 is
accessible, then the converse implication is also true.

Lemma 3.4.3.5.

Leem=C, L, Q M, d F g mg)and M= (T, Q, M, d, F, g, mg) be two
deterministic stream X-machines with @ complete and output-distinguishable, f
and f’, respectively, be the partial functions computed by them and 4 and {,
respectively, be their associated automataisifaccessible andf f', thend’ > 4.

Proof:

By induction (similar to the proof of lemma 3.4.2.13), it followsthat L [0 L’, where
L and L’ are the languages accepted by 4 and 4’ respectively. Hence, using lemma
3.4.3.4, we havé = {. ®

Therefore, if 7 is a deterministic stream X-machine with ® complete and output-
distinguishable and its associated automaton « is minimal, the problem of finding
the minimal coverings of 7 can be reduced to finding al the machines 71’ such
that:

1.4’ = 4, where{' is the associated automatori/iof

2. 1f M" is a deterministic stream X-machine with the associated automaton 4"
such that" > 4, thend{" has at least as many states’'as

3. If 4" is an automaton obtained by removing an arc or a number of arcs from
A, thend™ = 4 is not satisfied.

We shall show that the set of minimal coverings can be effectively constructed
using special kinds of decompositions of the state sét of

Definition 3.4.3.6.
Letm = (%, I, Q, M, ®, F, g, mg) be adeterministic stream X-machine. Then a
setH={H}im,Hjz0U,0i0l,is called aradmissible decomposition of Q if:

i) [J Hi=Qand

ial

103

Chapter 3. Stream X-machines.

i 0i0l and D@0 P, Tj Ol suchthat if F(q, @) # U, then F(q, @) U Hj,
O qO H;.

Definition 3.4.3.7.
Letm=(Z,T,Q,M, ®,F, qg mp) be adeterministic stream X-machine. Then two
states q, 71 Q are calledlomain-compatible if:

O @, ¢ O P such that F(q, @) # 0 and F(q, @) # O, then either ¢ = ¢ or
dom@ n domg =0.

Definition 3.4.3.8.
A set H = {Hi}ig, Hj# 0, 0i O, is caled a domain-consistent decomposition
of Qif:

) (J Hi=Qand

iol

i) Jildl, q,q0Hj, gand g are domain-compatible.

If 7 is a stream X-machine with associated automaton 4, then any stream X-
machine 7" whose associated automaton ' satisfies 4’ > 4 determines an admissible
and domain-consistent decomposition of the state et of

Lemma 3.4.3.9.
Let M and 7’ be two deterministic stream X-machines and ¢ and {' be their

associated automata such that {. Let h: Q' PQ be defined by
h(g’) ={q0 Q| dom lrq U dom F.q’}.

Then the set
H ={h(a")| ' Q" and h(q’y U}

is an admissible and domain-consistent decomposition of Q.

Proof:

Let g 0 Q such that h(q) # O and q1, g2 [h(q"). Hence dom Fe.qp O dom Fg'.q’
and dom Fe.q2 O dom Fg.q'. Then let ¢, ¢ [® @ # ¢ such that F(qq1, @) # O and
Flap, @) # 0. Thus F(q, @) # O and F(q, ¢) # 0. Since 7' is deterministic, it
follows that domyp n dom@ =[. Hence H is domain-compatible.

Sinceq O0Q, @O d,if gOh(q) and F(qg, @) # O then F(g, @ O h(F(q, @) O
g0 Q, His also admissibl&®

Conversely, an admissible and domain-consistent decomposition of the state set of
7 determines at least one machine 71’ whose associated automaton 4’ satisfies 4’ >
A

Definition 3.4.3.10.

Let M = (%, T, Q M, &, F, qo, mg) be a deterministic stream X-machine and

H = {H;j}j be an admissible and domain-consistent decomposition of Q. Then,

we can define at least one deterministic stream X-machine
m=rQ,mMe,F, q, m)

as follows:

104

Chapter 3. Stream X-machines.

1. Q" ={H}ol
2. F' is defined by:

OH;, if 0q O Hj such that F(qp) # U,
FH,p= 0O where j is chosen such that Fgqgl] Hj O g0 Hj
00, if F(gq,@ =0 O q O H;
3. @' = Hj, where His chosen such thap @] H;.

The set of all the machinés defined as above will be denoted/biA.

Since H is admissible F is well defined. Also since H is domain-consistent, 71 is
deterministic. Indeed, leti O | and @, @ [0 @ such that @# @. Then, if F(Hj, @) # O
and F(Hj, @) # O then Oq, g O Hj such that F(q,) # U and F(q’, @) # . Since q
and g’ are compatible, dopn dome =0.

Obvioudly, the definition of F’ leads to more than one machineif Oi, j, k O I,] #Z k,
and @ [0 ® such that F(Hj,@) O H; and F(Hj, @) O Hg. Also, if Ui, j O | such that
do U Hj and qg O Hj, then the definition above |eads to more than one machine.
Obvioudly, if H isapartition (i.e. Hj n Hj=0,0 i,jOI,i#j), then/H contains
only one element.

Lemma 3.4.3.11.
Let M and M’ O M/H as above and 4 and ' the associated automata of 7 and M’

respectively. Then = 4.

Proof:
We define g: Q — Q by g(q) = Hj, where i is chosen such that g O Hj. By
induction it follows that dom &g U dom R.g(q)N g0 Q. ®

We can now prove the result we want.

Theorem 3.4.3.12.

Letm=(Z, T, Q, M, &, F, g9, mg) be adeterministic stream X-machine with ®
complete and output-distinguishable such that its associated automaton 4 is
minimal. Also, let ' = (%, I, Q, M, ®, F, gg', mg) be a minimal covering of 7
w.r.t. @ and {’ the associated automaton of 71". Then there exists H = {Hj}j an
admissible and domain-consistent decomposition of Q and 71" [7/H such that {’
and{" are isomorphic, wheré' is the associated automaton/of

Pr oof:
Since 4 isminimal, 4 is accessible. From lemma 3.4.3.5 it follows that 4’ = 4. Let

h: Q - 7Q defined by h(q) = {q O Q| dom Fe.q [0 dom Fg.q}. Then the set

H ={h(a")| g Q" and h(q’y U}
is an admissible and domain-consistent decomposition of Q (see lemma 3.4.3.9).

105

Chapter 3. Stream X-machines.

From lemma 3.4.3.11 it follows that any element of /H is a covering of 7. Since
M’ is a minima covering, it follows that card(Q) < card(H). Now, from the
construction of the set H, we have card(H) < card(Q’). Hence card(H) = card(Q)
and the function h will have the following properties:

h(g)z0 Oq0Q

h(ar) # h(ep’) Doy, oo’ U Q" with o # 7',
Hence : Q' - H defined by Q") = h(q’) is a bijective function.
Letk:H- Q', k= h'l. Obviously, k is also bijective.

Then we construdt” = (Z, I, Q", M, @, F", op", mg) as follows:
1.Q"=H
2. F" is defined by:

O h(F'(k(H), @), if 0g U Hj such that F(qp) # O
F'(Hi, @) = O
O4d,ifF(g,9 =0 OgO Hj
3. ¢" = h(ep)

It follows easily thatl" O 7/H. Also,
F'(Hi, @ O h(F'(k(H), 9)).
Since h k = &, it follows that
k(F"(Hj, @) O F'(k(H), @)
Hence k: {" — 4’ is a bijective morphism. Since 71’ is a minimal covering of 7l
w.r.t. @, k is an isomorphisn®

Therefore, if .= (Z, T, Q, M, @, F, g, Mp) is a deterministic stream X-machine
with @ complete and output-distinguishable and its associated automaton 4 is
minimal, then the set of all minimal coverings of 7 w.r.t. ® will be a subset of
{m" O MMH | Hisany admissible and output-consistent decomposition of Q with
minimum possible number of elements} (i.e. 0 H’ another admissible and domain-
consistent decomposition of Q, card(H) < card(H’)). Thus, if we can determine
algorithmically whether dom ¢ n dom @ is empty or not O ¢, ¢ [®, then the set
of all minimal coverings can also be determined agorithmically. The algorithm we
shall be giving in what follows involves a great deal of trial and error. It consists
of the following steps:

1. Construct all the admissible and domain-consistent decompositions H of Q
with minimum number of elements (let this number be ng). Since ng < n, it is
clear that there exist only a finite number of such decompositions.

2. For each such H, construct all M’ OO M/H. The set of al such M’ will be
denoted by.

3. Eliminate all the machingsd = such that:

Om" O = such that the associated automaton of 71", 4", can be obtained by
removing one or more arcs from 4, the associated automaton of 71’. The remaining
elements of= are all minimal coverings f.

106

Chapter 3. Stream X-machines.

The algorithm is illustrated by the following example.

Example 3.4.3.13.
Consider the stream X-machine 7 = (%, I, Q, M, @, F, qg, mp), where > = { &, b},
MF={x, vy}, Q={qp, a1, a2}, M ={0, 1}, mg =0, ® = {1, @2} and the next state
function F represented in figure 3.12.
@, @ MxZ - T xM partial functions defined by:

domgp ={(0, a), (1, b)}; @(0, a) = (x, Deg(1, b) = (x, 0);

domgp ={(0, b), (1, @)} @2(0, b) = (y, (1, @) = (x, 0);

domez ={(0, @), (1, b)}; @3(0, &) = (y, 1)@a(L, b) = (y, O);

¢l
qo ql
@3 @2
Figure 3.12.

i computes the partial functionX* — '* defined by
domf=1{1, a, aa, aaa};
f(1) = 1;
f(a) = x;
f(aa) = xx;
f(aaa) = xxy.

It is clear that @ is complete and output-distinguishable. Also, qqg is compatible
with q1 and q1 is compatible with g2 but gg and gp are not compatible. Then, the
admissible and domain-consistent decompositions of Q with the lowest cardinality
are H, Hp and H;, where:

H1= {{aqd} {91, @},
Ho = {{do, a1}, {g 2}} and
H3={{do a1}, {a1, @}

Then/Hq = {M1}, M/H2 = {2}, MIH3 = {3, M4}, where:
M1 = (&, T, H1, M, @, F1, {d0}, mg) with F1 represented in figure 3.13,;
Mo =(Z, T, Ho, M, @, Fp, {do, a1}, mg) with F represented in figure 3.14;
M3 =(Z, I, H3, M, ®, F3, {40, a1}, mg) with F3 represented in figure 3.15;
Mg =Z, T, H3, M, @, F4, {00, a1}, mg) with F4 represented in figure 3.16.

107

Chapter 3. Stream X-machines.

@2
ol
{q0} | | {a1,q2}
@3

Figure 3.13.
(OXN
@2
{d0,q1}) @
@3
Figure 3.14.
@2
el
@2
@ \/{ql.qZ}
@3
Figure3.1.5.
@1 @
@2
90,91}) \ {aL.92}
@3
Figure 3.16.

It is clear that 71 and 7> can be obtained by removing a single arc from 713 and
M4 respectively. Therefore, the set of all minimum coverings of 7. is {71, M2}. Mq
and7lo compute {: 2* - and §: ¥* - * respectively defined by:

108

Chapter 3. Stream X-machines.

dom 1 ={1} O{a@)"n=0} O {a@y)"an=0} O{a@)|n=0} O
{a(abYaa| r= 0},

f1(1) =1,

f1(a(ab}) = x(xy),

f1(a(abla) = x(xy)'x,

f1(a(ab)b) = x(xy)y,

f1(a(abjlaa) = x(xy§xy;

dom f = {(ab)"n= 0} O {(ab)Naln= 0} O {(ab)Nb|n =0} O {(ab)"aa| n
> 0} O {(ab)"bb| n= 0} O {(ab)aaa] r= 0},

fa((ab)l) = (xx),

fo((abf1a) = (X,

f2((ab)b) = (xx)y,

fo((ab)laa) = (xxJxx,

f2((ab)bb) = (xx)yy,

fo((ab)laaa) = (xxfixxy.

Clearly, fO f1 and fOI fo.

If the type @ is not complete and output-distinguishable, then the algorithm above
can still be used to find coverings of a certain machine 7 with the number of states
less or equal to the number of states of 71, but in this case the machines obtained
are not guaranteed to be minimal coverings.

Also, it is useful to notice that, if ® is complete and output-distinguishable, then
the two concepts presented above (i.e. Q-minimality and minimal covering) do not
depend on the initial memory of the machine. Indeed, if a machine is Q-minimal
w.r.t. @, then by changing the initial memory, it still remains Q-minimal. Also, if
M’ is aminimal covering of 7 w.r.t. ®, then by changing the initial memory of
both machines]’ will still be a minimal covering dfl.

109

